
Summary. Sarcopenia is a progressive and generalized 
loss of skeletal muscle and functions associated with 
ageing with currently no definitive treatment. Alterations 
in gut microbial composition have emerged as a 
significant contributor to the pathophysiology of 
multiple diseases. Recently, its association with muscle 
health has pointed to its potential role in mediating 
sarcopenia. The current review focuses on the 
association of gut microbiota and mediators of muscle 
health, connecting the dots between the influence of gut 
microbiota and their metabolites on biomarkers of 
sarcopenia. It further delineates the mechanism by which 
the gut microbiota affects muscle health with 
progressing age, aiding the formulation of a multi-modal 
treatment plan involving nutritional supplements and 
pharmacological interventions along with lifestyle 
changes compiled in the review. Nutritional supplements 
containing proteins, vitamin D, omega-3 fatty acids, 
creatine, curcumin, kefir, and ursolic acid positively 
impact the gut microbiome. Dietary fibres foster a 
conducive environment for the growth of beneficial 
microbes such as Bifidobacterium, Faecalibacterium, 
Ruminococcus, and Lactobacillus. Probiotics and 
prebiotics act by protecting against reactive oxygen 
species (ROS) and inflammatory cytokines. They also 
increase the production of gut microbiota metabolites 
like short-chain fatty acids (SCFAs), which aid in 
improving muscle health. Foods rich in polyphenols are 
anti-inflammatory and have an antioxidant effect, 
contributing to a healthier gut. Pharmacological 
interventions like faecal microbiota transplantation 
(FMT), non-steroidal anti-inflammatory drugs 
(NSAIDs), ghrelin mimetics, angiotensin-converting 
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enzyme inhibitors (ACEIs), and butyrate precursors lead 
to the production of anti-inflammatory fatty acids and 
regulate appetite, gut motility, and microbial impact on 
gut health. Further research is warranted to deepen our 
understanding of the interaction between gut microbiota 
and muscle health for developing therapeutic strategies 
for ameliorating sarcopenic muscle loss. 
 
Key words: Gut microbiota, Sarcopenia, Gut-muscle 
axis, Biomarkers, Dietary interventions 
 
 
Introduction 
 
      Ageing exposes people to various chronic diseases 
and disorders, the most common of which are 
cardiovascular diseases, cancer, neurological disorders, 
and diabetes mellitus. In addition to contributing to early 
mortality, they also decrease the patient’s quality of life 
by generating numerous adverse complications 
associated with the disease (Cesari et al., 2016). A 
significant health concern in the older population is the 
gradual loss of skeletal muscle mass and the associated 
decline in its strength and function, called sarcopenia, 
which contributes to higher morbidity, disability, and 
mortality (Landi et al., 2018). This disease was given an 
“International Classification of Diseases (ICD)-10 code 
M62.84” in 2016 (Anker et al., 2016). According to the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), 2018 the updated definition of sarcopenia is 
“Sarcopenia is a progressive and generalised skeletal 
muscle disorder that is associated with increased 
likelihood of adverse outcomes including falls, fractures, 
physical disability, and mortality”. The modification 
emphasised that deterioration in muscle strength is a 
major determining factor of sarcopenia (Swan et al., 
2021). Sarcopenia affects 9.9 to 40.4% of community-
dwelling older persons, 2 to 34% of geriatric outpatients, 
and up to 56% of hospitalised older patients (Xu et al., 
2022). Due to the rapidly growing prevalence of 
sarcopenia in the older population, new insights into the 
mechanisms driving muscle loss are constantly being 
investigated. 
      The human gut microbiota constitutes 10-100 trillion 
microorganisms that populate the mammalian 
gastrointestinal tract (Picca et al., 2018; Liu et al., 2021). 
This diverse microbiota produces various nutrients and 
metabolites that directly impact skeletal muscle 
physiology (Qi et al., 2021). The microbiome influences 
muscle mass and function by regulating systemic 
inflammation and immunity, hormonal and insulin 
sensitivity, and metabolism, thus directing towards a 
“gut-muscle axis” and its possible connection with 
sarcopenia (Zhao et al., 2021). Recent investigations 
have shown that modulating muscle physiology via the 
gut-microbiota axis can ameliorate the progression of 
sarcopenia (Picca et al., 2018). Muscle mass and 
strength were significantly enhanced, along with a 
decrease in oxidative stress in aged mice treated with 

Lactobacillus and Bifidobacterium supplements (Ni et 
al., 2019b). In addition, some clinical evidence suggests 
that therapies involving the gut microbiota-muscle axis 
can help older people by decreasing sarcopenia-related 
morbidity and mortality (Buigues et al., 2016). 
Therefore, understanding the underlying mechanisms 
that link the gut microbial population to muscle wasting 
and dysfunction can help to identify novel targets as 
treatment strategies to prevent or delay age-related 
sarcopenia. 
 
Gut-Muscle Axis: Interplay between gut microbiota 
and muscles 
 
      The human gut is host to a complex ecology of 
microorganisms, a dynamic collection of bacteria, 
archaea, eukaryotes, fungi, and viruses, referred to as the 
gut microbiota (Thursby and Juge, 2017; Mangiola et al., 
2018). The four major bacterial phyla, “Firmicutes, 
Bacteroidetes, Proteobacteria, and Actinobacteria”, 
represent 98% of this diverse microbial population 
involved in a mutually beneficial relationship 
(symbiosis) with the host (Ragonnaud and Biragyn, 
2021). Their functions include facilitating digestion and 
absorption of food, strengthening gut integrity via 
building an intestinal barrier by metabolising dietary 
fibres into bioactive short-chain fatty acids (SCFAs) 
(Jones, 2016), providing essential nourishment by 
generating vitamins and nutrients, and modulation of the 
host’s local (intestinal) and systemic immunity 
(Mangiola et al., 2018; Ragonnaud and Biragyn, 2021). 
The gut microbiota, however, changes with the normal 
ageing process, and the resulting alteration significantly 
influences human health and disease (Zhao et al., 2021). 
A significant implication of this imbalance is the impact 
on muscle mass and muscle function, leading to 
sarcopenia in older adults (Zhang et al., 2022). Several 
in vitro and preclinical experiments have been conducted 
to prove the association between gut microbiota and 
muscle (Liao et al., 2020), thus establishing this axis as 
an interventional target to eliminate or manage age-
related sarcopenia. 
      Bacteroidetes and Firmicutes comprise the 
microbiota of the large intestine and are essential for 
maintaining normal intestinal homeostasis. Lactobacilli, 
Diptheriods, and Candida are the most common 
microbes in the small intestine. A healthy individual's 
primary composition of microorganisms is covered by a 
relatively low number of species, i.e., Bacteroides, 
Prevotella, Eubacterium, and Alistipes. Many species 
cover the rest with low relative abundance (including 
Clostridium, Anaerotruncus, Butyrivibrio, Faeca-
libacterium, and Akkermansia), having significant 
metabolic activity (Huttenhower et al., 2012). This 
microbiota aids in essential functions for the host, the 
most prominent among these being amino acid synthesis 
and nutrient absorption (Portune et al., 2016; Gizard et 
al., 2020).  
      The gut microbiota metabolises organic substrates 
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obtained either from food or those that remain 
undigested, like complex carbohydrates from dietary 
fibres, branched-chain amino acids (BCAAs), dietary 
phenolics, polyunsaturated essential fatty acids (PUFAs), 
etc., to various metabolites, like SCFAs (acetate, 
propionate, butyrate), and trimethylamine (TMA) 
(Gizard et al., 2020; Tomášová et al., 2021). Gut 
microbiota also synthesises neurotransmitters (like 
histamine, γ-aminobutyric acid (GABA), serotonin, and 
catecholamines) and gases (like hydrogen sulphide and 
nitrogen oxide) as well as regulates their synthesis 
(Strandwitz, 2018). These neurotransmitters and other 
by-products enhance glucose homeostasis, energy 
consumption, and protein synthesis in skeletal muscle, 
thereby improving physical performance by controlling 
intestinal permeability, inter-organ (endocrine, enteric, 
and central nervous system (CNS)) cross-talks, and 
direct targeting of skeletal muscle (Chen et al., 2021; Li 
et al., 2022). The microbiota's synthesis of these 
compounds impacts bacterial interactions and host 
intestinal immunity. Different signalling mechanisms 
could be implicated, such as neuroendocrine circuits 
involving gastrointestinal neurons and vagus nerves and 
modification of systemic metabolites and inflammatory 
hallmarks (Wang et al., 2020). SCFAs, the prominent 
regulators of the crosstalk between the gut microbiota 
and skeletal muscle, are derived from the metabolism of 
nutrients by bacteria and enhance mitochondrial 
biogenesis in skeletal muscle (Ticinesi et al., 2017). The 
primary SCFA metabolites of gut microbiota include 
butyrate, acetate, and propionate. They regulate blood 
glucose and insulin levels with a positive impact on 
skeletal muscle functioning (He et al., 2020). A study 
showed that feeding a combination of SCFAs to germ-
free mice partially rescued skeletal muscle function, 
which was impaired by gut microbiota deficiency. There 
was a remarkable improvement in muscle strength as 
measured by increased skeletal muscle mass, reduced 
expression of muscle atrophy markers, increased 
expression of neuromuscular assembly genes, and an 
improved oxidative metabolic capacity of muscles 
(Lahiri et al., 2019). In another study, continuous 
subcutaneous infusion of acetate in antibiotic-treated 
mice restored their exercise capacity, stressing the 
importance of SCFAs produced by the intestinal 
microbiome (Okamoto et al., 2019). Therefore, skeletal 
muscle, intestine, and adipose tissues are essential 
targets that influence muscle metabolism (Canfora et al., 
2015). These SCFAs modulate the release of gut 
hormones, influencing insulin production and appetite 
(Tolhurst et al., 2012). In enteroendocrine L-cells 
(located in the ileum and colon), SCFAs bind to Free 
Fatty Acid Receptor (FFAR)1 and FFAR3, which are G-
protein coupled receptors (GPRs) responsible for 
enhancing the release of glucagon-like peptide-1 (GLP-
1) and anorexigenic peptide YY (PYY). GLP-1 is an 
anti-diabetic hormone that has an incretin action and acts 
as an insulin sensitiser, i.e., it enhances after-meal 
insulin production (Heppner and Perez-Tilve, 2015). 

This ability to enhance GLP-1 release is also shared by 
tryptophan, indole derivatives, secondary bile acids, 
deoxycholic acid, and lithocholic acid (Gérard and 
Vidal, 2019; Rastelli et al., 2019). Butyrate, propionate, 
and its precursor, succinate, are also known to activate 
gluconeogenesis in intestinal lining cells via 
complementary mechanisms that improve insulin 
sensitivity and metabolism through activation of 
gastrointestinal nerves (De Vadder et al., 2014, 2016). 
Gut bacteria Faecalibacterium, Butyricimonas, and 
Succinivibrio produce SCFAs, which enter the 
bloodstream and are taken up by the myocytes (Fig. 1). 
There they serve as ligands binding to FFAR2 and 
FFAR3, regulating glucose uptake and its metabolism 
(Ticinesi et al., 2017). 
      Butyrate has proven to be the most crucial mediator 
among SCFAs from the perspective of skeletal muscle 
(Yan and Ajuwon, 2017; van der Hee and Wells, 2021; 
Han et al., 2022; Tang et al., 2022; Guan et al., 2023). Its 
anti-inflammatory functions have already been 
elaborated in inflammatory bowel diseases (Chen and 
Vitetta, 2020). Butyrate improves gut barrier function as 
it is taken up by colonial epithelial cells to be used as an 
energy source (Yan and Ajuwon, 2017). It also decreases 
intestinal permeability by enhancing the synthesis of 
tight junction proteins viz. claudins, occludin and zona 
occludens, and mucins, which prevents endotoxemia 
(Canfora et al., 2015). SCFAs, propionate, and butyrate 
in small quantities and acetate in higher amounts enter 
the circulation and directly impact the function of 
peripheral cells and tissues (van der Hee and Wells, 
2021). Butyrate has also been reported to prevent low-
grade inflammation generated by the interaction between 
adipocytes and macrophages, reduce lipid breakdown, 
and inhibit inflammatory signalling (Ohira et al., 2013). 
It impacts skeletal muscle by increasing the count of 
anti-inflammatory regulatory T cells and decreasing 
proinflammatory cytokine and chemokine levels (Yoo et 
al., 2020). In addition, SCFAs mediate the relationship 
between gut microbiota and skeletal muscle by 
potentiating fatty acid oxidation via its receptors on 
skeletal muscle tissue, GPR41 (FFAR3) and GPR43 
(FFAR2), proving their worth as potential regulators of 
skeletal muscle metabolism and function (Frampton et 
al., 2020). 
      In addition to the role of secondary bile acids, 
tertiary bile acids (e.g., ursodeoxycholic acid) increase 
energy expenditure by activating G-protein-coupled bile 
acid receptor (GPBAR)-1 (TGR5), which is expressed in 
skeletal muscle, thus, inducing the thyroid hormone 
deiodinase 2 (DIO2). DIO2 activates thyroxine (T4) by 
converting it to the Triiodothyronine (T3) thyroid 
hormone, which plays a significant role in metabolism, 
energy homeostasis, myogenesis, and regeneration of 
skeletal muscle (Di Ciaula et al., 2017; Bloise et al., 
2018). Phenolic metabolites of the microbiome, such as 
isovanillic acid 3-o-sulphate, have also exhibited a dose-
dependent boosting effect on glucose uptake in muscles 
via glucose transporter type 4 (GLUT4) and phospho-
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inositide 3-kinase (PI3K)-dependent processes, 
demonstrating their role in muscle cell glucose uptake 
and metabolism (Houghton et al., 2019). Conjugated 
linoleic acid (CLA) is another metabolite produced from 
the conversion of linoleic acid to stearic acid by rumen 

bacteria. They can also be obtained in minimal amounts 
from meat and milk products from ruminants. Their 
potentiating effects on lean body mass have been 
attributed to physiological changes in the skeletal 
muscle, like muscle fibre type transformation and 
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Fig. 1. Correlation between gut dysbiosis and muscle health. Gut microbiota metabolites like SCFAs contribute to increased mitochondrial biogenesis, 
oxidative capacity, and glucose uptake in muscle cells, which boosts muscle health in a healthy person. Intestinal epithelial barrier integrity is 
compromised in a dysbiotic gut, which facilitates the leakage of LPS and pro-inflammatory cytokines into the bloodstream. This results in the increased 
expression of muscle atrophy genes leading to sarcopenia. Created in BioRender.com.



modulation of intracellular signalling pathways linked to 
muscle metabolism (Kim et al., 2016). 
      Gut microbiota metabolises choline, a trimethyl-
amine-containing compound, which produces TMA 
(Romano et al., 2015). Apart from choline, its other 
precursors are L-carnitine, γ-butyrobetaine, betaine, and 
choline-containing compounds from the diet (Zeisel and 
Warrier, 2017). The concentration of TMA was found to 
be lower in patients suffering from Duchenne Muscular 
Dystrophy (DMD), emphasising its importance to 
muscle function (Hsieh et al., 2009). BCAAs are among 
the other gut microbiota-derived compounds that have 
the potential to impact on host metabolism. Previously, 
increased circulating levels of BCAAs have been 
associated with insulin resistance and diabetes. 
Persistent high levels of BCAAs were responsible for the 
induction of mTOR signalling in skeletal muscle, which 
led to reduced uptake of glucose and insulin resistance 
(Lynch and Adams, 2014; Yin et al., 2020). However, 
BCAAs have also been shown to activate insulin 
synthesis via mTOR (Wang et al., 2018) and stimulate 
incretin secretion (Gojda et al., 2017), suggesting its 
insulinotropic effects. They also have been shown to 
prevent skeletal muscle proteolysis and enhance muscle 
protein synthesis and myogenesis. Studies have shown 
that nutraceuticals containing leucine and its derivatives 
can revert sarcopenia in patients with chronic liver 
disease and Type 2 diabetes mellitus (Gojda and Cahova, 
2021; Hey et al., 2021). Gut microbiota utilises histidine 
to produce another metabolite imidazole propionate, 
which has been associated with insulin resistance. It 
affects the insulin signalling pathway via mTORC1 (Koh 
et al., 2018), and its levels were found to be enhanced in 
type 2 diabetes mellitus. Some correlation between its 
levels and markers of low-grade inflammation also 
suggested its impact on host inflammation (Agus et al., 
2021). All this evidence is directed toward a gut-muscle 
axis that regulates normal muscle physiology and 
warrants deeper molecular investigations into the impact 
of each of these metabolites at the individual level.  
 
Mechanisms of dysbiotic gut and sarcopenia in old 
age 
 
      Dysbiosis, which exhibits lesser variability in 
microbial populations, compromises the intactness of the 
gut barrier, allowing the entry of toxic microbial 
products into circulation (Fig. 1) (Gizard et al., 2020). 
Once in circulation, these products can induce low-grade 
systemic inflammation by triggering innate immunity 
and result in metabolic alterations leading to muscle 
disorders. Gut dysbiosis plays a key role in various 
metabolic disorders affecting skeletal muscle 
degradation, like type II diabetes mellitus and obesity 
(Bleau et al., 2015), cancer (Panebianco et al., 2023), 
cardiovascular (Zhou et al., 2020), liver (Ponziani et al., 
2021), and kidney (Margiotta et al., 2021) disorders. 
Sarcopenia is a geriatric disorder that exhibits an altered 
gut microbial population (Marzetti et al., 2017). It has 

been reviewed that microbial products like indoxyl 
sulphate and endotoxins like lipopolysaccharide promote 
inflammatory signalling by stimulating the expression of 
tumour necrosis factor α (TNFα) and interleukin 6 (IL-6) 
in immune tissues and skeletal muscle cells (Grosicki et 
al., 2018). An increase in Lactobacillus species and a 
lower abundance of Fusicantenibacter, Lachno-
clostridium, Eubacterium, Roseburia, and Lachnospira 
genera was observed in patients with sarcopenia as 
compared with healthy subjects (Kang et al., 2021). A 
similar trend was observed when a reduced abundance of 
Faecalibacterium prausnitzii, Alistipes shahii, and 
Roseburia inulinivorans species was found in sarcopenic 
patients, suggesting the association of altered microbial 
diversity with sarcopenia (Ticinesi et al., 2019b). Past 
preclinical evaluations concluded an association between 
muscle degradation and altered microbial diversity in the 
intestine (Picca et al., 2018). Oral administration of 
Lactobacillus species in acute leukaemia mouse model 
ameliorated skeletal muscle loss by reducing 
inflammation (Bindels et al., 2012). Lactobacillus 
species were shown to have an inverse association with 
markers of muscle atrophy like MuRF1 and Atrogin1 as 
well as inflammatory cytokines (Picca et al., 2018). The 
mechanisms involved in the crosstalk leading to muscle 
wasting are hereby discussed in detail. 
 
Alteration in muscle protein synthesis 
 
      Gut dysbiosis or alteration in microbiota 
composition increases the demand for proteins required 
for muscle synthesis. This phenomenon is an anabolic 
resistance characteristic of aged muscle cells (Vaiserman 
et al., 2017). The consequences are a reduction in muscle 
protein synthesis leading to subsequent degradation of 
muscle, marking the initiation of sarcopenia (Mitchell et 
al., 2017; Picca et al., 2018). There is a marked decrease 
in gene expression of proteins involved in myogenesis, 
decreased absorption and digestion of proteins, altered 
flow of nutrition to skeletal muscle cells, enhanced 
protein catabolism in myocytes, and accelerated loss of 
skeletal muscle stem cells (Casati et al., 2019). Gut 
dysbiosis-induced reduction in the production of SCFAs 
also impacts the modulation of systemic anabolic or 
catabolic balance via altered ATP production and 
glucose uptake in skeletal muscle cells (Casati et al., 
2019; Ticinesi et al., 2019a). This further hinders the 
process of muscle protein anabolism and marks the onset 
of muscle wasting and, ultimately, sarcopenia. The pro-
anabolic effects of vitamins like folate, vitamin B12, and 
riboflavin are also reduced with a decrease in the 
microbial population involved in synthesising these 
vitamins (LeBlanc et al., 2013).  
 
Protein metabolism 
 
      Skeletal muscle mass is mainly regulated by protein 
metabolism in muscles, which is maintained by a 
dynamic balance of protein synthesis mediated by 
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anabolic stimuli and protein degradation mediated by 
catabolic stimuli. One of the impacts of alterations in gut 
microbiota is on the bioavailability of dietary amino 
acids like tryptophan, leucine, isoleucine, valine, and 
lysine (Puiman et al., 2013), and dietary proteins 
(Siddharth et al., 2017). The availability of dietary 
amino acids and their kinetics inside the body 
significantly influence the process of myogenesis 
(Martone et al., 2017). Enzymes like proteases and 
peptidases derived from the host or microbiome convert 
proteins from the diet into peptides and amino acids 
along the length of the alimentary canal (Ma and Ma, 
2019). These peptides are essential for enriching 
microbial diversity in the gastrointestinal tract and 
maintaining their energy and protein homeostasis (Lach 
et al., 2018; Covașă et al., 2019). Moreover, amino acids 
regulate the synthesis of SCFAs (propionate, butyrate, 
and acetate) by bacteria (Louis and Flint, 2017), which 
improve muscle health in significant ways (Morrison 
and Preston, 2016). They positively modulate muscle 
biology by reducing gut permeability (van Krimpen et 
al., 2021). The population of beneficial microbes 
maintains high levels of SCFAs, which regulate the 
translocation of harmful substances, like pro-
inflammatory cytokines, across the lumen into the 
circulation (Parada Venegas et al., 2019). 
      Moreover, beneficial microbes reduce the levels of 
systemic inflammation and have a positive impact on 
insulin sensitivity in muscles (de Marco Castro et al., 
2021). However, gut dysbiosis reverses the situation as 
the unhealthy microbiota fails to prevent the harmful 
translocation of substances from the lumen into the 
bloodstream, resulting in poor-grade chronic systemic 
and local inflammation contributing to insulin and 
anabolic resistance in muscle. A reduction in the levels 
of SCFAs triggers the secretion of mucins by epithelial 
cells of the intestine, which facilitates the entry of 
pathogens into the intestinal mucosa (Biagi et al., 2010; 
Parada Venegas et al., 2019). Among the SCFAs, 
alteration in the level of butyrate is of primary concern 
as it maintains intestinal homeostasis via the 
development of regulatory T cells from CD4+ T cells. 
These regulatory T-cells induce epithelial transforming 
growth factor β (TGF-β) secretion and secretion of IL-10 
and retinoic acid by dendritic cells and macrophages 
(Shapiro et al., 2014). A decrease in butyrate levels 
increases intestinal inflammation (Gasaly et al., 2021) 
and results in the entry of bacteria and inflammatory by-
products into the circulation (Amabebe and Anumba, 
2020). 
 
Intramuscular fat infiltration 
 
      Among the cascade of metabolic disturbances 
caused by the reduced microbiota population, 
intramuscular lipid accumulation also alters skeletal 
muscle fibre composition (Klančič and Reimer, 2020). 
The accumulation of these intramyocellular lipids (like 
ceramides and diacylglycerols) and fat lead to insulin 

resistance in muscle cells and mitochondrial 
dysfunction, resulting in metabolic breakdowns in 
skeletal muscle, increase in oxidative stress, and chronic 
inflammation (Capel et al., 2019; Ebadi et al., 2019). It 
results in an inability to activate protein synthesis and 
anabolic resistance, which ultimately marks the onset of 
skeletal muscle atrophy (Rivas et al., 2016). 
 
Inflammation 
 
      The imbalance in the composition of the intestinal 
microbiota also disturbs the balance between pro- and 
anti-inflammatory pathways in the host (Cristofori et al., 
2021), a phenomenon known as “inflammaging” as it is 
a characteristic of advanced age (Casati et al., 2019). 
The pro-inflammatory cells include T-helper cells (Th 
cells), and Th17 cells, while anti-inflammatory cells 
include Foxp3+ receptor T cells or regulatory T cells. A 
healthy microbiota population potentiates the host 
immune system and helps in immune cell maturation. 
Inflammation can be both a reason or a result of gut 
dysbiosis. The intestinal epithelial barrier isolates 
bacteria from host immune cells, serving as a defence 
mechanism. Disruption of this epithelial membrane 
enhances the delivery of gut microbiota metabolites to 
the host, resulting from decreased stability of the 
mucosal barrier. It also increases susceptibility to 
infection by disrupting the host's immune system, 
inducing chronic inflammation and oxidative stress 
(Cristofori et al., 2021). A decrease in SCFA production, 
an aftermath of gut dysbiosis, also leads to the 
potentiation of inflammation by enhanced secretion of 
pro-inflammatory cytokines and chemokines (Casati et 
al., 2019). Bacterial endotoxin lipopolysaccharide (LPS), 
a component of the cell wall of gram-negative bacteria, 
is abundant in the gastrointestinal tract and mediates 
systemic inflammation and septic shock (Ghosh et al., 
2020). LPS and other bacterial endotoxins have a pro-
inflammatory role regulated by the gut microbiome 
through healthy gut barrier dynamics (Ticinesi et al., 
2017). Therefore, increased permeability of LPS in the 
gut creates a mechanistic link between gut dysbiosis and 
an increase in inflammation, leading to insulin resistance 
in skeletal muscles. Evidence supports that LPS leakage 
from the gut into the bloodstream reduces glucose 
tolerance and enhances the levels of inflammation 
markers (Picca et al., 2018). It also stresses the central 
role that chronic inflammation plays in the crosstalk 
between microbial dysbiosis and initiation of muscle 
degradation in old age. Preclinical evaluations have 
proven the impact of geriatric alterations in gut 
microbiota on intestinal permeability (Grosicki et al., 
2018; Picca et al., 2018). Gut dysbiosis enhances the 
production of mucins from epithelial cells of the 
intestine, facilitating the entrance of pathogens into 
intestinal mucosa (Lobionda et al., 2019). SCFAs, 
butyrate in particular, mediate their anti-inflammatory 
role by reinforcing the tight epithelial junctions of the 
intestinal barrier, which checks the translocation of 
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endotoxins through it (Liu et al., 2018). All these altered 
immune responses mediated by gut dysbiosis potentiate 
sarcopenia by inducing catabolism in the skeletal muscle 
cells. 
 
Mitochondrial dysfunction and related mechanisms 
 
      An imbalance in gut microbiota composition also 
alters their antioxidant activity, leading to impaired 
mitochondrial function in host myocytes. This 
mitochondrial damage releases mitochondrial damage-
associated molecular patterns (DAMPs), which initiate 
potent inflammatory responses by activating the innate 
immune system (Gong et al., 2020). Inflammatory 
mediators like TNF-α, IL-6, IL-1β, etc., induce a circle 
of damage in myocytes by altered quality control 
signalling, leading to progression in mitochondrial 
impairment and increased oxidative stress. The products 
of mitochondrial damage induce mitochondrial DNA-
related inflammation, which ultimately releases pro-
inflammatory cytokines, chemokines, ROS, and nitric 
oxide, inducing a cycle of persistent chronic 
inflammation. Overall, it leads to a degrading impact on 
muscle homeostasis (Picca et al., 2018). Oxidative stress 
impairs the composition and function of the intestinal 
microbial population and intestinal barrier permeability, 
interfering with the chances of xenobiotic molecules 
reaching the bloodstream (Reese et al., 2018). 
Mitochondrial dysfunction is one of the hallmarks of 
ageing myocytes. Alterations in mitochondrial quality 
control and decreased expression of autophagy markers 
lead to failed clearance of damaged mitochondria and 
other dysfunctional organelles. This induces the 
degradation of muscle fibres and leads to muscle atrophy 
(Romanello and Sandri, 2016; Cantó-Santos et al., 
2020). Studies in animal models have shown that SCFAs 
like butyrate increase mitochondrial biogenesis markers 
and decrease oxidative stress markers in skeletal 
muscles, further proving the role of gut microbiota in 
strengthening muscle mass (Walsh et al., 2015). Insulin-
like growth factor 1 (IGF-1) links gut microbiota and the 
mitochondrial level in skeletal muscle (Qi et al., 2021). 
In a study by Lahiri et al., muscle atrophy was suggested 
to be linked to reduced expression of IGF-1 and skeletal 
muscle growth and mitochondrial function markers 
(Lahiri et al., 2019). 
 
Insulin resistance 
 
      The reduced production of gut metabolites and 
increased levels of LPS and BCAAs in circulation are a 
result of altered microbiota composition. Both of these 
consequences of gut dysbiosis impact muscle health by 
contributing to insulin resistance (Saad et al., 2016). LPS 
contributes to insulin resistance by binding to toll-like 
receptor 4, inducing adiposity and inflammation. SCFAs 
reduce insulin resistance by promoting insulin 
sensitivity, modulating glucose uptake and metabolism, 
and increasing energy expenditure to enhance glucose 

tolerance. The role of secondary bile acids against 
insulin resistance was also established earlier by their 
ability to activate GLP-1 secretion (Casati et al., 2019). 
Insulin mediates its muscle-protective role by inducing a 
cascade of phosphorylation events, which stimulate 
mitochondrial protein synthesis and inhibit protein 
breakdown in muscle cells. Insulin and IGF-1 act as 
potent anabolic mediators, facilitating muscle growth by 
the insulin/IGF1-Akt-mTOR pathway (Sartori et al., 
2021). This forms the mechanistic link between insulin 
resistance and sarcopenia. Resistance to the anabolic 
function of insulin in ageing myocytes precedes the 
clinical manifestations of sarcopenia (Cleasby et al., 
2016). Insulin resistance contributes to sarcopenia by 
impaired lipid oxidation in mitochondria, increased lipid 
accumulation, inflammation, endoplasmic reticulum 
(ER) stress by enhanced ROS production, and, 
consequently, increased mitochondrial dysfunction 
(Hong and Choi, 2020). There is evidence of decreased 
secretion of growth hormone and IGF-1 in sarcopenia, 
causing impaired muscle growth (Sakuma and 
Yamaguchi, 2012a). SCFAs contribute to IGF-1 release, 
strengthening their impact on the maintenance of muscle 
health (Yan et al., 2016b). 
 
The correlation between sarcopenia biomarkers and 
gut microbiota 
 
      A plethora of factors are involved in mediating gut 
dysbiosis-related pro-sarcopenia mechanisms. Due to its 
multifactorial pathogenesis, a panel of biomarkers has 
been identified that mediate the multitude of pathways in 
sarcopenia (Fig. 2). The possible association of these 
markers with simultaneous modulation of gut microbiota 
hints at a probable correlation between gut dysbiosis and 
the occurrence of sarcopenia, which warrants further 
investigation. Identifying the biomarkers involved makes 
it easy to characterise the cause of the disease at a 
molecular level and predict its progression. It also helps 
to decide the treatment strategy needed. 
 
Myostatin 
 
      There is evidence of a correlation between myostatin 
and gut microbiota composition, which can be linked to 
muscle degradation. Recently, a study showed that 
myostatin mutation impacts host metabolism through 
regulation of the gut bacteria, Ruminococcaceae UCG-
013, Clostridium sensu stricto 1, and Ruminococcaceae 
UCG-010 (Wen et al., 2022). Another study performed 
an integrated microbiome and metabolome analysis, 
showing that myostatin gene editing altered the 
composition of microbes and their metabolites in the 
jejunum and cecum, suggesting the influence of 
myostatin on gut microbiota (Pei et al., 2021). It is well 
established that myostatin acts as an autocrine, 
paracrine, and endocrine negative regulator of muscle 
mass by influencing molecular mediators of muscle 
atrophy (Ryan et al., 2017). It belongs to the TGF-β 
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family, predominantly expressed in myocytes. It is 
synthesised from its precursors, pre-pro-myostatin and 
pro-myostatin, and activates the ubiquitin-proteasome 
system in mature muscle cells (Bataille et al., 2021). 
Myostatin acts through its receptor, activin type II B 
receptor (ActRIIB), at the surface of myocytes, 
activating Smad2 and Smad3, which are primary signal 
transducers to the TGF-β superfamily. These 
transcription factors then translocate to the nucleus, 
where they mediate the expression of E3 ubiquitin 
ligases, atrogin-1 or muscle atrophy F-box protein 
(MAFbx) and muscle ring finger protein 1 (MuRF1), 
which facilitate muscle protein degradation via the 
ubiquitin-proteasome system (UPS) machinery (Conte et 
al., 2020a). Insulin and IGF-1 stimulation activates Akt, 
leading to the inhibition of dephosphorylation of 

Forkhead Box protein O 1 (FOXO1), which results in its 
inactivation and, ultimately, inhibition of muscle protein 
atrophy by the UPS pathway (Hay, 2011). Smad2 and 
Smad3 also inhibit the activation of Akt, aiding in 
muscle wasting (Verzola et al., 2019), which was proved 
when a decrease in the expression of phosphorylated Akt 
was observed following incubation of myotubes with 
myostatin (Elkina et al., 2011). Myostatin also mediates 
the activation of MAPKs using the Ras/Raf/MEK1 or 
TAK-1/MAPKK pathway (Drysch et al., 2021). This 
results in inhibition of genes responsible for myogenesis. 
Thus, signal transduction of myostatin leads to a cascade 
of events modulating several molecular signalling 
pathways, which ultimately downregulate the expression 
of myogenic factors. In addition to this, the possible 
association of myostatin with gut microbiota modulation 
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may also be a factor in mediating the negative regulation 
of muscle health, which can be proved through further 
research. 
 
Insulin-like growth factor-1 (IGF-1) 
 
      Gut microbiota has an essential role in maintaining 
muscle health via IGF-1, since most studies pointed out 
that microbiota-derived metabolites like SCFAs are potent 
inducers of IGF-1 in the host as an anabolic hormone for 
skeletal muscle synthesis and reduction of inflammation 
(Daily and Park, 2022). Microbiota-induced IGF-1 has 
previously been evidenced to ameliorate muscle wasting 
in mice, strongly suggesting that IGF-1/insulin signalling 
directly bridges the gap between sarcopenia and the gut 
microbiota composition (Yan and Charles, 2018). IGF-1, 
also called “somatomedin C”, is a polypeptide hormone in 
the blood that stimulates muscle growth by mediating 
skeletal myogenesis and has been proven to increase 
muscle mass entity, strength, and proliferation of muscle 
satellite cells. IGF-1 mediates its function by binding to its 
receptor, IGF-1R, which activates the PI3K/Akt signalling 
pathway and has tyrosine kinase-like activity. The 
activation of this pathway results in increased protein 
synthesis in muscle fibres, myoblast proliferation, and 
differentiation, leading to overall muscle mass 
maintenance (Ahmad et al., 2020). Increased synthesis of 
IGF-1 has been observed in muscle satellite cells of 
injured muscles, aiding their healing by stimulating 
proliferation and myogenic differentiation (Chen et al., 
2020a). Poor handgrip strength and deterioration in 
physical performance have also been associated with 
decreased levels of IGF-1 in the aged population (van 
Nieuwpoort et al., 2018). Because of its role in 
myogenesis and muscle growth, IGF-1 is utilised in the 
management of DMD, muscle atrophy, and other muscle-
wasting conditions (Ahmad et al., 2020).  
 
Irisin 
 
      There is limited data unravelling the association 
between irisin and intestinal microbiota; however, 
studies have shown that SCFA producers can contribute 
to an increase in irisin levels as SCFAs are potent 
inducers of GLP-1 secretion (Valder and Brinkmann, 
2022). Irisin and GLP-1 show similar effects and act 
through related signalling mechanisms involving the gut, 
muscle and endocrine pancreas (Marrano et al., 2021). 
Irisin is produced from fibronectin type III domain-
containing protein 5 (FNDC5) and is a sensitive 
molecular marker of reduced muscle strength and 
atrophy (Planella-Farrugia et al., 2019). Irisin levels 
have been evidenced to correlate positively with muscle 
mass. Skeletal muscle cells uptake most glucose under 
the action of insulin and are considered one of the 
primary sites of insulin resistance. Previously conducted 
experiments have proven that irisin influences glucose 
homeostasis in skeletal muscle in an autocrine fashion 
(Kurdiova et al., 2014). Peroxisome proliferator-

activated receptor (PPAR)-γ coactivator-1α (PGC1α) is 
an upstream regulator of irisin. The deficiency of 
myostatin leads to activation and induction of irisin 
secretion in muscle cells (Huh et al., 2014). Irisin 
treatment has been shown to potentiate muscle growth 
through the ERK pathway and by decreasing negative 
regulators of muscle mass, like myostatin, while 
increasing IGF-1, a stimulator of myogenesis (Huh et al., 
2014).  
 
Brain-derived neurotrophic factor (BDNF) 
 
      SCFAs, particularly butyrates, have been evidenced 
to positively regulate the expression of trophic factors 
such as neurotrophins, including pro-BDNF and BDNF 
(Ziemka-Nalecz et al., 2017; Ojeda et al., 2021). Many 
studies have shown that germ-free and antibiotic-treated 
mice exhibit decreased expression of BDNF in the 
hippocampus compared to the mice with standard gut 
microbiota composition. Treatment with prebiotics 
fructooligosaccharides (FOS) and galactooligo-
saccharides (GOS), which increase the amount of 
intestinal Bifidobacterium spp. and Lactobacillus spp., 
upregulates hippocampal gene and protein expression of 
BDNF (Yu and Hsiao, 2021). The maintenance of 
healthy muscle mass and function is mediated by the 
equilibrium between the positive and negative factors of 
muscle development. BDNF, belonging to the 
neurotrophin family, is one of the positive regulators 
(Kalinkovich and Livshits, 2015). Its role in skeletal 
muscle involves stimulating myogenesis by 
differentiating myoblasts into myocytes, developing 
muscle fibres, maintaining motoneuron survival and the 
postsynaptic region in muscle fibres, and aiding in the 
presynaptic release of neurotransmitters (Raschke and 
Eckel, 2013; Sakuma et al., 2015). The link between 
BDNF levels and susceptibility to sarcopenia was 
proved when a reduction in the high-affinity 
tropomyosin-related kinase-B receptor (TrkBR) was 
observed following a loss of endogenous BDNF in 
diaphragm muscle of old mice (Greising et al., 2015). 
The BDNF/TrkBR signalling pathway mediates anti-
inflammatory effects and immune regulation in 
myofibers through the p75 neurotrophin receptor 
(p75NTR) (Kalinkovich and Livshits, 2015). As a result 
of its role in muscle repair, regeneration, and 
differentiation, as well as its link to immunology, 
inflammation, and muscular pathology, BDNF might be 
regarded as an important marker of sarcopenia. 
 
Follistatin (FST) 
 
      Studies have shown that altered diet, and 
subsequently altered gut microbiota composition, lower 
the levels of follistatin (FST), which also negatively 
impacts skeletal muscle mass (Li et al., 2019). Increased 
dietary protein intake has been shown to stimulate 
follistatin secretion (Bojsen-Møller et al., 2021). These 
dietary proteins are broken down into amino acids, 
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which impact the gut microbiota composition and 
microbial metabolites, thus affecting muscle health in 
the host (Zhao et al., 2019a). FST is a positive mediator 
of muscle mass, which strongly inhibits myostatin-
mediated muscle atrophy. It is expressed in several 
tissues, like the brain, muscles, bone marrow, ovary, 
liver, and blood vessels, and antagonises the action of 
proteins from the TGF-β superfamily, myostatin, activin 
A, and bone morphogenetic protein (BMP) (Skrzypczak 
et al., 2021). FST proteins are thought to potentiate the 
myogenic ability of muscle progenitor cells by binding 
to myostatin and rendering it undetectable (Kalinkovich 
and Livshits, 2015). FST overexpression is also related 
to increased Akt phosphorylation and its activation, 
mTOR signalling, and translation of muscle proteins by 
inhibiting Smad3 activity (Winbanks et al., 2012). 
Signalling networks between the Wnt/β-catenin system, 
FST, and TGF-β  signalling pathways have been 
discovered (Han et al., 2014). Given the crucial role of 
the Wnt/β-catenin pathway in myofibroblast 
proliferation and myofiber growth regulation, this 
crosstalk further strengthens the function of FST in 
muscle mass maintenance (Xu et al., 2017). FST-based 
therapies, like recombinant adeno-associated viral 
vectors expressing FST (Sepulveda et al., 2015), FST-
like 3-Fc-fusion protein (Ozawa et al., 2021), and other 
gene-based treatments are being extensively evaluated 
because of their therapeutic potential to curb the harmful 
effects of muscle atrophy.  
 
Growth/Differentiation Factor-15 (GDF-15) 
 
      The correlation of GDF-15 with gut dysbiosis-
induced sarcopenia can be traced to a study in which a 
greater abundance of the Enterobacteriaceae family was 
found in the faecal microbiota of patients with high 
serum GDF-15 concentrations (Bilson et al., 2021). 
Another observational study showed that a prominent 
feature of gut microbiota dysbiosis was an increase in 
the amount of Enterobacteriaceae found in elderly 
patients with sarcopenia (Liu et al., 2021). GDF-15 
negatively affects muscle health and is involved in the 
enhancement of muscle growth suppressors. It is also 
known as serum macrophage inhibitory cytokine 1 
(MIC-1) and is a significant member of the TGF-β 
superfamily (Wischhusen et al., 2020). Circulating levels 
of GDF-15 increase with age and have an inverse 
relationship with muscle mass and muscle endurance, 
making it a potential biomarker of sarcopenia (Kim et 
al., 2020). In Taurin transporter knockout mice, GDF-15 
is shown to induce muscle fibre apoptosis and increase 
inflammation. Also, increased levels of GDF-15 have 
been associated with cachexia and muscle atrophic 
conditions in human subjects (Ito et al., 2018; Conte et 
al., 2020b). Both serum and mRNA concentrations of 
GDF-15 were elevated in subjects who had developed 
atrophy in the quadriceps muscle following heart surgery 
(Bloch et al., 2013). All this evidence of a consistent 
correlation of GDF-15 with reduced muscle mass 

suggests its involvement in potentiating sarcopenia. 
However, the signalling pathways by which it mediates 
the muscle wasting function are not clear. Thus, it 
warrants further investigation into its role as a biomarker 
of sarcopenia.  
 
Decorin 
 
      Gut microbiota is known to positively regulate the 
function of this myokine by increasing the production of 
SCFAs, BCAAs, secondary bile acids, and endo-
cannabinoids, and inhibiting inflammatory cytokines 
(Suriano et al., 2020; Daily and Park, 2022). Decorin is a 
small leucine-rich myokine secreted by cells in adipose 
tissue in response to physical exercise. It is involved in 
skeletal muscle differentiation and repair (Bahl et al., 
2018). Decorin mediates its muscle-protective function 
by inhibiting the responsiveness of myogenic satellite 
cells to TGF-β1 during differentiation, which induces 
their proliferation (Kelc et al., 2015). Studies on 
myogenic cells have shown that decorin overexpression 
boosts muscle cell proliferation and differentiation by 
suppressing myostatin activity, which negatively affects 
muscle growth (Kishioka et al., 2008; Bahl et al., 2018). 
The contribution of decorin to muscle hypertrophy by 
increased expression of promyogenic genes and 
inhibition of muscle atrophy genes has also been well 
established (Kanzleiter et al., 2014). Also, it has a role in 
regulating connective tissue formation in skeletal 
muscles by stimulating collagen synthesis in connective 
tissue (Bahl et al., 2018). Decorin has been identified as 
a potential therapeutic target in sarcopenia as well as 
sarcopenic obesity (Bilski et al., 2022).  
 
Apelin 
 
      A potential relationship between gut bacteria and the 
apelinergic system was observed in a study where LPS 
from gram-negative bacteria stimulated apelin 
expression (Geurts et al., 2011). This study was 
conducted to associate gut flora and apelin. Apelin is an 
adipokine and myokine, which is an endogenous ligand 
of the G-protein coupled receptor APJ (Wysocka et al., 
2018). Ageing decreases Apelin release, which can be 
partially recovered from exercise. Apelin restoration 
leads to enhanced muscle strength by anti-inflammatory 
function, targeting satellite cells and muscle stem cells 
and stimulating mitochondriogenesis, which increases 
the regenerative abilities of muscle cells. Apelin 
supplementation promoted protein synthesis in 
sarcopenic muscle fibres via AMPK, Akt, and P70S6K 
activation (Vinel et al., 2018; Bilski et al., 2022). Thus, 
apelin and its receptor can serve as markers and 
therapeutic targets to ameliorate age-related sarcopenia.  
 
Activin A and B 
 
      Blocking of activin receptor ligands has previously 
resulted in a decrease in bacterial diversity, which was 
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proved by the reduced bacterial richness in the 
respective stool samples of C26 cachectic mice (Pekkala 
et al., 2019). Activins A and B belong to the TGF-β 
family and are categorised as inhibitors of muscle 
growth. Activins are synthesised as precursor molecules 
and are cleaved by ActRIIA/II receptors, resulting in the 
activation of Activin receptor type-1B (ACVR1B) or 
ALK4. Activated ALK4 phosphorylates Smad2/3, which 
binds with Smad4 (Kalinkovich and Livshits, 2015). 
This ActRII/ALK/Smad2/3 signalling pathway starts a 
protein degradation program via autophagy and UPS, 
which accelerates muscle atrophy (Lodberg, 2021). It 
has been shown that activin A inhibition leads to the 
induction of muscle hypertrophy in mice and primates 
(Latres et al., 2017). It has been well established that 
activins, along with myostatin and GDF-11, activate 
Smad2/3 signalling to induce muscle atrophy, eventually 
contributing to muscle-wasting disorders (Rodgers and 
Ward, 2022). Thus, myostatin/activin pathway 
antagonism also holds significant promise as a 
therapeutic target in the management of sarcopenia. 
 
Fibroblast Growth Factor 21 (FGF21) 
 
      Previous reports provide evidence that dietary 
proteins induce elevated levels of FGF21 in plasma and 
that normal gut microbiota composition is required for 
this increased FGF21 response to a protein-rich diet 
(Martin et al., 2021). Administration of Lactobacillus 
rhamnosus GG also increases hepatic FGF21 expression 
(Zhao et al., 2019b). Consistent with these findings, a 
research study by Kundu et al. reported that young germ-
free mice receiving faecal microbiota transplantation 
(FMT) showed an increase in FGF21 levels due to high 
concentrations of microbiota-derived butyrate (Kundu et 
al., 2019). FGF21, a member of the FGF superfamily, 
regulates metabolic activities rather than cell division 
and differentiation (Tezze et al., 2019). Apart from the 
liver, adipocytes and myocytes are also prominent 
sources of FGF21; it has anti-obesity action and reverses 
insulin resistance. It also increases thermogenesis in fat 
tissue and skeletal muscle through increased expression 
of the peroxisome proliferator-activated (PGC)-1-alpha 
gamma receptor (Cuevas-Ramos et al., 2019). It was 
observed that deficiency of FGF21 increased the 
expression of muscle atrophy factors (MuRF1 and 
Atrogin-1), and also increased TNF-α-mediated 
inflammation in skeletal muscles (Kim et al., 2019). The 
literature emphasises the role of FGF21 in aerobic 
muscle fibre formation via the FGF21-SIRT1-AMPK-
PGC1α axis (Liu et al., 2017). A study conducted on 
pigs showed that it can suppress adipogenesis in 
intramuscular fat cells (Wang et al., 2016). Thus, FGF21 
levels can be significant in studies related to sarcopenia 
and sarcopenic obesity.  
 
Bone Morphogenetic Proteins (BMPs) 
 
      Previous studies have shown that BMP treatment 

increased the proportion of Verrucomicrobia, Blautia, 
and Allobaculum genera, known producers of SCFAs, 
especially butyrates, which exert a protective effect on 
muscle atrophy (Bai et al., 2018). BMPs play an 
essential role in both bone and muscle homeostasis. 
They are molecules of the TGF-β family that mediate 
various pathways linked to cell homeostasis and 
proliferation, differentiation, morphogenesis, and 
regeneration (Scimeca et al., 2017). They potentiate 
muscle mass by negatively regulating the activity of 
Smad proteins 6 and 7, which inhibit Smad1/5/8 
activation. The stimulation of Smad1/5/8 activates 
mTOR, which enhances protein synthesis. This BMP-
Smad1/5/8 axis counters the myostatin/activin-Smad2/3 
axis, inhibiting muscle wasting (Winbanks et al., 2013). 
Thus, increased signalling via activation of the BMP-
Smad1/5/8 axis offers treatment by promoting myofiber 
hypertrophy and preventing pathology-associated muscle 
wasting. 
 
Meteorin-like Protein (Metrnl) 
 
      Metrnl is an adipo-myokine having pleiotropic 
functions in adipose tissue. It induces the browning of 
white adipose tissue and reduces insulin resistance 
(Bilski et al., 2022). It is expressed in high levels in 
intestinal epithelial cells (Li et al., 2016) and skeletal 
muscle post-exercise. It promotes the regeneration of 
injured muscle via Stat3/IGF-1 signalling (Schmid et al., 
2021). Baht et al. proved that Metrnl induces 
macrophage-dependent IGF-1 production, which directly 
affects muscle satellite cell proliferation (Baht et al., 
2020). This caused an anti-inflammatory response and 
aided in the muscle regeneration process.  
 
Interleukins (IL-6/7/15/17) 
 
      IL-15, IL-17A, IL-7, and IL-6 can also serve as 
biomarkers of sarcopenia. Positive associations have 
been observed between the severity of sarcopenia and 
IL-17A levels in the older population (Ying et al., 
2022b). IL-17A contributes to skeletal muscle atrophy 
by activating JAK2/STAT3 signalling, which results in 
myosin heavy chain loss and myotube atrophy (Ying et 
al., 2022a). Gut microbiota-derived SCFAs have been 
shown to repress IL-17 production (Dupraz et al., 2021). 
IL-6 released during exercise regulates muscles’ glucose 
and lipid metabolism (Bilski et al., 2022). It was 
previously proved that increased levels of IL-6 induce 
geriatric poor-grade inflammation, resulting in 
sarcopenia (Bano et al., 2017; Dalle et al., 2017). It was 
also found that denervation-activated STAT-3-IL-6 
signalling in fibro-adipogenic progenitors (FAPs) 
reduced skeletal muscle mass (Madaro et al., 2018). 
Since denervation associated with ageing can be 
causative of sarcopenia, this mechanism could be of 
significance in the process (Bilski et al., 2022). Also, IL-
6 activates glycogen and lipid breakdown in muscle via 
AMPK signalling. Exercise increases IL-6 levels, which 
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leads to upregulation of GLUT4 and insulin sensitivity 
in skeletal muscles (Ikeda et al., 2016). Studies have 
reported that bacterial metabolites, like SCFAs, promote 
the secretion of IL-7 in the intestinal epithelium (Paturi 
et al., 2020). IL-7 is produced by stromal cells in the 
thymus and bone marrow (West, 2019); it is also 
considered a myokine due to its expression and secretion 
from myocytes (Haugen et al., 2010). IL-7 is critical for 
muscle tissue development and helps in the 
differentiation of satellite cells into mature skeletal 
muscle cells (Severinsen and Pedersen, 2020; Bilski et 
al., 2022). Gut-microbiota depletion has been shown to 
lower the expression of IL-15 (Jiang et al., 2013). IL-15, 
which lies within the IL-2 superfamily, has been linked 
to adipose tissue-skeletal muscle crosstalk (Nielsen et 
al., 2007; Quinn et al., 2009; Bilski et al., 2022). IL-15 
was also found to facilitate muscle fibre regeneration 
and inhibit intramuscular fat infiltration through 
modulation of FAPs (Kang et al., 2018). Studies have 
proven that decreased levels of IL-15 are associated with 
sarcopenia (Bilski et al., 2022). Evidence of its declined 
levels with age further strengthens these findings. Thus, 
the levels of these interleukin myokines can be 
significant markers of muscle health.  
 
Association between the gut microbiome and muscle 
histology 
 
      Interventions targeting the gut-muscle axis have 
improved age-related degradation of muscle health 
(Picca et al., 2018). Moreover, histological changes in 
skeletal muscle provide crucial insights into muscle 
disorder pathology, aiding diagnosis and treatment 
strategies (Lau et al., 2018). Mean myofiber diameter, 
myofiber cross-sectional area, and myofiber size 
distribution are pivotal histological parameters enabling 
precise evaluation of age-related muscle loss (Lau et al., 
2018; Laghi et al., 2022). Faecal microbiota 
transplantation (FMT) from young donor rats (12 weeks) 
improved the cross-sectional area of myofibers in 
gastrocnemius and soleus muscles, which was 
significantly decreased in old rats (88 weeks) (Mo et al., 
2023). This improvement was attributed to the 
preservation of gut barrier integrity, characterized by 
enhanced levels of beneficial bacteria such as 
Lactobacillus, Akkermansia, and Lactococcus, along 
with increased production of metabolites like 
methoxyacetic acid, 3R-hydroxy-butanoic acid, and γ-
glutamyltyrosine. Histological analysis using Masson’s 
and Sirius red staining further revealed a reduction in 
interstitial fibrosis in both gastrocnemius and soleus 
muscles following FMT treatment in aged rats (Mo et 
al., 2023). Another study reported that ghrelin 
antagonization decreased protein deposition in pig 
muscles by reducing the abundance of acetate-producing 
bacteria and depleting the levels of serum amino acids 
like arginine, methionine, tyrosine, and isoleucine (Yan 
et al., 2022).  
      These findings correspond with muscle morpho-

logical changes that exhibit a significant decrease in the 
cross-sectional area of the longissimus dorsi and 
gastrocnemius muscle fibers. Furthermore, supplemen-
tation with animal protein hydrolysate (APH) induced 
positive alterations in gut microbiota and increased 
SCFA levels like isovaleric, acetic, and propionic acid, 
improving the sarcopenia phenotype by enhancing 
muscle protein synthesis (Lee et al., 2023). Also, 
hematoxylin and eosin (H&E) and Sirius Red staining 
results demonstrated a significant increase in muscle 
fiber size and reduced collagen accumulation, 
respectively. These findings were further confirmed by 
the reduction in the expression of the muscle atrophy 
marker, myostatin, in the muscle tissues of aged mice 
following supplementation with APH. 
      A recent study on C57BL/6 mice subjected to four 
weeks of antibiotic treatment revealed suppressed gut 
microbiota activity, suggesting its significant influence 
on skeletal muscles (Qiu et al., 2021). This was evident 
through results from H&E and immunofluorescence 
staining, which showed smaller myofiber size in the 
gastrocnemius muscles of treated mice compared to 
controls. Quantitative morphometric analysis further 
confirmed these effects, highlighting a higher proportion 
of myofibers with decreased mean fiber area in the 
antibiotic-treated group. Collins et al. conducted 
histological assessments of vastus lateralis muscles by 
Oil Red O and Picrosirius Red staining to assess 
alterations in muscle integrity and intramuscular lipid 
infiltration in high-fat high-sucrose diet-fed rats (Collins 
et al., 2016). They concluded that muscle fibrosis 
marked by compromised muscle integrity and increased 
intramuscular fat deposition was linked to fluctuations in 
gut microbiota composition, particularly exhibited by 
decreased abundance of Bacteroides/Prevotella species 
and systemic inflammation. Also, silk peptide 
administration in aged rats could protect against age-
related decline in lean muscle mass and muscle strength 
through gut microbiota modulation (Park et al., 2021). 
Intestinal histology results show improved gut barrier 
integrity and alterations in gut microbiota. Additionally, 
Alcian Blue-Periodic acid (AB-PAS) staining indicates 
increased mucin content in intestinal tissues and 
preservation of the mucus barrier in silk peptide-treated 
groups compared to the aged group. The muscle 
protective mechanisms were associated with high serum 
concentrations of amino acids and SCFAs, post silk 
peptide intake, in addition to decreased insulin resistance 
and inflammation. Qi et al. demonstrated the effects of 
intestinal microbiota colonization by FMT on germ-free 
(GF) piglets (Qi et al., 2021). The absence of microbiota 
led to decreased muscle function and a reduction in 
myogenic transcription factors, MyoG and MyoD. The 
H&E staining of longissimus dorsi muscle sections 
revealed thinner muscle fibers in the GF piglets as 
compared to FMT and normal piglets. Immuno-
histochemical analysis exhibited a reduced proportion of 
slow-twitch muscle fibers in GF piglets promoted by a 
significant decrease in SCFA levels. Their results, along 
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with histological assessments, confirmed the 
contribution of gut bacteria in the maintenance of growth 
and development of host muscle tissues. These findings 
emphasize the correlation between the gut microbiome 
and muscle histology, highlighting the potential of 
interventions or mechanisms targeting the gut-muscle 
axis to alleviate age-related muscle decline. Moreover, 
they demonstrate that muscle histology could serve as a 
gold standard in studying the correlation between gut 
microbiota and muscle health. 
 
Future directions and possible intervention 
strategies 
 
Dietary intervention 
 
      Food intake declines with progressing age due to 
various geriatric factors like physiological anorexia, 
drug interactions, impairment in masticatory function, 
and changes in food preferences from energy and 
protein-rich foods to energy-dilute foods like fruits, 
grains, and vegetables (Liguori et al., 2018). Dietary 
insufficiencies are the main reason for metabolic 
diseases related to gut dysbiosis. Amino acids like 
leucine, casein and whey proteins (from milk), creatine 
monohydrate, and vitamin D have been most commonly 
studied for their role in muscle protein generation 
through the mTOR signalling pathway by regulation of 
myogenic regulatory factors (Snijders et al., 2018; Liao 
et al., 2022). Nutrient supplementation, a significant 
modulator of intestinal microbiota composition, has been 
a helpful intervention strategy to increase muscle protein 
synthesis (Picca et al., 2018; Liao et al., 2022). Dietary 
interventions for sarcopenia patients can be planned to 
meet essential requirements. It should consider adequate 
calorie consumption, metabolic profile and health status 
of the patient, physical activity level, provision of 
nutrients quality- and quantity-wise concerning 
physiological needs, and concomitant therapies. This 
should be extended for sufficient time to impact muscle 
health (Calvani et al., 2013). Research has evidenced the 
beneficial effects of the following nutritional 
supplements on ageing muscle physiology. 
 
      Proteins 
 
      The complex interplay of a wide range of factors 
maintains skeletal muscle health; however, it is mainly 
governed by the equilibrium between protein synthesis 
and breakdown. Proteins and amino acids derived from 
dietary sources play a pivotal role in maintaining optimal 
muscle protein metabolism. In the fasting state, such as 
the postabsorptive, skeletal muscle proteins are 
catabolised to release free amino acids, which can serve 
as energy substrates, be utilised in the synthesis of 
immune system, enzymes, peptide hormones and plasma 
proteins, and can also aid in gluconeogenesis (Carbone 
and Pasiakos, 2019). Also, the postprandial increase in 
amino acid levels after dietary protein ingestion 

stimulates muscle protein synthesis (Kouw et al., 2019). 
Increased protein consumption above 0.8 g/kg/day (the 
recommended dietary allowance) can effectively counter 
skeletal muscle loss. It can result in an increased appetite 
for food in the older population (Muscariello et al., 
2016). With increased protein consumption, more 
proteins reach the intestine, increasing the production of 
bacterial metabolites like BCAAs and SCFAs, both of 
which are essential mediators of muscle protein 
anabolism (Prokopidis et al., 2020). Recent studies stress 
the quality of proteins is a significant factor in 
promoting muscle health. Proteins rich in essential 
amino acids (EAAs) induce muscle protein anabolism in 
older subjects. Leucine, a crucial BCAA, induces 
molecular mechanisms promoting muscle hypertrophy 
(Perna et al., 2020). It is considered the principal dietary 
modulator of muscle protein anabolism as it can inhibit 
proteasomes by activating the mTOR pathway (Landi et 
al., 2016). Therefore, dietary sources rich in EAAs like 
lean meat, dairy-based products, lentils, peanuts, 
soybeans, and cowpeas are advised for older individuals 
suffering from sarcopenia (Landi et al., 2016). β-
hydroxy β-methyl butyrate (HMB) is an active amino 
acid metabolite of leucine, responsible for activating the 
mTOR signalling pathway in muscle (Oktaviana et al., 
2019). However, following absorption, only 5% of 
dietary leucine is metabolised to HMB, implying the 
need for direct administration of HMB to reach 
pharmacological levels to mediate its efficacy against 
sarcopenia. Recent evidence also proves that milk-
derived proteins, whey and casein, are effective proteins 
against sarcopenia as they stimulate myogenesis, and 
their combination prolongs muscle protein synthesis 
(Kanda et al., 2016). Clinical studies link high dietary 
protein consumption and progressive resistance training 
to improved muscle function in older populations. These 
findings support the need for a personalised diet plan 
with proteins rich in EAAs to be consumed in adequate 
amounts to boost muscle health and function in gut 
dysbiosis-induced sarcopenia. 
 
      Vitamin D 
 
      Decreased levels of vitamin D are linked to disease 
conditions like osteomalacia, osteoporosis, and 
osteopenia since it is an important mediator of bone 
homeostasis (Perna et al., 2020). Apart from bone-
related pathologies, several studies have linked vitamin 
D status with sarcopenia and musculoskeletal pain; also, 
there are reports of a positive correlation of vitamin D 
levels with muscle mass and strength in the older 
population (Yang et al., 2020). Vitamin D 
supplementation for eight weeks combined with BCAAs 
improved muscle strength in sarcopenia patients (Gkekas 
et al., 2021). Gut microbiota is known to stimulate 
calcium and vitamin D absorption. Vitamin D aids in the 
translocation of microbial metabolites to the host by 
maintaining intestinal epithelial barrier integrity (Li et 
al., 2021). This regulation of gut microbiota homeostasis 
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by vitamin D also modulates immune responses at 
multiple levels and minimises inflammation (Farré et al., 
2020). This immunoregulatory role also makes vitamin 
D a nutrient of significance in reducing muscle damage. 
Vitamin D is known to regulate muscle cell proliferation 
and differentiation, potentiate muscle protein synthesis, 
and transport calcium and phosphorus inside the cells via 
the Vitamin D receptor (Caballero-García et al., 2021). 
Vitamin D promotes skeletal muscle regeneration by 
reducing apoptosis in muscle cells, balancing the 
production of pro-inflammatory cytokines, like IFN-γ 
and IL-1, and anti-inflammatory cytokines, like IL-10 
and IL-13. It also increases calcium transport into the 
sarcoplasmic reticulum to facilitate muscle contraction. 
Based on growing evidence of the muscle-protective role 
of vitamin D, it is recommended that the concentration 
of 25-hydroxy vitamin D be measured in all patients 
suffering from sarcopenia, and vitamin D supplements 
(800 IU [20 μg]/day) be prescribed to all patients with 
serum concentrations below 100 nmol/L (40 ng/mL) 
(Liguori et al., 2018). Vitamin D supplementation also 
elevates the gene expression of vitamin D receptors in 
muscle tissues (Pojednic et al., 2015), which ultimately 
improves muscle fibre size in the older population 
(Cruz-Jentoft et al., 2020). A vitamin D-rich diet can 
also be consumed by sarcopenic patients. Dietary 
sources of vitamin D3 (cholecalciferol) include liver oils 
from cod, shark, and tuna, and oily fish like herring, 
sardines, and salmon, egg yolk, and meat; whereas 
dietary sources of vitamin D2 (ergocalciferol) include, 
wild mushrooms and UV-exposed fungi and yeast 
(Ljubic et al., 2020). However, in the absence of 
exposure to the appropriate amount of sunlight, vitamin 
D supplementation serves as a suitable alternative to 
recover impaired muscle health in sarcopenia.  
 
      Fatty acids 
 
      Omega-3 fatty acids, like eicosapentaenoic acid 
(EPA), docosahexaenoic acid (DHA), and α-linoleic acid 
(ALA), are recognised as possible dietary counter-
measures for sarcopenia, mainly owing to their anti-
inflammatory properties (Calvani et al., 2013; Dupont et 
al., 2019). The primary sources of omega-3 long-chain 
fatty acids, EPA, and DHA, are seafood, fish oils, krill 
oil, and algal oils; they can also be bio-synthesised from 
ALA (Bird et al., 2021). Since increased inflammatory 
responses are a hallmark of sarcopenia (Liguori et al., 
2018), oral nutrient supplementation of EPA and DHA 
could contribute to immunoregulation and affect the gut 
microbiota. An increase in the content of SCFAs 
mediates the muscle-protective action by affecting gut 
microbiota, as indicated by increased SCFAs in omega-
3, PUFA-treated Salmonella-infected mice due to an 
increase in Bacteroidetes and Bifidobacterium spp. 
(Machate et al., 2020). Another study reported that 
consuming an omega-3 PUFA-rich diet (4 g of EPA and 
DHA in combination daily) led to a significant increase 
in SCFAs, particularly butyrate-producing species like 

Blautia, Coprococcus, Bacteroides, and Roseburia 
(Ochoa-Repáraz and Kasper, 2016). Butyrate has been 
evidenced to induce protection against muscle atrophy 
and elevate muscle mass in sarcopenia patients (Kang et 
al., 2021). Omega-3 PUFAs can also be effective in gut 
dysbiosis-induced sarcopenia by mitigating the effect of 
LPS-induced pro-inflammatory cytokines and increasing 
the levels of anti-inflammatory cytokines (Liu et al., 
2015). They inhibit nuclear factor kappa (NF-κB) 
signalling pathways induced by LPS and decrease the 
expression of pro-inflammatory cytokines like TNF-α. 
They also increase the production of anti-inflammatory 
factors like IL-10, decrease IL-17 production, which is a 
pro-inflammatory mediator, and increase Treg 
differentiation, thus, mediating an overall anti-
inflammatory response that contributes to its protective 
role in sarcopenia (Fu et al., 2021).  
      CLAs are a group of 18-carbon PUFA isomers 
derived from linoleic acid, which can be obtained from 
meat and dairy products from ruminant animals like 
lamb and beef (Polidori et al., 2019). The exact 
mechanism of its muscle-protective action through 
modulation of gut microbiota is unknown to date, 
however, there is enough evidence demonstrating its 
positive role in skeletal muscle metabolism. Dietary 
supplementation of 1.2-2.0% CLA in pigs significantly 
elevated the expression of oxidative slow-twitch type I 
myofiber (Huang et al., 2014). CLA is associated with 
enhanced muscle endurance in mice and the 
upregulation of molecular biomarkers in skeletal muscle, 
which potentiate muscle growth (Kim et al., 2016).  
 
      Antioxidants 
 
      Increased oxidative stress from the reduction in 
enzymatic antioxidant protection and a surge in reactive 
oxygen species is one of the pathophysiological 
mechanisms contributing to sarcopenia-associated 
muscle loss (Bellanti et al., 2020). Chronic exposure to 
ROS can lead to microbial dysbiosis, which leads to 
inflammation and muscle atrophy. The administration of 
antioxidative agents through dietary modification can 
thus be a possible strategy to protect muscle tissue from 
oxidative damage in sarcopenia patients. Recent studies 
have proven that food-derived antioxidant compounds 
increase the composition of beneficial microbes like 
Bacteroidetes in the gut, which in turn protects the 
muscle cells of the host against oxidative stress (Rajoka 
et al., 2021). Consumption of natural antioxidants from 
fruit, vegetables, and medicinal plants increased the 
Bacteroidetes to Firmicutes ratio, which decreased 
inflammation, oxidative stress, and intestinal barrier 
dysfunction (Ni et al., 2019a). Dietary polyphenols 
obtained from food sources like cocoa, tea, coffee, 
spices, wine, fruit, and vegetables like berries, broccoli, 
carrots, spinach, beetroot, potato peel, etc., are also well-
known antioxidants, and their interaction with gut 
microbiota is being widely investigated (Aravind et al., 
2021; Rajoka et al., 2021). Polyphenols exert their 
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beneficial effect by increasing the abundance of 
beneficial bacteria, Lactobacillaceae and Bifido-
bacteriaceae, and lowering the count of pathogenic 
bacteria, like Escherichia coli, Helicobacter pylori, and 
Clostridium perfringens (Plamada and Vodnar, 2022). 
Thus, their antioxidant properties can be traced to their 
ability to improve the gut structure and balance through 
increased production of SCFAs. An antioxidant can also 
protect against oxidative damage in muscle cells by 
inhibiting free radical production and scavenging 
existing free radicals, thereby protecting against the 
oxidative chain reaction, which leads to muscle cell 
death (Eke et al., 2017; Rajoka et al., 2021). Both fat-
soluble vitamins (vitamin E) and water-soluble vitamins 
(vitamin C) inhibit oxidation. Dietary carotenoids are 
also important lipid-soluble sources of antioxidants, 
which act by scavenging free radicals, inhibiting lipid 
peroxidation, regulating transcription factors like NF-
κB, and quenching singlet oxygen (Cerullo et al., 2012). 
The primary sources of dietary carotenoids are eggs, 
salmon, fish, fruit, and vegetables like bell peppers, 
carrots, mangoes, oranges, etc. (Toh et al., 2021). Many 
studies have proven the beneficial effect of antioxidant 
supplementation in sarcopenia (Liu et al., 2021). Chronic 
antioxidant intake increases locomotor activity, elevates 
the expression of antioxidant enzyme-related genes, and 
improves the metabolic profile of muscles in mice with 
age-related muscle atrophy (Nonaka et al., 2019; 
Tsukamoto-Sen et al., 2021). 
 
      Creatine 
 
      Creatine is obtained endogenously by a reaction 
involving the amino acids methionine, glycine, and 
arginine (Dinesh et al., 2020) and exogenously from 
food sources like salmon, tuna, and lean red meat. 
Recently, the International Society of Sports Nutrition 
(ISSN) concluded that, with regards to muscle uptake 
and the capability to boost high-intensity exercise 
capacity, creatine monohydrate is the form of creatine 
that has been the most thoroughly investigated and 
clinically proven to be useful in dietary supplements 
(Kreider et al., 2022). Approximately 95% of creatine is 
stored in muscles, where two-thirds of it gets converted 
into its high-energy metabolite - phosphocreatine, and 
one-third is available as free creatine (Kreider et al., 
2017). There is plenty of evidence of the effectiveness of 
creatine supplementation on ageing muscle and bone. A 
recently conducted meta-analysis showed a significant 
increase in fat-free muscle mass and strength in ageing 
subjects supplemented with creatine (Chilibeck et al., 
2017). These results were consistent with another meta-
analysis study conducted by Devries and Philips 
(Devries and Phillips, 2014), concluding that creatine 
supplementation increased physical performance, lean 
tissue mass, and strength in 357 older subjects aged 
between 55-71 years when compared with placebo. The 
increase in lower body strength mediated by creatine in 
these studies is of particular importance as the muscle 
tissues of the lower body are more prone to wasting 

during the ageing process (Candow et al., 2019). 
Multiple cellular mechanisms can be involved to 
enhance muscle mass and function in response to 
creatine supplementation. An increase in the expression 
of genes related to myogenesis, like Myogenin and 
MRF-4 and other downstream protein kinases of the 
IGF-1/mTOR pathway (muscle protein synthesis 
pathway), protection against mitochondrial oxidative 
stress, increase in intracellular osmolarity, and potential 
anti-inflammatory action can be the possible 
mechanisms of the muscle-protective action of creatine 
(Candow et al., 2019). Gut microbiota is known to 
produce specific enzymes like creatinine deaminase and 
creatine amidinohydrolase, which breakdown creatine. 
Thus, gut microbiota potentiates the metabolism of 
creatine, which is essential for its action of supporting 
intestinal barrier function and shaping host immunity 
and metabolism. These findings have been correlated 
with the positive impact of creatine supplementation on 
muscle mass and health. The positive influence of gut 
microbiota on creatine metabolism may be a reason 
behind the protective action of creatine against age-
related muscle wasting and its positive role in promoting 
muscle strength and hypertrophy (Kitzenberg et al., 
2016). Creatine supplementation can also compensate 
for the intestinal barrier. The compromised integrity of 
the intestinal barrier due to gut dysbiosis can also be 
recovered by creatine supplementation, thus mediating 
its anti-inflammatory action, and putting a check on the 
altered immune responses that ultimately lead to 
sarcopenia. 
 
      Other nutritional supplements 
 
      Nutrients and nutritional supplements have ancillary 
effects on gut microbiome status to enhance muscle 
mass and strength in sarcopenia patients, thus proving to 
be a multimodal strategy for treating sarcopenia-induced 
muscle wasting (Banerjee et al., 2021). A high 
microbiome-accessible carbohydrate diet can promote 
gut microbiota diversity, diminish harmful bacteria, 
increase SCFA production (Xu et al., 2021a), and 
enhance muscle mass and function (Okamoto et al., 
2019; Liu et al., 2021). Curcumin enhances muscle mass 
and function in addition to sharing a symbiotic 
relationship with gut microbiota. It increases the number 
of beneficial gut microbial bacteria like Bifidobacteria, 
Lactobacilli, and butyrate-producing bacteria and 
decreases the number of pathogenic bacteria like 
Prevotellaceae, Enterobacteria, Coriobacterales, and 
Rikenellaceae. Also, relevant gut microbial strains like 
Bifidobacteria, Lactobacilli, and Enterococcus mediate 
the biotransformation of curcumin by various metabolic 
pathways like reduction, acetylation, demethylation, 
hydroxylation, and demethoxylation. The resulting 
metabolites mediate curcumin's antioxidant, anti-
inflammatory and muscle-protective action (Scazzocchio 
et al., 2020; Liu et al., 2021). Depleting magnesium 
stores with ageing also leads to sarcopenia, suggesting 
its significant role in muscle contraction and its 
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interactions with calcium to promote muscle health 
(Cruz-Jentoft et al., 2020). Its mechanisms of muscle-
protective action include enhanced muscle protein 
synthesis, increased ATP generation, maintaining 
electrolyte balance, increased oxygen uptake in muscle 
cells (Perna et al., 2020), and positive modulation of the 
intestinal microbiota (Bielik and Kolisek, 2021). 
Supplementation with kefir, which is acidic fermented 
milk with a trace amount of alcohol and lactic acid 
bacteria, changed the gut microbial composition and 
shifted it towards Bacteroidetes (beneficial bacteria) and 
reduced the proportion of harmful bacteria, Firmicutes 
and Clostridia (Hsu et al., 2018). Subsequently, the 
study also reported increased muscle strength and 
physical performance following kefir supplementation. 
Ursolic acid also has similar beneficial effects on gut 
microbiota as it decreases the Firmicutes to 
Bacteroidetes ratio and promotes the growth of SCFA-
producing bacteria in the gut (Hao et al., 2020). Several 
studies report the suppression of skeletal muscle 
wasting, stimulation of skeletal muscle synthesis, and 
increase in muscle strength following ursolic acid 
treatment through downregulation of skeletal muscle 
atrophy markers, MuRF 1 and Atrogin 1, or through 
upregulation of muscle protein synthesis stimulation via 
the Akt/mTOR pathway (Sakuma and Yamaguchi, 
2012b; Yu et al., 2017; Seo et al., 2018). The primary 
dietary sources of ursolic acid include apple peel, 
peppermint, basil, thyme, rosemary, plum, oregano, 
cranberries, and bilberries (Aprotosoaie et al., 2019). 
Oyster polypeptides have also shown muscle-protective 
properties by attenuating muscle atrophy. They regulate 
muscle protein turnover by reducing the expression of 
markers associated with protein degradation and 
mediating mitochondria biogenesis (Jeon and Choung, 
2021). They have prominent anti-fatigue effects 
attributed to their ability to regulate the abundance of gut 
microbiota and maintain a balance between the harmful 
and beneficial taxa (Xiao et al., 2020).  
 
Pharmacological intervention 
 
      Non-steroidal anti-inflammatory drugs (NSAIDs) 
 
      The chronic low-grade inflammation mediated by 
the alteration in gut microbial composition can be 
attenuated by NSAIDs, which can be therapeutic in 
preventing muscle strength loss and subsequent 
progression of sarcopenia. In a study conducted on aged 
rats, treatment with ibuprofen, an NSAID, increased 
muscle protein synthesis and decreased proteolysis (Xu 
et al., 2021b). Chronic inflammation generally has 
detrimental effects on the regeneration process mediated 
by satellite cells of skeletal muscle and can potentiate 
cell death pathways in myocytes (Walston, 2015; 
Howard et al., 2020). NSAIDs can also protect against 
inflammation either by their direct effect on the 
intestinal microbiome, i.e., by increasing the abundance 
of beneficial bacteria like Bacteroidetes and Entero-
bacteriaceae, or by recovering intestinal barrier integrity 

(Maseda and Ricciotti, 2020).  
 
      Ghrelin and ghrelin mimetics 
 
      Ghrelin is an orexigenic hormone that causes the 
secretion of growth hormone (GH) and increases 
appetite (Devesa, 2021). A study showed that ghrelin-
null mice exhibited a reduction in butyrate-producing 
bacteria, with an upregulation of muscle atrophy marker 
MuRF1 and a decrease in expression of the myogenic 
gene MyoD (Wu et al., 2020). At therapeutic doses, 
ghrelin has actions resembling GH, which is known to 
positively regulate the growth and differentiation of 
muscle cells via the GH/IGF axis. Therefore, ghrelin and 
ghrelin mimetics are potential therapies against 
sarcopenia and related muscle atrophy (Ali and Garcia, 
2014). Phase III clinical trials of anamorelin, a ghrelin 
receptor agonist, have shown significant improvement in 
the muscle mass of sarcopenia patients (Liguori et al., 
2018).  
 
      Angiotensin-converting enzyme inhibitors (ACEIs) 
 
      Studies have shown that the gavage of ACEIs 
reverses intestinal microbiota dysbiosis and increases the 
abundance of SCFA-producing bacteria, which 
positively influence muscle growth by favouring skeletal 
muscle mass retention (Xie et al., 2022). ACEIs have 
also proven effective in countering sarcopenia by 
promoting muscle blood flow, inhibiting endothelial 
apoptosis, and antioxidant activity (Ekiz et al., 2020). 
The muscle-protective mechanisms of ACEIs, along 
with their positive influence on gut microbiota, make 
this drug class an intriguing therapeutic option in gut 
dysbiosis-induced sarcopenia.  
 
      Monoclonal antibodies (MABs) 
 
      MABs like bimagrumab, infliximab, and tocili-
zumab have also appeared as promising candidates 
against sarcopenia by reversing skeletal muscle loss 
(Molfino et al., 2016). They positively influence gut 
microbiota as they improve intestinal microbiota 
dysbiosis and have a potent anti-inflammatory action 
(Garito et al., 2017; Seong et al., 2020; Zaragoza-García 
et al., 2020). Bimagrumab is an antibody against 
ActRIIB, a mediator in the muscle degradation pathway. 
This antibody has been shown to check the binding of 
myostatin and increase lean mass in animal models 
(Garito et al., 2017). Therefore, the efficacy of these 
monoclonal antibodies against gut dysbiosis-induced 
sarcopenia warrants further investigation as they could 
prove to be potential therapeutic candidates owing to 
their mechanistic role against muscle atrophy and 
enhancement of gut microbiota composition. 
 
      Regenerative medicine strategies  
 
      Another emerging therapeutic option being 
investigated in treating sarcopenia is regenerative 
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medicine strategies. Stem/progenitor cells, e.g., satellite 
cells, perivascular, muscle-derived, embryonic, and 
induced pluripotent stem cells, are delivered 
exogenously to compensate for the loss of contractile 
myofibrillar units by stimulating myogenesis (Naranjo et 
al., 2017; Neves et al., 2017; Liguori et al., 2018; Bengal 
et al., 2017). This strategy has already progressed to 
preclinical studies in mediating skeletal muscle repair; 
however, it still needs to be investigated in the clinical 
setting (Naranjo et al., 2017). Chronic inflammation is 
the major contributor to the reduced regenerative 
capacity of ageing tissues. In light of this, regenerative 
cell therapies are also being studied as possible 
modulators of inflammaging (inflammation progressing 
with age) caused by altered gut microbiota composition 
in sarcopenia (Chhetri et al., 2018).  
 
      Probiotic and prebiotic therapies 
 
      Preclinical and clinical studies have emphasised the 
administration of prebiotics and probiotics as 
supplements to recover age-related gut microbiota 
dysbiosis (Bischoff, 2016). Probiotics are defined as 
“live microorganisms, when administered in adequate 
amounts, show a health benefit on the host” and act by 
improving intestinal barrier integrity, anti-inflammatory 
action, and promoting microbiota homeostasis (Picca et 
al., 2018). On the other hand, prebiotics are “selectively 
fermented ingredients which allow specific changes 
both in the composition and/or activity in the 
gastrointestinal microbiota which benefits upon host 
well-being and health” (Picca et al., 2018). Their effect 
on gut microbiota includes an increase in butyrate-
producing bacteria, thus positively impacting skeletal 
muscle health in aged people (Liao et al., 2020). Many 
studies have shown that oral supplementation of 
probiotics modulates gut microbiota, induces protection 
against ROS and inflammatory cytokines, and, most 
importantly, increases the production of SCFAs. 
Supplementation with multiple Lactobacilli probiotics 
decreased muscle atrophy markers and inflammatory 
cytokines (Bindels et al., 2012). Lactobacillus casei 
Shirota, a unique probiotic bacterium, was recently 
proven to induce healthy gut microbiota composition, 
increased SCFA production, and improved muscle 
health, in addition to their well-established anti-ROS 
and anti-inflammatory effects (Joseph et al., 2019; 
Cervantes-Tolentino et al., 2020). A recently conducted 
study also evaluated the efficacy of this strain in 
reversing muscle impairment caused by gut microbiota 
dysbiosis in aged mice (Chen et al., 2022). The results 
proved that it successfully attenuated the onset and 
progression of sarcopenia via the gut-muscle axis. 
Administration of prebiotic formulations containing 
Faecalibacterium prausnitzii, a prominent producer of 
SCFAs, reduced systemic inflammation in mice 
(Munukka et al., 2017). Comparatively, there is little 
evidence of links between prebiotics and muscle health. 
One of the studies involved the supplementation of 

prebiotic curcumin as a nano-bubble showed an 
increase in grip strength and physical performance in 
test subjects via changes in gut microbiota composition 
(Chen et al.,  2020b). Another study proved that 
prebiotic consumption (galactooligosaccharides and 
inulin combination) led to an increase in lean body 
mass, demonstrating their positive impact on muscle 
mass (Desbuards et al., 2012). Apart from these animal 
studies, a prominent example of prebiotic supplemen-
tation was Darmocare Pre®, consisting of inulin and 
fructooligosaccharides, which positively influenced 
parameters of muscle strength like endurance capacity 
and grip strength in frail aged people (Buigues et al., 
2016). The efficacy of prebiotics has also been 
evaluated in combination with other strategies like 
faecal microbiota transplantation and dietary 
intervention (Okamoto et al., 2019). Such studies have 
also proven their positive role in improving muscle 
function via gut microbiota.  
 
      Faecal Microbiota Transplantation (FMT): 
Restoration of intestinal microbiota 
 
      The findings of Picca et al. have shown that there is 
an increase in Bifidobacteriaceae, Eggerthella, 
Pyramidobacter, and Dialister and a decrease in Slackia 
and Eubacterium in the faecal microbiota of older 
individuals, supporting the gut-muscle axis hypothesis 
and stressing the importance of restoration of faecal 
microbiota composition to improve muscle health (Picca 
et al., 2019). FMT mainly involves the administration of 
donor faeces to patients to improve their skeletal muscle 
mass and function (Qi et al., 2021). Increased grip 
strength and muscle mass were seen upon FMT from 
healthy human subjects to mice, proving the significance 
of the gut-muscle axis in sarcopenia and the efficacy of 
this strategy in countering it (Fielding et al., 2019). The 
importance of faecal microbial composition was further 
proved by shotgun metagenomics sequencing study 
performed between two groups of people belonging to 
the older community and varying in muscle mass and 
limb performance (Ticinesi et al., 2020). Microbiome 
depletion downregulates ubiquitin- mediated proteolysis 
in skeletal muscle cells in sarcopenic patients. In another 
exciting study along similar lines, the FMT from obese 
pigs to germ-free mice resulted in the replication of the 
fibre type and metabolic profile of the skeletal muscle of 
the recipients, further implying the positive impact of 
FMT on muscle health (Yan et al., 2016a). FMT has 
been considered a more radical option than supplemen-
tation with prebiotics/probiotics (Steves et al., 2016; 
Liao et al., 2020).  
 
Lifestyle and environmental interventions 
 
      Exercise 
 
      There is a lack of effective pharmacological agents 
to treat sarcopenia induced by alterations in gut 
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microbiota. To date, there has not been a single 
therapeutic approach that has shown satisfactory results. 
The most effective treatment option suggested in 
numerous studies is physical therapy or exercise to 
strengthen muscles. Exercise positively influences gut 
microbiota via an increase in beneficial microbial 
metabolites through increased biodiversity of the 
intestinal microbiome (Bressa et al., 2017; Ticinesi et al., 
2019a). Physical activity and targeted nutritional 
supplementation together hold a promising therapeutic 
approach to sarcopenia in older patients. The Sarcopenia 
and Physical fRailty IN older people: multi-componenT 
Treatment strategies (SPRINTT) project was a 
multicentre evaluator-blinded randomised controlled 
trial (NCT02582138) to evaluate the beneficial role of 
physical activity and nutritional support in older adults 
with sarcopenia (Bernabei et al., 2022). The results of 
this multicomponent intervention showed a marked 
reduction in the incidence of mobility disability in older 
patients, proving the therapeutic efficacy of this 
combination in sarcopenia-induced muscle wasting. 
Also, there are reports from many animal studies that 
exercise training improves intestinal microbiota 
composition and functional capacity, independent of diet 
(Allen et al., 2015; Mika et al., 2015; Campbell et al., 
2016; Denou et al., 2016; Mailing et al., 2019). It has 
been proven to increase the abundance of SCFAs, like 
butyrate-producing bacteria, which improve gut barrier 
integrity and modulate the host’s immune system 
(Mailing et al., 2019). Exercise training also reduces the 
ratio of Firmicutes to Bacteroidetes, which is otherwise 
harmful to muscle health (Mika et al., 2015; Denou et 
al., 2016). Human cross-sectional and longitudinal 
studies have also made similar observations. Recently, a 
survey conducted by Bressa et al. (Bressa et al., 2017), 
proved that three hours of weekly exercise increased the 
number of Faecalibacterium prausnitzii, Roseburia 
hominis, and Akkermansia muciniphila, which improves 
metabolic health and lean body mass index (Dao et al., 
2016). Similar results were obtained by Munukka et al. 
(Munukka et al., 2018), which showed that six to eight 
weeks of endurance exercise increased the levels of A. 
muciniphila and decreased the abundance of harmful 
Proteobacteria. Exercise and physical activity can prove 
to be a possible strategy in sarcopenia as it improves the 
homeostatic equilibrium in skeletal muscle through 
modulation of gut microbial diversity, along with 
multiple other mechanisms, including increased 
production of antioxidant enzymes, protein synthesis, 
anti-inflammatory functions, and levels of anabolic 
hormones (Gizard et al., 2020).  
 
      Lifestyle changes 
 
      Lifestyle habits, like reduced physical activity and 
exercise, impaired nutrition, tobacco smoking, and 
alcohol consumption, could have detrimental effects on 
skeletal muscle and accelerate the progression of 
sarcopenia (Rom et al., 2012). An inactive and sedentary 

lifestyle, which becomes more prominent with 
progressing age, leads to increased muscle atrophy and 
lowered muscle function and quality. A similar adverse 
impact is caused by dietary insufficiencies like excess 
calorie intake, and insufficient (< 20 µg/day) intake of 
vitamin D and protein. Older people are more likely to 
experience reduced appetite, leading to decreased food 
intake, which leads to reduced muscle protein synthesis 
and increased loss of skeletal muscle mass, aiding 
muscle wasting in sarcopenia. The role of nutrition and 
physical activity in modulating gut microbiota 
composition and subsequently contributing to improved 
muscle health has already been discussed in previous 
sections. Recently, a study evaluated the impact of daily 
lifestyle behaviours like food selection, time spent 
sitting, physical activity, and sleep duration in 
sarcopenic and non-sarcopenic subjects (Tzeng et al., 
2020). This study found all these lifestyle parameters 
linked to a higher risk of sarcopenia, stressing the 
importance of a balanced dietary intake, increased 
physical activity, and reduced sitting time in sarcopenia 
patients. There is direct evidence of the detrimental 
effects of alcohol consumption on the intestinal barrier 
and gut microbiota (Bajaj, 2019). Alcoholism promotes 
gut microbiota dysbiosis, increasing the taxa involved in 
compromising gut barrier integrity and promoting the 
release of inflammatory mediators (Day and Kumamoto, 
2022), which warrants the progress of sarcopenia-
induced muscle wasting. Alcohol and its metabolites 
also disturb protein homeostasis in skeletal muscle, 
which leads to sarcopenia (Dasarathy et al., 2017). 
Tobacco or cigarette smoking has manifested similar 
effects on gut microbial status. Cigarette smoking is 
known to increase the permeability of intestinal mucosa, 
which increases inflammation and insulin resistance in 
skeletal muscle (Gui et al., 2021). Cigarette smoking is 
associated with an increased chronic obstructive 
pulmonary disease (COPD) incidence. Enhanced 
cytochrome oxidase (CytOx) activity in peripheral 
lymphocytes, in turn, increases CytOx activity in 
skeletal muscles in COPD patients, leading to muscle 
atrophy (Polverino et al., 2009). It has also been stated 
that each cigarette consumed daily increases the risk of 
developing sarcopenia (Locquet et al., 2021), as smoking 
elevates the expression of genes related to impaired 
muscle protein syntheses, like myostatin and MAFbx 
(Petersen et al., 2007).  
 
      Water intake  
 
      Inadequate dietary water consumption in old age 
subjects leads to dehydration and its associated 
complications, which include sarcopenia-induced muscle 
wasting (Yoo et al., 2018). Water is considered a 
quintessential nutrient linked to sarcopenia, comprising 
approximately 76% of muscle mass (Lorenzo et al., 
2019). Drinking an adequate amount of water also has a 
significant role in shaping the human intestinal 
microbiome and is regarded as a potential source of 
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abundant and beneficial microbial diversity (Vanhaecke 
et al., 2022). However, no studies have been conducted 
to date deciphering the exact mechanism by which 
increased water intake can reverse sarcopenia and 
related muscle degradation via alterations to gut 
microbiota.  
 
      Environmental factors 
 
      Environment-related factors can also accelerate the 
progression of sarcopenia by alterations to the gut 
microbial community. These factors include 
environmental extremes like heat waves, cold or high 
altitude, ecological toxicants and pathogens, dust and 
pollutants, noise, and stress induced by external factors 
(Karl et al., 2018). The bi-directional relationship 
between the host and gut microbiota is mediated by the 

host's availability of a hospitable environment and 
nutrients. This shapes a favourable gut microbiota 
composition, which boosts the host's metabolic health by 
strengthening the gut barrier and potentiating the host’s 
immune system and function (Cani, 2012; Hooper et al., 
2012; Karl et al., 2018). Environmental stressor factors 
disturb this relationship, causing an imbalance between 
harmful and beneficial taxa of intestinal microbiota. 
Exposure to high altitudes (≥ 2500 m) causes hypobaric 
hypoxia, which induces alterations in the gut microbiota 
population, oxidative stress, and inflammation (Adak et 
al., 2014; Xu et al., 2014). Exposure to cold has also 
been evidenced to induce alterations in murine gut 
microbiota. Chevalier et al. (2015) reported an increased 
abundance of multiple taxa associated with muscle loss, 
as well as an increased ratio of Firmicutes to 
Bacteroidetes (Chevalier et al., 2015). They reduced the 
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maintaining physical fitness and skeletal muscle health in the elderly population. Prebiotic or probiotic supplementation used in the trials boosts healthy 
gut microbiota composition, which positively impacts on muscle recovery in sarcopenia patients. Created in BioRender.com.



count of Akkermansia muciniphila, which positively 
influences muscle health. Heat stress is also detrimental 
to the gut microbiome (Dokladny et al., 2016) by 
decreasing microbial diversity and impairment of the 
intestinal epithelium barrier (Pearce et al., 2014; Sohail 
et al., 2015), all of which have harmful effects on 
skeletal muscle cells. Long-term exposure to 
environmental toxicants and pollutants common to urban 
environments (soil, air, or water) has been shown to 
impact adversely on human health. Apart from causing 
respiratory illness (Sly and Bush, 2019) and cognitive 
impairments (Sullivan et al., 2018), increasing evidence 
suggests that these harmful chemicals also have an 
impact on the gut microbiota of the host (Karl et al., 
2018). These effects include increased serum levels of 
LPS and altered gut microbiota composition. Over eight 
weeks, exposure to cadmium and lead decreased the 
abundance of butyrate-producing bacteria (Breton et al., 
2013). Mice orally exposed to Benzo[a]pyrene for 28 
days resulted in a shift in the microbial community in 
mice by reducing the count of Lactobacillus and 
Akkermansia, potentially anti-inflammatory taxa that 
promote muscle health, and by decreasing the quantity 
of the pro-inflammatory bacteria Turicibacter (Ribière et 
al., 2016). Exposure to high levels of particulate matter, 
a component of air pollution, resulted in increased 
production of pro-inflammatory cytokines, reduced 
butyrate production, and increased the ratio of 
Firmicutes to Bacteroidetes (Karl et al., 2018). The 
detrimental effect of toxic environmental factors on gut 
microbiota promotes sarcopenia-induced muscle 
wasting. Efforts to minimise exposure of older 
individuals to these toxins are required to prevent muscle 
degradation. 
 
Conclusion and Outlook 
 
      Sarcopenia, owing to its multifactorial pathogenesis, 
has significant adverse implications on the quality of life 
of the older population, which extends to the social and 
economic front. Many studies have been conducted to 
date to find an ultimate treatment strategy to recover 
muscle wasting and improve the physical status of 
patients. However, the wide array of mechanisms 
involved in its pathogenesis makes it difficult to target a 
specific marker and achieve therapeutic efficacy. The gut 
microbiota has a significant role in mediating multiple 
mechanisms of sarcopenia like anabolic resistance and 
chronic inflammation. The association between intestinal 
microbiota composition and muscle health highlights 
many novel possible mediators, which may be targeted 
to reverse the metabolic implications of sarcopenia. 
Further extensive research is required to understand the 
significance of the gut-muscle axis in the patho-
physiology of age-related sarcopenia. Large sample-size 
studies need to be conducted to decipher the therapeutic 
potential of microbiota-based treatment strategies. 
Combinatorial strategies can be effective in improving 
muscle health via a multimodal approach by addressing 

gut-muscle crosstalk rather than individual treatment 
options, such as dietary supplementation, pharmaco-
logical intervention, or exercise alone. The use of novel 
pharmacological interventions, such as FMT, can be 
implemented in patients with sarcopenia, along with 
regular exercise, dietary supplements, and pre/probiotics. 
Furthermore, patients with sarcopenia can accelerate 
their recovery process with a comprehensive 
understanding of lifestyle and environmental factors. 
Fig. 3 summarises the clinical studies previously 
conducted to study the correlation between gut 
microbiota composition, physical fitness, and muscle 
health. A significant amount of research is necessary to 
understand how these other factors can modulate gut 
microbiota, which will enable physicians to make a well-
informed decision when treating age-related sarcopenia 
patients. 
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