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ABSTRACT: We finely designed a set of [2]rotaxanes with urea threads and tested as hydrogen-bonding phase-transfer catalysts in 

two different nucleophilic substitutions requiring the activation of the reactant fluoride anion. The [2]rotaxane bearing a fluorinated 

macrocycle and a fluorine-containing urea thread displayed significantly enhanced catalytic activity in comparison with the 

combination of both non-interlocked components. This fact highlights the notably beneficial role of the mechanical bond, 

cooperatively activating the processes through intercomponent hydrogen-bonding interactions. 

Mechanically interlocked molecules (MIMs),1 specially 

[2]rotaxanes, have emerged as promising ligands in metal-

mediated catalysis and as organocatalysts.2 The unique 

orthogonal entwining of the two components enables tailored 

environments around the catalytic active sites.3 Additionally, 

the stabilizing effect of the macrocycle when placed over 

different functional groups at the thread,4 coupled with the 

relative movement of the two components, makes rotaxanes 

ideal candidates for designing switchable catalysts,5 facilitating 

both activation or deactivation of catalytic sites (ON/OFF) or 

the selection of different activation modes.6 Recent 

investigations have demonstrated that organocatalysts 

embedded in [2]rotaxane architectures with benzylic amide-

based macrocycles show no decrease in their catalytic activity, 

but instead the mechanical bond enhances the efficiency of the 

interlocked catalyst.7 

Hydrogen-bonding catalysis is a prevalent activation mode in 

homogeneous organocatalysis, where small molecules with 

hydrogen bond donating groups, like diols,8 (thio)ureas,9  

 

Figure 1. a) CsF nucleophilic fluorination process under hydrogen-bonding phase-transfer catalysis (HB-PTC);14 b) Design of 

interlocked urea-based organocatalysts for HB-PTC with a cooperative activation by the mechanical bond (this work).



 

squaramides,10 or guanidinium ions, are employed.11 This 

activation mode has also been recently incorporated into a few 

examples of rotaxanes acting as interlocked catalysts.12 

Another well-known feature of hydrogen bond donors is their 

ability to interact with anions, facilitating tasks such as 

recognition or anion-binding.13 Taking advantage of this 

property, Gouverneur and coworkers have recently reported an 

asymmetric fluorination process under hydrogen-bonding 

phase-transfer catalysis (HB-PTC) using inorganic CsF as the 

nucleophilic fluoride source (Figure 1a).14 Their initial studies 

with monourea derivatives as catalysts indicated the 

convenience of activating the urea function with fluorine-

containing N-aryl groups to satisfactorily catalyze the process, 

whereas non-activated ureas were found to be inactive, due to 

their disability of transporting insoluble CsF into the organic 

solution. Inspired by that work, we designed a series of 

hydrogen-bonded rotaxanes 2 featuring a urea group at the 

thread serving as the hydrogen-bond donor catalytic site. 

Additionally, we functionalized the isophthalamide fragments 

of the macrocycle with fluorine atoms in order to increase the 

acidity of its amide NH groups. This type of polyamide rings 

are well-known to selectively recognize anions, often in a 

volume-selective manner, based on their cavity size.15 

Consequently, our designed systems incorporate two 

components, macrocycle and thread, that could desirably shape 

an optimal environment for a cooperative interaction with the 

small fluoride anion, as shown in Figure 1b. As a result, the 

catalytic activity of the putative rotaxanes 2 under HB-PTC 

might be enhanced in comparison with the non-interlocked 

threads 1 and we hopefully expect a notable acceleration with 

the rotaxanes bearing activated fluorine-containing 

macrocycles. 

For the synthesis of Leigh-type [2]rotaxanes, a suitable 

template on the thread is essential to facilitate the assembling of 

an entwined polyamide macrocycle via a five-component 

reaction with p-xylylenediamine and an isophthloyl 

dichloride.16 We selected the glycylglycine (GlyGly) as binding 

site, previously employed for this goal in hydrogen-bonded 

rotaxane synthesis (Scheme 1).17 Reaction of the GlyGly-

containing derivative 318 with 2,2-diphenylethyl isocyanate or 

3,5-bis(trifluoromethyl)phenyl isocyanate yielded the urea-

based threads 1a and 1b, respectively (see Supplementary 

Information for full synthetic procedures). Rotaxanes 2 were 

formed in reasonable yields by subjecting threads 1 to the 

standard conditions for hydrogen-bonded rotaxane formation, 

using isophthaloyl chloride or perfluoroisophthaloyl dichloride, 

never employed for this goal.19 The presence of fluorine atoms 

on the thread and macrocycle increases the acidity of NH 

groups at both components of the rotaxanes. Computational 

calculations on the acidity of the amide groups within the 

macrocyclic rings were conducted using simplified models, 

revealing a lower pKa for the amide groups in rotaxane 2c (pKa 

= 10.6) compared to rotaxane 2b (pKa = 15.0) (see Scheme 

S4).20 The diverse modifications at both threads and 

macrocycles, with the presence or absence of activating fluorine 

atoms, enable us to compare the catalytic capability of these 

systems and if, as we initially envisioned, the mechanical bond 

can cooperatively activate phase-transfer catalysis. 

It is known that ureas (U) similar to our threads 1, dimerize in 

solution.21 Indeed, we observed a concentration-dependent 

homodimerization process of the linear urea-based thread 1b in 

solution (also at the solid state, see Supporting Information for  

 

Scheme 1. Synthesis of the interlocked systems 2 from threads 

1. Reaction conditions: i) 2,2-diphenylethyl isocyanate, 

CH2Cl2, 0 °C, 41%; ii) 3,5-bis(trifluoromethyl)phenyl 

isocyanate, THF, 25 °C, 54%; iii) p-xylylenediamine (8 equiv), 

isophthaloyl dichloride or perfluoroisophthaloyl dichloride (8 

equiv), Et3N (24 equiv), CHCl3, 25 °C, 4 h, 10% for 2a; 6% for 

2b; 10% for 2c. 

the single crystal X-ray diffraction data of 1b, Figure S1), with 

a calculated constant of 3.6 x 103 M-1 (Figures S3-4). In contrast, 

similar dimerization processes were negligible for rotaxanes 2c 

(kdim = 63 M-1) and 2b (kdim ~ 0 M-1, no changes were observed 

at the 1H NMR spectra when diluting) where the presence of the 

bulky macrocycles avoids that scenario (Figures S5-7). 

Moreover, we investigated the formation of supramolecular 

complexes between thread 1b or rotaxanes 2b,c with the 

fluoride anion through titration experiments with TBAF, by 1H 

NMR and UV-Vis spectroscopic monitoring. The 1H NMR 

spectra showed notable shifts of the urea protons (He and Hf, as 

labeled in Scheme 1) upon incremental addition of TBAF, 

indicating strong hydrogen bonding interactions with the 

fluoride anion. Moreover, signals corresponding to the NH 

amide protons at the macrocycles (HD) in rotaxanes 2 also 

underwent significant shifts, suggesting the cooperative 

participation of these protons in complexing the fluoride anion 

(see Figures S8-21). Monourea-related systems predominantly 

formed U2:F- (2:1) complexes upon interaction with fluoride 

anions.13b Accordingly, the Job plot derived from titration data 

of thread 1b clearly indicated the formation of the (2:1) 

complex 1b2:F- (Figures S14). UV-Vis spectra data well fitted 

a 2:1 model using Bindfit software,22 with association constants 

of k11 = 1.0 x 106 M-1 and k12 = 1.1 x 105 M-1 (± 8% error, Figure 

S8). In contrast, rotaxanes 2, in which the macrocycle imposes 

significant steric hindrance, were unable to form 2:1 complexes 

with fluoride anions, preferentially assembling 1:1 complexes. 

Consequently, titrations for 2b and 2c clearly indicated the 

formation of 2:F- (1:1) complexes (Figures S17 and S21), with 

UV-Vis data well-fitted to a 1:1 model, yielding association 

constants of kassoc = 3.6 x 105 M-1 (± 13% error) for 2b and kassoc 

= 2.6 x 105 M-1 (± 12% error) for 2c (Figures S10-11). 



 

Table 1. Evaluation of threads 1 and rotaxanes 2 in the HB-

PTC with CsF.a 

 

entry substrate catalyst 5 or 7 yield (%)b 

1 

4 

- 0 

2 1a 7 

3 1b 8 

4 2a 26 

5 2b 30 

6 2c 97 

7 1b+Mac 9 

8 

6c 

- 0 

9 1a 0 

10 1b 23 

11 2a 13 

12 2c 99 

aReaction conditions: 4 or 6 (0.025 mmol), CsF (1.2 equiv.), 

CD2Cl2 (0.1 mL), 25 °C, 1200 rpm stirring; CsF used as 

provided by the supplier without any prior drying; b 

Determined by 19F NMR using 4-fluoroanisole as internal 

standard; c Reactions carried out with 5 mol% of catalyst for 

10 hours. 

We next explored the catalytic activity of threads 1 and their 

respective rotaxanes 2 in the nucleophilic fluorination reaction 

of compounds 4 and 6 under HB-PTC, aiming to discern the 

impact of the mechanical bond on their respective performance 

(see optimization of the reaction conditions on Tables S1-2). By 

employing CsF as an insoluble inorganic fluoride source, no 

background reactions occurred (Table 1, entries 1 and 8).23 

Threads 1a and 1b exhibited minimal activity in both reactions, 

yielding low conversions of compounds 4 and 6 to the 

fluorinated products 5 and 7 (Table 1, entries 2-3 and 9-10). 

Comparatively, the presence of the entwined fluorinated 

macrocycle in rotaxane 2a marginally enhanced its catalytic 

activity compared to the free thread 1a (Table 1, entries 2 and 

4; 9 and 11). A similar trend was observed when comparing 

rotaxane 2b, featuring a non-fluorinated macrocycle, with its 

parent thread 1b, showing a slightly higher yield in the 

fluorinated derivative 5 by using as catalyst the interlocked 

species (Table 1, entries 3 and 5). Remarkably, rotaxane 2c, 

comprising a fluorinated urea thread and a fluorinated 

macrocycle (for a total of 14 fluorine atoms), emerged as the 

most effective catalyst for both nucleophilic fluorinations, 

yielding nearly quantitative yields of products 5 and 7 (Table 1, 

entries 6 and 12). As we hopefully expected, the mechanical 

bond, which linked both components, is crucial for the best 

catalytic performance of these systems. For the sake of further 

confirming the special role of the mechanical bond, we used an 

equimolecular mixture of free thread 1b and free fluorinated 

macrocycle (Mac) as the catalytic system, but such 

combination did not accelerate the nucleophilic fluorination 

(Table 1, entry 7). 

Having in mind that both threads 1b and rotaxanes 2b,c 

similarly complex the fluoride anion present in solution (see 

titration data with TBAF in the Supporting Information), the 

enhanced catalytic activity showed by rotaxane 2c is mainly 

attributed to its capability to facilitate the transfer of the fluoride 

anion from solid CsF (insoluble in dichloromethane) into the 

solution. As we initially hypothesized, the fluorinated 

macrocycle in 2c, featuring NH groups of high acidity, likely 

participates in intramolecular hydrogen-bonding with the 

oxygen of the urea moiety.24 This intramolecular interaction in 

2c is evident at the solid state (Figure 2a), where one 

isophthalamide unit within the ring forms two bifurcated  

 

Figure 2. a) X-ray structure of rotaxane 2c. Intramolecular hydrogen-bond lengths [Å] (and angles [°]): N5−H05···O3 2.56 (163.4); 

N6−H06···O3 2.20 (166.3); N4−H04···O6 2.02 (175). For clarity, selected hydrogens and solvent molecules have been deleted; b) 

Computed structure of the 2c:F- complex, displaying the fluoride-rotaxane interactions and selected distances: a = 1.358; b =1.498; 

c = 2.146 Å.



 

hydrogen bonds with the oxygen of the urea function. This 

cooperative interaction should enhance the affinity of the urea 

function towards the fluoride anion. Additionally, upon 

interaction with the fluoride anion, the second isophthalamide 

unit is available to establish additional hydrogen bonds with it. 

In solution, analysis of the 1H-1H NOESY spectrum of rotaxane 

2c in the presence of 1 equiv of TBAF reveals intense 

crosspeaks between some signals of the macrocycle (HF) with 

others of the bis(trifluoromethyl)phenyl stopper (Hg), indicating 

their spatial proximity once the 1:1 complex is formed (see 

Scheme 1 for lettering, Figures S22-23). This proximity is also 

observable in the 1H-19F HOESY spectrum, finding crosspeaks 

between the fluorine atoms at the macrocycle and the Hg proton 

of the stopper (see Scheme 1 for lettering, Figures S24-27). 

Upon addition of increasing amount of TBAF, the macrocycle 

tends to be closer to the urea moiety, observing a deshielding of 

the signal attributed to the Hb of the methylene group at the 

thread (see Scheme 1 for lettering, Figure S19). Computational 

simulations also revealed that the optimized structure of the 

2c:F- (1:1) complex shows a cooperative-bidentate binding 

mode in which 2c holds the fluoride atom involving the most 

acidic NH of the urea system (dF-···H = 1.358 Å, distance a in 

Figure 2b) and one NH of the isophthalamide moiety (dF-···H 

= 1.498 Å, distance b in Figure 2b). Besides, one fluorine atom 

at ortho position of one isophthalamide ring is directly 

interacting with the second NH of the urea fragment (dF···H = 

2.146 Å, distance c in Figure 2b), thus further enhancing the 

stability of the complex. Calculations also predict that the 

complexation energy of 2c:F- is higher than those of the other 

fluoride complexes tested (those with thread 1b and rotaxane 

2b), supporting that the capability of catalyst 2c to induce the 

phase-transfer of the fluoride anion is the highest of the herein 

designed catalysts (see Supporting Information). 

In summary, we successfully synthesized a series of hydrogen-

bonded interlocked urea derivatives and evaluated their efficacy 

as HB-PTC organocatalysts in two fluorination processes, by 

using CsF as the non-soluble nucleophilic fluoride source, and 

their reactivity was compared with their non-interlocked 

counterparts. As presumed, when the isophthalamide units of 

the macrocycle were substituted with electron-withdrawing 

fluorine atoms, the resulting rotaxane exhibited a spectacular 

improvement of its catalytic activity. These findings underscore 

the stark influence of the mechanical bond on the catalytic 

performance of these systems, cooperatively activating the 

process by intercomponent hydrogen-bonding. Indeed, in the 

absence of the mechanical bond, more specifically by using the 

two segregated components of the rotaxane, the non-interlocked 

thread and macrocycle, as the catalytic system the reaction did 

not occur. Our ongoing research aims to further explore the 

design of novel mechanical bonding phase-transfer catalysts, 

including their asymmetric variants, with the goal of enhancing 

the utility and versatility of mechanically interlocked catalysts. 
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