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Selection, Maintenance, and Removal of Working Memory Contents: A 

Behavioral and Electrophysiological Approach  

Abstract 

Despite the long-standing interest in working memory (WM), its functional 

mechanisms remain a major focus of research in psychology. Recent 

advancements in techniques and analytical methods have enhanced our 

understanding of the essential subprocesses that compose WM functioning. This 

dissertation aims to understand better three of these subprocesses: selection, 

maintenance, and removal. To achieve this, three studies are presented across 

three chapters, each addressing different questions related to WM functioning.  

The first study examines the removal of contents from WM using classifiers on 

electroencephalography (EEG) data to decode variations in load following removal. 

The results show that attentional selection processes are not easy to separate from 

retention and that the EEG signal may be difficult to decode under certain 

conditions. The second study shifts the focus to the maintenance component of 

WM and the role of oscillations in its correct functioning. Specifically, the theta-

gamma coupling model is tested using transcranial alternating stimulation to 

modulate WM capacity and the EEG consequences of this entrainment are 

evaluated. Lastly, the third study continues the exploration of content removal by 

examining the differences between temporary and permanent removal of 

information from WM, this time using a behavioral design that allows for the 

complete dissociation of these two types of removal. The results reveal that while 

the processes may appear similar, there are deeper, significant differences between 

them.  
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Chapter 1: General Introduction 

1.1. The Definition of Working Memory  

The study of memory has traditionally undergone a fundamental division, 

which we now study as long-term and short-term memory (LTM and STM, 

respectively). The philosopher John Locke (1690) had already reflected on these two 

types of retention in mind: the "storehouse of ideas," where ideas are permanently 

stored and can be revived after having been set aside, and "contemplation," which 

would consist of a temporary state in which ideas would be kept in view. Perhaps 

better known is the distinction between primary and secondary memory proposed 

by William James (1890). Primary memory reflects the contents actively present in 

consciousness, whereas secondary memory stores items that are not currently in 

consciousness and require a retrieval process to recall them. Despite the temporal 

gap between the two authors, both “contemplation” and “primary memory” seem 

to describe a store of information ready for immediate use, similar to what we now 

refer to as Short Term Memory (Logie, 1996).  

However, the term “working memory” was not used until the 60s when Miller 

et al. (1960) stated:  

“Something important does happen to a Plan when the 

decision is made to execute it. It is taken out of dead storage and 

(…) It is brought into the focus of attention (…) The parts of a Plan 

that is being executed have special access to consciousness and 

special ways of being remembered (…) When we have decided to 
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execute some particular Plan, it is probably put into some special 

state or place where it can be remembered while it is being 

executed (…). Therefore, we should like to speak of the memory we 

use for the execution of our Plans as a kind of quick-access, 

‘working memory’. (p.65)” 

In this way, 'working memory' referred to this temporary memory concept 

intuitively discussed by Locke and James. However, for the first time, it introduced 

the significant nuance that it serves as a temporary store for 'plans' or actions that 

need to be remembered and executed shortly, not only for the maintenance of data 

or items consciously. Similarly, Atkinson and Shiffrin (1968) proposed that both the 

conscious information (or representations in STM) and the control of this 

information, which is intrinsic to human cognition, are encompassed within 

“working memory”, thereby emphasizing the functional role of its short-term 

storage. In this scenario, and also attributing WM a functional role, Baddeley and 

Hitch (1974) proposed that working memory constitutes a multicomponent system, 

as opposed to the single-store short-term storage view dominant at the time. 

Consequently, with the focus on understanding the differences between LTM and 

STM, these authors significantly pushed the study of WM to its current relevance 

(Baddeley, 2007).  

There are currently different theories and conceptualizations about WM (Logie 

et al., 2020). However, for all of them, the essence of WM is that it is a system (or 

set of processes) holding mental representations temporarily available for use in 

thought and action (Cowan, 2017). Therefore, the two fundamental and universally 



 

3 

 

accepted characteristics of WM include this temporary storage of representations 

and their functional availability for use. Recently, Oberauer (2020) stated that “the 

function of WM is to provide a medium for representations that we can manipulate 

and that we can use to guide our thoughts and actions in ways that are novel and 

potentially depart from what we have learned” (p. 117). This statement builds upon 

the previous definition by emphasizing the temporary storage and manipulation of 

representations, but it also adds the role of WM in guiding novel thoughts and 

actions that may diverge from what has been learned. This highlights the dynamic 

interaction and relative independence between LTM and WM. In this sense, LTM 

serves to provide a stable framework of representations, while WM enables us to 

temporarily manipulate these representations and modify them as necessary to suit 

the situation. Thus, the “Plans” previously proposed by Miller et al. (1960) would 

require information from LTM, as well as mechanisms for selecting and maintaining 

relevant information or filtering out irrelevant information, which would be provided 

by WM (Postle & Oberauer, 2022). This close link between LTM and WM has received 

much interest recently, and it underlies some of the main WM frameworks explained 

in more depth in the next section. 

1.2. Working Memory as Different Activation States 

Different conceptualizations agree that working memory is not a 

homogeneous mental device (LaRocque et al., 2014; Rerko & Oberauer, 2013). 

Rather, information in WM can be presented in different activation states based on 

the allocation of attention to the information stored in LTM. In other words, WM can 

be conceptualized as an interaction of LTM and attention, where stable stored 
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information from LTM can enter more activated states when this information is 

attended. There are three predominant frameworks supporting this idea (see Figure 

1), which mainly differ in two aspects: the number of activation states and the 

number of representations that can be kept in the most active state, that is, in the 

focus of attention (FoA).  

Figure 1. Activation states frameworks of WM. (a) McElree’s conceptualization, (b) 

Cowan’s model, and (c) Oberauer’s framework. Orange nodes represent the items 

in the FoA. Green nodes represent the items in the broad focus or region of direct 

access.  

 The first conceptualization (McElree, 1998, 2006; McElree & Dosher, 1993) 

posits the existence of a unique WM component: the FoA. From this framework, the 

last presented item to retain is supposed to have a priority access status as long as 

it is attended to and kept in the FoA, while the rest of the items would remain in LTM. 

Importantly, it goes against the existence of a broader intermediate activation state 

and suggests that WM and LTM are governed by the same principles—contrary to 

the conceptualizations stated below. Support for this framework comes from 

behavioral experiments using stimuli serial presentation tasks, in which 

performance is enhanced for the last encoded item (McElree, 2006; McElree & 

Dosher, 1993; Wickelgren et al., 1980). Additional support also comes from 

functional magnetic resonance imaging (fMRI) studies (Öztekin et al., 2010). Under 
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the assumption that the hippocampus is required for retrieval of relevant 

information (Mayes et al., 2007), Öztekin et al. (2010) showed that hippocampal 

activity supports all items but the last presented one, which was proposed to be the 

only attended item and, consequently, the only item that did not need to be encoded 

or retrieved. However, other research also found evidence for the distinction of an 

additional intermediate level of activation of contents in WM—broader than the 

FoA—supported by different brain regions (Nee & Jonides, 2011), which more 

closely aligns with the following exposed frameworks.  

The second model is Cowan’s embedded-processes approach (Cowan, 1988, 

1999). This model considers that information in WM can be in two states: in a central 

component (i.e. FoA), which owns the most accessible and activated part of WM, 

and its capacity is limited to four chunks of information, or in a peripheral 

component (the activated part of long-term memory, or aLTM) which is a brief 

sensory store that activates information from LTM, has no capacity limit and is 

susceptible to decay and interference. The embedded approach emerged from the 

observations that WM and LTM relation is highly interrelated: information processed 

in WM includes sensory input but also meaning taken from LTM, and information 

must be processed in WM before it becomes a long-term representation. This 

framework serves to accommodate different findings from the literature. For 

instance, Cowan et al. (2005) showed very little proactive interference when the set 

size to remember was three or four items, so within the FoA capacity, opposite to 

larger set sizes, which can be explained by the fact that the FoA protects items from 

proactive interference (but see also Oberauer et al., 2017). Also, the embedded-
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processes approach is congruent with the fact that more than one item can be 

maintained in the FoA simultaneously (Gilchrist & Cowan, 2011).  

The three embedded-processes framework advocated by Oberauer (2002, 

2013) arose as a modification of the previous model. It proposes a first wide 

component, the aLTM, which contains potentially relevant contextual information. 

Then, the next activation step would be occupied by the region of direct access 

(DAR) or broad focus (Oberauer & Hein, 2012), which is the equivalence of Cowan’s 

FoA, holding the information that is relevant to the task. Then, the FoA from 

Oberauer’s framework mostly holds a single relevant item from the region of direct 

access at each moment. The FoA in this framework does not have a limited capacity 

of a single item per se because it simply serves the role of “selecting” the most 

relevant item for the current task, which is usually only one item (together with its 

context). However, when multiple items are equally relevant to the task, they can 

also be superimposed at the FoA (Oberauer, 2020).  

Importantly, Oberauer's framework proposes that WM representations are 

organized in a network of temporary bindings, where contents (i.e. numbers, words, 

colors, etc.) are bound to contextual representations (locations in a mental 

coordinate system). Hebbian learning quickly creates these bindings when a 

context and a representation are activated simultaneously. Subsequently, when 

these bindings become irrelevant, they are gradually removed by a Hebbian anti-

learning process (Koch et al., 2013; Lewis-Peacock et al., 2018; Oberauer et al., 

2012). This process would account for the rapid removal of WM contents once they 

become irrelevant (see section Removal of Information from Working Memory). 
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Moreover, based on this framework, it has been possible to develop computational 

models to characterize specific mechanisms deployed in different WM tasks 

(Oberauer et al., 2012, 2013; Oberauer & Lin, 2017).  

In summary, although different predictions can be derived from these 

frameworks, they all support the notion that information in WM can be presented in 

different activation states. However, terminology for these states varies across 

models. Oberauer's FoA aligns closely with McElree's proposal, while the DAR is 

closer to Cowan's FoA. To minimize ambiguity, Oberauer’s framework will be 

adopted in this dissertation. This choice is given because it successfully accounts 

for the key processes involved in WM functioning relevant to the present work, 

namely internal selective attention, information maintenance, and removal of 

irrelevant information. Subsequent sections will address these specific 

subprocesses in greater detail.  

1.3. Selection and the Role of Attention in Working Memory 

Until recently, the study of attention focused on the prioritization of sensory 

information from our environment. However, in recent years, research has 

expanded to include the study of attention towards our mental representations 

(Chun et al., 2011; Ede & Nobre, 2023). Numerous studies have demonstrated 

similarities between external and internal attention (i.e., towards the environment 

and the contents of working memory). For instance, research indicates that the 

brain regions involved are similar in both modalities (Nobre et al., 2004; Panichello 

& Buschman, 2021; Zhou et al., 2022; but see Jungerius et al., 2024; Myers et al., 

2017). When discussing attention toward contents in WM, “internal selective 
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attention” is currently used as an umbrella term that encompasses several 

mechanisms crucial for information processing in WM, including orientation, 

selection, consolidation, and prioritization, among others (Ede & Nobre, 2023; 

Olivers & Roelfsema, 2020).  

Traditionally, there has been a tendency to equate internal selective attention 

solely with initial transient and time-limited processes where prioritization of 

information that is necessary for the tasks to be performed occurs (Nobre & Kastner, 

2014). This is often observed in Event-Related Potentials (ERP) studies through 

neural markers such as N2PC (Woodman & Luck, 1999, 2003). However, several 

findings indicate that internal selective attention is not limited to initial transient 

processes but also includes operations that transform an item into another state for 

future processing (Ede & Nobre, 2023; Olivers & Roelfsema, 2020). In this sense, 

these attentional processes play a key role in linking sensory representations with 

actions (i.e., the 'items' with the 'plans'), consistent with studies showing that 

sensory contents and plans for actions involving these contents are processed in 

parallel rather than independently (van Ede et al., 2019).  

Since internal attentional selection processes, such as prioritization or 

consolidation, are not time-constrained, the measures of internal selective 

attention also need not be. For example, it has been argued that consolidation 

processes can last between 500 and 2000 ms (Ricker et al., 2018). Also, Quentin 

et al. (2019) showed sustained decoding for a selection component in a VWM task 

(i.e., focusing on the orientation or frequency of a grating pattern) that remained 

stable for approximately 1.5 seconds. However, the dynamics of processes 
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involving some form of internal selective attention are not yet well defined. Chapter 

2 of this thesis sheds some light on this. Specifically, Multivariate Pattern Analysis 

(MVPA) of EEG and EOG data suggests that internal selective attention plays a 

crucial role in flexibly updating the relevance of VWM content during a prolonged 

delay.  

1.4. Maintenance or Temporary Bindings 

How information is maintained in WM is a matter of debate. One of the most 

common approaches to study maintenance involves manipulating the amount of 

information retained in WM (i.e., the load) and examining how this information is 

maintained during a delay following its encoding. During these delays, variations in 

different electrophysiological markers are typically observed as a function of load. 

For example, with higher loads, sustained negative activity is seen in the hemisphere 

contralateral to the stimulus presentation, compared to the ipsilateral hemisphere. 

This activity becomes more negative in amplitude as the load increases, until it 

reaches an asymptote that corresponds with the limit of WM capacity (Adam et al., 

2018; Vogel & Machizawa, 2004). However, although we can identify markers to 

estimate load, the neural mechanisms underlying the maintenance of these items 

remain unclear. To properly explain the possible hypotheses currently being 

considered, we must revisit the idea that information in WM can be found in different 

activation states.  

It is well known that information in WM can exist in two states depending on its 

relevance to current goals. These states have been labeled differently in the 

literature: classical models of WM distinguish between attended and unattended 
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items (Cowan, 2001; Oberauer, 2002), while others refer to items that guide 

attention versus those that do not (Olivers et al., 2011), or prioritized versus 

(temporally) unprioritized items (Lewis-Peacock et al., 2012), or currently versus 

prospectively relevant items (van Loon et al., 2018). Importantly, regardless of the 

terminology used to describe these two states in the literature, the neural 

mechanisms supporting maintenance in one or the other state differ.  

One of the most influential current proposals suggests that items in an 

attended state in WM are maintained through persistent neural spiking, whereas 

unattended items remain in a silent or hidden state of activity (LaRocque et al., 

2013, 2014; Lewis-Peacock et al., 2012; Olivers et al., 2011; Stokes, 2015). 

Supporting evidence for this proposal comes from studies demonstrating that only 

contents prioritized in the current moment can be decoded, whereas unprioritized 

representations are not decodable unless they become relevant later (e.g. 

LaRocque et al., 2013, 2017; Sprague et al., 2016). However, this notion has also 

been challenged and is not absent from debate.  

On one hand, it has been argued that persistent spiking is not a requirement 

for information maintenance in WM (Miller et al., 2018). Different findings support 

this idea. For instance, Contralateral Delay Activity (CDA) is attenuated when the 

same information is maintained across multiple trials, i.e., when it has already 

involved some learning, which may indicate that persistent activity is necessary to 

prioritize information initially but not to keep it active later (Gunseli et al., 2014). 

Furthermore, different results with electrophysiological data suggest persistent 

activity due to the averaging of trials for statistical analysis. However, closer 
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examination at the single-trial level reveals that activation occurs sparsely, with 

maintenance achieved through bursts of activity at rapid frequencies (Lundqvist 

et al., 2016; Miller et al., 2018; Stokes & Spaak, 2016).  

On the other hand, how information would be maintained in a passive state is 

also unclear. Stokes (2015) proposed that the initial activity following the encoding 

of a stimulus creates a functional connectivity network (probably through a process 

of short-term synaptic plasticity) unique to this stimulus. After encoding, this 

network is maintained in a state of "silent activity" that may briefly manifest during 

any spontaneous activity within the network and could be fully reactivated when the 

representation becomes relevant again, e.g., if required to provide a behavioral 

response. A major challenge of this conceptualization is how to measure this 

passive activation state. One proposed method to detect it involves perturbing 

these networks so that functional connectivity becomes decodable. This has been 

achieved through techniques such as using bursts with Transcranial Magnetic 

Stimulation (Rose et al., 2016) or presenting task-irrelevant high-contrast visual 

stimuli (Wolff et al., 2015, 2017). The results indicate that activity related to 

unattended information can be transiently decoded, thereby supporting Stokes's 

proposal (2015).  

However, various alternative explanations have been proposed to describe the 

active and passive states of WM. For instance, it has been suggested that these two 

states can be represented in distinct distributed networks (Christophel et al., 2017, 

2018), or within the same networks but characterized by different patterns of 

neuronal activation for each item (Druckmann & Chklovskii, 2012; Spaak et al., 
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2017), or within the same neural patterns but differing in their levels of activation 

(e.g., Schneegans & Bays, 2017). Therefore, taking into account these other 

conceptualizations, there is also no consensus in stating that the active state is 

equivalent to persistent or sparse activity and that the passive state is equivalent to 

silent or hidden activity (Stokes et al., 2020).  

Given the lack of consensus on how information is maintained in WM, studying 

its characteristics requires techniques sensitive to any of the possibilities discussed 

so far. Techniques such as Multivariate Pattern Analysis to decode EEG or fMRI 

measures appears to be a promising approach (Adam et al., 2020; Hakim et al., 

2020; Postle, 2020). However, this technique is not without potential confounds 

(Mostert et al., 2018; Quax et al., 2019). Chapter 2 of the present dissertation 

focuses on decoding WM content held in an active state and examines how this 

decoding may be influenced by other factors, particularly when part of this 

information becomes irrelevant.  

1.4.1. The Role of Oscillations in the Maintenance of Information 

On the other hand, oscillations also play a significant role in maintaining 

information in WM (Miller et al., 2018; Roux & Uhlhaas, 2014; Sauseng et al., 2019; 

Vries et al., 2020). Specifically, evidence suggests that the interaction between 

theta and gamma frequency bands is likely underlying the maintenance of WM 

contents. However, the exact way in which the WM representations relate to these 

frequencies is still under debate (Sauseng et al., 2019; see Figure 2).  

The predominant theory is the theta-gamma coupling theory (Jensen & 

Lisman, 1996; Lisman & Jensen, 2013), which suggests that maintenance occurs 
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through the coupling of fast gamma oscillations—representing individual items—

with slower theta waves that organize these fast oscillations by nesting them (see 

left panel of Figure 2).  According to this view, the number of gamma oscillations 

nested within a single theta cycle would determine the capacity limits of WM. In 

contrast, a more recent view (Herman et al., 2013) proposes that each item is 

represented by a complete gamma burst, with only one gamma burst coupled to 

each theta cycle. Therefore, the capacity limit of WM is determined by the time 

required to refresh several theta cycles. Although both theories have some 

supporting evidence, it remains unclear which aspects of each theory best 

accommodate the scientific evidence so far (Sauseng et al., 2019). 

Figure 2. Schematic representation of the two predominant oscillation models 

about WM maintenance: the theta-gamma coupling theory (left panel), in which all 

the items are represented in a gamma burst (orange), nested in a theta cycle (blue), 

and another view that proposes that each WM representation is refreshed in an 

individual theta cycle (right panel).  

 

One way to study the specific role of oscillations in cognitive processes is by 

attempting to manipulate the brain rhythms. The main method for manipulating 
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brain oscillations is transcranial Alternating Current Stimulation (tACS), a non-

invasive stimulation technique that consists of applying weak currents through 

electrodes in the scalp, allowing the current to penetrate the cortex. tACS facilitates 

the synchronization of different brain regions at the frequency of stimulation and 

can influence cognitive functions dependent on the targeted brain networks and 

oscillations (Antal et al., 2008, 2022). In the context of WM, tACS has been used to 

apply theta, gamma, or coupled theta-gamma rhythms to different brain regions, 

with the primary aim of enhancing WM performance (see Booth et al., 2022 for a 

recent review). However, the results regarding the technique’s efficacy are mixed, 

with several factors that can influence the cognitive impact of tACS (Krause & Cohen 

Kadosh, 2014). In Chapter 3 of this dissertation, tACS is employed to modulate WM 

performance to test various WM maintenance models involving oscillations, while 

also considering factors that may influence the stimulation outcomes, in this case, 

task difficulty and baseline WM capacity. 

1.5. Removal of Information from Working Memory 

The third subprocess relevant to the present work is the removal of WM 

contents when they become irrelevant. Given the limited capacity of WM (Cowan, 

2010), it is crucial to have a mechanism to get rid of information. Using different 

paradigms, such as retro-cue or directed forgetting (Chiu et al., 2021; Dames & 

Oberauer, 2022; Lintz & Johnson, 2021), different ways by which information stops 

loading the WM have been proposed (Barrouillet et al., 2012; Berman et al., 2009; 

Lewis-Peacock et al., 2018), among which the so-called removal stands out. 

Removal is defined as an agile and fast mechanism for actively target-directed 
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removal of information from WM to achieve a current goal (Lewis-Peacock et al., 

2018).  

Removal support comes from studies using the retro-cue paradigm that have 

shown how flagging some WM information as irrelevant improves the performance 

of subsequent WM operations. For example, it frees up working memory capacity, 

facilitating the encoding of new information (Popov et al., 2019; Souza et al., 2014), 

and responses related to the relevant information are faster when part of the 

information has been removed (Dames & Oberauer, 2022; Oberauer, 2018; Souza 

et al., 2014). From a neural point of view, several EEG and fMRI studies have also 

shown how neural traces for information cued as irrelevant are reduced during the 

delay after the retro-cue (LaRocque et al., 2013; Lewis-Peacock et al., 2012).  

There are increasing efforts to understand how removal functions. 

Specifically, a recent study experimentally examined the boundaries and conditions 

under which removal occurs, as well as the time course of removal with verbal 

information (Oberauer, 2018). It was observed that it takes approximately 1 second 

to completely remove irrelevant verbal information from WM. However, this aspect 

has not been studied extensively in visuospatial working memory until now. The 

main objective of Chapter 2 of this dissertation was to assess the temporal 

dynamics of permanent removal in visuospatial WM, both behaviorally and in EEG 

data. 

Importantly, the results exposed so far were obtained based on the 

assumption that uncued information is deemed permanently irrelevant. However, 

sometimes information is flagged as temporarily irrelevant and cannot be 
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completely removed because it may be needed later, but the WM must be left 

unloaded for some time. This concept is referred to as temporary removal. For 

instance, during a conference, if two questions are posed and the second one needs 

to be set aside temporarily while addressing the first, it cannot be entirely forgotten. 

Although such scenarios are common, the extent to which temporary removal 

mirrors the impact of permanent removal on WM remains unexplored.  

One way to investigate temporary removal is by following the first target by a 

second target. In this paradigm, the response to this second target consistently 

revolves around the initially uncued information, ensuring that it was not 

permanently removed to provide the first response. However, experiments featuring 

both types of situations (i.e., where information could be permanently or 

temporarily removed) adopted a design in which both types of trials were 

randomized (LaRocque et al., 2013; Oberauer, 2005). This setup prevented 

participants from knowing when to implement one type of removal over the other, 

making the direct comparison of temporary and permanent removal impossible. To 

our knowledge, only one study has directly used a retro-cue paradigm to address 

the comparison of temporary and permanent removal and it observed strong 

differences between both conditions (Oberauer, 2001, Experiment 2). However, 

rejected items could appear as distractors during the temporary removal task, 

which increased the familiarity elicited by these items for this condition. This 

produced an uneven familiarity between both conditions, which could potentially 

account for the observed differences. Thus, the main aim of Chapter 4 of the present 

dissertation was to study the differential impact of temporary and permanent 



 

17 

 

removal on the retrieval of the remaining information in WM and how this unfolded 

over time.  

1.6. Aims and Hypotheses of the Dissertation 

The general objective of the present dissertation was to better characterize the 

mechanisms underlying the selection, maintenance, and removal of information 

from WM. To that aim, three primary studies were conducted, using both behavioral 

and electrophysiological methods to address different questions related to these 

processes. The studies were structured around Oberauer’s approach, which served 

as the central framework for understanding WM from a cognitive perspective. The 

studies are developed in depth in the following three chapters.  

Chapter 2 mainly aimed to investigate the temporal dynamics of content 

removal from visuospatial WM. The interest was focused on whether changes in 

load could be monitored following WM removal. To achieve this, MVPA was used to 

track the electrophysiological signals associated with load, in conditions where 

load reductions were anticipated after removal. Thus, Chapter 2 explores how 

removal (or selection, as detailed below) impacts load over time in a visuospatial 

WM task and the electrophysiological basis of these changes. It was hypothesized 

that:  

- With a longer time to remove, performance on the condition with an 

informative retro-cue would improve. It was expected that performance 

would be comparable to a high-load baseline level when no time to remove 

was available; however, as more time was provided (thus, as more items 
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were removed), performance should become comparable to a low-load 

baseline level.  

- In the EEG, low and high load conditions were expected to be decoded 

before any removal was depleted. 

- Also, mirroring the behavioral performance, it was expected to decode the 

retro-cue condition as low-load baseline at the beginning of the delay but 

as high-load baseline by the end of the delay.  

In Chapter 3, the interest was in studying the role of oscillations in the 

maintenance of representations in WM. Given the attention that has been given to 

theta-gamma coupling theory as an electrophysiological substrate for this process, 

this study builds on this conceptualization to test whether applying extrinsic low-

frequency theta electrical stimulation (4 Hz) can enhance performance on a task 

that primarily requires the maintenance of information in WM. Additionally, factors 

known to be relevant in previous studies for enhancing tACS effects were controlled. 

Therefore, this study has two aims: first, to test the prediction derived from theta-

gamma coupling theory that a lower theta frequency facilitates the maintenance of 

more items in WM; second, to examine the influence of individual differences and 

task difficulty on the effects of tACS. The main two specific hypotheses were:  

- Participants with lower working memory capacity (WMC) will benefit more 

from 4Hz theta transcranial alternating current stimulation (tACS) 

compared to those with higher WMC. These benefits are expected to be 

particularly evident during the high-load condition. 
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-  After the 4Hz theta tACS, there will be observable EEG modulations, 

including a reduction in the predominant average theta frequency and an 

increase in power at the target theta frequency, especially in the low WMC 

group. 

Lastly, in Chapter 4 the primary aim was to examine the distinct impact of 

permanent and temporary removal of verbal representations from WM. Specifically, 

the study focused on the effects that these two types of removal had on the retrieval 

of the remaining contents in verbal WM, a comparison that had not been directly 

examined until now. Besides, by manipulating the time available between removal 

and retrieval, the temporal dynamics of these effects were evaluated. Additionally, 

the influence of the order of information encoding on subsequent retrieval of 

representations and its interaction with each type of removal was explored.  

- Both permanent and temporary removal would lead to performance 

improvements with longer time available to remove the irrelevant items. 

This improvement was expected to be greater in the permanent removal 

condition. 

- When temporarily removed information had to be retrieved to provide a 

second response, performance was expected to deteriorate when there 

was more time to remove the information for the first response, compared 

to when the removal time was short. 
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Abstract 

Flexible updating of information in Visual Working Memory (VWM) is crucial to 

deal with its limited capacity. Previous research has shown that the removal of no 

longer relevant information takes some time to complete. Here, we sought to study 

the time course of such removal by tracking the accompanying drop in load through 

behavioral and neurophysiological measures. In the first experimental session, 

participants completed a visuospatial retro-cue task in which the Cue-Target 

Interval (CTI) was manipulated. The performance revealed that it takes about half a 

second to make full use of the retro-cue. In a second session, we sought to study 

the dynamics of load-related electroencephalographic (EEG) signals to track the 

removal of information. We applied Multivariate Pattern Analysis (MVPA) to EEG data 

from the same task. Right after encoding, results replicated previous research using 

MVPA to decode load. However, especially after the retro-cue, results suggested 

that classifiers were mainly sensitive to a selection component, and not so much to 

load per se. Additionally, visual cue variations, as well as eye movements that 

accompany load manipulations can also contribute to decoding. These findings 

advise caution when using MVPA to decode VWM load, as classifiers may be 

sensitive to confounding operations.  

Keywords: Visual working memory, electroencephalography, multivariate 

pattern analysis, working memory load, attentional selection 
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Introduction 

Visual working memory (VWM) is the ability to maintain relevant visual 

information for an ongoing task. The amount of information that we can keep active 

in VWM is generally thought to be limited to about three or four items (Cowan, 2010; 

Vogel et al., 2001), but even below this capacity limit, performance tends to decline 

as load increases. Importantly, retrospectively cueing an item within VWM as 

relevant can at least partially save it from such detrimental effects, as compared to 

information that is not cued (Astle et al., 2012; Günseli et al., 2015; Kuo et al., 2012; 

Shepherdson et al., 2018; Souza & Oberauer, 2016; van Moorselaar et al., 2015). 

While there is no clear consensus yet about the exact underlying mechanisms of 

these retro-cueing benefits, most accounts assume some form of attentional 

selection process within VWM that increases the robustness of the selected item 

against decay or interference (Lepsien & Nobre, 2006; Myers et al., 2017; Souza et 

al., 2014; Souza & Oberauer, 2016). Here we were interested in the dynamics of this 

process: How long does it take for cue-induced benefits to occur in VWM? And can 

we then track its underlying mechanisms using electrophysiological measures 

(specifically EEG)? 

One way to explain retro-cueing benefits is that the cue typically allows for 

irrelevant items to be removed from WM, thus reducing any interference such items 

may have on, and freeing memory capacity for, the target information (Lewis-

Peacock et al., 2018; Makovski, 2012; Williams et al., 2013). In other words, cueing 

part of the information in VWM as relevant (and as a consequence the rest as 

irrelevant) effectively allows for a reduction of memory load, where load refers to the 
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number of items to be retained. The aim of the current study was to track this load 

reduction across time. To this end, participants completed a visuospatial probe 

recognition task in which they were asked to remember a number of colored disks, 

one of which would be probed at the end of the trial. There were three main 

conditions (see Figure 1). In the 2- and 4-load baseline conditions, respectively two 

and four colored items had to be maintained during the entire trial, as was signaled 

by a pre-cue appearing prior to the stimulus display. These two conditions served as 

a comparison for the third condition, in which a retro-cue was introduced during the 

maintenance of the items in VWM, and which signaled which half of the information 

would be relevant – as the other half would not be tested. We refer to this as the 4/2-

load condition because four items were to be initially encoded and afterwards two 

remained relevant and two could be dropped. The 4/2-load condition was thus 

meant to induce removal of half of the information from VWM. 

The study consisted of two components. First, in a behavioral version of the 

task, we systematically varied what can been referred to as the Cue-Test Interval 

(CTI), which is the interval between the retro-cue and the memory probe. With time 

after cue, we would then expect performance to improve, with performance initially 

being comparable to high load baselines, while with the removal of items from 

memory it should become comparable to low load baseline levels. Earlier work by 

Oberauer (2018) using this procedure showed that indeed, for short CTIs, cued 

performance still behaved like the high load condition, but it resembled low load 

performance as CTI increased. These and other results have suggested that it takes 

at least 500 to 1000 ms for the retro-cue to have full effect (see Souza & Oberauer, 

2016, for a review). However, so far, these studies have used verbal stimuli. There 
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have been studies that have looked at the time course of retro-cueing effects in 

VWM (Gressmann & Janczyk, 2016; Pertzov et al., 2013; Shepherdson et al., 2018; 

Souza et al., 2014; van Moorselaar et al., 2015), but these did not assess how 

performance transitions from resembling high to resembling low load baselines, e.g. 

because such conditions were not included. Here we were specifically interested in 

how selection within visual working memory reduces load across time.  

Figure 1. (a) Task procedure for a 4/2-load trial. The task was a visuospatial working 

memory task that required delayed colored item recognition. First, participants saw 

a pre-cue, followed by four colored disks in four positions. The pre-cue pointed to 

the disks that had to be encoded. In this present example, all disks had to be 

encoded and maintained in memory. In the case of the 2-load condition, the uncued 

disks could be ignored. Then, after delay 1 (1000 ms) a retro-cue signaled the disks 

that remained relevant. This retro- cue was irrelevant for the 2- and 4-load 

conditions, but was informative for the 4/2-load condition. After a second delay 

(variable in the first session; fixed to 1000 ms in second session), a target disk 

appeared in one of the relevant locations and participants had to press a button 

reporting whether it matched or not the retained items. Inter Trial Interval (ITI), Cue 

Target Interval (CTI). (b) Summary of possible cue combinations for each trial type. 
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Second, we sought to uncover the electrophysiological counterpart of these 

dynamics, using EEG. There have been electrophysiological studies of the time 

course of the retro-cue effect in VWM (Kuo et al., 2012; Schneider et al., 2016), but 

these made use of univariate measures involving event-related components that 

required averaging across extended time windows, precluding a detailed time 

course assessment. In the current experiment, we wanted to track the removal of 

contents from VWM using highly time-resolved multivariate decoding methods. 

Recent studies have suggested that multivariate pattern analyses (MVPA) of the EEG 

signal provides an index of visual working memory load (Adam et al., 2020; Thyer et 

al., 2022). Specifically, these studies showed that MVPA-based decoding analyses 

could distinguish between levels of memory load, capturing differences as little as 

one item. Compared to univariate VWM load measures, such as contralateral delay 

activity (McCollough et al., 2007; Vogel & Machizawa, 2004) or negative slow wave 

(Fukuda et al., 2015), MVPA provides the advantages of being more sensitive and 

temporarily precise as it does not necessarily rely on the timing of a specific event-

related potential measured from at most a few electrodes. In addition, load 

decoding with MVPA promises to be more universally applicable, as it does not 

depend on lateralized stimuli. Moreover, it has shown generalization across several 

factors, including item complexity and the type of information retained (Adam et al., 

2020; Thyer et al., 2022). Thus the method promises to be both more sensitive and 

more versatile. We therefore applied this method in a second session, where we did 

not manipulate CTI, but provided sufficient post-cue time and then instead 

assessed whether multivariate signal traces the assumed reduction in VWM load. 

Specifically, we hypothesized that if the uncued information was indeed removed 
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from VWM, the load-related multivariate signal should first resemble the high-load 

baseline, but over time start to resemble more and more the low-load baseline. 

To foreshadow the findings, behaviorally we found a clear increase in the retro-

cueing benefit with time, suggesting a relatively rapid shedding of load within about 

half a second. This extends earlier findings showing a similar time course to that 

observed for verbal information (Oberauer, 2018). However, the EEG findings 

indicated that the MVPA method was sensitive, not only to a load component but 

also to selection mechanisms. That is, whenever observers had to consolidate (after 

a pre-cue) or keep (after a retro-cue) a certain number of items in VWM, this entailed 

both a retention component (i.e., the more items selected, the more items to be 

maintained), and a selection component (i.e., select the items to consolidate, or 

select the items to keep in memory). We argue that it makes MVPA analyses 

susceptible to confounding interpretations, especially given the frequent co-

occurrence of selection and maintenance requirements in standard VWM tasks. 

This is especially the case after the retro-cue, where the selection component 

precluded successful tracking of load reduction in VWM. Given that these 

components tend to correlate in VWM experiments in general, our study serves as a 

warning that it is important to clearly define what is meant by load. We will return to 

this in the General Discussion, but in the meantime we will use the term load as 

referring to the number of items retained in memory. 

Method 

Data and scripts from the two sessions are available at OSF 

(https://osf.io/fh3wa/).  
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Participants 

Fifty-six undergraduate students (mean age = 20.5, sd = 3.6, 50 females) from 

the Faculty of Psychology of the University of Murcia completed the first 

experimental session and were informed that they would be contacted again to 

complete a second experimental session. From these participants, those who 

performed close to or below chance in any of the three experimental conditions (i.e., 

under .60) were excluded from the analyses and were not contacted for the second 

session. From the remaining fifty-two, ten participants did not respond to the 

invitation for the second session. Forty-two participants assisted in the EEG 

session. Three of them could not complete the task due to technical issues. Thus, a 

final sample of thirty-nine participants completed the EEG session. All participants 

reported normal or corrected-to-normal vision and signed a written consent at the 

beginning of every session. Participants received course credits for their 

participation. The study was approved by the Ethics Committee of the University of 

Murcia and was conducted according to the ethical standards of the 1964 

Declaration of Helsinki.  

Apparatus and Stimuli 

The tasks were programmed in E-Prime 3 and were performed in individual 

sound-attenuated booths where participants were seated and responded using a 

five buttons Chronos® device (Psychology Software Tools).  

Figure 1 illustrates the task procedure. The task began with a fixation point of 

500 ms which consisted of a dark grey colored circle with a dark grey point in the 

middle, inside an outline cross. The cross was designed to minimize eye movements 



 

43 

 

(the ABC shape in Thaler et al., 2013) and was rotated 45 degrees from the original 

to accommodate the purpose of this experiment. The fixation point was followed by 

a cue of 250 ms duration in black. The cue consisted of the previous fixation point 

plus the filling of one or two of the arms of the cross Next, it appeared together with 

four colored disks for 350 ms. The cue indicated the disks that had to be encoded 

into memory, with a left diagonal cue indicating that the top left and bottom right 

items had to be encoded, and a right diagonal cue indicating the top right and 

bottom left items (2-load condition), and a fully filled cue indicated that all four 

items had to be encoded (4-load and 4/2-load conditions). This way we fully 

matched the initial perceptual information in all load conditions except for the cue. 

Furthermore, in the 2-load condition, we intentionally had participants recall items 

arranged diagonally, i.e., both to the left and right of fixation, thus avoiding any 

lateralization effects on EEG and eye movements. Next, the fixation point was 

presented during a first delay of 1000 ms while participants had to keep in memory 

the indicated colored disks. Delay 1 was followed by a 200 ms retro-cue that differed 

between conditions. In the 4/2-load condition, the retro-cue was one of the 

diagonals, indicating that only two disks of the previously presented colored items 

should be retained, while the remaining items could be forgotten, as they would 

never be tested. In both the 2- and 4-load conditions, a non-informative fully filled 

cross was presented to indicate that what had to be encoded also had to be retain. 

Looking at the results, we observe a larger area under the ROC curve, A, and faster 

RTs in the 2-load condition (see Figure 2). This shows that participants correctly 

understood these instructions.  
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After the retro-cue there was a second delay after which a target probe was 

presented until the response, with a maximum of 2000 ms. In the behavioral 

session, the CTI varied between 50 and 1300 ms, while in the EEG session it lasted 

1000 ms (see General procedure). The target consisted of a colored disk placed in 

one of two (2-load) or four (4 and 4/2-load) possible locations. Participants had to 

decide whether the previously memorized colored item at that position matched the 

target or not. On mismatch trials, the target disk was filled in with one color of the 

other item(s) that should have also been encoded, thus preventing participants 

from responding simply on the basis of familiarity. 

Stimuli were presented on a 23-inch flatscreen LED monitor (LG 23MP68VQ-

P) with a resolution of 1920 x 1080 pixels on a grey background, RGB (192, 192, 192). 

Participants were sitting 70 cm away from the screen. The fixation point was made 

out of a 1.23º diameter circle, a cross inside the circle (arms were 0.18º thick) and 

an additional circle (0.12º of diameter) in the intersection of the cross (see Figure 1), 

based on Thaler et al. (2013) recommendations to avoid eye movements during 

fixation. The circle of the fixation point was dark grey, and the arrows were the same 

color as the background. The distance of the memory disks from the fixation point 

was 1.23º. Disks had a radius of 0.6º and were equally distanced from each other. 

The color pool comprised 12 colors and it was obtained from Vries et al. (2017). 

Colors were firstly determined in DKL color space and later converted to RGB. They 

were chosen to have the same contrast and luminance, differing only in hue. The 12 

colors were discrete colors from an imaginary wheel in which consecutive colors 

were more similar than colors at the other extreme of the wheel (see methods in de 
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Vries et al., 2017, for a detailed description of color extraction). Four non-

consecutive colors were then randomly chosen for the memory set of each trial. 

General Procedure 

All participants completed two experimental sessions. At the beginning of the 

first session, they received instructions and practiced each condition separately for 

17 trials. Additionally, they performed one extra practice block of 18 trials with all 

the three conditions mixed. Subsequently, they completed 17 experimental blocks 

of 18 trials each with a total of 306 trials, 102 in each condition. For the experimental 

blocks, the three conditions were always mixed. Importantly, in this first session, the 

CTI was manipulated to examine the time course of performance as a function of 

load reduction during the second delay. Four CTIs were chosen: 50, 400, 1000 and 

1300 ms, with a mean of 25.5 and a minimum of 21 experimental trials for each 

combination of CTI and condition per participant.  

For the second session (i.e., the EEG session), participants were given the 

same instructions and administered three short practice blocks of 10 trials, one for 

each condition. In this session, they completed 900 experimental trials, 300 of each 

condition, presented in 45 experimental blocks of 20 randomly shuffled trials. The 

CTI had a fixed duration of 1000 ms. Before beginning the practice trials, participants 

were explicitly encouraged to look at the fixation point, to avoid eye movements or 

blinking, and to keep their eyes as still as possible during the experiment. At the end 

of the practice, the light was dimmed, the door was closed, and EEG was recorded 

while they completed the experimental trials. 
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Data Recording and Preprocessing 

EEG data were recorded using BrainVision Recorder (Brain Products, 2020b) 

with a 64-channel ActiCap (Brain Products, 2020a) setup at 1000 Hz following the 

10-20 system with active online referencing to the right mastoid. Impedances of the 

Ag/AgCl electrodes were kept below 5 kΩ. Bilateral horizontal EOG electrodes were 

placed on the outer canthi, together with two vertical EOG electrodes above and 

below the left eye. All preprocessing steps and analyses were performed in MATLAB, 

version R2020a (MATLAB, 2020). Preprocessing was performed using custom code 

in conjunction with EEGLAB (Delorme & Makeig, 2004). For the MVPA analysis, the 

Amsterdam Decoding and Modeling toolbox (ADAM; Fahrenfort et al., 2018) was 

used.  

EEG raw data were first imported into EEGLAB (v2021.0) using the NE EEGLAB 

NIC plugin and re-referenced to the average of the left and right mastoids. The data 

were then downsampled to 200 Hz, followed by high-pass filter of 0.01 Hz using the 

pop_eegfiltnew function. This filter was chosen because of the artifacts that can 

occur when less conservative filters are applied to the data when performing 

multivariate classification, especially when trial durations are long as in this case 

(van Driel et al., 2021). Epochs from -0.45 to 2.8 s were extracted, locked at the 

beginning of the first cue until the end of the second delay. A baseline correction 

was applied, which spanned the 250 ms prior to the first cue. Independent 

Component Analysis (ICA) was then run with the compute_ICs_new function of the 

ADAM toolbox using the pop_runica function of EEGLAB. Eye blink components 

were removed using the ADJUST plugin and components were visually inspected to 
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ensure that only the blink components were removed from the data. Errors and no 

responses were excluded from the analyses.  

Behavioral Data Analysis 

Behavioral data were preprocessed in R-studio (RStudio Team, 2022) and 

analyzed with JASP version 0.16.2.0 (JASP Team, 2022) for Reaction Times (RT) and 

A, a non-parametric measure of sensitivity that takes into account hits and false 

alarms (Zhang & Mueller, 2005). This measure is derived from signal detection 

theory (Green & Swets, 1966), and resolves some of the problems associated with 

d’ and its non-parametric counterpart A’ (Pollack & Norman, 1964). The R code to 

compute A is in OSF, and the formula is:  
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where H is the hit rate and F is the false alarm rate for a given participant and 

condition (Zhang & Mueller, 2005). Participants with an accuracy of less than 0.6 

(the proportion of trials in which a correct response was given) in any of the three 

main conditions in the first session were excluded from all analyses and were not 

contacted for the second session. When Mauchly’s sphericity test reached 

statistical significance, the Greenhouse-Geisser correction was applied. For post-

hoc tests, the Holm-Bonferroni correction was used. For the data from both 

sessions, trials with errors and non-responses were removed from the RT analysis. 

This accounted for 13.25% and 14.86% of the data from the first and second 

session, respectively. We also excluded trials with responses below 250 ms, above 

(1) 
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1900 ms, or 3 SD from the participant’s mean. Based on these criteria, 0.27% and 

0.25% of the data from the first and second session, respectively, were removed.  

For the behavioral analysis of the first session, we analyzed the time course of 

the different conditions during the second delay. Data from the participants who 

completed both sessions were analyzed. For the final sample (N= 39), two repeated 

measures ANOVAs were conducted with Condition (3 levels: retro-cue, low load, 

and high load) and CTI (4 levels: 50, 400, 1000, and 1300 ms) as within-participant 

factors and RTs and A as dependent variables. In Supplementary Materials we 

present analyses including all participants who successfully completed the first 

experimental session (52 participants). The main results were replicated for the 

total sample.  

For the second session, the CTI was set at 1000 ms. Here, RTs and A were 

entered into one-way ANOVAs with Condition (3 levels: retro-cue, low load, and high 

load) as the main factor.  

All plots were made in R (R Core Team, 2021) with RStudio (RStudio Team, 

2022) using the ggplot2 package (Wickham, 2016) and the Rainclouds tool (Allen et 

al., 2021).  

Multivariate Pattern Analysis (MVPA) 

We analyzed data from the 39 participants who completed the EEG session. 

To assess the effects of the different conditions on eye movements, we performed 

separate analyses of the fifty-nine EEG electrodes (excluding EOG) and the four EOG 

electrodes. Analyses on EOG data were performed on VEOG and HEOG channels, 

after subtraction of vertical (i.e., lower minus upper ocular electrode) and horizontal 
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(i.e., right minus left ocular electrode)  activity. MVPA analyses were performed with 

the Amsterdam Decoding and Modeling toolbox (ADAM; Fahrenfort et al., 2018). All 

analyses used Linear Discriminant Analysis (LDA) to predict the different conditions 

from the EEG data. Analyses were performed from the first cue until the target was 

presented, including the first delay (600 ms – 1600 ms epoch) and the second delay 

(1800 ms – 2800 ms epoch). Therefore, the entire epoch lasted 2.8 seconds. The 

data were downsampled to 40 Hz, resulting in 70 time points of interest. In addition, 

between-class and within-class balancing was applied prior to the analyses. 

Within-class balancing was applied by ensuring that the cue directionality of each 

condition was equally represented within each stimulus class. Small between-class 

imbalances were corrected to ensure that all classes were equally represented 

(e.g., the same number of trials in the 2- and 4-load conditions). In the current data, 

the mean percentage of oversampled trials was 6.03%, 0.36%, and 17% for the 4/2-

load, 2-load, and 4-load conditions, respectively. Main analyses were repeated 

downsampling the number of trials used for decoding in each condition to that of 

the condition with the lowest number of trials, for each participant. Results are 

similar to the oversampling correction (see Figures S3 and S4). 

In analyses where two classes were compared (e.g., 2-load versus 4-load), a 

10-fold cross-validation method was used, where all trials were randomly 

distributed in the 10 folds. Within each participant, the model was trained on 90% 

of the trials at a specific time point and then tested on the remaining 10% of the 

trials (fold) at the same time point. This procedure was repeated 10 times, until each 

fold was tested once. The classifier performance was obtained by averaging the 

performance of all folds. This process was repeated for each time point in the epoch 
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and for each participant. To estimate performance, we used the Area Under the 

Curve (AUC) of a Receiver Operating Characteristic (ROC), which is the area covered 

when plotting the cumulative probabilities of a class being classified as the class it 

belongs to (i.e., the true positive rate) against the cumulative probabilities of being 

classified as another class (i.e., the false positive rate). The AUC shows how well the 

classes are distinguished by the model and it goes from 0.5 (classification at 

theoretical chance level) to 1 (perfect classification), regardless of the number of 

classes in the analysis. Unlike binary classification accuracy, the AUC takes into 

account the confidence to classify each individual case, i.e., the distance from the 

decision boundary. This allows each case to be weighted according to the 

confidence with which it has been classified. To check that that theoretical chance 

level was appropriate, we calculated empirical chance level for the 2-load versus 4-

load classification analysis. The AUC derived from this analysis provides an 

estimation of a sample-size dependent chance-level classification AUC 

(Combrisson & Jerbi, 2015). This was calculated by decoding two classes but 

shuffling the labels of the conditions. We performed ten iterations of this analysis 

and, on average, it performed almost exactly at the theoretical chance level (0.5010 

vs 0.5). The variation in empirical chance across participants for the peak point of 

decoding based on these iterations was relatively low (min: 0.481; max: 0.531; M: 

0.503; SD: 0.014). Thus, to reduce computational costs, the theoretical chance level 

was chosen for the analyses (see Figure S2). 

The AUC was computed for each time point for each participant. To obtain 

group-level results, a t-test was performed at each epoch time point between each 

participant’s AUC values and the chance level (0.5). To deal with multiple 
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comparisons in EEG data (large number of time points), the cluster-based random 

permutation testing (Maris & Oostenveld, 2007) was used. This method computes 

the probability of finding an observed cluster size (i.e., significant contiguous t-tests) 

under random permutation. The size of a cluster is determined by the sum of the t-

values of that cluster. The significance threshold we used was p<0.05, both for the 

individual t-tests and for the cluster-based analysis (for a detailed description of 

cluster-based random permutation testing see Maris & Oostenveld, 2007). Three 

types of analyses were conducted. First, several two-classes decoding analyses 

were performed. These analyses aim to show whether two classes can be 

distinguished based on the multivariate EEG data at different time points. Second, 

we also performed temporal generalization analyses, in which training and testing 

were performed on all possible combinations of epoch time points, generating what 

is known as a temporal generalization matrix. This matrix contains the performance 

for all possible combinations of training and test times and provides information 

about the stability/dynamics of brain activity over time (King & Dehaene, 2014). 

Finally, to assess the time course of the retro-cue effect on load, we trained the LDA 

algorithm in the two load conditions (2-load versus 4-load) and tested this classifier 

in the third condition (4/2-load). This analysis was used to determine whether the 

4/2-load condition could be classified differently as one or the other condition at the 

time points of the delays. All significant latencies were relative to the onset of the 

initial cue. 
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Results 

Our predictions were as follows. At the behavioral level we expected 

performance in the 4/2 load condition to, over time, transition from resembling the 

4-load baseline to the 2-load baseline. At the electrophysiological level we expected 

something similar. First, when applying MVPA to the maintenance delays of the 2- 

and 4-load baseline conditions, we expected to replicate Adam et al. (2020) 

findings, with VWM load being decodable from the multivariate EEG signal. Second, 

to investigate the time course of the removal stage, we then used these baselines 

as a comparison for the 4/2-load condition, where a retro-cue signaled only half of 

the information as relevant. We hypothesized that if the uncued information was 

indeed removed from VWM, the load-related signal should first resemble the high-

load baseline, but over time start to resemble more and more the low-load baseline.  

Behavioral Time Course (Session 1) 

Table 1 shows the descriptive statistics for the RTs and A (Zhang & Mueller, 

2005) in the first experimental session including only participants who completed 

both sessions (N = 39)1. During this session, the time course of performance was 

assessed as a function of CTI. For the RTs, we observed a main effect of CTI, F(2.25, 

85.63) = 58.745, p < .001, ηp
2 = .607, with overall RTs being faster with longer CTIs and 

stabilizing at the 1000 ms CTI. We also observed a main effect of Condition F(2, 76) = 

48.846, p < .001, ηp
2 = .562, where the RTs were faster for the 2-load condition (M = 

 
1 Analyses with the whole sample that completed the first experimental (N=52) session are in 

Supplementary Materials and the main interactions and post-hoc tests show the same results.  
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746, SD = 130) than for the 4/2-load and the 4-load conditions (M = 758, SD = 130 

and M = 762, SD = 127, respectively). As expected, the Condition x CTI interaction 

reached statistical significance, F(6, 228) = 3.564, p =.002, ηp
2 = .086, showing different 

time courses for the three conditions. In the short 50 ms CTI, post-hoc tests showed 

that the 4/2-load condition differed significantly from the 2-load condition, t(38) = 

3.904, p = .004, d =.366, but not from the 4-load condition, t(38) = 2.222, p = .464, d = 

.208. However, from the second CTI onwards, the tendency reversed until the 

longest CTI, with statistically significant differences between the 4/2-load condition 

and the 4-load condition (CTI 2: t(38) = 4.657, p < .001, d= .436; CTI 3: t(38) = 6.033, p < 

.001, d= .565 ; CTI 4: t(38) = 6.174, p < .001, d= .579 ) , but not the 2-load condition, 

(CTI 2: t(38) = 1.301, p = 1, d = .122; CTI 3: t(38) = 1.572, p = 1, d= .147; CTI 4: t(38) = 0.823, 

p = 1, d= .077). Thus, the development of RTs during delay 2 showed how the 4/2-

load condition gradually distanced itself from the 4-load condition and ended up 

being comparable to the 2-load condition. This has been interpreted as the removal 

of information from WM (e.g. Souza et al., 2014), and the results here suggest it takes 

about half second.  

For A values (sensitivity measure), a repeated-measures ANOVA showed a 

main effect of Condition, F(1.68, 63.77) = 47.427, p < .001, ηp
2 = .555, with the highest 

mean A for the 2-load condition (M = .96, SD = 0.05), lower for the 4/2-load condition 

(M = .91, SD = 0.08), and the lowest performance for the 4-load condition (M = .87, 

SD = 0.1). However, the main effect of CTI did not reach significance, showing that 

overall performance did not change across the second delay, F(3, 114) = 1.287, p = 

.282, ηp
2 = .033. Similar to the RT analysis and in line with what was expected, a 

significant CTI x Condition interaction was observed, F(6, 228) = 3.214, p = .005, ηp
2 = 
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.078. Post-hoc comparisons showed a similar pattern to the one observed with RTs: 

the 4/2-load condition and the 4-load condition were equivalent at the shortest CTI 

(t(38) = .375, p = 1, d = .067) and differed in the second and third CTIs (t(38) = 4.517, p < 

.001, d = .804 and t(38) = 4.588, p < .001, d = .817, respectively) but not in the last CTI 

(t(38) = 2.960, p = .102, d = .527), and the reverse was true for the 4/2-load condition 

and the 2-load condition, which differed at the first delay (t(38) = 2.960, p < .001, d = 

1.033), became equal in the second and third interval (t(38) = 3.144, p = .062, d = .560 

and t(38) = 2.248, p = .536, d = .400, respectively) and differed in the last one (t(38) = 

3.578, p < .016, d = .637). Thus, we observed a similar pattern of results, that is, a 

general improvement in performance for the 4/2-load condition with longer CTIs 

(see time course of RTs and A in Figure 2). 

Figure 2. Reaction Times (RT) and mean A for the time course during the second 

delay for participants who completed both sessions, N=39. Small colored points 

represent the mean of each participant in each condition. Points with black border 

represent the mean of each trial type for each interval. Error bars represent standard 

error of the mean. The individual distributions for all the trial types x CTI 

combinations are represented in the split violin plots. 
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Table 1. Descriptive statistics of behavioral data from participants who completed 

both experimental sessions, N=39. Reaction Times (RT) and mean A (A) split by trial 

type (Condition) and Cue-Target Interval (CTI). 

 

 

Behavioral Retro-cue Effect (Session 2) 

In the second session, participants completed the same task but with a fixed 

1000 ms CTI. Mirroring the first session results, the main effect of Condition was 

significant for the RTs, F(1.64, 62.39) = 108.072, p < .001, n2p = .740, and A, F(2, 76) = 

117.744, p < .001, n2p = .756. For the RTs, post-hoc comparisons showed that the 

4-load condition (M = 704.75, SD = 127.32) was significantly slower than both the 2-

load condition (M = 629.68, SD = 109.17), t(38) = 11.848, p < .001, d = .661, and the 

4/2-load condition (M = 619.44, SD = 103.05), t(38) = 13.463, p < .001, d = .751, but 

  RT A 

Condition CTI (ms) Mean SD Mean SD 

2-load 50 785 125.1 0.961 0.044 

 400 752 136.8 0.956 0.065 

 1000 713 133.0 0.958 0.049 

 1300 734 145.0 0.964 0.038 

4/2-load 50 835 141.4 0.882 0.069 

 400 769 123.2 0.913 0.080 

 1000 733 143.4 0.927 0.073 

 1300 724 126.4 0.915 0.074 

4-load 50 863 143.2 0.877 0.095 

 400 828 141.8 0.852 0.108 

 1000 810 137.5 0.864 0.090 

 1300 802 132.4 0.875 0.100 
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the last two were equivalent, t(38) = 1.615, p = .111, d = .090. For A values, post-hoc 

comparisons showed a higher A for the 2-load condition (M = .95, SD = .04) than for 

the 4/2-load condition (M = .90, SD = .06), t(38) = 6.527, p < .001, d = .803, and higher 

for the 4/2-load condition than for the 4-load condition (M = .85, SD = .06), t(38) = 

8.764, p < .001, d = 1.078 (see Figure 3).  

Figure 3. Mean Reaction Times (RT) and mean A in EEG session. Small colored 

points represent the mean of each participant in each condition, joined by a light 

grey line. Black points represent the mean of each trial type (conditions). Box plots 

of each condition are represented. The individual distributions for all the trial types 

x CTI combinations are represented in the split violin plots. 

 

 

Can the Change in VWM Load be Decoded from the EEG Data? 

First, to determine whether different levels of VWM load could be 

distinguished in the EEG data, MVPA was performed on two classes: 2-load and 4-

load. The classifier was trained at each epoch time point to dissociate 4- from 2-

load and then it was tested at the same time points, using k-folding (see Method 

section). The EOG electrodes were excluded from this analysis and the raw data 

from the remaining 59 EEG electrodes were used. This analysis showed significant 
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decoding from the beginning of the epoch to the end of the first delay (85 – 1535 ms). 

These results replicate the results of Adam et al. (2020). However, the two 

conditions became indistinguishable from the appearance of the second cue (the 

retro-cue) until the end of the epoch (see Figure 4a). Since the second cue was 

uninformative in these conditions (it should not alter the load), the pattern for this 

second delay was unexpected, as one would expect to still be able to decode the 

load even at the second delay. To further study the dynamics of these conditions, a 

temporal generalization analysis was performed. In this analysis, the algorithm was 

trained at each time point and tested at all other time points of the epoch. This 

method was then repeated for all the possible train-test combinations of time 

points. This allowed us to assess the stability of the pattern. In addition, it allowed 

us to see whether training at a fixed time point (e.g., at peak activity) improved 

classification for the remaining time windows. Figure 4b showed a moderate 

generalization of decoding within the first delay period. However, at the time of the 

second cue and within the second subsequent delay period, the signal remained 

weak regardless of the training time point. 

Figure 4. Decoding of load from electroencephalography (EEG) and 

electrooculogram (EOG) signal. AUC = Area Under the Curve. Dotted lines 

correspond with the onset of the following task moments, from left to right: initial 

cue, memory set, first delay, retro-cue, and second delay. (a) Diagonal decoding of 

2-load versus 4-load conditions from EEG (orange line) and EOG (green line) 

electrodes. Bold lines show p-values that survived multiple comparisons 

corrections and shaded area surrounding the line is the standard error. (b) Temporal 

generalization matrix for 2-load vs 4-load decoding on EEG electrodes. (c) Temporal 

generalization matrix for 2-load vs 4-load decoding on EOG electrodes. In both (b) 

and (c), saturated colors reflect uncorrected p<0.05 decoding, whereas areas 
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circumscribed by a dark bold line highlight clusters that survive cluster-based 

permutation testing at p<0.05. Above chance decoding is colored in red color and 

below chance decoding in blue. 

 
The results observed so far allow for multiple interpretations. On the one hand, 

the visuospatial information in WM may simply decay, and more so for the 4-load 

condition, which would then reduce the distinction between the two load conditions 

(Ricker et al., 2014, 2016). However, behavioral performance renders this unlikely, 

as a clear difference in performance between the 2-load and 4-load conditions was 

observed in both the behavioral and the EEG sessions. Another possibility is that 

decoding was decreased due to the greater distance from the pre-trial baselining 

period, which could increase noise in the data. However, further analyses showed 

significant decoding later in the epoch (see Figures 5, 6, and 7), making this unlikely. 

A third possibility is that some processes triggered by the retro-cue—and other than 

maintenance—mask the load manipulation decoding. In the present design, trials 

were randomly presented. In the 4/2-load condition, participants had to select 

some disks as relevant and drop the rest. In contrast, in the 2- and 4-load 

conditions—the ones of the present analysis—the second cue instruction was the 

same in both cases (i.e., a full cross), and indicated that nothing had changed 

(observers simply had to retain what they already had in memory). Then, it might be 
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that a selection (vs non-selection) component is prevailing over the maintenance at 

the time of the retro-cue. If it was the case that the retro-cue was driving an 

attentional selection component that was superimposed on the load decoding, a 

similar case could apply to the pre-cue. In other words, in addition to load, the 

selection processes linked to the load manipulation, and triggered by the pre-cue, 

could in principle also contribute to the decoding during the first delay. 

 To test this possibility further, and given the close relationship between 

attentional selection and eye movements (van Ede et al., 2019; Zhao et al., 2012), 

we repeated the same analyses on the EOG electrodes. To isolate eye movements 

from brain activity, subtraction for VEOG (i.e., right minus left ocular electrode) and 

HEOG (i.e., lower minus upper ocular electrode) were computed. Thus, all the EOG 

analyses were performed on the obtained HEOG and VEOG subtracted channels. 

The idea behind these analyses was that, if 2- and 4-load conditions could be 

decoded from the signal coming from the ocular electrodes after the first cue, this 

would support the idea that attentional selection was also playing a role in the 

previous decoding analyses. The EOG analysis showed a significant decoding of the 

2- and 4-load conditions during the memory set and the beginning of the first delay 

(0.235 – 0.760 ms; see Figure 4a). The temporal generalization was then also 

repeated in EOG. Although we observed a similar descriptive pattern as for the 59 

EEG electrodes, there was no significant decoding after cluster correction (Figure 

4c). This lack of significant decoding after cluster-based correction and the lower 

AUC values of the present analyses could be explained by the smaller number of 

variables included (4 EOG channels versus 59 EEG channels above).  
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To further test the role of selection, we additionally decoded the directionality 

of the initial cue of the 2-load condition. For this, two classes were made based on 

the diagonal direction of the encoding cue, that is, whether it was tilted to the left or 

to the right. Figure 5 shows diagonal decoding performed on EEG and EOG 

electrodes. In the EEG electrodes, the analysis showed significant decoding until 

the end of the first delay (85 – 1210 ms) and again during the second cue and the 

beginning of the second delay (1660 – 2035 ms). When the classification was 

performed at the EOG electrodes, significant decoding extended from memory 

encoding to the end of the trial (260 – 2785 ms), with a gap around the retro-cue. 

Again, these analyses showed a strong contribution of eye movements, closely 

linked to the selection required in the 2-load condition.  

Finally, using the adam_correlate_CONF_stats function, we computed 

Spearman correlations at each time point between EEG and EOG classifier 

confidence scores (i.e. resulting from the distance to the decision boundary) of 2- 

vs 4-load results across trials for each participant, and tested the Fisher-

transformed correlations against zero at the group level. The confidence scores in 

this analysis represent the single trial evidential support for the classification that 

the classifier provides at any given time point (see Figure 6). Thus, this analysis 

tested whether both decoding analyses captured similar information at any given 

time point.  
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Figure 5. Diagonal decoding of the direction of the initial cue in the 2-load condition 

for EEG (orange) and EOG electrodes (green). AUC for Area Under the Curve. Bold 

lines show p-values that survived multiple comparisons corrections and shaded 

area surrounding the line is the standard error. 

 

 

Results show a significant positive correlation during the complete epoch. 

However, the correlation is numerically small, capturing relatively little shared 

variance. If we take the EOG analyses as evidence of selection, this analysis 

supports a contribution of selection to the 2- vs 4-load decoding. The correlation is 

higher during the first delay, congruent with the decoding results of Figure 4a, and 

where we expect differences in selection in these conditions. However, given the 

weak correlation, we can conclude that the decoding analysis cannot be driven by 

this selection component alone and that, in line with previous experiments, load is 

also being decoded (Adam et al., 2020; Thyer et al., 2022).  

Apart from load and selection, there are two additional factors that could be 

partly contributing to the present significant decoding in the EEG channels: eye 

movements and the visual differences in the cue. Regarding eye movements, we 
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interpreted here the EOG decoding as evidence for selection. However, we did not 

expect eye movements to be the only contribution to the significant decoding of the 

analyses run with the EEG channels because, in some cases, they may not co-occur 

with selection (Liu et al., 2022). Robustness analyses removing eye movements 

showed that decoding remained significant when we removed them before running 

the 4- vs 2-load decoding analysis (see Figure S3). Thus, we can confirm that eye 

movements information cannot explain by itself the present analysis results. This is 

also congruent with the previous correlational analyses (Figure 6), that show a small 

shared variance between EEG and EOG electrodes. Regarding any visual differences 

between different pre-cues, earlier work showed that any sensory modulations 

would occur early, during the first 300 ms after the stimuli presentation (e.g. Jongen 

et al., 2007; Luck, 2006; Quentin et al., 2019). However, other decoding work 

showed that differential signals can be observed beyond that (Dijkstra et al., 2018; 

Noah et al., 2023). Thus, we cannot discard the possibility that these perceptual 

differences of the pre-cues (and not only the attentional modulation produced by 

them) are partially driving the delay decoding. 

Overall, we replicated previous work decoding visual WM load. However, we 

argue that differences in attentional selection of relevant items (as partially 

reflected in the overt eye movements) may also partially contribute to the observed 

decoding.  
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Figure 6. Correlation of EEG and EOG decoding for 2- vs 4-load. Bold lines show 

p<.05 values for Pearson correlations after cluster correction. Shaded area 

surrounding the line is the standard error. 

 

 

Can we Decode the Drop in Load After the Retro Cue? 

The second and main goal of the present work was to test the time course with 

which item information was removed from the VWM. For this purpose, we wanted to 

compared the 4/2-load condition with, on the one hand, the 2-load condition and, 

on the other hand, the 4-load condition (Figure 7a). If from the current data the load 

had been decoded, we would expect (1) the 4/2-load condition would not be 

distinguishable from the 4-load condition during the first delay, prior to the cue, 

while it would be distinguishable from the 2-load condition; (2) the 4/2-load would 

be similar to the 4-load condition and would be distinguishable from the 2-load 

condition at the beginning of the second delay and after the cue. As the second 
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delay develops, this pattern should reverse, as the 4/2 load condition should begin 

to resemble more like the 2-load and less to the 4-load condition.  

Figure 7. (a) Diagonal decoding 4/2-load vs 2- and 4-load conditions (blue and 

orange, respectively). AUC = Area Under the Curve. Bold lines show p-values that 

survived multiple comparisons corrections and shaded area surrounding the line is 

the standard error. (b) Training the 4- vs 2-load conditions and testing the 4/2- load 

condition. When classification is above chance, the 4/2-load condition is classified 

as 4-load and when it is below chance, the 4/2-load condition is classified as 2-load. 

 

Thus, in a first step, we trained two linear discriminant classifiers at each 

epoch time point: one classifier was trained to discriminate between the 4/2-load 

and 2-load conditions, while the other was trained to discriminate between the 4/2-

load and 4-load condition. These multivariate analyses showed significant decoding 

during the first delay between the 4/2-load condition and the 2-load condition (110 

– 1485 ms), but not between the 4/2-load and the 4-load conditions. In other words, 

prior to the second cue, the 4/2-load condition resembled the 4-load condition 

more than the 2-load condition, as would be expected. Analyses of the second delay 

revealed above-chance decoding between the 4/2-load and 2-load conditions 

a b 
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(1685 – 2785 ms), as well as between the 4/2-load and 4-load conditions (1735 – 

2785 ms) during virtually the same time windows. That is, the 4/2-load condition 

could be distinguished from both baseline conditions during the whole second 

delay and there was no sign of a transition from high to low load. This is congruent 

with previous studies that showed sustained decoding of an attentional selection 

component after a retro-cue (Quentin et al., 2019). For the sake of completeness, 

we performed an additional analysis in which the algorithm was trained on the 

baseline conditions (4-load vs. 2-load), and then tested in the 4/2-load condition at 

each time point, the result of which is fully in line with what would be predicted given 

the results in Figure 4a. This analysis allowed us to check at each time point whether 

the 4/2-load trials were classified as 4-load or 2-load. As in previous analyses, the 

4/2-load condition could be classified as the 4-load condition during the first delay 

(85 – 1485 ms), but could not be classified as either category during the second 

delay (Figure 7b). These results confirm that the load reduction hypothesis could not 

be tested, given the lack of decoding of the 2-load and 4-load conditions during the 

second delay. Although we cannot discard the possibility that load was partly 

contributing to this decoding, the present results for the second delay are congruent 

with the multivariate analysis capturing the effects of cued-induced selection, as 

only the retro-cue condition required further selection for the second maintenance 

period. 

To further support the conclusion that the second delay results were driven by 

the selection of information (this time, within the VWM), we trained linear classifiers 

to decode the directionality of the retro-cue (i.e., right- or left-tilted cue). This 

analysis was performed independently on EEG and EOG electrodes. The classifier 
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found significant information about the directionality of the retro-cue at EEG 

electrodes (2410 – 2785 ms) and also at EOG electrodes (1985 – 2785 ms) (Figure 

8). Since the retro-cue disappeared from the screen at 1800 ms, the fact that 

significant decoding was detected especially towards the end of the delay showed 

that participants could use eye movements to support the maintenance of the 

relevant items active in VWM (van Ede & Nobre, 2022). The present results confirm 

that it is not a reduction of the VWM load, but the selection of relevant information 

within the VWM that underlies the decoding of the second delay results. 

Figure 8. Diagonal decoding of the directionality of the retro- cue in the 4/2-load 

condition for EEG (orange) and EOG electrodes (green). AUC for Area Under the 

Curve. Bold lines show p-values that survived multiple comparisons corrections 

and shaded area surrounding the line is the standard error. 

 

 

Correlation of Classifier Performance and VWM Capacity 

To test whether participants with higher working memory capacity might show 

both better maintenance and better selection of items, we ran two additional 
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correlational analyses. First, we correlated a measure of VWM capacity with the 

AUC from the MVPA analysis to classify 2- and 4-load trials (see Figure 4a). We know 

from previous work that decoding of 2- vs 4-load reflects load decoding (Adam et 

al., 2020; Thyer et al., 2022), and we also know from previous analyses that it might 

partially reflect the selection of items driven by the initial cue (see Results section). 

To provide a measure of visuospatial working memory capacity, we calculated the 

estimated number of items remembered for each participant using the Cowan’s K 

formula (Cowan, 2001; Rouder et al., 2008): K = (H – FA) * N, where K is the number 

of items remembered, H and FA are the hit and false alarm rates, and N is the 

number of item presents to be remembered. As for the AUC measure, the first delay 

decoding was chosen because (1) it was the only time at which the classifier could 

differentiate conditions, and (2) to be as equivalent as possible to Adam et al. 

(2020). The Pearson correlation of the 39 participants who completed both 

experimental sessions showed a significant positive trend between the two 

variables, r = .329, p = 0.041, 95% CI = [.584, .015], depicted in Figure 9a. 

Additionally, we also performed a correlation where we explicitly tested 

whether decoding of selection would also be correlated with working memory 

capacity (K). For that, we used the second delay AUC of decoding of 2- and 4/2-load 

conditions and mean K of these same two conditions. The reason for choosing the 

second delay of these two conditions is because the same amount of load is 

relevant by the end of the delay (seen in K), but one of them has required a selection 

within WM of this information, the 4/2-load condition. Therefore, this analysis 

should largely restrict to selection. The Pearson correlation showed a significant 

positive trend, r = .420, p = 0.008, 95% CI = [.649, .120], depicted in Figure 9b. This 
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results show that working memory capacity does not correlate only with load 

maintenance, but also with successful items selection.  

Figure 9. (a) Correlation of decoding for 2- vs 4-load and K during the first delay. (b) 

Correlation of decoding 2- vs 4/2-load and K during the second delay. Each point 

represents a single participant. The grey line represents the regression line of the 

correlation. 

 

Discussion 

During the past decade, the cognitive neurosciences have seen an upsurge in 

the application of Multivariate Pattern Analysis (MVPA) to data from electro- and 

magnetoencephalography (EEG and MEG, respectively). Contrary to univariate 

methods, MVPA allows for the decoding or identification of different representations 

or states by considering multidimensional patterns of sensor activity, which makes 

it a highly sensitive technique (Grootswagers et al., 2017; Haxby et al., 2014). This 

has made MVPA a particularly popular tool in the field of working memory research, 

where it is used to track item-related representations and different memory states 

during delays, when the stimulus is absent (e.g. Bae & Luck, 2018; Bocincova & 

Johnson, 2019; King et al., 2016; LaRocque et al., 2013; Rose et al., 2016; 
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Trübutschek et al., 2017; Wolff et al., 2015, 2017). However, the increased sensitivity 

and complexity comes with a price tag, as it is not always evident what the source 

is of the information that is being used to successfully decode. For instance, it has 

been shown that artifacts introduced by regular cleaning steps such as high-pass 

filtering can lead to spurious decoding (van Driel et al., 2021), as can unintended 

eye movements (Mostert et al., 2018; Quax et al., 2019). This may lead to potential 

confounds that can hinder or, in the worst case, invalidate the conclusions of a 

study, in that the multivariate patterns may not capture the mental state that they 

were intended to capture. The present study serves as another case in point. 

We attempted to unravel the time course of the reduction in VWM load after 

observers have been cued which information needs to be retained, while other 

information can be dropped. To this aim, participants completed a visuospatial 

working memory task involving delayed recognition of colored stimuli in which VWM 

load was manipulated in three conditions: two or four items maintained throughout 

the trial (low and high load conditions, respectively), or two retro-cued items out of 

four initially encoded items, allowing a transition from high to low load. Two main 

results were obtained in the current study. First, the time course of behavioral 

performance (during the pre-EEG session) suggests that, following the cue, it takes 

about half a second to exclude irrelevant information that may affect behavior. 

Specifically, we varied the CTI from 50 to 1300 ms, and found that a retro-cue that 

told participants that only two of the four items would need to be retained caused 

RTs to drop from close to load 4 levels to close to load 2 levels within about 500 ms. 

To our knowledge, this is the first time that the time course of visual working memory 

has been tracked. A similar pattern was previously reported by Oberauer (2018) 
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using verbal stimuli, who observed a time course suggesting that participants 

needed around one second to drop the irrelevant information. Such timing 

differences could reflect not only the type of information (verbal versus 

visuospatial), but also the amount of information selected/removed, which was 

three out of six items in Oberauer (2018) and two out of four items in the present 

design. Future studies should take into account the variations in this time course by 

modifying the amount of information maintained and selected. 

In a subsequent step, we sought to track the same time course of load 

reduction using EEG measurements. First, we replicated previous results that found 

that the MVPA analyses were sensitive to load (Adam et al., 2020). However, we 

found that decoding can also be sensitive to selection processes during the same 

epochs where one might expect load to change. Several characteristics of our 

results support this idea. First, during the time windows in which we observed a 

reliable load effect in the EEG, we also observed a reliable load effect in the EOG 

electrodes, suggesting the involvement of eye movements. Moreover, these 

measures were positively correlated, albeit weakly. This is consistent with the close 

link between selection of items within VWM and eye movements (van Ede et al., 

2019). Additionally, the pre-cue directionality was also decoded from both EEG and 

EOG electrodes, supporting the enrollment of selection processes that were to 

some extent captured by the classifier. Second, during the second delay we 

predicted a transition in the 4/2-load retro-cue condition from being classified as 

more similar to the high-load condition (load four) at the beginning of the delay, to 

being classified as more similar to the low-load condition (load two) towards the end 

of the delay. In contrast, the 4/2-load retro-cue condition remained distinct from 
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both baseline conditions throughout the delay and, if anything, the two baseline 

conditions were more similar, as indicated by weak classification performance. 

What distinguishes the retro-cue condition from the two baseline conditions is the 

selection component. Third, during the same time window we were able to 

distinguish the directionality of the retro-cue in both EEG and EOG electrodes, 

which allowed us to confirm that there is a general selection mechanism behind 

both cues. This is congruent with the conceptualization that proposes that selecting 

content maintained in working memory relies on processes similar to those involved 

when attending to perceptual information (Gazzaley & Nobre, 2012; Kiyonaga & 

Egner, 2013; Panichello & Buschman, 2021; van Ede & Nobre, 2022). Below we 

elaborate on this argument. 

Load Effects: Retention versus Selection 

For our argument, it is important to clearly define what we mean by load and 

selection. Note that load as such is an independent variable, which is then assumed 

to affect certain mental processes. It is probably fair to say that when they think of 

load, researchers tend to think of retention (or maintenance), specifically the 

number of items that are held in some active state in working memory. Indeed, 

studies that have used MVPA to decode load also appear to interpret load this way 

(Adam et al., 2020; Feldmann-Wüstefeld, 2021; Thyer et al., 2022). This is also the 

definition of load that we adopt in the current work. From this conceptualization, 

retention is a stable and sustained process, which is reflected in neural indicators 

such as CDA (Vogel & Machizawa, 2004), negative slow wave (Fukuda et al., 2015), 

or load decoding temporal generalization (Adam et al., 2020). Note that more 
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dynamic maintenance processes have also been proposed (Miller et al., 2018; 

Stokes, 2015). However, even those dynamic trajectories are stable and 

reproducible.  

On the other side, we define selection as a relatively transient, item-specific 

operation that transforms an item into another state for further processing. 

Examples of transition operations are separating items from distractors (i.e., input 

gating; Chatham & Badre, 2015; Frank et al., 2001; Nir-Cohen et al., 2020), encoding 

or consolidating information (i.e., transforming them into a maintenance state; 

Ricker et al., 2018; Woodman & Vogel, 2005), refreshing or updating relevant items 

(e.g. Kessler & Meiran, 2008; Lemaire et al., 2018), dropping items after a retro-cue 

raising or lowering the representational state (e.g., Kruijne et al., 2021; Oberauer, 

2018), and retrieving items for response (i.e., output gating; Chatham et al., 2014). 

Many of these operations are assumed to involve some form of attention, in the 

sense of prioritizing or enhancing some representations over others. While these 

operations—and therefore also the selection process—are assumed to be transient 

(Woodman & Luck, 1999, 2003), this does not imply that they would not occur and 

be measurable throughout longer periods into the delay. First, such selection 

processes may last longer than typically assumed especially when they concern 

“internal selection”, within memory (e.g., Oberauer, 2018; Quentin et al., 2019; 

Ricker et al., 2018; see also the time course after the retro-cue in our behavioral 

results). Second, even if the processes are transient and short-lived, they may occur 

at a delay, or occur repeatedly within working memory, especially when multiple 

items need to be selected for the next operation (e.g., Lemaire et al., 2018; Vogel et 

al., 2006; Vogel & Luck, 2002).  
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As a last remark, it is noteworthy that some researchers have argued that 

maintenance itself is a repeated attentional serial selection process to refresh items 

and raise their strength (Camos et al., 2018; Kiyonaga & Egner, 2013; Lepsien & 

Nobre, 2006; Olivers, 2008; Rac-Lubashevsky & Frank, 2021; Souza et al., 2015; 

Souza & Oberauer, 2017). If so, then any measured load effects would essentially be 

selection effects and vice versa. However, we would then have expected decoding 

during the second delay period in our study to be sensitive to the remaining load, 

which is not what we observed. Thus, to what extent selection and maintenance 

overlap or are independent processes is still a matter of debate. 

We note that positive correlations between load and selection exist for most if 

not all of the experiments reanalyzed in Adam et al. (2020). Many of these 

experiments involved an initial cue pointing to the half of the display containing the 

set to be memorized. The size of this set was then varied to induce different loads. 

This then also involves different numbers of items to be selected for encoding and 

memory consolidation. Some other recent works trying to decode load also used 

experimental designs where load depended on selection operations, since only 

some colors or geometric figures needed to be maintained among other stimuli that 

had to be ignored (Feldmann-Wüstefeld, 2021; Thyer et al., 2022). Even when 

displays do not include spatial or feature cues, simply varying set sizes still implies 

varying the number of items that need to be selected and consolidated from a 

display. The same argument also goes for another piece of evidence reported by 

Adam et al. (2020) in support of load decoding, which was a positive correlation 

between classifier performance and individual working memory capacity. However, 

this correlation could also reflect more effective selection mechanisms, as previous 
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work has shown that VWM capacity may actually reflect attentional filtering 

efficiency (Fukuda & Vogel, 2009; Vogel et al., 2005). We performed two additional 

analyses of our data where we correlated, for each participant, a measure of the 

mean number of items in memory (K) with the mean AUC of two decoding analyses 

that reflect the initial load manipulation (with the potential of perceptual selection) 

or selection from VWM (i.e., first delay 2- versus 4-load and second delay 2- versus 

4/2-load, respectively). We too observed significant positive correlations for both 

analyses (see Figure 9), supporting the idea that high-capacity individuals may also 

be better selectors in addition to better loaders. Our point that decoding may at 

least in part reflect selection mechanisms does not in any way exclude the 

possibility that retention load was being decoded from those experiments. What we 

call for is for future experimental designs to focus on the dissociation between these 

two processes. 

One might argue that Adam et al. (2020) already controlled for attention 

effects in their Experiment 3, where they compared a VWM task in which a number 

of lateralized colored squares had to be remembered to a sustained spatial 

attention task, in which the locations indicated by the same number of lateralized 

colored squares had to be monitored for the appearance of an unrelated visual 

target (a small line segment). Adam and colleagues found an effect of the number 

of colored squares in the VWM condition that lasted throughout the 1300 ms delay 

period. In the attention condition, the number of squares could also be decoded, 

but for about half that time period, around 700 ms. Adam et al. therefore concluded 

that load decoding is caused by more than attention alone. However, this still leaves 

a decent, relatively long-lasting attention effect. Finally, it is also noteworthy that 
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Adam et al. also observed strong cross-task decoding between the VWM and the 

attention task for those same 700 ms, suggesting shared mechanisms for at least 

the first half of the delay period.  

A number of additional issues remain. First, it is possible that we failed to 

decode retention load because VWM activity fell "silent" during the first delay 

(Oberauer & Awh, 2022; Stokes, 2015). We cannot exclude this possibility, but we 

note that this delay was not that long (1000 ms), and others showed significant 

decoding with similar or longer delays (e.g. Feldmann-Wüstefeld, 2021; Thyer et al., 

2022). Second, within the current design the 4/2 retro-cue may create an additional 

overall task demand, and the classifier may pick up on that rather than the selection 

operation per se. This could be addressed in future work by parametrically varying 

the number of items to be retained as indicated by the retro-cue. This would also 

help to further dissociate the relative contributions of selection versus retention 

processes. Third, we observed a contribution of eye movements to the decoding see 

Figure S3. While such eye movements are consistent with selective attention 

operations (but may also play a role in maintenance), future studies should include 

additional eye-tracking measures to remove eye movements more accurately (Quax 

et al., 2019). Fourth, although we tried to minimize the visual differences of the cues, 

we observed an early peak in decoding with the appearance of the pre-cue, before 

the memory delay was presented (see Figures 5 and 7), and thus suggestive of 

differential perceptual signals. While for univariate EEG studies, these perceptual 

signals tend to emerge early (< 300 ms; Jongen et al., 2007; Luck, 2006), the case 

might be different for multivariate analyses, where decoding of such signals may 

last further into the epoch (e.g., Dijkstra et al., 2018; Noah et al., 2023; but see 
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Goddard et al., 2022; Quentin et al., 2019 for shorter perceptual decoding). Also 

using the retro-cue paradigm, Quentin et al. (2019) compared the decoding of two 

cues: one that was simply perceived with one that required selecting certain stimuli 

for posterior retrieval. They found that the cue that implied selection showed a 

longer significant decoding (~ 1.5 s) than the cue that was merely perceived (~ 0.5 

s). Even though we have no “cue perception” condition to make this direct 

comparison in the present data, our sustained decoding results would be in line with 

the sustained decoding of selection after the cue observed by Quentin et al. (2019). 

However, as stated before, the contribution of perceptual differences to decoding 

may vary between experiments. This will need to be taken into account in future 

studies attempting to differentiate between working memory load and working 

memory operations. 

Conclusion 

The original goal of the present study was to track the time course of changes 

in visual working memory (VWM) load when part of the stored information in VWM 

is no longer relevant. While the behavioral performance suggested a gradual drop in 

load, we failed to observe an EEG correlate of this load reduction after the retro-cue. 

Instead, the multivariate analyses of EEG and EOG electrodes suggested an 

important role of attentional selection to flexibly update the relevance of VWM 

content. The present results are in line with previous work supporting the role of 

attention as a mechanism for information selection and prioritization within VWM 

(e.g. Astle et al., 2012; Murray et al., 2013; Panichello & Buschman, 2021; Serin & 

Günseli, 2022). Finally, the current results advise caution when using MVPA to track 
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VWM retention per se, as other mechanisms may also contribute to the 

classification outcome. 
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Supplementary Materials: Tortajada et al. (2024) 

Behavioral time course for all participants who completed the first session 

Descriptive statistics for the full sample that completed the first session are 

available in Table S1 for reaction times (RTs) and mean A. Figure S1 shows the time 

course of the three conditions for RTs and A during the second delay, separately for 

each CTI. For RTs, the main effect of CTI was significant, F(2.28, 116.48) = 87.888, p < .001, 

η2
p = .633, as was the main effect of Condition, F(1.78, 90.77) = 73.993, p < .001, η2

p = 

.592. RTs were slower for the shortest CTIs and became faster with longer CTIs and 

stabilized at 1200 ms CTI. In general, RTs were faster for the 2-load condition than 

for the 4-load condition and mostly also faster than the 4/2-load condition (except 

for the shortest CTI). In this line, the Condition x CTI interaction reached statistically 

significant, F(6, 306) = 6.130, p < .001, η2
p =.107, showing different time courses for the 

different conditions. For post-hoc analyses, the Holm-Bonferroni correction was 

applied. Post-hoc comparisons showed that the 4/2-load condition differed 

statistically from the 2-load condition, t(51) = 5.710, p < .001, d =.447 in the short 250 

ms CTI but not from the 4-load condition, t(51) = 1.677, p =1, d = .131. As in the 

subsample reported in the main text, the trend reverted from the second CTI. From 

here, the 4/2-load condition differed from the 4-load condition, t(51) = 5.808, p < .001, 

d = .454, and at the same time became similar to the 2-load condition, t(51) = 1.787, 

p = .90, d = .140, which remained so for the rest of the CTIs. 
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Table S1. Descriptive statistics of behavioral data from all participants who 

completed the first session, N=52. Reaction Times (RT) and mean A (A) split by trial 

type (Condition) and Cue-Target Interval (CTI). 

 

 

 

 

 

 

 

 

 

On the other side, the main effect of Condition was significant for A, F(1.76, 89.75) 

= 64.388, p <.001, ηp
2 = .558. Contrary to the analyses in the results section, this 

ANOVA also showed a main effect of CTI, F(3, 153) = 3.134, p =.027, ηp
2 = .058. Again, 

post-hoc comparisons on A showed a similar pattern of results to that observed for 

RTs. The retro-cue condition differed from the 2-load condition in the shortest CTI, 

t(51) = .7.60 , p < .001, d = 1.16 but became equivalent for the remaining three CTIs. 

The opposite pattern was observed for the differences between the 4/2- and the 4-

load conditions, where no differences were detected for the first CTI (t < 1) but 

showed statistically significant differences from the second CTI onwards (p < .03). 

  
RT A 

Condition CTI 

(ms) 

Mean SD Mean SD 

2-load 50 777 129.7 0.962 0.042 

400 747 136.3 0.946 0.063 

1000 713 133.0 0.958 0.046 

1300 725 139.7 0.959 0.042 

4/2-load 50 840 154.1 0.871 0.079 

400 766 126.2 0.909 0.077 

1000 731 141.3 0.923 0.071 

1300 721 127.3 0.913 0.076 

4-load 50 858 150.5 0.875 0.096 

400 830 142.9 0.842 0.112 

1000 805 140.8 0.861 0.100 

1300 807 149.2 0.873 0.093 
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Figure S1. Reaction Times (RT) and mean A for the time course during the second 

delay for all participants who completed the first session, N=52. Small colored 

points represent the mean of each participant in each condition. Points with black 

border represent the mean of each trial type for each interval. Error bars represent 

standard error of the mean. The individual distributions for all the trial types x CTI 

combinations are represented in the split violin plots. 

Empirical chance  

Figure S2. Classifier decoding performance randomizing labels, showing empirical 

chance level. AUC = Area Under the Curve. Bold lines show p-values that survived 

multiple comparison corrections and the shaded area surrounding the line is the 

standard error. 
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Robustness analyses 

To discard the possibility that load decoding was not detected in the second 

delay due to pre-processing and/or analytic settings, we re-run the 2- versus 4-load 

decoding analysis with a series of modifications. First, we removed activity 

identified as eye movements (activity higher than 50 uV) from the subtracted VEOG 

and HEOG channels (Thyer et al., 2022). Second, to ensure the same number of 

trials per condition, we downsampled trials for unbalanced classes instead of 

oversampling. Lastly, instead of resampling to 40 Hz by discarding the unselected 

time points, we averaged data within each time bin to 40 Hz. Results show similar 

decoding after removing eye movements and applying the rest of the analytical 

modifications but significant decoding slightly increased for EEG electrodes during 

the second delay (until 2.16 s in the epoch; Figure S3).  

To test whether this modest increase in decoding would allowed us to test the 

main hypothesis of this study (i.e., is the 4/2-load condition first classified as 4-load 

and then as 2-load?), analyses from Figure 7 were repeated after applying the new 

pre-processing steps. However, again, results do not show this transition in 

decoding after the retro-cue and the 4/2-load condition is decoded from both 2- and 

4-load conditions during the second delay (Figure S4). 

Figure S3. Reanalysis after different EEG preprocessing of decoding of load from 

electroencephalography (EEG) and electrooculogram (EOG) signal. AUC = Area 

Under the Curve. (a) Diagonal decoding of 2-load versus 4-load conditions from EEG 

(orange line) and EOG (green line) electrodes. Bold lines show p-values that survived 

multiple comparisons corrections and shaded area surrounding the line is the 

standard error. (b) Temporal generalization matrix for 2-load vs 4-load decoding on 

EEG electrodes. (c) Temporal generalization matrix for 2-load vs 4-load decoding on 
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EOG electrodes. In both (b) and (c), saturated colors reflect uncorrected p<0.05 

decoding, whereas areas circumscribed by a dark bold line highlight clusters that 

survive cluster-based permutation testing at p<0.05. Above chance decoding is 

colored in red color and below chance decoding in blue. 

 

Figure S4. Reanalysis after preprocessing modifications. (a) Diagonal decoding 4/2-

load vs 2- and 4-load conditions (blue and orange, respectively). AUC = Area Under 

the Curve. Bold lines show p-values that survived multiple comparisons corrections 

and shaded area surrounding the line is the standard error. (b) Training the 4- vs 2-

load conditions and testing the 4/2-load condition. When classification is above 

chance, the 4/2-load condition is classified as 4-load and when it is below chance, 

the 4/2-load condition is classified as 2-load.  

 

a c 

 

a b 

b a c 

a b 
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Testing with False Discovery Rate (FDR) as multiple comparisons correction 

method  

To test if the cluster correction method we used for multiple comparisons was 

insensitive to transient responses, we repeated the analyses where we decoded the 

directionality of the pre-cue (Figure 5) because there seems to be a small rebound 

at the height of the retro-cue which, perhaps, could be extended during the second 

delay. Then, we used the False Discovery Rate (FDR) to deal with the multiple 

comparisons problem (Benjamini & Yekutieli, 2001). The FDR limits the false 

positive rate in a way that type 1 errors are not expected to be more than 5% of the 

tests. Results do not show any unseen transient response, on the contrary, the 

significantly decoded time points were reduced with this method (see Figure S5).  

Figure S5. Diagonal decoding of the direction of the initial cue in the 2-load 

condition for EEG (orange) and EOG electrodes (green) with False Discovery Rate as 

multiple comparisons correction. AUC for Area Under the Curve. Bold lines show p-

values that survived multiple comparisons corrections and shaded area 

surrounding the line is the standard error. 
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Chapter 3: Questioning Theta-Gamma Coupling Predictions: 

Ineffectiveness of 4 Hz tACS on Working Memory Maintenance and 

Theta Frequency Modulation 

Abstract 

Recent findings have shown the influential role of theta-gamma cross-

frequency coupling in the maintenance of items in working memory (WM). 

Specifically, it has been proposed that individual items are represented within 

gamma oscillations that are nested within slower theta waves. Thus, longer theta 

cycles would theoretically allow the retention of more items. Based on this theory, 

the present study aimed to test whether slowing theta rhythms via 4 Hz transcranial 

alternating current stimulation (tACS) in the fronto-parietal network improves WM 

capacity. Given the potential role of individual differences in the effects of 

stimulation, participants were divided into high and low-WM capacity groups based 

on initial screening. Besides, task difficulty was also manipulated to maximize the 

likelihood of obtaining a performance improvement. Contrary to our hypothesis, 

tACS did not improve behavioral outcomes, such as response time or accuracy, 

regardless of task difficulty or baseline WM capacity. EEG analysis revealed no 

significant increase in theta power post-stimulation compared to a sham condition, 

and the expected reduction in the mean theta frequency was neither observed. 

Importantly, mean theta frequency was higher in participants with better WM 

performance, contrary to the theta-gamma coupling theory hypothesis. Besides, no 

mean theta frequency variations were observed based on task difficulty. Together 
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these results raise questions about this theory that may require further 

consideration. 

Keywords: verbal working memory, theta-gamma coupling, Transcranial 

alternating current stimulation, electroencephalography. 
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Introduction 

Maintaining information in an available state so that it can be used for task 

objectives is a process supported by working memory (WM). Given the importance 

of this process in daily life, many efforts have been made to understand the neural 

mechanisms underlying it. In this regard, there is no evidence for the existence of a 

single brain region responsible for this maintenance (Christophel et al., 2017). 

Instead, the activity is distributed among various regions, with the fronto-parietal 

cortex being particularly prominent (Owen et al., 2005). Due to the distributed 

nature of this process, it is important to study brain oscillations as a form of long-

range connectivity to coordinate the different brain regions (Buzsáki & Draguhn, 

2004; D’Esposito & Postle, 2015; Gazzaley et al., 2004; Sauseng et al., 2005).  

The influence of several oscillatory rhythms has been involved in different WM 

processes (Lisman & Jensen, 2013; Miller et al., 2018; Roux & Uhlhaas, 2014; 

Sauseng et al., 2019). For maintenance, an important role of theta and gamma 

oscillations has been proposed. The theta-gamma coupling theory (Jensen & 

Lisman, 1996; Lisman & Jensen, 2013) proposes that maintenance occurs by 

coupling slow and fast brain waves. According to this theory, fast oscillations 

represent individual items, while slow waves, such as theta waves, organize these 

fast oscillations by coupling them to different phases of the theta cycle. This theta-

gamma coupling has been observed both in the hippocampus (Axmacher et al., 

2010; Chaieb et al., 2015) and cortical regions (Brooks et al., 2020; Canolty et al., 

2006; Fernández et al., 2021; Holz et al., 2010; Köster et al., 2014).  
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A clear prediction derived from this theory is that lower-frequency theta waves 

(i.e., longer theta cycles) would allow faster bursts to be nested, enabling more 

information to be retained in WM. One approach that can be used to test this 

hypothesis is to modulate the oscillations to slow down the theta rhythms and 

observe whether this increases WM capacity. One way to extrinsically modulate 

endogenous oscillations is using transcranial Alternating Current Stimulation 

(tACS). tACS is a widely used non-invasive brain stimulation (NIBS) technique (Antal 

et al., 2008, 2022; Elyamany et al., 2021; Fröhlich et al., 2015; Helfrich et al., 2014) 

that applies weak electrical currents (typically sinusoidal) to the scalp using two or 

more electrodes, simulating natural brain oscillations. Part of this current reaches 

the cortex by traveling through the skull, allowing the entrainment of distant brain 

regions to the stimulation frequency, which can improve or hinder connectivity 

between these areas (Alekseichuk et al., 2019; Schwab et al., 2019; Weinrich et al., 

2017). In this way, different cognitive abilities can be targeted by adjusting the 

frequency and the regions to stimulate.  

Given the role of theta oscillations in WM functioning, several studies have 

applied theta tACS with the aim of modulating endogenous brain oscillations. 

Polania et al. (2012) were the first to apply theta tACS to the fronto-parietal network  

finding better performance in a Sternberg task when 6Hz stimulation was applied in 

phase (i.e. 0º lag between stimulation electrodes). However, studies attempting to 

replicate this effect showed mixed results (Abellaneda-Perez et al., 2020; 

Alekseichuk et al., 2016; Bender et al., 2019; Biel et al., 2022; Chander et al., 2016; 

Jausovec et al., 2014; Jausovec & Jausovec, 2014; Jones et al., 2019; Kleinert et al., 

2017; Reinhart & Nguyen, 2019; Tseng et al., 2016; Violante et al., 2017; Vosskuhl et 
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al., 2015; Wolinski et al., 2018; for a recent review, see Booth et al., 2022). Biel et al. 

(2022) proposed that one reason for the inconsistency of results could be how 

stimulation electrodes were referenced, and they decided to try to replicate Polania 

et al. (2012) but using a ring montage, which allows for a better current focality 

(Alekseichuk et al., 2019; Bortoletto et al., 2016; Saturnino et al., 2017). Thus, they 

observed a WM improvement when stimulation was applied in phase with a ring 

montage, but only when participants performed a more demanding task than the 

one of Polania et al. (2012). 

In this line, previous results have also reported higher stimulation benefits with 

more difficult tasks (e.g. Bender et al., 2019; Hoy et al., 2015; Violante et al., 2017; 

Wu et al., 2014). Violante et al. (2017) applied in-phase tACS and observed better 

performance and higher fronto-parietal activity when the cognitive demands of the 

task were high. Bender et al. (2019) also applied parietal tACS while performing a 

visual WM task. They found an improvement when the stimuli were presented in the 

hemifield contralateral to the stimulation site, but only when the task was difficult 

(i.e. six items to retain). This improvement is consistent with research that enhanced 

frontal midline theta with more demanding verbal WM tasks (Pavlov & Kotchoubey, 

2022). However, Jausovec et al. (2014) only found tACS effects in easier 1- and 2-

back tasks, but not in a more demanding 3-back. Given this scenario, the present 

work used a task similar to Polania et al. (2012) and manipulated task difficulty to 

test whether this could explain the mixed results in the literature.  

Furthermore, this variability in stimulation efficacy is not unique to tACS but 

occurs with all types of stimulation. This has led researchers to emphasize the study 
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of individual differences in this area (Krause & Cohen Kadosh, 2014), showing that 

factors such as chronotype (Salehinejad et al., 2021) or the menstrual cycle (Rudroff 

et al., 2020) may determine its efficacy. Among works that use NIBS to improve WM, 

several have shown that the benefits of stimulation are conditioned to participants 

having low baseline WM capacity (WMC; e.g., Arciniega et al., 2018; Hsu et al., 2016; 

Sahu & Tseng, 2021; Tseng et al., 2018; but see Feurra et al., 2016, for the opposite 

pattern), suggesting that low performers have more room for improvement. Sahu 

and Tseng (2021) applied 6 Hz tACS to the fronto-parietal network and observed a 

facilitatory effect of tACS driven by low WM capacity participants in a visual working 

memory task. In two experiments, Tseng et al. (2018) also applied 6Hz tACS while 

low and high performers completed a visual WM task, observing that in-phase 

stimulation improved low-performers' execution while anti-phase stimulation only 

impaired high-performers execution. These findings highlight the influence of 

individual differences on the efficacy of tACS. 

However, despite the apparent importance of these factors—task difficulty 

and participant WMC baseline—for the efficacy of stimulation, only one study has 

explicitly taken both of them into account using tDCS (Hsu et al., 2016). Hsu et al. 

(2016) manipulated baseline WM and task difficulty to see if they modulated the 

benefits of tDCS in a visuospatial task (the corsi block tapping task). They found a 

modulation of anodal stimulation only for low performers and only when the task 

difficulty was high. However, no study has systematically modulated both factors 

when applying tACS, similar to Biel et al. (2022) or Polania et al. (2012). Thus, the 

present study aims to apply tACS while controlling these factors to maximize the 

effectiveness of stimulation, in order to test the prediction from the theta-gamma 
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coupling theory, i.e., lower theta frequency allows the maintenance of more items 

in WM. Since the main goal was to lower the participants' theta frequency, 4Hz 

stimulation was applied instead of the 6Hz used in previous research. It was 

hypothesized that participants with lower WMC would benefit more from 4Hz theta 

tACS and that these benefits should emerge especially during the high-load task 

condition. Additionally, EEG modulations would also be expected after stimulation, 

including a reduction in the predominant average theta frequency and an increase 

in the target theta frequency power, especially in the low WMC group. 

Method 

The methods and hypotheses were preregistered in Open Science Framework 

before data collection (https://osf.io/ghqk6). 

Participants 

To select participants with high and low WMC, 352 undergraduate students 

from the University of Murcia were screened in exchange for a credit course. From 

these, 220 students were selected, 99 for the high WMC group and 121 for the low 

WMC group (see below for the description of the screening task and the participant 

classification procedure). The remaining participants were contacted to attend the 

lab. Of the participants that replied to the email or phone, 108 attended the 

experimental session after exclusion for meeting any exclusion criteria. The 

exclusion criteria were pregnancy, personal or close family history of neurological 

or psychiatric disorders, metal implants, migraines, epilepsy, cardiac pacemaker, or 

infusion pumps. After rejecting data from eleven participants due to device issues, 
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the final sample was 97 participants: 49 high WMC (36 females; Mage = 19.82, SDage 

= 4.12; Mspan = 6.80), 48 low WMC (42 females; Mage = 19.48, SDage = 1.22; Mspan = 4.75).  

The sample size for the tACS session was previously determined using 

G*Power 3.1 software to detect a medium effect size (partial 𝞰2 = 0.06) with an alpha 

level set at .05 for the most stringent interaction term of the design to obtain .80 

power. A minimum sample size of 92 participants was required, thus, a sufficient 

sample was obtained. All participants indicated that they had normal or corrected 

vision. Approval for this study was obtained from the Ethics Committee at the 

University of Murcia, and the research was conducted according to the ethical 

standards of the 1964 Declaration of Helsinki.  

Tasks and stimuli 

An online version of the Digit Span Task was used for the participants' WMC 

screening. The task duration was about ten minutes. The task consisted of 

sequences of random digits that participants had to remember and recall in the 

same order after the presentation of the last digit. A total of 18 sequences were 

presented: three sequences of three digits, three sequences of four digits, and so 

on until the last three sequences of eight digits. Three measurements could be 

obtained from this task: the total number of digits correctly recalled, the number of 

complete lists correctly recalled, and the participant’s span (defined as the length 

of the longest lists for which the participant correctly recalled at least two lists). The 

criteria to classify participants in the low, intermediate, or high WMC groups were 

as follows. Participants were classified as low WMC if they could recall less than 70 

digits, less than eight lists, and their span was lower than six. Participants were 
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classified as high WMC if they recalled 75 or more digits, nine or more complete 

lists, and they had a span of six or more. The rest of the participants were classified 

as intermediate and were not allowed to participate in the stimulation experimental 

session. By this procedure, 34.38 % of the participants were classified as low and 

28.13 % as high in capacity. 

In the tACS session, participants performed a modified version of the delayed 

letter discrimination task used by Polania et al. (2012). In Figure 1, there is a 

schematic representation of the WM task used in the experiment. Each trial began 

with a fixation point (+) for 1000 ms followed by the sequential presentation of three 

or five (low or high load trials, respectively) capital letters. Each letter had a duration 

of 250 ms followed by a fixation cross for another 250 ms. After the last letter, 

another fixation point was presented for 2500 ms (usually referred to as “delay 

period”). Then, a number in green color was presented in the center of the screen 

for 250 ms. This number would be from one to three in the low-load trials and from 

one to five in the high-load trials, and it referred to the position that occupied one of 

the previously presented letters. Then, another capital letter was presented for a 

maximum time of 3000 ms and participants had to judge whether or not this letter 

corresponded to the position indicated by the green number. The probability of the 

letter being correct was 50%, and for the incorrect trials, a letter to be maintained in 

another position was displayed to avoid answering merely by familiarity. The button 

responses (i.e., right or left) were counterbalanced across participants. Then, a 

feedback display was presented for 400 ms followed by a 1000-ms blank screen that 

preceded the presentation of the next trial. The stimuli were randomly selected from 

a pool of 17 possible letters (B, C, D, F, G, H, J, K, L, M, P, Q, R, S, T, V, X, and Z). All 
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letters had the same likelihood of being presented, and all of them were presented 

once before being repeated. Besides, a letter would never repeat itself before the 

following six letters were presented.  

This task was programmed in E-Prime 3 (Psychology Software Tools, 2016) and 

they used a five-button Chronos device to respond (Psychology Software Tools, 

2016). The task was performed in an individual sound-attenuated booth where 

participants were seated around 70 cm from the screen. Stimuli were presented on 

a 23-inch flatscreen LED monitor (LG 23MP68VQ-P)  with 1920 × 1080 pixels on a 

gray background RGB (192,192,192).  

Figure 1. Schematic synthesis of a load 3 trial from the delayed letter 

discrimination task used during the stimulation session. 

Procedure 

Participants completed two experimental sessions. In the first session, the 

screening was performed in groups of around thirty participants. After explaining the 

instructions of the experiment, they completed an online version of the Digit Span 

Task on their phone devices. Then, participants classified as high or low WMC were 
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contacted to attend the laboratory in a second session. Menstruating participants 

who were not using hormonal contraceptives were dated outside of days 13-15 of 

their menstrual cycle to avoid ovulatory days (Rudroff et al., 2020). It was calculated 

by asking about their last four periods to calculate the average of their cycle length 

and subtracting fourteen days (average luteal phase duration). Then, this was added 

to the onset day of their last period. If the experiment date matched this estimated 

ovulatory day, the day before or the day after, it was rescheduled to avoid ovulation.  

Then, participants attended the laboratory for the second session (i.e., 

stimulation session). Once they arrived at the laboratory, they were randomly 

assigned to active or sham stimulation. Both the participant and the experimenter 

were blinded to both the stimulation condition and the WMC group they belonged 

to. Then, they entered the individual isolated room, the tES/EEG electrodes were 

placed, and the task was explained to them. First, they remained with their eyes 

open and completed three minutes of resting state EEG recording. Then, the 

instructions for the task were displayed, and they completed five practice trials of 

each type (i.e., low and high load). After practicing, they completed thirty randomly 

presented trials of each type while EEG was being recorded. Then, the message 

“PLEASE, CALL THE RESEARCHER” was displayed on the screen and the researcher 

would change from EEG to tACS. After that, they received either sham or active tACS 

while performing 120 randomly ordered trials, 60 of each type. Following 

stimulation, the same message was displayed and the researcher changed again to 

EEG recording while the participants performed 60 more trials, 30 of each type. 

Then, the participants remained still with their eyes open to complete the last three 

minutes of resting state recording EEG. After finishing the experiment, they 
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completed a survey about the stimulation sensations (Fertonani et al., 2015; 

Hemmerich et al., 2023). 

tACS and EEG protocol 

Transcranial alternating current stimulation (tACS) was administered with a 

StarStim 8® wireless system (Neuroelectrics, Barcelona, Spain) connected to hybrid 

tCS/EEG NG Pistim circular electrodes (pi cm2). Stimulation electrodes followed the 

10-20 system and were located at the left dorsolateral prefrontal cortex (DLPFC) and 

left posterior parietal cortex (PPC), respectively, at the F3 and P3 positions. The 

stimulation was administered in phase, 0°2, between the F3 and P3 electrodes, and 

return electrodes surrounding stimulation electrodes were located on positions F7, 

Fz, C3, P7, and Pz, in a triangular focal shape. Stimulation at F3 and P3 was set at 4 

Hz with an intensity of 1500 μA, zero-to-peak, and return electrodes at 600 μA 

(following the montage from Biel et al., 2022). The duration of the stimulation was 

fifteen minutes with one-minute ramp-up and down, and was administered online.  

EEG data was also collected using the Starstim 8 system. Apart from the 

stimulation electrodes, the additional Cz electrode was recorded. The reference 

electrode was placed on the right earlobe using an EarClip electrode. Data were 

recorded with a sampling frequency of 500 Hz, a bandwidth of 0–250 Hz. Electrode 

impedances were kept below 5 kΩ. EEG data was collected both during resting and 

while performing the task, before and after stimulation (see Figure 2). During resting 

state recording, participants were instructed to remain with their eyes open, looking 

at the fixation point in the center of the screen.  

 
2 The preregistered 180° referred to the timing between the active and the reference electrodes.  
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Figure 2. Experimental procedure of the two session (upper panel), 

stimulation montage (lower left panel) and electric field (lower right panel). In the 

stimulation montage panel, the blue electrodes represent the active stimulation 

electrodes, the light grey electrodes are the reference electrodes and the dark grey 

electrode was only used during EEG recording.  

 

EEG Preprocessing and Analyses 

Preprocessing was conducted in MATLAB using the EEGLAB toolbox v2024.1 

(Delorme & Makeig, 2004). The raw datasets were imported to EEGLAB using the NE 

EEGLAB NIC plugin. EEG data was downsampled to 250 Hz, high pass filtered to 1 

Hz, and low pass filtered to 120 Hz using pop_eegfiltnew. Then, the pop_cleanline 

function was used to clean the 50-line noise and the 100 Hz harmonic, and data was 

re-referenced to the average of all the electrodes. Afterward, the resting epochs and 
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the delay epochs were extracted. The delay epoch was from -800 ms to 2499 ms, 

locked to the beginning of the delay after the last presented letter. The baseline 

correction was from -600 ms to -100 ms, following (Cohen, 2014) recommendations 

of avoiding the 0 time in the baseline. No baseline correction was applied to the 

resting state epochs. Then, Independent Component Analysis (ICA) was run with the 

pop_runica function of EEGLAB. Artifacts were removed using the pop_iclabel 

function to classify the components. Then, those components classified with a 

probability higher than 0.7 as eye, heart activity, or channel noise, or higher than 0.5 

as line noise were flagged with the function pop_icflag, and later removed from the 

data. Trials with no responses and errors were excluded from the EEG analyses.  

Power spectral density (PSD) was calculated in resting and during the first and 

last block of the task (i.e. before and after stimulation). Analyses were performed 

with custom code using the Fast Fourier Transform (FFT) following the 

recommendations of Cohen (2014). Resting-state data were segmented into 2-

second epochs. The frequencies to calculate the FFT were determined with the 

function linspace with the maximum frequency in the Nyquist number (125 Hz), and 

the number was half the number of time points in an epoch plus one. A Hanning 

window was applied to each epoch. To determine the effects of stimulation in PSD, 

the normalized percentage change was calculated for the EEG signal after 

stimulation/sham compared to the baseline (i.e. resting state or task signal average 

before receiving tACS). This normalization has several advantages over non-

normalized data, such as making the data more easily interpretable, standardizing 

it, and reducing differences that could be due to interindividual factors at baseline 
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(Clayton et al., 2019; Cohen, 2014). Where X is the mean individual PSD, the 

percentage change formula was: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 =  
(𝑋𝑝𝑜𝑠𝑡−𝑋𝑝𝑟𝑒)

𝑋𝑝𝑟𝑒
 * 100      (1) 

Additionally, the functional connectivity between the two main stimulation 

electrodes (i.e., F3 and P3) was explored before and after stimulation to assess 

variations in long-range synchronization using a method called Phase Locking Value 

(PLV, Lachaux et al., 1999). To calculate the PLV, the phases of the individual 

electrodes within the narrow band of interest (in this case, the theta band from 3 to 

7 Hz) were first extracted via the Hilbert transform, and the difference between these 

instantaneous phases was then computed. The PLV takes values ranging from 0 to 

1, where 0 indicates unsynchronized phases, and 1 indicates perfect phase 

synchronization. Similarly, an increase in the PLV value indicates an increase in 

synchronization between the two electrodes. The interest of this analysis was to 

determine whether connectivity between these two electrodes increased after 

stimulation. To compare theta and sham stimulation groups independently of 

individual baseline synchronization, the percentage change of both groups was 

calculated in the same manner as for PSD. 

Lastly, to obtain an estimate of the mean theta frequency for each participant 

and condition, the "gravity frequency" (gF), or weighted mean of the band (Hooper, 

2005; Klimesch, 1997, 1999) was calculated. This is obtained as the weighted sum 

of the spectral frequencies of interest, divided by the total theta power:  

𝑔𝐹 =  
   ∑(𝑎(𝑓)×𝑓)

∑𝑎(𝑓)
 ,        (2) 
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where 𝑎(𝑓) are the power spectral at frequency 𝑓. In this case, the frequencies 

of interest were fixed in 3 to 7 Hz for all participants (i.e., theta band) and they were 

obtained in MATLAB in linear steps with the function linspace from 0 to Nyquist (i.e., 

125) in N/2+1 steps, where N is the number of time points in the data delay. This 

returned fourteen continuous frequencies for which power was obtained and z-

normalized before calculating gF. Again, the percentage of change was calculated 

to allow the comparison of the two stimulation groups.  

Statistical analyses 

Behavioral data were preprocessed in Rstudio (RStudio Team, 2022) using the 

library Tidyverse (Wickham et al., 2019). Data were analyzed with JASP 0.19.0.0 

(JASP Team, 2022). A significant level of α = 0.05 was adopted. Post-hoc tests were 

performed to explore the significant interactions. Holm-Bonferroni correction was 

applied to correct for multiple comparisons. Besides, for all analyses, if Mauchly’s 

sphericity test reached statistical significance, Greenhouse-Geisser correction was 

applied. First, it was tested whether stimulation affected performance on the 

delayed letter discrimination task, depending on baseline WMC and task difficulty. 

As preregistered, two Analyses of Variance (ANOVA) were performed on Response 

Times (RT) and accuracy (ACC) as dependent variables. Besides, two additional 

exploratory ANOVA were performed on discriminability (d’) and Cowan’s K value 

(Cowan, 2001; Rouder et al., 2008) to evaluate task performance. The mean theta 

power, the mean theta frequency, and the Phase Locking Value were used as 

dependent variables in the EEG analyses. The analyses were performed with WMC 

groups (high and low) and Stimulation (4hz and sham) as between-participant 
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factors and task difficulty (low and high load) as within-participant factors. Besides, 

the moment of recording (pre-post) was also introduced in some analyses 

(specified in the Results section) as a within-participant factor.  

Results 

tACS effects on WM performance 

To evaluate the effects of stimulation on task performance, analyses were 

performed separately during the task and pre-post stimulation. On RTs during 

stimulation, results from the main effect of task difficulty were statistically 

significant, F(1, 93) = 178.957, p < .001, ηp² = 0.658, with faster RTs in the low load 

condition (Mlow = 948 ms, Mhigh = 1106 ms). The interaction WM group × load was also 

significant, F(1, 93) = 5.092, p = 0.026, ηp² = 0.052 (see Figure 3), with slower RTs in 

the high WMC group compared to the low WMC group when the load was high. This 

must be interpreted considering the results in ACC, where the low WMC group 

performed worse than the high WMC group, especially in the most difficult trials. 

This might indicate that high WMC participants were slower because they were able 

to maintain all the information in WM and, to respond, they needed to perform a 

slower and more systematic search within their WM. In contrast, the fast response 

and low ACC of the low WMC group suggest that their responses were based on a 

faster and less accurate procedure, probably relying on familiarity due to the 

difficulty in maintaining all the information in their WM. However, no main effect or 

interaction involving stimulation reached significance (all p ≥ 0.153). When the 

analysis was performed to compare the blocks before and after stimulation, no 

effect of stimulation was observed in RTs. Only the main effects of load (i.e., better 
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performance in the low load condition), F(1, 93) = 187.253, p < 0.001, ηp² = 0.668, 

moment (i.e., better overall performance in the last task block), F(1, 93) = 174.079, 

p < 0.001, ηp² = 0.652, and the interaction WM group × load F(1, 93) = 11.476, p = 

0.001, ηp² = 0.110, reached statistical significance.  

ACC analyses showed similar results. During stimulation, a significant WMC × 

load interaction reached statistical significance, F(1, 93) = 19.319, p < .001, ηp² = 

0.172, with more pronounced differences between both WMC groups in the high 

load task condition (see Figure 3). These results show that the WMC groups and the 

task difficulty manipulations worked as intended because, overall, (1) the high WMC 

group performed better than the low WMC group at both high and low load 

conditions, F(1, 93) = 22.439, p < .001, ηp² = 0.194, and (2) accuracy was higher in 

the low load than the high load condition, F(1, 93) = 282.201, p < .001, ηp² = 0.752.  

Figure 3. Working Memory Capacity group × Task difficulty interaction in 

response time (left panel) and accuracy (right panel). Error bars represent the 

standard error of the mean. 
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The WMC × task difficulty interaction was also observed when the ACC 

analyses were performed in the pre- and post-stimulation blocks, F(1, 93) = 37.240, 

p < .001, ηp² = 0.286. Additionally, the main effect of the moment was significant, 

F(1, 93) = 19.828, p < .001, ηp² = 0.176, showing an overall improvement in the task 

with practice (Mpre = 0.83, Mpost = 0.87). Importantly, no main effects or interactions 

with stimulation were significant (all p ≥ 0.161; see Figure 4). Not finding significant 

results of stimulation due to a ceiling effect was discarded considering that the 

average accuracy in the high load condition by the low WMC group (i.e., where 

effects were expected) was 0.75.  

Figure 4. Working Memory Capacity group × task load interaction in accuracy 

split by theta (upper row) or sham (lower row) stimulation and before (left column) 

or after (right column) stimulation. Error bars represent the standard error of the 

mean.  
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Although it was not preregistered, the same analyses were performed on d’ 

and K as dependent variables. Both analyses showed no significant main effect or 

interaction of stimulation (all p ≥ 0.153). And, again, significant WMC × Load 

interactions were observed on d’ and K, with better performance in the case of the 

high WMC group in the more demanding condition, compared to the low WMC 

group. On d’, this interaction was only observed on the blocks pre- and post-

stimulation, F(1, 93) = 18.615, p < .001, ηp² = 0.167, while it was significant both pre-

post, F(1, 93) = 26.050, p < .001, ηp² = 0.379, and during stimulation, F(1, 93) = 

25.898, p < .001, ηp² = 0.218, in K. 

tACS Effects on Theta Power 

Despite the absence of any behavioral effects, the impact of stimulation on 

brain oscillations was evaluated. Two participants were removed from the analyses 

because they lacked pre or post-stimulation EEG recording. First, the percentage 

change in resting-state theta power pre- and post-stimulation was calculated as the 

dependent variable. This analysis showed no significant effect of stimulation, F(1, 

91) = 0.118, p = 0.731, ηp² = 0.001, WMC group, F(1, 91) = 0.011, p = 0.916, ηp² = 

1.236×10-4, nor their interaction, F(1, 91) = 1.497, p = 0.224, ηp² = 0.016. However, 

the results differed when the analyses were performed during the task. For this, the 

same percentage change in theta power pre- and post-stimulation was calculated, 

but this time during the retention delay while participants performed the task. Then, 

it was introduced in a repeated measures ANOVA with WMC group and stimulation 

as between-subject factors and task difficulty as a within-subject factor. This 

analysis revealed a significant stimulation × task difficulty interaction, F(1, 91) = 
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18.615, p = 0.046, ηp² = 0.043, significant main effect of stimulation, F(1, 91) = 6.043, 

p = 0.016, ηp² = 0.062, and significant main effect of task difficulty, F(1, 91) = 7.721, 

p = 0.007, ηp² = 0.078. This analysis showed that the sham group experienced an 

increase in theta power after stimulation compared to the theta tACS group (Mtheta = 

1.92 %, Msham = 21.44 %; see Figure 5). This effect was present in both task difficulty 

conditions but was particularly pronounced in the low load trials (M low-sham = 28.103 

%, Mlow-theta = 2.969 %; Mhigh-sham = 14.792 %, Mhigh-theta = 0.862 %). Importantly, the theta 

stimulation group showed almost no increase in theta power, with no differences 

between load conditions, t(94) = 0.538, p = 0.592, d = 0.052. 

Figure 5. Stimulation group × task difficulty interaction in percentage theta 

change. Error bars represent the standard error of the mean. 

Mean theta variations 

Firstly, the prediction that low WMC participants must exhibit a higher mean 

theta frequency (allowing less gamma to couple and, thus, fewer items maintained) 

was tested. Then, the gF of the memory delay in the first EEG block (pre-stimulation) 



 

120 

 

of both WMC groups was compared3. This analysis showed significant differences 

between the groups, F(1, 93) = 4.335, p = 0.040, ηp² = 0.045. However, the direction 

of the results was contrary to the theta-gamma coupling theory prediction: the high 

WMC participants exhibited a higher mean theta, compared to the low WMC 

participants (MlowWMC = 4.291 Hz, MhighWMC = 4.425 Hz; see Figure 6). To test whether 

this result could depend on the high or low load trials, we again calculated gF but 

separately for 3-load and 5-load trials. Then, an ANOVA with task difficulty and WMC 

groups was performed again on the EEG block before stimulation, revealing no 

effect of task difficulty, F(1, 93) = 1.894, p = 0.172, ηp² = 0.020, or interaction with 

WMC group, F(1, 93) = 0.801, p = 0.373, ηp² = 0.009. 

Figure 6. Raincloud plots of mean theta frequency during the retention delay 

in high and low WMC groups. The small dark points represent the mean of each 

participant in each condition. The light grey point joined by a grey line represents the 

means of both groups. The individual distributions for both WMC groups are 

represented in the split violin plots. 

 
3 The reported analyses were performed on all the trials but the same results were observed when 
the analyses were performed only on the hit trials (i.e. trials with successful item maintenance).  
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Secondly, the efficacy of tACS in modulating mean theta frequency was 

tested. For this, the percentage of change was calculated in both groups. Then, an 

ANOVA with WMC group and stimulation as between participants factors and 

percentage change as dependent variable was calculated. Results show no 

significant effect of stimulation, F(1, 91) = 2.402, p = 0.125, ηp² = 0.026, or WMC 

group x stimulation interaction, F(1, 91) = 0.687, p = 0.409, ηp² = 0.007. Raw EEG 

showed an overall decrease of the theta frequency in the last block of the task 

compared to the first block (Mfirst = 4.361 Hz, Mlast = 4.226 Hz), independently of the 

stimulation. When the analysis was performed separately for the two types of load 

trials, no main effect of task load or interaction reached significance (all p ≥ 0.134). 

Phase Locking Value between Stimulation Electrodes 

Changes in electrode synchronization during the WM delay were evaluated by 

calculating the percentage change in PLV before and after stimulation, both in the 

sham and theta stimulation groups. Initially, this calculation was performed using 

all trials. This analysis showed an overall increase in PLV in both the theta and sham 

groups (Mtheta = 9.36 %, Msham = 5.35 %). The difference between the two groups was 

only marginally significant, F(1, 94) = 3.791, p = 0.055, ηp² = 0.039. Since trials in 

which participants failed to respond correctly might exhibit lower synchronization, 

the same analysis was conducted using only the hit trials. Again, both groups 

showed an increase in PLV after the stimulation block (Mtheta = 9.23 %, Msham = 5.21 

%); however, in this case, the difference between the two groups was statistically 

significant, F(1, 94) = 4.037, p = 0.047, ηp² = 0.041, with a greater increase in 

synchronization in the theta stimulation group (see Figure 7). Nevertheless, given 
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the exploratory nature of the two analyses, these results should be interpreted with 

caution. 

Figure 7. Raincloud plots of percentage change of Phase Locking Value (PLV) 

in sham and theta stimulation groups. The small dark points represent the mean of 

each participant in each condition. The light grey point joined by a grey line 

represents the means of both groups. The individual distributions for both 

stimulation groups are represented in the split violin plots. 

 

 

 

 

 

 

 

 

Discussion 

The role of individual factors, such as baseline working memory capacity, can 

play a crucial role in maximizing the benefits of electrical stimulation for modulating 

WM. In the present study, we consider this factor—WMC—to test the theory of 

theta-gamma coupling, which posits that lower theta frequency rhythms would 

facilitate greater gamma coupling, thereby allowing more information to be 

maintained in WM. To this end, we applied 4 Hz transcranial alternating current 

stimulation (tACS) to slow down theta rhythms in the fronto-parietal network. We 

also manipulated task difficulty, given previous studies that show tACS modulation 

effects primarily under challenging task conditions.  
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The behavioral results revealed the successful manipulation of both WMC 

groups and task difficulty. However, contrary to our hypotheses, participants 

receiving 4 Hz theta tACS did not exhibit any benefits over the sham group. These 

null effects were observed across measures of response time, accuracy, d’, and K. 

We replicated the results from Experiments 1 and 2A of Biel et al. (2022), given that 

they neither found behavioral modulation after tACS in a delayed letter 

discrimination task similar as the one used by Polania et al. (2012), i.e., the easy 

trials of the task used in the present experiment. However, contrary to the WM 

improvement found in their Experiment 2B, we did not observe any modulation in 

more demanding trials, despite using the same montage.  

One aspect in which our experiment differs from that of Biel et al. (2022) and 

which could explain this divergence of results is that the task used was not the 

same. While they found a modulation in discriminability (d’) in a difficult 3-back 

task, we did not observe any effect on the d’ metric in the difficult version of the 

delayed letter discrimination task. In addition to item maintenance, the 3-back 

might require updating and controlling of WM representations (Gajewski et al., 2018; 

Rac-Lubashevsky & Kessler, 2016), as well as motor preparation (Pavlov & 

Kotchoubey, 2022). These central executive-dependent functions seem to be 

closely linked to fronto-parietal theta synchronization (Hanslmayr et al., 2008; 

Sauseng et al., 2005, 2010). Therefore, it is possible that tasks such as the 3-back—

where executive control is involved—are more likely to be modulated by theta tACS. 

Against this argument, Vosskuhl et al., (2015) applied tACS and compared the 

effects of tACS on the 3-back task measured before and after stimulation and also 

found no modulation. However, the stimulation frequency was adapted to each 
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participant and on average was close to 4 Hz (i.e., the same as we used), in contrast 

to the 6 Hz applied by Biel et al. (2022). Therefore, another possibility is that the theta 

modulation only shows benefits in n-back tasks with faster theta frequencies 

(Violante et al., 2017; but see Chander et al., 2016).  

In contrast, EEG recordings revealed some differences between stimulation 

groups. First, contrary to our hypothesis, we observed a close to zero increase in 

theta power in the theta tACS group compared to the sham condition. This was an 

unexpected finding, as an increase in power at the stimulated frequency is typically 

seen after tACS in theta and other frequency bands (see Pavlov & Kotchoubey, 2022 

and Vogeti et al., 2022, for recent reviews). While the effects of tACS are typically 

explained in terms of entrainment or long-range synchronization between 

stimulated regions, Spike-Timing Dependent Plasticity (STDP) has also been 

proposed as a mechanism by which tACS influences neural activity (Bi & Poo, 1998; 

Zaehle et al., 2010). STDP suggests that the timing between endogenous neural 

firing and tACS-induced oscillations determines synaptic changes. If a pre-synaptic 

event occurs just before a post-synaptic event, there is an increase in synaptic 

strength—i.e., long-term potentiation (LTP). Conversely, if a post-synaptic event 

precedes a pre-synaptic event, a synaptic weakening takes place—i.e., long-term 

depression (LTD) (Vogeti et al., 2022; Vossen et al., 2015; Zaehle et al., 2010). 

Applied to tACS, LTD could occur when the stimulation frequency is faster than the 

regular firing rate of the targeted network. Therefore, it might be that the observed 

attenuation in theta power was due to LTD resulting from a timing mismatch 

between the individual's endogenous theta rhythm and the tACS (Wischnewski & 

Schutter, 2017). Chander et al. (2016) also observed a decrease in theta power (and 
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performance) after applying frontal 6 Hz tACS. In their case, the reduction was 

attributed to interference between the tACS stimulation and the participant's 

endogenous oscillations. Whether due to LTD or simply to a mismatch between 

oscillation rhythms, the lack of synchronization between endogenous and 

exogenous oscillations can lead to a reduction in power instead of the intended 

increase. We believe these factors should be considered in future studies.  

Second, contrary to the theta-gamma coupling theory and our pre-registered 

hypothesis, we did not find that the high WMC group, who performed better on the 

task, exhibited a lower mean theta frequency before any stimulation. Instead, they 

showed a higher mean theta frequency compared to the low WMC group. This 

pattern of results aligns more closely with an alternative model regarding the role of 

theta in the maintenance of information in working memory (Herman et al., 2013; 

Van Vugt et al., 2014). According to this recent framework, a complete gamma burst 

represents a single item, and each theta cycle nests one gamma burst. When 

multiple items need to be maintained in WM, several theta cycles must be 

reactivated to refresh all the items, which might potentially explain the limited 

capacity of WM (Van Vugt et al., 2014). Faster theta cycles would therefore enable 

quicker refreshing of WM items, preventing their loss. A person capable of activating 

more items in a shorter time (i.e., with faster theta rhythms) should be able to 

maintain more information in their WM. Given the differences in mean theta 

frequency for the two WMC groups, the present results are more consistent with this 

explanation.  
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Evidence for the theta gamma coupling model comes from different sources 

including rodents and nonhuman primate invasive measures (Lisman & Jensen, 

2013), and human intracranial EEG at the hippocampus (Axmacher et al., 2010; 

Chaieb et al., 2015). However, using human EEG the results are somewhat more 

mixed. While Sauseng et al. (2009) found cross-frequency synchronization at 

posterior electrodes, Kamiński et al. (2011) observed it but only at one frontal 

electrode and without correcting for multiple comparisons (see Chuderski, 2016). 

Furthermore, Malenínská et al. (2021) attempted to replicate Kamiński et al.'s (2011) 

results and, after applying corrections, found no evidence for the theory. Similar to 

Malenínská et al. (2021), the simple prediction that theta frequency should be lower 

in low WMC individuals was not observed in the present data. Also, contrary to the 

model, no theta frequency modulations were observed concerning the task 

difficulty manipulation in either WMC group. These results open a discussion on 

whether the hypotheses derived from this theory can be observed in human EEG 

data.  

Besides, the mean theta frequency was not more reduced in the stimulation 

group. According to the theta-gamma coupling model, this could explain the lack of 

behavioral effects but the fact that no lower theta was observed in the high WMC 

group raises doubts about this reasoning. To be noted, in the context of the theta-

gamma coupling model, tACS has been shown to reduce or increase theta power 

(Chander et al., 2016; Pahor & Jausovec, 2018; Vosskuhl et al., 2015) or phase 

synchronization (Alekseichuk et al., 2017; Chandler et al., 2017). Only two studies 

have examined the frequency peak modulations after theta tACS. Kleinert et al. 

(2017) studied the theta modulations in the resting state before and after 6 Hz 
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stimulation and only found alpha modulations but not for the theta band. Vosskuhl 

et al. (2015) found an amplitude increase at 6.7 Hz after theta stimulation even 

though the average frequency of applied stimulation was 4.23 Hz. Then, the present 

results advocated caution in the use of tACS as a way of modulating specific 

frequencies, given that it might have no effect or an unexpected effect on 

frequencies different than the targeted ones.  

Third, our exploratory analyses regarding the connectivity between the two 

stimulation electrodes showed a greater increase in phase synchrony following 

theta stimulation, consistent with previous findings (Alekseichuk et al., 2017; 

Chandler et al., 2017). However, this effect was only observed when error trials were 

excluded from the analyses. Although this might seem logical, as synchronization 

would be expected to be successful primarily in hit trials, the exploratory nature of 

these results warrants caution. A pre-registered replication study is necessary to 

confirm these findings. 

Lastly, the present work has several limitations. First, only a few fronto-parietal 

electrodes were placed and analyzed but other studies have found relevant theta-

gamma coupling EEG information in other electrode locations (e.g. Chander et al., 

2016; Sauseng et al., 2009). As mentioned before, the comparison of the present 

results with those found by Biel et al. (2022) is limited given the difference in the 

tasks that were used. Other research could do a direct comparison between the 

results obtained using an n-back and a delayed letter response task, similar to 

Pahor & Jausovec (2018). Finally, the exploratory nature of some of our analyses 

requires replication before building stronger conclusions. 
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In summary, the present study shows that focal in-phase 4 Hz tACS does not 

modulate performance during a WM task that primarily relies on the maintenance 

of information, even when task difficulty and baseline WM capacity are controlled. 

Electrophysiological results indicated no power increase following stimulation, in 

contrast to the sham group, which displayed a strong increase in mean theta power 

over time on task. This lack of effect might be due to insufficient synchronization 

between the endogenous and exogenous frequency rhythms. EEG data also 

revealed stronger phase synchronization between the stimulation electrodes when 

participants responded correctly, suggesting an induced phase synchronization by 

tACS. However, the results are not entirely consistent with the theta-gamma 

coupling model, particularly concerning (1) the higher mean theta frequency 

observed in high WMC participants, who performed better in the WM task, and (2) 

the absence of mean theta frequency modulation associated with WM load during 

the task. Therefore, the theta-gamma coupling model, which is the most 

established framework for explaining WM maintenance, may need to be revisited. 
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Chapter 4: Distinguishing Between Temporary and Permanent 

Removal in Verbal Working Memory 

Abstract 

We employed the retro-cue paradigm to examine performance improvements 

resulting from permanent versus temporary removal in verbal working memory 

(WM). Permanent removal entails discarding a subset of WM representations 

marked as definitively irrelevant, while temporary removal involves momentarily 

setting aside the uncued subset of representations from the attentional focus, 

preserving accessibility for later refocusing. We observed that both permanent and 

temporary removal led to marked progressive reductions in reaction time and errors 

across cue-target intervals (200, 400, 800, and 1600 ms), reflecting the gradual 

simplification of the search set following informative cues. Although removal 

conditions did not differ in accuracy, responses were slower in the temporary 

removal condition, especially at the longest interval. A key finding was that 

performance in the temporary removal condition, but not in the permanent removal 

condition, was modulated by the presentation order of the target's memory set. This 

order effect was also observed in a non-removal control condition where double 

retro-cues marked all presented information as relevant. We suggest that order 

effects depend on maintaining the integrity of the retrieval structure (all the 

contextual cues) needed to guide attentional access to specific representations, 

including those provisionally set aside in the temporary removal condition. We 

conclude that the primary distinction between permanent and temporary removal 

processes is that only permanent removal simplifies the retrieval structure by 
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eliminating unnecessary contextual cues, resulting in a greater reduction in the 

complexity of the search set compared to temporary removal. 

Keywords: Verbal working memory, retro-cue paradigm, permanent removal, 

temporary removal, time-course, binding, working memory updating. 
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Introduction 

Working memory (WM) is the cognitive system that enables a limited set of 

mental representations to be readily available for ongoing cognitive tasks. 

Traditional models posited the existence of specialized stores (e.g., the 

phonological store) dedicated to holding WM representations (Atkinson & Shiffrin, 

1968; Baddeley & Hitch, 1974). The prevailing view today, however, is that WM and 

declarative long-term memory (LTM) share a common representational substrate, 

with WM representations being in a transitory state that allows them to be more 

immediately available than LTM representations (Cowan, 1995; Oberauer, 2002, 

2009; Ruchkin et al., 2003). This second view usually comes with the additional 

assumption that, within WM, representations may differ in the degree to which they 

can be accessed and manipulated. The most crucial distinction is between 

representations currently attended (or currently included in an attentional 

refreshing loop) and those that have been temporarily left aside but remain in a state 

of privileged accessibility (Mallett & Lewis‐Peacock, 2018; Oberauer, 2002; 

Oberauer & Awh, 2022; Oberauer & Hein, 2012; Olivers et al., 2011). These two 

levels of accessibility of WM representations may correspond to two different 

underlying neural mechanisms, persistent neural firing and some form of short-term 

synaptic plasticity (Masse et al., 2020; Miller et al., 2018; but see Stokes et al., 2020, 

for alternatives). Congruently with this view, some studies trying to decode WM 

representations from fMRI and electrophysiological neural signals have found that 

only attended representations can be effectively decoded (at least, with the current 

technical means), while non-attended WM contents can transition from an 

undecodable state to a decodable one as it shifts from irrelevant to relevant for the 
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ongoing mental operation (LaRocque et al., 2013, 2017; Lewis-Peacock et al., 2012; 

Rose et al., 2016; Sprague et al., 2016; Wolff et al., 2017; but see Christophel et al., 

2017, 2018). These findings reinforce the pertinency of distinguishing between 

attended (neurally active) and non-attended (dormant but still privileged) WM 

representations. 

In real life, there are many situations in which a subset of WM representations 

must be temporarily set aside to minimize interference with the current mental 

operation, but in a way that allows these contents to be maintained in WM for later 

attentional refocusing. Consider, for example, situations such as mentally solving a 

reasoning problem, comprehending an intricate sentence we have just heard, or 

mentally performing an arithmetic operation. Typically, these tasks are segmented 

into steps that require focusing on a different portion of the information held in WM. 

Therefore, as one progresses through these steps, different subsets of 

representations are dynamically transferred in and out of the attentional focus. We 

will use the term "temporary removal" to refer to the operation of eliminating from 

the attentional focus WM representations that are currently unnecessary, but that 

will need to be refocused in a forthcoming step of the current task (Günseli et al., 

2015; Lewis-Peacock et al., 2018). We assumed that these temporarily unattended 

representations remain within WM in a dormant but privileged state of easy 

accessibility. 

In contrast to temporary removal, there are also many instances during the 

execution of WM tasks where a portion of the attended information ceases to be 

relevant for good. In a mental calculation task, for example, once a partial operation 
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is completed and its result is maintained in WM, information about that partial 

operation becomes unnecessary and can be permanently removed from WM. Due 

to the limited capacity of WM (Cowan, 2010), having a mechanism dedicated to 

eliminating contents that have become definitively irrelevant seems crucial to 

maintaining the system's proper functioning (Lewis-Peacock et al., 2018). Some 

evidence for such a beneficial effect of permanent removal comes from studies 

employing the retro-cue paradigm (Griffin & Nobre, 2003) with 100% valid cues. The 

procedure in these studies involved the supply, after the initial encoding, of a cue 

pointing out a set of the presented items as the only relevant for the imminent 

memory test. The assumption is that, following cue presentation, attention focuses 

on the relevant information while a removal mechanism operates on the uncued 

WM representations. With this procedure, it has been observed that the 

performance cost associated with the irrelevant set progressively diminished during 

the first seconds immediately following the cue, which has been interpreted as 

reflecting the time course of the removal of the uncued contents from WM (Souza, 

Rerko, & Oberauer, 2014; Oberauer, 2001, 2002, 2018). Since irrelevant sets in these 

situations are marked as definitively unnecessary, we term the type of removal 

involved as “permanent removal” (Lewis-Peacock et al., 2018). 

An intriguing question regarding temporary and permanent removal revolves 

around the similarities and differences between these two mechanisms. Both 

mechanisms appear to involve removing the information deemed unnecessary for 

the ongoing mental operation from the attentional focus while attention focuses on 

the relevant content. Differences, therefore, might concentrate on operations 

related to the accessibility level of the unattended information and how easily 
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representations left aside can be refocused by attention when necessary. In this 

regard, it has been proposed that permanent removal operates by gradually 

disrupting the binding of items and their context through Hebbian antilearning 

(Lewis-Peacock et al., 2018; Oberauer, 2018). Unattended representations, 

therefore, are not obliterated but merely disconnected from their associated 

context. This would explain why irrelevant items, including those belonging to 

previous trials, generate strong interference when presented as negative probes in 

Sternberg-like tasks, even after long intervals since that information was flagged as 

irrelevant (Berman, Jonides, & Lewis, 2009; Campoy, 2011, 2012; Oberauer, 2001, 

2018). Although the irrelevant representations were not obliterated during 

permanent removal, the fact that they were unbinding from the current context 

simplifies search processes and facilitates the encoding of new items by reducing 

cue overload (Dames & Oberauer, 2022; Festini & Reuter-Lorenz, 2014; Souza et al., 

2014). From this perspective, the main difference between permanent and 

temporary removal would be that context-content bindings should remain intact 

after temporary removal to enable the subsequent retrieval of this information for 

the attentional focus (Koch et al., 2013; Lewis-Peacock et al., 2018). Considering 

that the enhancement in performance associated with permanent removal partially 

arises from the unbinding of items from their context, a process absent in temporary 

removal, it logically follows that temporary removal would likely result in a 

diminished performance improvement compared to permanent removal. This 

represents a simple prediction that aligns seamlessly with intuition. However, as far 

as we know, it hasn't been experimentally tested. The main purpose of this study is 

to address this gap.  
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We rely on the retro-cue paradigm with 100% valid cues outlined above. The 

condition designed to evaluate permanent removal mimics previous studies. Two 

sets of items were sequentially presented, followed by a cue marking one of the sets 

as the one relevant for the upcoming memory test, which was applied after a 

variable brief interval (the cue-target interval, CTI). Based on previous findings, 

performance was anticipated to improve as the CTI increased, reflecting the time 

course of uncued-set removal (Oberauer, 2018). The temporary removal condition 

was created by adding, immediately following the response, a second memory test 

on the other set, the one initially marked as irrelevant. The existence of this second 

test forced participants to maintain the irrelevant set in an accessible state during 

the first interval. Introducing a second response regarding previously irrelevant 

information is not new (LaRocque et al., 2013; Oberauer, 2005). What is novel is 

incorporating both single-response and double-response trials within the same 

experiment in a fully predictable manner (allowing participants to apply the most 

suitable removal mechanism in each case) and keeping all other experimental 

parameters equal to enable direct comparison. Since there were different CTIs, we 

could compare not only the global effect of permanent and temporary removal but 

also their temporal course.  

In addition to these key conditions, we introduced two single-response control 

conditions to provide baseline comparisons. One had double retro-cues, so the two 

memory sets were marked as relevant. This control condition was needed to verify 

that removing the irrelevant set, either permanently or temporarily, enhances 

performance. In the other control condition, only one memory set was presented at 

encoding, followed by a cue redundantly marking that set as relevant (to keep the 
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trial structure consistent). We anticipated observing a progressive convergence of 

performance in conditions with removal towards the performance in this second 

control condition as the amount of WM representations in the attentional focus 

became equated across CTIs. 

Besides comparing the beneficial effect of permanent and temporary removal 

and their temporal courses, we aimed to investigate two additional issues. The first 

of these was not initially considered but gained prominence through the results of 

two pilot studies conducted before the one described here. In these pilots, we found 

that performance in the temporary removal condition, but not in the permanent 

removal condition, significantly depended on whether the cued set was the one 

presented first or second during initial encoding. Hence, we decided to design the 

present experiment considering this factor, which ultimately proved crucial for 

interpreting the results (as we elaborate in the Discussion section).  

The second additional issue we aimed to address pertains to the second 

response in the temporary removal condition (the only one with two tests per trial). 

Specifically, we were interested in whether the length of the CTI preceding the first 

response would influence performance on the second test. If performance on the 

first test improves with longer CTIs due to participants having more time to complete 

the removal of the uncued set, then a prediction arises that the positive effect of CTI 

length on the first response may be accompanied by a negative mirror effect on the 

second response, when the removed set must be attentionally retrieved. We also 

tested this prediction. 
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Method 

Participants 

Fifty-six undergraduate students (43 females and 13 males; M age = 20.57 

years; SD age = 2.31) from the University of Murcia participated for course credit. 

The number of participants was determined after conducting a simulated power 

analysis using the Superpower R package (Lakens & Caldwell, 2021), which yielded 

an estimated sample size of 52 to achieve a power of 0.80 for the three-way 

interaction of our 4 × 4 × 2 within-participants design. The final number was 56 

because we needed a multiple of eight (see Procedure). Three participants initially 

included in the sample were replaced due to poor performance (see Results). 

All participants reported normal-to-corrected vision. This study was approved 

by the University of Murcia Ethics Committee and was conducted according to the 

ethical standards of the 1964 Declaration of Helsinki. 

Materials 

The experiment was controlled by a computer program written with E-Prime 

3.0 (Schneider, Eschman, & Zuccolotto, 2002). Stimuli were presented on a 22” TFT 

monitor while responses were collected via Chronos devices. Participants were 

tested individually in sound-attenuated booths. 

Procedure 

The participants completed 192 experimental trials divided into four blocks of 

48 trials. These blocks corresponded to the four experimental conditions: 
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permanent removal, temporary removal, control-4, and control-2. Preceding each 

block, participants received instructions and completed 16 practice trials.  

Figure 1. Schematic representation of the experimental procedure. 

 

Trials in the permanent-removal condition began with two empty rectangular 

frames with a narrow black border displayed against a white background (Figure 1). 

These frames appeared symmetrically above and below a centrally located fixation 

point. After 500 ms, two digits were simultaneously presented within one of the 

frames (the presentation frame 1) for 800 ms, followed by a 200-ms mask (two # 

signs). After an interval of 500 ms, two different digits were presented in the other 

frame (the presentation frame 2) following the same procedure. The four digits in 

each trial were randomly selected from 1 to 9 with the following restrictions: (a) All 

four digits had to be different; (b) no two consecutive numbers were allowed within 

a frame; (c) no digit could appear in the same position (left or right) as in the previous 

trial, regardless of whether it appeared in the same frame or not; and (d) the two 
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digits in a frame were not allowed to be the same as the two numbers presented in 

a frame from the previous trial, regardless of whether it was the same frame or not. 

After 500 ms, the border of one of the presentation frames thickened (by a factor of 

10), cueing participants that only the items that appeared in that frame were 

relevant for the upcoming memory test. Finally, after a CTI of 200, 400, 800, or 1600 

ms, one of the two numbers that had appeared in the cued frame was displayed 

within the same frame in its alphabetical form. Participants were instructed to 

indicate, as fast and accurately as possible, the location (left or right) where that 

target number had previously appeared by pressing the left or right bottom of the 

Chronos device, respectively. Targets remained visible until response or until a 

maximum of 1200 ms elapsed. As feedback, the screen briefly flashed red (50 ms) 

following incorrect responses or failures to respond within the 1200-ms time 

window. The next trial commenced after a 1500-ms interval (subsuming the 50-ms 

feedback if provided). 

Trials in the other three conditions differed only in the following aspects. In the 

temporary-removal condition, 500 ms after the first response, the border of the 

uncued frame thickened, and one of the numbers previously presented within that 

frame appeared in alphabetic form. Participants then provided a second response 

following the same procedure as in the initial one. In the control-4 condition, the two 

presentation frames were cued, marking the four digits as relevant for the upcoming 

test. In the control-2 condition, digits from the frame assigned to be the uncued one 

were replaced by zeros at the initial presentation, so only two digits had to be 

encoded and maintained.  
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The 48 trials of each block were designed to ensure equal representation of all 

the combinations of target presentation frame (1 or 2), target location (left or right), 

and CTI (200, 400, 800, or 1600 ms). At least one participant was randomly assigned 

to each of the 4! × 2 = 48 arrangements resulting from combining the administration 

order of the four blocks and the location of the presentation frame 1 (above or below 

the fixation point; note that the set appearing in the presentation frame 1 is the one 

presented first at initial encoding). Across participants and frame-1 locations, each 

of the four block types was administered the same number of times in each 

position. 

Results 

Data from three participants were excluded from the reported results because 

their proportion of trials with correct responses (0.58, 0.62, and 0.64) deviated from 

the mean by more than three standard deviations (the next lowest proportion was 

0.83). In applying this same criterion to the second response of the temporary 

removal condition, no additional participant’s data were excluded.  

The primary statistical tests were repeated measures analyses of variance 

(ANOVA). When Mauchly’s sphericity test reached statistical significance, the 

Greenhouse-Geisser correction was applied. Post-hoc analyses were corrected for 

multiple comparisons using the Holm-Bonferroni method. A significance level of 

0.05 was adopted for all analyses. We began analyzing reaction times (RTs) in the 

four conditions (in the temporary removal condition, only RTs from the first 

response). Trials with no response (1.03 %), with RTs shorter than 250 ms (0.11 %), 

or with incorrect responses (5.11 %) were  
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Table 1. Post hoc comparisons between conditions across CTIs. 

Comparison Interval M difference Cohen’s d t p 

PR - TR 200 ms -23 ms -0.25 -2.430 .064 

 400 ms -12 ms -0.14 -1.286 .597 

 800 ms -27 ms -0.29 -2.771 .030 

 1600 ms -43 ms -0.46 -4.415 <.001 

 Total -26 ms -0.29 -3.624 <.001 

PR – C2 200 ms 76 ms 0.82 7.872 <.001 

 400 ms 34 ms 0.37 3.574 <.001 

 800 ms 1 ms 0.02 0.143 .886 

 1600 ms 2 ms 0.03 0.249 1.000 

 Total 29 ms 0.31 3.935 <.001 

PR – C4 200 ms -51 ms -0.56 -5.310 <.001 

 400 ms -99 ms -1.08 -10.273 <.001 

 800 ms -136 ms -1.48 -14.139 <.001 

 1600 ms -163 ms -1.76 -16.857 <.001 

 Total -112 ms -1.22 -15.483 <.001 

TR – C2 200 ms 99 ms 1.08 10.302 <.001 

 400 ms 47 ms 0.51 4.861 <.001 

 800 ms 28 ms 0.31 2.913 .028 

 1600 ms 45 ms 0.49 4.663 <.001 

 Total 55 ms 0.60 7.559 <.001 

TR – C4 200 ms -28 ms -0.30 -2.880 .024 

 400 ms -87 ms -0.94 -8.987 <.001 

 800 ms -110 ms -1.19 -11.369 <.001 

 1600 ms -120 ms -1.30 -12.442 <.001 

 Total -86 ms -0,93 -11.859 <.001 

C2 – C4 200 ms -127 ms -1.38 -13.182 <.001 

 400 ms -134 ms -1.45 -13.847 <.001 

 800 ms -138 ms -1.50 -14.282 <.001 

 1600 ms -165 ms -1.79 -17.106 <.001 

 Total -141 ms -1.53 -19.418 <.001 

Note: p values were corrected for multiple comparisons (30) using the Holm-
Bonferroni method.  
PR: permanent removal; TR: temporary removal; C2: control 2; C4: control 4. 

 



 

156 

 

excluded from the analysis. A 4 (condition) × 4 (CTI) × 2 (target frame) repeated 

measures ANOVA revealed an effect of condition, F(3, 165) = 140.523, p < 0.001, ηp
2 

= 0.719, with post hoc comparisons (Table 1) indicating differences among the four 

conditions (control-4 > temporary removal > permanent removal > control-2). 

There was also a condition × CTI interaction, F(9, 495) = 20.604, p < 0.001, ηp
2 

= 0.273. While independent ANOVAs for each condition showed statistically 

significant effects of CTI in all the conditions (Table 2), inspection of Figure 2 and 

effect sizes in Table 2 suggests that the interaction resulted from a stronger effect of 

CTI on the removal conditions compared to the control conditions. Congruently, the 

four possible independent ANOVAs involving one removal condition and one control 

condition showed a condition × CTI interaction, all Fs(3, 165) ≥ 18.994, ps < 0.001. 

Importantly, the condition × CTI interaction reached statistical significance in an 

independent ANOVA that included only the two removal conditions, F(3, 165) = 

2.938, p = 0.035, ηp
2 = 0.051. This interaction emerged because the difference 

between the two conditions became more pronounced at the longest CTI (Table 1). 

Finally, the global ANOVA revealed a condition × target frame interaction, F(2.6, 

145.0) = 11.546, p < 0.001, ηp
2 = 0.164. As illustrated in Figure 3 and Table 3, and 

confirmed by individual ANOVAs for each condition (Table 2), this interaction 

resulted from the frame modulating RTs only on the temporary removal and control-

4 conditions, with faster responses when the target appeared in frame 1 (i.e., when 

the target belonged to the set presented first) than when presented in frame 2 (i.e., 

when the target belonged to the set presented second). The advantage of frame 1 on 

the temporary removal and control 4 conditions faded in the longer CTI (Figure 3). 
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Consequently, the triple interaction in the global ANOVA was close to reaching the 

statistical significance level, F(9, 495) = 1.714, p = 0.083, ηp
2 = 0.030. 

Table 2. Independent ANOVA results for RT in each condition. 

Condition Effect F df p ηp
2 

PR CTI 148.946 3, 165 < 0.001 0.730 

 Frame 0.020 1, 55 0.888 0.000 

 CTI × Frame 0.214 3, 165 0.886 0.004 

TR CTI 110.796 3, 165 < 0.001 0.668 

 Frame 47.757 1, 55 < 0.001 0.465 

 CTI × Frame 6.569 2.5, 138.1 < 0.001 0.107 

C2 CTI 42.173 3, 165 < 0.001 0.434 

 Frame 1.483 1, 55 0.228 0.026 

 CTI × Frame 0.340 2.7, 147.7 0.774 0.006 

C4 CTI 8.371 2.6, 147.3 < 0.001 0.132 

 Frame 14.889 1, 55 < 0.001 0.213 

 CTI × Frame 2.311 3, 165 0.078 0.040 

Note: PR: permanent removal; TR: temporary removal; C2: control 2; C4: control 4. 
 
Figure 2. Mean RT across conditions and CTIs. Error bars represent the standard 

error of the mean. 
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Figure 3. Mean RTs across presentation frames and conditions. Error bars represent 

the standard error of the mean. 

 

Table 3. Mean RT (in ms) and proportion of correct responses (accuracy) as a 

function of condition and presentation frame. 

 
Note: PR: permanent removal; TR: temporary removal; C2: control 2; C4: control 4. 

 

  Frame 1 Frame 2 Difference 

Measure Condition M SD M SD M SD 

RT PR 534 79 536 76 3 47 

 TR 534 73 582 88 48 52 

 C2 498 61 504 71 6 35 

 C4 626 84 664 87 38 66 

Accuracy PR 0.95 0.06 0.96 0.04 -0.01 0.06 

 TR 0.97 0.05 0.95 0.07 0.02 0.06 

 C2 0.97 0.04 0.97 0.04 0.00 0.06 

 C4 0.92 0.07 0.91 0.08 0.02 0.08 
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An equivalent ANOVA on the proportion of correct responses (Figure 4) 

revealed statistically significant main effects of CTI, F(3, 165) = 3.850, p = 0.011, ηp
2 

=0.065, and condition, F(2.6, 142.0) = 20.350, p < 0.001, ηp
2 = 0.270. Post hoc tests 

revealed poorer performance in the control-4 condition than in the other three 

conditions, all ts ≥ 5.375, ps < 0.001. There was a tendency for better performance 

in the control-2 condition than in the two removal conditions, but differences did 

not reach the statistical significance level after correcting for multiple comparisons, 

both ts ≥ 1.708, p ≥ 0.145. Importantly, the proportion of correct responses in the 

two conditions with removal was equivalent, t < 1, and not even a numerical 

advantage was found in favor of the condition with permanent removal over the 

temporary removal condition (Table 3). There was also a condition × frame 

interaction, F(3, 165) = 3.134, p = 0.027, ηp
2 = 0.054. Congruently with RT results, 

there was a tendency for better performance when the target appeared in frame 1 in 

the temporary removal and the control 4 conditions (Table 3), although, in this case, 

the post hoc test did not reach the statistical significance level after correcting for 

multiple comparisons, both ts ≥ 2.011, ps ≥ 0.136. No other main effect or 

interaction reached statistical significance. 

The last set of analyses focused on the second response in the temporary 

removal condition (Figure 5). For the RT analysis, trials with no response (1.23 %), 

with RTs shorter than 250 ms (0.04 %), or with incorrect responses (6.81 %) were 

excluded. A 4 (CTI) × 2 (target frame) repeated measures ANOVA showed a main 

effect of CTI, F(3, 165) = 12.466, p < 0.001, ηp
2 = 0.185. Post hoc tests revealed that 

the effect of CTI was the consequence of slower responses when the CTI 

preceding the first response was the longest, all ts ≥ 3.708, ps < 0.001. There was 
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also a main effect of frame, F(1, 55) = 19.497, p < 0.001, ηp
2 = 0.262, indicating that 

RTs were faster when targets appeared in frame 2 (i.e., when the cued set for the 

first response was the one presented first at initial encoding and, thus, the current 

target belonged to the set presented second). The CTI × frame interaction did not 

reach the statistical significance level, F < 1.  

Figure 4. Proportion of correct responses across conditions and CTIs. Error bars 

represent the standard error of the mean. 

 

The last set of analyses focused on the second response in the temporary 

removal condition (Figure 5). For the RT analysis, trials with no response (1.23 %), 

with RTs shorter than 250 ms (0.04 %), or with incorrect responses (6.81 %) were 

excluded. A 4 (CTI) × 2 (target frame) repeated measures ANOVA showed a main 

effect of CTI, F(3, 165) = 12.466, p < 0.001, ηp
2 = 0.185. Post hoc tests revealed that 

the effect of CTI was the consequence of slower responses when the CTI 

preceding the first response was the longest, all ts ≥ 3.708, ps < 0.001. There was 
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also a main effect of frame, F(1, 55) = 19.497, p < 0.001, ηp
2 = 0.262, indicating that 

RTs were faster when targets appeared in frame 2 (i.e., when the cued set for the 

first response was the one presented first at initial encoding and, thus, the current 

target belonged to the set presented second). The CTI × frame interaction did not 

reach the statistical significance level, F < 1.  

An equivalent ANOVA on the proportion of incorrect responses revealed 

statistically significant effects of CTI, F(1, 165) = 3.825, p = 0.011, ηp
2 = 0.065, and 

frame, F(1, 55) = 7.135, p = 0.010, ηp
2 = 0.115. Congruently with the RT analysis just 

described, this main effect resulted from lower error rates for targets presented in 

frame 2 and poorer accuracy when the CTI preceding the previous response was 

the longest. 

Figure 5. Mean RTs on the second response of the temporary removal condition. 

Error bars represent the standard error of the mean. 
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Discussion 

We employed the retro-cue paradigm to investigate the following main 

question: Does permanently discarding a subset of WM contents marked as 

irrelevant offer additional benefit for WM performance compared to just temporarily 

putting them aside? Answering this apparently straightforward question requires 

careful examination of nuanced patterns. The first relevant observation is that 

performance in the permanent and temporary removal conditions did not differ in 

terms of accuracy. This fact suggests an equivalent quality of WM representations 

for the relevant set, including items, contextual cues, and the binding between 

them, as well as an equal precision in the process of searching for the required 

information. In contrast to accuracy, differences between the two removal 

conditions did appear in RT terms, with slower responses in the temporary removal 

condition. To interpret this, we must consider two additional observations: the 

evolution of RTs across cue-target intervals (CTIs) and the modulatory effect of the 

order of presentation of the cued set. We will explore these issues in turn. 

Consistently with previous studies (Oberauer, 2018; Tortajada et al., in press), 

RTs in the permanent removal condition decreased across CTIs, progressively 

diverging from the control-4 condition, in which the irrelevant set could not be 

discarded in advance, and ultimately converging with the control-2 condition, in 

which only the relevant set was presented at initial encoding. This pattern suggests 

that participants used the CTI to focus attention on the relevant set and remove the 

irrelevant contents, progressively reducing the complexity of the search set and, 

consequently, the time required to locate the required information. Importantly, 
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although responses were generally slower in the temporary removal condition 

compared to the permanent removal condition, the progression of both conditions 

was similar during the first three intervals, with a slight increase in the advantage of 

permanent removal at the longer interval. This observation seems to rule out some 

potential explanations for the longer RTs in the temporary removal condition. For 

example, it could be argued that participants in the temporary removal condition 

delayed the onset of the removal operation to strengthen the representation of the 

irrelevant set before removing it, thereby facilitating its later retrieval. However, this 

interpretation would predict a reduction of the difference between the two removal 

conditions at the longer intervals once RT in the permanent removal condition 

reached the minimum level informed by the control-2 condition, which is the 

opposite pattern to what was found. 

Regarding the effect of the order of presentation of the cued set, we found that, 

in the conditions in which the two memory sets should be maintained in an 

accessible state (i.e., in temporary removal and control-4 conditions), performance 

was better when the target belonged to the set presented first; in contrast, when 

only one set should be maintained available (i.e., in the permanent removal and 

control-2 conditions), performance was not modulated by the order of presentation 

of the relevant information. A related observation is that the permanent removal 

condition showed better performance than the temporary removal condition only 

when the tested set was the one presented second; when the target belonged to the 

set presented first, the two removal conditions yielded equivalent RTs. In our 

opinion, this modulatory effect of the order of presentation is key to understanding 
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the underlying differences between the temporary and permanent removal 

conditions. 

We will articulate our interpretation as follows. (1) RTs in the present task were 

mainly determined by the complexity of the search set. We posit that the complexity 

of the search set is directly related to both the size of the retrieval structure (the 

number of contextual cues) that participants maintain to guide attentional access 

to a specific representation or representation set and the number of active 

representations bound to this retrieval structure. (2) In the two removal conditions, 

the complexity of the search set diminished progressively during the CTI, whereas it 

remained constant in the two control conditions. That is why RTs decreased more 

markedly across intervals in the removal conditions. (3) Simplifying the search set 

in the permanent removal condition included reducing the retrieval structure. We 

could conceive, for instance, that item representations are bound to two contextual 

cues representing the two memory sets (or the two presentation frames), which, in 

turn, are connected to a global trial-level context. The permanent removal process 

would entail unbinding the set-level contextual cue from the global context, 

eventually equalizing the complexity of the search set to that in the control-2 

condition, in which only one set-level contextual cue was established at initial 

encoding. (4) Simplification of the search set in the temporary removal condition 

was achieved by withdrawing attention from the irrelevant representations and, 

consequently, reducing the number of active representations bound to the retrieval 

structure. However, no reduction in the size of the retrieval structure is possible 

because the initially unneeded contextual cues are required later to retrieve the 

uncued set for the second test. (5) Whenever the whole retrieval structure was 
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maintained (i.e., in the temporary removal and control-4 conditions), an order effect 

appeared because of the well-known tendency in verbal WM to scan contents 

sequentially (Kessler & Oberauer, 2015). In summary, therefore, our proposal posits 

that, compared to temporary removal, permanent removal enables superior WM 

performance by simplifying the context utilized for accessing item representations 

via context-content associations.  

The observation that, when contents are accessed through the whole retrieval 

structure, there is an advantage for the information presented first is congruent with 

the common assumption that verbal information in WM is encoded, maintained, 

and scanned in a serial-ordered way (Kessler & Oberauer, 2015; Majerus, 2019). 

Early evidence revealed that when participants must respond to whether a probe 

stimulus belonged to a list presented right before, RTs increase with the list length, 

suggesting that representations are scanned sequentially (Sternberg, 1966). From a 

neurophysiology point of view, it has been proposed that the serial organization of 

representations in WM responds to a neural substrate in which individual items are 

presented in gamma cycles sequentially coupled in theta cycles (Lisman & Jensen, 

2013). In this regard, Ideriha and Ushiyama (2024) found that recall of sequential 

information from WM follows a theta rhythm. Bahramisharif et al. (2018) used 

intracranial recording to show that item-specific gamma activation was coupled to 

theta in a position-dependent manner. Moreover, the benefit of testing in the same 

order in which the information was encoded is also well-known. For instance, recall 

is more accurate when it is done in the same order as encoding (Oberauer, 2003), 

and recognition is faster when items are tested in the forward order, as compared to 

random or backward order (Lange et al., 2010, 2011). There is also a trend to free 
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recall in the same order as information was encoded even when it is not explicitly 

requested (Klein et al., 2005). These findings have been accounted for by models 

that include a chaining effect (Ebbinghaus, 1885; Logan & Cox, 2021). These models 

propose that representations are encoded in WM tightly linked to a context, being 

the previously encoded items part of this context. This causes the previous item to 

serve as a cue for retrieving the present item, but not vice versa (Kahana & Caplan, 

2002; Nairne et al., 2007). This latter suggestion is pivotal for interpreting the pattern 

of results observed in the second response of the temporary removal condition, 

where participants were required to respond to the set initially marked as irrelevant 

(see below). An observation for which we have no explanation is that in the two 

conditions with an effect associated with the presentation frame (temporary 

removal and control-4 conditions), this effect disappears at the longest interval. 

Despite the lack of an explanation, the fact that the same pattern emerged in both 

conditions is consistent with our proposal that the temporary removal and control-

4 conditions share the necessity to maintain the retrieval structure intact, leading to 

the emergence of an equivalent pattern associated with the presentation frame in 

both conditions. 

The last aspect to consider is our prediction regarding the second response in 

the temporary removal condition. This prediction was that longer intervals 

preceding the first response would result in slower responses in the second test. 

The logic behind this prediction is that longer intervals entail deeper elimination of 

the irrelevant set prior to response one, consequently leading to a worse starting 

point for the subsequent reactivation of that set. The results confirmed this 

prediction but also revealed an order of presentation effect characterized by shorter 
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RTs when the evaluated set was the one presented second during the initial 

encoding. This observation is consistent with the notion that the set presented first 

acted as a retrieval cue for the set presented second but not the other way around, 

as posited by chain models. Therefore, the complete pattern in the temporary 

removal condition is clear: optimal performance was achieved when the two 

memory sets were evaluated in their presentation order.  

To summarize, our study showed that both permanent and temporary removal 

led to a marked progressive improvement in performance in terms of both RTs and 

accuracy. This improvement presumably results from the gradual reduction of the 

search set's complexity following the presentation of informative retro-cues. In 

temporary removal situations, irrelevant representations are deactivated, but the 

entire retrieval structure is preserved because contextual cues bound to the 

irrelevant set will be necessary later to guide attentional refocusing. In the 

permanent removal condition, however, the retrieval structure can be simplified by 

eliminating or unbinding unnecessary contextual cues. We suggest that this 

simplification in the retrieval structure with permanent removal accounts for the 

absence of order effects and leads to shorter RTs, representing the main difference 

between permanent and temporary removal processes. 
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Chapter 5: General Discussion and Conclusions 

Despite the early interest in the set of processes currently known as “working 

memory”, the study of its functioning remains a major research focus in the fields of 

neuroscience and cognitive psychology. The development of new techniques and 

analytical methods in recent years has facilitated a better understanding of the 

subprocesses essential for its proper functioning, as well as the limitations inherent 

to WM. This dissertation has focused on a deeper understanding of three 

subprocesses that, although they may initially appear independent, are found to be 

highly interconnected, making it challenging to disentangle them: selection 

(Chapter 2), maintenance (Chapter 2 and Chapter 3), and removal (Chapter 2 and 

Chapter 4).  

The key findings of this dissertation are outlined below: 

• Permanent removal after a retro-cue takes around half a second to be 

completed in visuospatial WM (Chapter 2).  

• Load can be decoded using Multivariate Pattern Analysis (MVPA) from EEG 

right after encoding. However, MVPA is highly sensitive to other factors such 

as attentional selection or eye movements, which precludes the decoding of 

load reductions during contents removal after a retro-cue in visuospatial WM 

(Chapter 2).  

• MVPA decoding of EEG and EOG signals suggests an important role of 

attentional selection when WM contents need to be updated (Chapter 2). 
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• Despite the successful baseline WM capacity and task difficulty 

manipulations, no significant improvements in performance with 4 Hz tACS 

were obtained (Chapter 3).  

• The sham group showed a theta power increase with time on task, but contrary 

to the expected results, theta power did not increase in the active tACS 

condition, which could be explained by a mismatch between the endogenous 

and exogenous stimulation frequencies (Chapter 3).  

• The EEG results do not serve as evidence for the theta-gamma theory because 

(1) the high WMC group showed faster mean theta frequencies—which aligns 

more with a model where faster theta cycles enable better WM maintenance 

rather than the theta-gamma coupling theory—and (2) no modulation of theta 

frequency related to WM load was observed (Chapter 3).  

• There was an increase in phase synchrony between stimulation electrodes 

following tACS, but this effect was only observed when error trials were 

excluded, suggesting a potential effect of tACS on phase synchronization 

(Chapter 3). 

• Removal of information from WM, regardless of whether it is temporary or 

permanent, improves performance when the time to remove is long enough, 

observed in faster reaction times, fewer errors, and better discrimination 

(Chapters 2 and 4). 

• How temporary and permanent removal operate differs. Permanent removal 

allows the reduction of the retrieval structure, which turns into more rapid 

access to the remaining contents since the context used to retrieve the items 

is simplified. However, temporary removal works by withdrawing attention 
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from the irrelevant items, which reduces the number of active representations 

but not the retrieval structure per se (Chapter 4).  

• The influence of encoding order on subsequent retrieval aligns with the serial 

organization of information in verbal WM. This supports the idea that items are 

encoded and accessed in a sequential manner, where earlier encoded items 

facilitate the retrieval of later ones (Chapter 4). 

• Information temporarily removed for a longer time allows a deeper removal, 

negatively affecting its posterior retrieval (Chapter 4). 
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Resumen en español 

Introducción 

La memoria de trabajo (MT) es un concepto que surge de la distinción entre 

memoria a corto plazo (MCP) y memoria a largo plazo (MLP). Originalmente descrita 

en los años 60 por Miller y colaboradores como un sistema temporal para la 

ejecución de planes, esta idea fue refinada por Atkinson y Shiffrin, y posteriormente 

por Baddeley y Hitch, quienes destacaron su papel no solo en el almacenamiento 

temporal, sino también en la manipulación de información, tal y como se considera 

en la actualidad.  

La MT no es homogénea, sino que presenta diferentes estados de activación 

dependiendo de la atención dirigida a la información presente en esta. Aunque 

distintos modelos estudian el funcionamiento de estos estados,  la presente tesis 

se basa en el modelo three embedded-processes de Oberauer, que distingue entre 

un componente amplio que activa la información de la MLP, la llamada región de 

acceso directo con información relevante para la tarea actual y un foco atencional 

que selecciona principalmente el elemento más importante para la tarea. Por lo 

tanto, partiendo de este modelo, se estudia el funcionamiento de la selección de 

contenidos de estos distintos estados de activación, el mantenimiento de esta 

información en un estado accesible y, por último, la eliminación de estas 

representaciones de los distintos estados de la MT.  

El primer proceso estudiado es la selección de información dentro de la MT, 

que se podría incluir dentro del término más amplio denominado “atención 

selectiva interna”, el cual abarca varios procesos clave en la MT, como la selección, 
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consolidación o priorización de información. A diferencia de lo que se creía 

tradicionalmente, la atención selectiva interna no está restringida a procesos 

transitorios y de corta duración, sino que tiene un papel importante en la 

actualización flexible de la relevancia de los contenidos de la MT durante periodos 

más prolongados. Este aspecto es explorado a fondo en el capítulo 3, donde se 

aplica análisis multivariado de patrones (MVPA) a la señal de electroencefalografía 

(EEG) para explorar el impacto que los procesos atencionales de selección interna 

tienen sobre la información mantenida en la MT.  

Otro proceso relevante para el funcionamiento de la MT es el mantenimiento 

de la información. Se ha propuesto que la información se puede mantener en dos 

estados: un estado activo, donde los elementos son atendidos mediante actividad 

neuronal persistente (aunque distintos estudios desafían esta idea), y un estado 

pasivo, donde la información no priorizada permanece inactiva pero puede ser 

reactivada cuando se vuelve relevante. Sin embargo, existen estudios que desafían 

estas ideas. Dada la falta de consenso sobre estos mecanismos, se necesitan 

técnicas sensibles, como el MVPA sobre datos de EEG o de resonancia magnética, 

para examinar estas posibles representaciones, tal como se analiza en el capítulo 

2 de esta tesis.  

El rol que tienen las oscilaciones en el mantenimiento de la información en la 

MT también ha sido muy estudiado. En concreto, la interacción entre oscilaciones 

de ritmo lento (theta) y rápido (gamma)—Theta-gamma coupling theory—parecen 

ser un sustrato neural importante que sostiene el mantenimiento de las 

representaciones. En el capítulo 3 de la presente tesis se utiliza estimulación 
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transcraneal por corriente alterna con el objetivo de reducir la frecuencia theta de 

los individuos y tratar de mejorar el mantenimiento de ítems en la MT en 

participantes cuya capacidad de partida era baja.  

Por último, dado que la MT tiene una capacidad limitada, la eliminación de la 

información irrelevante de forma óptima es crucial. El uso de distintos paradigmas 

de investigación ha demostrado que la eliminación permite la mejora del 

rendimiento en tareas de MT al reducir la cantidad de información irrelevante, 

permitiendo una codificación más eficiente de nueva información y acelerando las 

respuestas relacionadas con la información relevante. Sin embargo, hay 

situaciones en las que no se requiere de una eliminación definitiva, simplemente 

temporal. En este sentido, la eliminación permanente ocurre cuando la información 

es completamente eliminada de la MT, mientras que la eliminación temporal se 

refiere a situaciones en las que la información se deja de lado temporalmente pero 

puede necesitarse más adelante. El estudio de la eliminación de información de la 

MT se ha centrado en la eliminación permanente, mientras que la temporal 

permanece muy inexplorada. El capítulo 4 de la presente tesis busca examinar 

cómo la eliminación temporal y permanente afectan diferencialmente a la 

recuperación de información en la MT y cómo estos procesos se desarrollan a lo 

largo del tiempo.  

Por tanto, la presente tesis se centra en caracterizar mejor los mecanismos 

subyacentes en la selección, mantenimiento y eliminación de información en la MT, 

utilizando métodos tanto conductuales como electrofisiológicos a lo largo de tres 

estudios presentados en los tres capítulos centrales del trabajo.  
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Capítulo 2: decodificando carga o selección en la memoria de trabajo 

visoespacial?  

El capítulo 2 se centró en investigar las dinámicas temporales de la 

eliminación de contenido de la memoria de trabajo, en este caso, de información 

visoespacial. Investigaciones previas habían demostrado que era posible 

decodificar la carga de la MT a partir de la señal electroencefalográfica. Sin 

embargo, hasta el momento no se había testeado si se podía decodificar también 

las variaciones en la carga mantenida a lo largo del tiempo. Por ello, el objetivo 

principal era determinar si los cambios en la carga de la MT (o en la cantidad de 

ítems mantenidos) podrían ser monitorizados durante la eliminación de 

información. Para ello, se utilizó MVPA sobre la señal de EEG y también sobre la 

señal de electrooculografía (EOG). Específicamente se hipotetizó: (1) un mejor 

rendimiento tras la eliminación de la información irrelevante a nivel conductual, 

igualándose a la condición en la que desde el principio se debían mantener baja 

carga; (2) una decodificación en la señal de EEG de las condiciones de alta y baja 

carga antes de cualquier señal que señalara la información relevante; y (3) en 

paralelo con el rendimiento conductual, que la clasificación de la señal de EEG de 

la condición de eliminación mostrara una transición de ser clasificada como alta 

carga a baja carga una vez que la eliminación se hubiera completado.  

El experimento se compuso de dos sesiones. En ambas sesiones los 

participantes debían completar la misma tarea de retro-cue visoespacial. Sin 

embargo, en la primera sesión, se manipuló el intervalo entre la cue y el target (CTI) 

para estudiar el curso temporal de la eliminación, mientras que en la segunda 
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sesión sólo se estudió este curso temporal desde un punto de vista 

electrofisiológico manteniendo este intervalo fijo en un segundo.  

Los resultados fueron los siguientes. En primer lugar, los resultados 

conductuales mostraron que la eliminación se completó en medio segundo, al 

contrario que otros estudios con información verbal y un mayor número de 

estímulos en los que se necesitó alrededor de un segundo para ser completada. La 

carga pudo ser decodificada de la señal de EEG durante el periodo de 

mantenimiento en la MT mediante MVPA. Sin embargo, los resultados durante el 

periodo en el que se produjo la eliminación de información muestran que MVPA es 

una técnica de análisis muy sensible a factores como la selección atencional o los 

movimientos oculares, lo cual imposibilitó la decodificación de las reducciones de 

la carga en la MT tras la retro-cue. Además, los resultados muestran un rol 

importante de la selección atencional durante el periodo de eliminación que no se 

restringió al momento inicial, sino que se pudo decodificar a lo largo de todo el 

intervalo, en línea con las conceptualizaciones más recientes de la atención 

selectiva interna como detectable durante periodos de tiempo prolongados.  

Capítulo 3: cuestionando las predicciones del acoplamiento theta-

gamma: ineficacia de la estimulación transcraneal de corriente alterna (tACS) 

a 4 hz en el mantenimiento de la memoria de trabajo y la modulación de la 

frecuencia theta. 

El objetivo general de este estudio fue estudiar el papel de las oscilaciones en 

el mantenimiento de las representaciones en la MT. Dada la atención recibida por 

la teoría theta-gamma coupling como sustrato electrofisiológico del 
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mantenimiento, se aplica tACS a 4 Hz con el fin de enlentecer las frecuencias theta 

de los participantes ya que, según esta teoría, esto permitiría un mayor 

acoplamiento de gamma y, con ello, un mantenimiento de más ítems en la MT. Esta 

estimulación se aplica a dos grupos de participantes: con alta y baja capacidad 

base de MT. También se manipuló la dificultad de la tarea mediante ensayos de baja 

y alta carga dados los resultados de estudios previos donde solo se encontró 

efectos de la estimulación ante tareas difíciles. Además, se recoge señal de EEG en 

estado de reposo y durante la ejecución de la tarea tanto antes como después de la 

estimulación para estudiar los efectos que esta puede tener sobre las oscilaciones 

cerebrales, independientemente del efecto conductual observable.  

Por lo tanto, este estudio tiene dos objetivos específicos: primero, probar la 

predicción derivada de la teoría theta-gamma coupling de que una frecuencia theta 

más baja facilitaría el mantenimiento de más información en la MT; y, segundo, 

examinar la influencia de las diferencias individuales y la dificultad de la tarea en la 

eficacia de la tACS. Se hipotetizó: (1) un mayor beneficio de la estimulación en los 

participantes con baja MT, en los ensayos más difíciles;  (2) una menor frecuencia 

theta media en los participantes con mayor capacidad de MT de base; y (3) una 

modulación de los distintos correlatos electrofisiológicos tras la estimulación, 

como una reducción de la frecuencia theta o un aumento del power, entre otros.  

Comportamentalmente, los resultados mostraron una correcta selección de 

los grupos de MT, así como una manipulación correcta de la dificultad de la tarea. 

Sin embargo, no se observó ninguna mejora ni empeoramiento en la ejecución tras 

la aplicación de la estimulación tACS a 4 Hz. En cuanto a los resultados de EEG, el 
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grupo sham (control) mostró un incremento en el power theta en el último bloque 

de la tarea con respecto al primero, al contrario que el grupo que recibió 

estimulación theta, que mantuvo sus niveles de theta power estables a lo largo de 

la tarea, lo cual podría explicarse por una discrepancia entre las frecuencias de 

estimulación endógena y exógena. Los resultados de EEG de este experimento no 

aportan evidencia a favor de la teoría theta-gamma coupling, ya que el grupo de alta 

MT mostró frecuencias theta medias más rápidas, al contrario de lo que predice la 

teoría. Además, no hubo ninguna modulación relacionada con la manipulación de 

la carga de los distintos ensayos. Por último, se observó un incremento en la 

sincronización de las fases entre los electrodos de estimulación tras la tACS en los 

ensayos sin errores, lo que parece sugerir un efecto de la tACS en la sincronización 

de las fases de las regiones estimuladas.  

Capítulo 4: distinción entre la eliminación temporal y permanente en la 

memoria de trabajo verbal 

En este último capítulo, el objetivo principal fue comparar los efectos de la 

eliminación temporal y permanente de información de la MT. Concretamente, el 

interés era estudiar los efectos que estos tipos de eliminación podían producir 

sobre la posterior recuperación del resto de información mantenida en la MT, una 

comparación que no había sido estudiada hasta el momento. Como en el capítulo 

2, se utilizó el paradigma de retro-cue donde se manipuló el intervalo entre la cue y 

el target para poder estudiar el curso temporal de esta eliminación. Por último, se 

exploró la influencia que eliminar temporalmente una información durante un 

tiempo prolongado puede tener en su posterior recuperación. Se hipotetizó que (1) 
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ambos tipos de eliminación dieran lugar a mejoras en el rendimiento cuando el 

tiempo disponible para eliminar la información era largo, aunque se esperaba que 

esta mejora fuera superior en la condición de eliminación permanente; y (2) un 

deterioro del rendimiento para dar la segunda respuesta cuando el intervalo de 

eliminación temporal había sido más largo.  

Por lo tanto, se llevó a cabo un experimento conductual donde los 

participantes debían recordar inicialmente dos pares de números y solo uno de los 

pares se marcaba como relevante, pudiendo eliminar el otro par de manera 

definitiva o temporal para responder seguidamente a una pregunta sobre la 

localización de uno de esos dos números. En el caso de eliminación temporal, se 

hacía una segunda pregunta acerca del par inicialmente irrelevante, de forma que 

debía ser recuperado. Además, dos condiciones en las que se debía codificar solo 

un par desde el principio o recordar los dos pares hasta el final fueron introducidas 

como método de control. Por último, se manipuló el intervalo entre la cue y el target 

(CTI) para estudiar la evolución del curso temporal en las distintas condiciones. 

Los resultados mostraron que tanto la eliminación permanente como la 

temporal llevaron a reducciones progresivas significativas en el tiempo de reacción 

y en los errores, mostrando una simplificación de la cantidad de información 

mantenida en la MT. Los tiempos de reacción fueron más lentos en la condición de 

eliminación temporal, como se esperaba. Un aspecto clave para interpretar 

correctamente los resultados fue que el rendimiento se vio modulado por el orden 

de presentación del conjunto de ítems únicamente en la condición de eliminación 

temporal. Este efecto de orden parece reflejar el mantenimiento de la estructura de 
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recuperación intacta (contextos para la recuperación) que es necesaria para guiar 

la atención sobre las representaciones de la MT, incluso aquellas que se habían 

apartado temporalmente. Por lo tanto, parece que la principal diferencia entre 

ambos tipos de eliminación es la reducción de la estructura de recuperación 

únicamente en el caso de la eliminación permanente. 

 


