

RNAi

Dr. Maria del Carmen Asensio López Torres Quevedo Fellowship BioCardio S.L.

What is RNAi?

 RNA-based mechanisms of gene silencing. These siRNAs are bound by a protein-RNA complex called the RNA-induced silencing complex (RISC)

Mello and Fire

- In 1998, researchers Craig C. Mello of University of Massachusetts Medical School and Andrew Z. Fire of Stanford University published ground breaking work regarding RNAi (Intro to Biotech, Pg. 50).
- In which they used double stranded pieces of RNA(dsRNA) to inhibit or silence expression of genes in the nematode roundworm (C. elegans).

Mello and Fire (cont'd)

 This naturally occurring mechanism for inhibiting gene expression is RNAi.

Nobel Prize 2006

 In 2006, Mello and Fire were rewarded the Nobel prize for their discovery of turning off genes.

How does it work?

- RNAi process engages the participation of several pathways.
- Two pathways are RNA introduction and mRNA degradation.
- In addition, an unclear amplication pathway exists.

How does it work? (cont'd)

- Insertion of double stranded or small interfering RNA into a cell can be accomplished in several ways.
- Bombardment, RNAi vector, and Cationic oligopeptides.

How does it work? (cont'd)

- Bombardment,agrobacterium,viral mediated dsRNA transfer or by infiltration.
- RNAi vector-to produce stable or transient dsRNA in vivo.
- In other words, the plant must be transformed with a vector that produces dsRNA, using the above techniques.

Unamalai (2004)

- Recently devised a way to introduce dsRNA without transforming the plant with RNAi vector.
- They use cationic oligopeptides for delivering dsRNA into plant cells.
- The scientists introduced dsRNA into tobacco cells using POA, which is a cationic oligopeptide 12-mer.

Unamalai (cont'd)

- Results show efficient silencing of the target genes.
- Path of mRNA degradation begins with a piece of dsRNA is introduced into the cytosol resulting in the recruitment of a dicer.
- This initiates chopping of long dsRNA into a number of small double-stranded fragments. (21-25 base pairs w/ 3' two nucleotide overhang)

Unamalai (cont'd)

- Attached w/ 5'and 3' ends, are siRNAs are incorporated into (RISC) via a undetermined pathway, initiated the process of mRNA degradation.
- A physical interaction occurs between dicer and (RISC) through a common PAZ domain.
- Thereafter, (RISC) utilizes the siRNA as a target sequence seeking the complementary mRNA.

Unamalai (cont'd)

- Successful docking of the RISC-siRNA complex at the targeted mRNA site initiates the degradation process.
- The mRNA degradation is completed by the action of the cellular exonuclease.

Third Step

- A third, but not yet fully understood, pathway seems to enhance effectiveness of RNAi, through the amplication of siRNA.
- Current consensus on the issue is that the siRNAs undergo amplication by an RdRP (RNA-dependent RNA polymerase).
- The site of siRNA amplication is yet to be determined.
- siRNAs might be involved in the synthesis of long dsRNA.

Secondary RNAs

- Further studies into RdRP mediated amplication revealed the presence of a secondary siRNA.
- Secondary RNAs, not detectable in the introduced dsRNAs are derived from siRNAs that complement the targeted mRNA.
- These secondary RNAs actively participate in the degradation of complementary mRNA.

utilize

Viruses

- Another realm to use RNAi is to cure viruses.
- Possible to add a RNAi sequence into an organism, resulting cells turning immune defenses on.
- Fire and Mello successfully tested these viral defense aspects on simple organisms like plant life and worms.
- More research is needed to see RNAi may help humans to fight cancer, viruses, and genetic defects.

Results

 To use bacteria, retro viruses, DNA viruses, lipidoids, and amphoteric liposome as vessels for RNAi.

Bacteria

- Diet of C. elegans in the lab is bacteria.
- Scientists engineer bacteria to make short bits of RNA needed for RNAi and feed it to the worms.
- The worms will incorporate the RNA from the bacteria into their cells.
- Method is not used in humans due to the immune system reaction of large amounts of foreign RNA.

Retroviruses

- Since viruses work by delivering genetic material into a cell, has been long viewed them as a potential method of delivering DNA or RNA into a cell.
- Lentiviruses, a family of retroviruses that includes HIV, use RNA as their genetic material used to deliver RNA to the cells of live mammals (including humans) for RNAi.
- The only ones to work w/ non-dividing cells

DNA viruses

 Adenoviruses and Herpes simplex-1 virus, both double-stranded DNA, studied as a RNAi vector.

Lipidoids

- Molecules that are chemically similar to fat molecules (lipids).
- Small RNA bits are chemically attached to lipidoids which carry them into the cells.
- Scientists engineer a "library" of over 1200 unique lipidoid molecules, test which ones to use for RNAi delivery.

Amphoteric Liposomes

- Particles, smaller than a cell.
- Made of a double layer of fat molecules.
- Both have acid and base properties.
- Current research in RNAi has called them "smarticles".
- The unique properties, make it possible to precisely control the way they interact w/ the cells in the body, useful in RNAi.

Conclusion

- RNAi has many uses as to fight cancer, viruses, and genetic defects.
- My personal opinion within the next decade or so, we might see the cure for cancer or AIDS by using RNAi.