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Título: Cómo proceder cuando se violan la normalidad y la esfericidad en 
el ANOVA de medidas repetidas. 
Resumen: Las pruebas F ajustadas se han propuesto como alternativa al 
estadístico F en el ANOVA de medidas repetidas. A pesar de existir inves-
tigación previa, falta evidencia sobre el comportamiento de estos estadísti-
cos en caso de violación simultánea de normalidad y esfericidad. El objeti-
vo del presente trabajo ha sido realizar un examen detallado del error de ti-
po I y la potencia del estadístico F y los ajustes de Greenhouse-Geisser (F-
GG) y Huynh-Feldt (F-HF), manipulando el número de medidas repetidas 
(3-6), el tamaño de la muestra (10-300), la esfericidad (estimador Green-

house-Geisser de épsilon, , desde su límite inferior al superior), y la forma 
de la distribución (desde desviaciones leves a extremas de la normalidad). 
Los resultados muestran que el comportamiento de F-GG y F-HF depende 
del grado de violación de la normalidad, esfericidad y tamaño muestral. En 
general, se sugiere utilizar F-GG en caso de violación de la esfericidad y 
desviaciones leves o moderadas de la normalidad; con desviaciones graves 
de ambos, F-GG puede utilizarse con un tamaño muestral superior a 10; y 
con desviaciones extremas, este estadístico puede utilizarse con un tamaño 
muestral superior a 30. En caso de resultados discrepantes entre F-GG y F-

HF, la elección depende del valor . 
Palabras clave: Ajuste Greenhouse-Geisser. Ajuste Huynh-Feldt. Robus-
tez. Potencia. Simulación Monte Carlo. 

  Abstract: Adjusted F-tests have typically been proposed as an alternative 
to the F-statistic in repeated measures ANOVA. Despite considerable re-
search, it remains unclear how these statistics perform under simultaneous 
violation of normality and sphericity. Accordingly, our aim here was to 
conduct a detailed examination of Type I error and power of the F-statistic 
and the Greenhouse-Geisser (F-GG) and Huynh-Feldt (F-HF) adjust-
ments, manipulating the number of repeated measures (3-6), sample size 

(10-300), sphericity (Greenhouse-Geisser epsilon estimator, , from its 
lower to upper limit), and distribution shape (slight to extreme deviations 
from normality). The findings show that the behavior of F-GG and F-HF 
depends on the degree of violation of both normality, sphericity, and sam-
ple size. Overall, we suggest using F-GG under violation of sphericity and 
slight or moderate deviations from normality in all sample size; with severe 
deviations from both normality and sphericity F-GG may be used with a 
sample size larger than 10; and with extreme deviation from both normali-
ty and sphericity this statistic may be used with a sample size larger than 
30. In the event of discrepant results between F-GG and F-HF, the choice 

depends on the  value. 
Keywords: Greenhouse-Geisser adjustment. Huynh-Feldt adjustment. 
Robustness. Power. Monte Carlo simulation. 

 

Introduction 

 
The one-way repeated measures or within-subject design 
represents situations in which the dependent variable is re-
peatedly observed under different experimental conditions 
or at various time points. In this scenario, the conventional 
statistical procedure based on the general linear model is 
analysis of variance (RM-ANOVA), which uses the F-
statistic to test the statistical significance associated with the 
null hypothesis of equality of means. For a valid statistical 
decision, this test requires fulfillment of the assumptions of 
normality and sphericity. Under violations of these assump-
tions, a number of alternatives have been proposed, includ-
ing non-parametric procedures, multivariate analysis, use of 
the linear mixed model, robust statistics or bootstrap meth-
ods (Arnau et al., 2012, 2013; Livacic-Rojas et al., 2010; 
Sheskin, 2003; Wilcox, 2022). However, research has shown 
that in several areas of knowledge, RM-ANOVA is much 
more widely used than are these alternatives (e.g., Arm-
strong, 2017; Blanca et al., 2018; Goedert et al., 2013). In 
other words, although more sophisticated statistical analyses 
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exist, most applied researchers continue to use RM-
ANOVA, probably because it is widely regarded as being 
easy to apply and simple to interpret. 

Monte Carlo simulation studies are useful for analyzing 
the degree to which the violation of its underlying assump-
tions affect the Type I error and power of the F-test. Re-
garding normality, the meta-analysis by Keselman et al. 
(1996) found that the F-statistic is generally insensitive to vi-
olations of normality, a result that is in line with other re-
search (e.g., Berkovits et al., 2000; Kherad-Pajouh & Renaud, 
2015). More recently, Blanca et al. (2023a) carried out an ex-
haustive simulation study, manipulating the number of re-
peated measures (3, 4, 6, and 8), sample size (from 10 to 
300), and distribution shape (slight, moderate, and severe 
departure from normality). Their results showed, consistent 
with the previous evidence, that Type I error and power are 
not affected by violations of normality as long as sphericity is 
met. 

The violation of sphericity is known to have a more se-
vere impact than non-normality on robustness of the F-
statistic, inflating Type I error (e.g., Berkovits et al., 2000; 
Haverkamp & Beauducel, 2017, 2019; Voelkle & McKnight, 
2012). One of the procedures for controlling Type I error 
involves reducing the degrees of freedom of the F-statistic 
by a multiplicative factor called epsilon (ε), as a result of 
which it becomes a more demanding test (Box, 1954). The 
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value of ε represents the amount by which the data depart 
from sphericity, and it ranges from 1/K-1 to 1, where K is 
the number of repeated measurements. Sphericity is satisfied 
if ε is equal to 1. The further ε departs from 1 and the closer 
it approaches its lower limit the greater the violation of the 
assumption. Tests using reduced degrees of freedom are 
known as adjusted F-tests, two of which are widely used and 
available in most statistical software: the Greenhouse-
Geisser adjusted F-test (F-GG; Box, 1954; Geisser & Green-
house, 1958; Greenhouse & Geisser, 1959), whose ε estima-

tor is known as , and the Huynh-Feldt adjusted F-test (F-
HF; Huynh & Feldt, 1976), whose ε estimator is referred to 

as . 
Simulation studies exploring sphericity violation with 

normal data and a one-way design have yielded inconsistent 
results. Some have found that both F-HF and F-GG are ro-
bust to sphericity violations (Berkovits et al., 2000; Muller et 
al., 2007), whereas others report that F-HF outperforms F-
GG, especially with a large number of repeated measures and 
small sample size (Haverkamp & Beauducel, 2017, 2019; 
Oberfeld & Franke, 2013). These results contrast with other 
research and with what is stated in some classic methodolog-
ical books, in which the use of F-GG is recommended over 
F-HF (Kirk, 2013; Maxwell & Delaney, 2004; Voelkle & 
McKnight, 2012). In view of these different recommenda-

tions, Blanca et al. (2023b), taking Greenhouse-Geisser   as 
a reference, compared the performance of the F-statistic, F-
GG, and F-HF in terms of Type I error and power for dif-

ferent values of   (ranging from the lower to its upper limit), 
with 3, 4, and 6 repeated measures and sample size between 
10 and 300. For the interpretation of robustness, they used 
Bradley's (1978) criteria, both liberal and stringent. Accord-
ing to the former criterion, a test is robust if Type I error is 
between 2.5 and 7.5, while under the latter it is robust if 
Type I error is between 4.5 and 5.5, in both cases for a sig-
nificance level of 5%. The results showed that the F-statistic 

was liberal with values of   below .70. With   of .70 and 
.80, the Type I error remained within Bradley's liberal limits, 
but was slightly inflated (6-7%) compared with the two ad-

justed F-tests. With   of .90, the Type I error was around 
5%. By contrast, F-GG and F-HF were robust across all 
sphericity violation conditions, although F-HF showed 
slightly greater empirical power, in line with previous re-
search (Algina & Keselman, 1997). The use of the stringent 
criterion helped Blanca et al. (2023b) to establish a rule-of-
thumb in the event of discrepant results from the two pro-

cedures. Specifically, they recommend using F-GG for  val-

ues below .60, and F-HF for   values equal to or above .60. 
Other studies have focused on the performance of sever-

al procedures when both normality and sphericity assump-
tions are simultaneously violated. For instance, Berkovits et 
al. (2000) simulated data from a one-way design with four 
repeated measures, with small sample sizes (N = 10, 15, 30, 
and 60), non-normal distributions with different values of 
skewness (γ1) and kurtosis (γ2) (1, .75; 1.75, 3.75; and 3, 21, 

respectively), and different values of ε (.48, .57, .75, and 1). 
They found that as skewness and kurtosis increased, and 
with sample sizes equal to or less than 30, F-GG and F-HF 
could be conservative with ε of 1 and .75, but liberal with ε 
of .57 and .48. At sample sizes of 60, F-GG and F-HF were 
robust to all violations of normality and sphericity. Oberfeld 
and Franke (2013) included designs with 4, 8, and 16 repeat-
ed measures, lognormal and chi-square distributions with 
two degrees of freedom, different structures of the covari-
ance matrices with ε equal to .50 and 1, and sample sizes be-
tween 3 and 100. With non-normal data, no pattern was 
found that defined the performance of F-GG and F-HF. 
Both could be conservative or liberal, depending on the 
sample size, number of repeated measures, and type of co-
variance matrix.  

In summary, the results from simulation studies suggest 
that: a) non-normality does not affect the F-statistic as long 
as sphericity is met; b) sphericity, irrespective of normality, 
has serious consequences on the test's robustness, although 
the two adjusted F-tests may be valid alternatives; and c) 
there are no clear guidelines when simultaneous violations of 
normality and sphericity occur, as the impact seems to de-
pend on other factors, such as the degree of sphericity viola-
tion and sample size. The purpose of the present study was 
therefore to conduct a detailed examination of the Type I er-
ror and power of the F-statistic, F-GG, and F-HF under a 
greater number of conditions than have been analyzed in 
previous studies, including different numbers of repeated 
measures, a wide range of non-normal distributions and 
sphericity violations, and small, medium and large sample 
sizes. For Type I error, we analyze 4807 conditions, with K = 
3, 4, and 6, and including sample sizes from 10 to 300, values 

of    from its lower limit to .90 as a function of K, and 11 
distributions from slight to extreme deviations from nor-
mality. For power analysis, we analyze 3040 conditions, con-
sidering designs with K = 3, 4, and 6, two mean patterns for 
each K, and four non-normal distributions (slight, moderate, 
severe, and extreme). Our ultimate goal with this study was 
to clarify the conditions under which the above statistics can 
be used in the event of simultaneous violation of normality 
and sphericity. 
 

Methods 
 
A simulation study was carried out using the interactive ma-
trix language (IML) module of SAS 9.4. Data were generated 
using a series of macros constructed for this purpose. For 
the generation of non-normal data we used the procedure 
proposed by Fleishman (1978), which applies a polynomial 
transformation that simulates data with specific values of 
skewness and kurtosis. Unstructured covariance matrices 

with different values of  were generated. The probability of 
the values associated with the F-statistic, F-GG, and F-HF 
was obtained using PROC GLM of SAS. For each condition, 
we performed ten thousand replications. 
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Type I Error 
 

The variables manipulated for a one-way design were as 
follows: 
1.  Number of repeated measures (K): The repeated 

measures were K = 3, 4, and 6. 
2.  Total sample size: The sample sizes considered were 10, 

15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 
210, 240, 270, and 300, a range that covers small, medi-
um, and large samples. 

3.  Epsilon ( ): Values ranged approximately, depending on 
the number of repeated measures, between the lower 
limit and values close to 1 (K = 3: .50, .60, .70, .80, .90; K 
= 4: .33, .40, .50, .60, .70, .80, .90; and K = 6: .20, .30, .40, 

.50, .60, .70, .80, .90). These  values were estimated fol-
lowing the Greenhouse-Geisser procedure (Box, 1954; 
Geisser & Greenhouse, 1958; Greenhouse & Geisser, 
1959). 

4.  Shape of the distribution: Eleven different distributions 
were used, both known and unknown, chosen from among 
those considered by Blanca et al. (2023a), with skewness and 
kurtosis values ranging from slight to extreme deviations 
from normality. Table 1 shows their characteristics. Blanca et 
al. (2013) found that 80% of real data presented values of 
skewness and kurtosis ranging between -1.25 and 1.25. Dis-
tributions 1-5 were selected based on this finding. Distribu-
tions 6-11 were included to represent well-known distribu-
tions with more severe departure from normal distribution 
which have been typically used in simulation studies and are 
also representative of real data (Bono et al., 2017; Micceri, 
1989). 
 
Table 1 
Skewness (γ1) and kurtosis (γ2) coefficients for each simulated distribution. 

Distribution        Type γ1 γ2 

1             - 0 0.8 
2             - 0.8 0 
3             - 0.4 0.8 
4             - 0.8 0.4 
5             - 1 1 
6 Gamma (α = 4) 1 1.50 
7 Double exponential 0 3 
8 Chi-squared (8 d.f.) 1 3 
9 Gamma (α = 2) 1.41 3 
10 Exponential 2 6 
11 Gamma (α = 0.75) 2.31 8 

 
We recorded Type I error rates, which reflect the per-

centage rejection of the null hypothesis when the differences 
between the means of the repeated measures are set to zero 
at the 5% significance level. Bradley's (1978) liberal criterion 
was used to interpret the results, according to which a pro-
cedure is robust if the Type I error rate is between 2.5% and 
7.5% for a nominal alpha of 5%. We also considered Brad-
ley’s (1978) stringent criterion, whereby a procedure is ro-

bust if the Type I error rate is between 4.5% and 5.5% for a 
nominal alpha of 5%. If the Type I error rate is below the re-
spective lower limit, the procedure is considered conserva-
tive, while if it is above the respective upper limit, it is con-
sidered liberal. 

 
Empirical Power 
 
To analyze empirical power, we selected mean values to 

give a medium effect size, f ≈ 0.25. The number of repeated 

measures (K), sample sizes, and epsilon values (  ) were the 
same as those for Type I error. The other variables manipu-
lated were as follows: 

1. Pattern of means: For all repeated measures (K = 3, 4, 
and 6) we used a linear pattern in which the means 
increase linearly and proportionally to each other (e.g., 1, 
1.25, 1.50, 1.75). In addition, for K = 3 we used a pattern 
of means in which one of the means was different from 
the means of the other repeated measures (e.g., 0, 0, 1). 
With K = 4 and 6, we also used a pattern in which half of 
the means were different and equal to each other (e.g., 0, 
0, 1, 1; 0, 0, 0, 1, 1, 1). 

2. Shape of the distribution: Distributions 3, 6, 9 and 11 
(see Table 1) were chosen, representing slight (γ1 = .4 
and γ2 =.8), moderate (γ1 = 1, γ2 = 1.50), severe (γ1 = 
1.41, γ2 = 3), and extreme deviation from normality (γ1 = 
2.31, γ2 = 8). 
Empirical power was calculated using the non-centrality 

parameter for each pattern of means at a significance level of 
5%. The non-centrality parameter is the distance between 
the distributions of the null and the alternative hypothesis. 
For power calculations, we used the expected values of the 
epsilon estimator for the Greenhouse-Geisser and Huynh-
Feldt tests to compute the degrees of freedom for the non-
central F (Muller & Barton, 1989). 

 

Results 
 

Empirical Type I Error Rates 
 
In order to summarize the results, descriptive statistics 

for empirical Type I error rates were collapsed for all K (3, 
4, and 6) with distribution shapes and epsilon values that 
showed the same behavior for the F-statistic, F-GG, and F-
HF. Tables 2-3 display the results found with distributions 
1-8, Tables 4-5 with distribution 9, and Tables 6-7 with dis-
tributions 10-11. Table 8 shows the results for epsilon equal 
to .90 for all distributions. Table 9 displays the percentage 
robustness of the F-statistic, F-GG, and F-HF according to 
Bradley’s (1978) stringent criterion. Detailed tables are avail-
able as supplementary material.  
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Table 2 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N across distributions 1-8 (γ1 ≤ 1, γ2 ≤ 3) for all K (3, 4, and 6) and  ≤ .60. Type I error rates > 7.5 

are in bold (liberal). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 7.24 16.28 10.55 2.34 3.20 6.74 5.18 0.93 4.18 7.44 6.03 0.78 
15 7.20 15.98 10.18 2.13 3.90 6.68 5.20 0.72 4.36 6.94 5.70 0.60 
20 7.20 15.50 10.05 2.12 3.52 6.40 5.23 0.65 4.42 6.80 5.58 0.56 
25 6.80 15.74 9.91 2.12 3.72 6.30 5.09 0.57 4.14 6.50 5.37 0.51 
30 7.10 14.63 9.91 1.95 4.18 6.18 5.20 0.47 4.26 6.36 5.42 0.42 
40 7.28 14.64 9.73 1.96 4.20 6.02 5.07 0.41 4.20 6.22 5.23 0.38 
50 6.82 14.75 9.68 1.96 4.18 6.06 5.07 0.41 4.22 6.12 5.19 0.39 
60 7.04 14.64 9.62 1.94 4.08 5.76 5.02 0.38 4.34 6.04 5.12 0.36 
70 7.24 14.58 9.67 1.89 4.34 6.08 5.06 0.33 4.48 6.08 5.15 0.32 
80 6.72 14.22 9.57 1.85 4.18 5.88 5.05 0.36 4.34 5.96 5.12 0.34 
90 6.84 14.28 9.61 1.78 4.52 5.68 5.05 0.27 4.56 5.82 5.12 0.27 
100 6.58 14.34 9.58 1.90 4.10 5.88 5.05 0.35 4.14 5.96 5.11 0.34 
120 6.96 14.60 9.52 1.86 4.14 5.66 4.96 0.34 4.22 5.76 5.02 0.33 
150 6.54 14.26 9.50 1.86 4.04 6.02 4.99 0.38 4.08 6.11 5.03 0.37 
180 6.96 14.02 9.53 1.79 4.08 5.80 4.99 0.31 4.08 5.80 5.03 0.31 
210 6.76 13.88 9.45 1.82 3.96 5.72 4.94 0.34 3.96 5.72 4.97 0.34 
240 6.92 13.99 9.53 1.75 4.20 5.74 5.00 0.32 4.22 5.76 5.02 0.32 
270 6.72 13.98 9.47 1.84 4.04 5.80 4.98 0.32 4.10 5.82 5.01 0.31 
300 6.67 14.46 9.49 1.94 4.34 6.02 4.97 0.31 4.42 6.02 4.99 0.31 
Total 6.54 16.28 9.71 1.95 3.20 6.74 5.06 0.47 3.96 7.44 5.22 0.50 

 
Table 3 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N across distributions 1-8 (γ1 ≤ 1, γ2 ≤ 3) for all K (3, 4, and 6) and  = .70 and .80. Type I error 

rates > 7.5 are in bold (liberal). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 5.46 7.68 6.56 0.60 2.50 5.08 3.83 0.72 4.36 6.12 5.18 0.41 
15 5.48 7.78 6.58 0.54 3.32 5.24 4.26 0.54 4.48 5.90 5.16 0.33 
20 5.46 8.14 6.55 0.51 3.40 5.34 4.42 0.51 4.38 5.76 5.13 0.35 
25 5.54 7.36 6.43 0.49 3.60 5.44 4.46 0.41 4.40 5.62 4.99 0.30 
30 5.48 7.86 6.52 0.51 3.66 5.28 4.60 0.45 4.26 5.68 5.06 0.34 
40 5.36 7.84 6.55 0.59 3.78 5.50 4.70 0.37 4.28 5.76 5.04 0.36 
50 5.52 7.82 6.54 0.58 4.00 5.54 4.72 0.36 4.32 5.82 5.03 0.36 
60 5.36 7.74 6.47 0.56 4.18 5.40 4.75 0.27 4.50 5.62 4.96 0.27 
70 5.32 7.64 6.51 0.55 3.94 5.62 4.79 0.38 4.14 5.76 5.00 0.32 
80 5.38 7.56 6.57 0.52 4.04 5.50 4.86 0.31 4.26 5.64 5.04 0.32 
90 5.68 7.30 6.45 0.45 3.84 5.48 4.79 0.35 4.08 5.62 4.95 0.34 
100 5.40 7.58 6.43 0.50 4.24 5.36 4.79 0.28 4.34 5.43 4.92 0.27 
120 5.54 7.70 6.49 0.46 4.32 5.50 4.86 0.30 4.40 5.66 4.98 0.29 
150 4.94 7.56 6.38 0.59 3.92 5.42 4.76 0.32 3.94 5.48 4.84 0.34 
180 5.24 7.78 6.51 0.54 4.28 5.58 4.86 0.29 4.36 5.58 4.95 0.30 
210 5.58 7.32 6.45 0.44 4.28 5.42 4.84 0.26 4.36 5.42 4.91 0.26 
240 5.66 7.60 6.51 0.46 4.38 5.54 4.93 0.29 4.44 5.58 4.98 0.29 
270 5.77 7.90 6.49 0.52 4.18 5.86 4.92 0.36 4.30 5.96 4.97 0.37 
300 5.38 7.34 6.45 0.54 4.36 5.56 4.90 0.28 4.42 5.68 4.95 0.29 
Total 4.94 8.14 6.50 0.52 2.50 7.60 4.69 0.47 3.94 7.62 5.00 0.34 
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Table 4 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N with distribution 9 (γ1 = 1.43, γ2 = 3) for all K (3, 4, and 6) and  ≤ .60. Type I error rates > 7.5 

are in bold (liberal). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 8.67 17.31 11.64 2.67 3.99 7.88 6.32 1.35 5.96 8.73 7.26 0.88 
15 8.45 16.26 11.02 2.51 3.88 7.14 6.03 1.08 4.93 7.42 6.63 0.75 
20 7.89 15.96 10.65 2.44 3.98 7.03 5.92 0.94 4.91 7.08 6.33 0.67 
25 7.77 14.99 10.47 2.09 4.78 6.66 5.92 0.61 5.48 6.81 6.21 0.47 
30 7.84 15.26 10.45 2.32 4.50 6.68 5.75 0.70 5.04 6.68 6.00 0.55 
40 7.52 14.93 10.06 2.19 4.32 6.41 5.50 0.57 4.72 6.44 5.66 0.48 
50 7.11 13.88 9.96 2.03 4.47 5.97 5.37 0.49 4.71 5.98 5.51 0.40 
60 7.66 15.04 9.96 2.17 4.65 5.87 5.35 0.41 4.88 5.88 5.46 0.33 
70 7.66 14.45 9.99 2.05 4.98 6.00 5.41 0.32 5.02 6.00 5.50 0.29 
80 7.46 14.30 9.76 2.06 4.92 5.63 5.28 0.26 5.00 5.70 5.35 0.23 
90 7.38 14.25 9.81 2.01 4.84 5.74 5.29 0.27 5.04 5.76 5.34 0.23 
100 7.53 14.11 9.81 1.92 4.73 5.73 5.26 0.31 4.98 5.80 5.33 0.26 
120 7.88 14.11 9.78 1.85 4.82 5.51 5.22 0.21 4.94 5.51 5.27 0.18 
150 7.02 13.99 9.60 2.06 4.50 5.59 5.08 0.31 4.56 5.63 5.11 0.30 
180 7.32 14.06 9.53 1.97 4.67 5.39 5.09 0.23 4.73 5.39 5.12 0.23 
210 7.07 13.97 9.50 2.05 4.80 5.37 5.02 0.20 4.83 5.37 5.06 0.19 
240 7.20 13.95 9.63 2.07 4.69 5.64 5.22 0.28 4.71 5.68 5.25 0.27 
270 7.46 13.74 9.42 1.95 4.75 5.43 5.06 0.20 4.78 5.43 5.08 0.20 
300 7.80 13.77 9.66 1.86 4.37 5.48 5.11 0.31 4.37 5.48 5.13 0.32 
Total 7.02 17.31 10.04 2.11 3.88 7.88 5.43 0.66 4.37 8.73 5.61 0.72 

 
Table 5 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N with distribution 9 (γ1 = 1.43, γ2 = 3) for all K (3, 4, and 6) and  = .70 and .80. Type I error rates 

> 7.5 are in bold (liberal). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 5.91 7.81 6.65 0.79 2.88 4.54 3.81 0.73 4.66 5.73 5.02 0.37 
15 5.42 7.26 6.48 0.69 3.10 4.81 4.06 0.61 4.51 5.60 4.90 0.39 
20 5.90 7.46 6.44 0.57 3.57 5.21 4.33 0.56 4.50 5.80 4.93 0.47 
25 5.63 7.40 6.78 0.68 3.92 5.39 4.62 0.64 4.54 5.85 5.17 0.48 
30 5.95 7.14 6.64 0.46 4.02 5.02 4.55 0.46 4.48 5.48 4.99 0.39 
40 5.81 7.32 6.52 0.64 4.23 5.15 4.61 0.32 4.53 5.39 4.94 0.32 
50 5.73 6.83 6.28 0.38 3.82 5.01 4.43 0.38 4.26 5.16 4.71 0.31 
60 5.75 6.78 6.39 0.37 4.17 5.07 4.70 0.36 4.37 5.21 4.91 0.33 
70 6.20 7.24 6.59 0.37 4.43 5.09 4.80 0.24 4.78 5.14 4.98 0.14 
80 6.01 7.61 6.67 0.59 4.66 5.05 4.90 0.14 4.81 5.37 5.08 0.23 
90 5.77 7.43 6.57 0.59 4.63 5.14 4.87 0.21 4.77 5.20 4.99 0.17 
100 5.61 6.73 6.42 0.43 4.42 5.13 4.77 0.28 4.57 5.25 4.88 0.27 
120 6.28 6.78 6.59 0.20 4.50 5.22 4.95 0.26 4.75 5.28 5.07 0.22 
150 5.97 7.26 6.59 0.55 4.50 5.39 4.94 0.35 4.66 5.39 5.03 0.30 
180 5.55 7.57 6.46 0.70 4.09 5.31 4.84 0.42 4.18 5.39 4.91 0.43 
210 5.96 7.28 6.53 0.45 4.76 5.12 4.98 0.14 4.84 5.16 5.04 0.12 
240 5.83 7.18 6.41 0.51 4.59 5.16 4.80 0.20 4.63 5.16 4.84 0.19 
270 6.16 7.68 6.67 0.58 4.65 5.28 5.04 0.23 4.69 5.36 5.10 0.24 
300 5.38 7.06 6.28 0.57 4.43 5.08 4.73 0.21 4.46 5.09 4.77 0.21 
Total 5.38 7.81 6.52 0.52 2.88 5.39 4.67 0.48 4.18 5.85 4.96 0.31 
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Table 6 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N across distributions 10-11 (γ1 = 2, γ2 = 6; γ1 = 2.31, γ2 = 8) for all K (3, 4, and 6) and  ≤ .60. 

Type I error rates > 7.5 are in bold (liberal). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 8.56 19.76 13.40 3.33 3.44 11.81 8.19 2.51 5.25 12.32 9.17 2.07 
15 8.34 18.58 12.50 2.82 4.02 10.07 7.78 1.87 5.13 10.20 8.33 1.61 
20 8.46 17.37 11.75 2.59 4.26 9.26 7.17 1.49 5.18 9.33 7.56 1.27 
25 8.48 16.58 11.40 2.34 4.68 8.55 6.87 1.22 5.20 8.59 7.17 1.05 
30 8.50 16.30 11.16 2.21 4.63 7.92 6.62 1.04 5.33 8.04 6.87 0.86 
40 7.94 15.35 10.72 2.22 4.74 7.50 6.30 0.85 5.05 7.50 6.48 0.75 
50 7.87 15.43 10.47 2.12 4.33 7.31 6.09 0.80 4.71 7.32 6.22 0.73 
60 7.88 15.31 10.38 2.13 4.76 7.06 5.98 0.70 4.98 7.17 6.09 0.64 
70 7.63 15.13 10.27 2.19 4.80 6.78 5.78 0.58 5.09 6.78 5.88 0.51 
80 7.97 14.62 10.28 1.98 4.89 6.75 5.82 0.47 5.08 6.75 5.90 0.41 
90 7.80 14.88 10.20 1.96 4.84 6.26 5.70 0.39 4.99 6.40 5.76 0.36 
100 7.87 14.23 10.09 1.96 4.67 6.30 5.61 0.42 4.84 6.37 5.68 0.38 
120 7.35 14.03 9.92 1.87 4.63 6.31 5.44 0.35 4.80 6.31 5.51 0.32 
150 7.26 14.54 9.91 1.94 4.72 6.27 5.39 0.37 4.72 6.27 5.43 0.36 
180 7.44 14.03 9.81 1.81 4.77 5.94 5.35 0.35 4.85 5.94 5.38 0.33 
210 7.39 13.71 9.66 1.79 4.57 5.58 5.25 0.29 4.64 5.62 5.28 0.27 
240 7.24 13.82 9.65 1.83 4.76 5.63 5.23 0.25 4.84 5.64 5.26 0.23 
270 7.38 14.24 9.75 2.02 4.72 5.98 5.24 0.36 4.75 5.98 5.26 0.35 
300 7.56 13.83 9.70 1.80 4.43 5.76 5.21 0.33 4.52 5.76 5.24 0.32 
Total 7.24 19.76 10.58 2.37 3.44 11.81 6.05 1.29 4.52 12.32 6.23 1.36 

 
Table 7 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N across distributions 10-11 (γ1 = 2, γ2 = 6; γ1 = 2.31, γ2 = 8) for all K (3, 4, and 6) and  = .70 

and .80. Type I error rates > 7.5 are in bold (liberal), those < 2.5 are in italics (conservative). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 4.97 7.99 6.46 1.00 2.18 4.93 3.33 0.86 3.60 6.19 4.50 0.76 
15 5.34 7.52 6.41 0.78 2.52 5.17 3.77 0.80 3.82 5.87 4.56 0.63 
20 5.44 7.62 6.45 0.72 3.12 5.26 4.03 0.68 4.01 5.83 4.60 0.58 
25 5.76 7.66 6.56 0.68 3.49 5.58 4.25 0.67 4.15 6.01 4.75 0.60 
30 5.42 7.54 6.54 0.64 3.66 5.26 4.37 0.56 4.30 5.77 4.79 0.48 
40 5.87 7.29 6.46 0.43 3.82 5.44 4.43 0.54 4.32 5.78 4.77 0.46 
50 6.02 7.41 6.65 0.54 4.09 5.52 4.63 0.45 4.39 5.80 4.89 0.41 
60 5.63 7.42 6.45 0.57 4.00 5.15 4.62 0.33 4.36 5.31 4.84 0.27 
70 5.70 7.45 6.60 0.58 4.34 5.20 4.76 0.29 4.57 5.31 4.95 0.24 
80 5.44 7.35 6.47 0.60 4.34 5.36 4.68 0.31 4.45 5.48 4.84 0.32 
90 5.91 7.11 6.45 0.39 4.30 5.10 4.72 0.28 4.45 5.23 4.86 0.24 
100 5.64 6.97 6.41 0.45 4.11 5.11 4.60 0.33 4.35 5.24 4.74 0.27 
120 5.93 7.45 6.51 0.53 4.24 5.13 4.74 0.26 4.42 5.18 4.85 0.25 
150 5.65 7.44 6.44 0.58 4.36 5.24 4.74 0.25 4.40 5.30 4.83 0.25 
180 5.71 7.37 6.49 0.53 4.47 5.37 4.87 0.31 4.57 5.40 4.94 0.30 
210 5.60 6.81 6.37 0.38 4.20 5.01 4.72 0.27 4.34 5.10 4.79 0.25 
240 5.76 7.29 6.58 0.43 4.57 5.37 4.91 0.27 4.65 5.43 4.96 0.27 
270 5.51 7.80 6.60 0.59 4.50 5.40 4.97 0.24 4.54 5.50 5.02 0.24 
300 5.40 7.66 6.57 0.56 4.50 5.26 4.89 0.24 4.52 5.33 4.93 0.25 
Total 4.97 7.99 6.50 0.58 2.18 5.58 4.53 0.61 3.60 6.19 4.81 0.41 
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Table 8 

Type I error rates (in percentages) for the F-statistic, F-GG, and F-HF by N across distributions 1-11 for all K (3, 4, and 6) and  = .90. Type I error rates > 7.5 are in bold (lib-
eral), those < 2.5 are in italics (conservative). 

N 
F F-GG F-HF 

Min Max M SD Min Max M SD Min Max M SD 

10 4.75 6.04 5.41 0.34 1.45 4.84 3.18 0.89 3.00 5.42 4.41 0.55 
15 4.94 6.22 5.59 0.33 2.02 4.94 3.71 0.79 3.17 5.38 4.68 0.58 
20 5.10 6.38 5.50 0.32 2.39 5.34 3.90 0.67 3.30 5.66 4.64 0.46 
25 5.00 6.19 5.54 0.27 2.86 5.26 4.14 0.67 3.59 5.56 4.74 0.47 
30 5.04 6.34 5.65 0.32 2.89 5.00 4.31 0.54 3.67 5.52 4.84 0.39 
40 4.48 6.30 5.56 0.36 3.24 5.26 4.37 0.45 3.82 5.44 4.80 0.37 
50 4.80 6.26 5.57 0.32 3.52 5.52 4.52 0.46 4.10 5.76 4.87 0.40 
60 4.74 6.42 5.63 0.39 3.60 5.52 4.60 0.39 4.00 5.64 4.91 0.38 
70 5.18 6.02 5.53 0.20 3.78 5.06 4.59 0.30 4.18 5.40 4.83 0.24 
80 4.66 6.30 5.52 0.30 3.88 5.20 4.64 0.32 4.16 5.54 4.85 0.30 
90 5.14 6.60 5.61 0.36 4.10 5.48 4.70 0.35 4.38 5.70 4.90 0.33 
100 4.90 6.04 5.52 0.27 4.07 5.14 4.64 0.26 4.20 5.28 4.84 0.26 
120 4.90 5.98 5.62 0.24 4.20 5.28 4.81 0.25 4.38 5.38 4.96 0.23 
150 5.06 6.06 5.52 0.29 4.19 5.40 4.80 0.31 4.33 5.46 4.91 0.30 
180 4.58 6.68 5.54 0.41 3.98 5.78 4.79 0.37 4.10 5.90 4.91 0.37 
210 4.78 6.28 5.52 0.33 4.14 5.32 4.80 0.32 4.24 5.54 4.88 0.32 
240 4.96 6.04 5.55 0.27 4.32 5.42 4.86 0.25 4.36 5.44 4.94 0.24 
270 5.08 6.32 5.64 0.31 4.46 5.52 4.97 0.29 4.52 5.60 5.03 0.30 
300 5.16 6.26 5.62 0.27 4.52 5.52 4.95 0.26 4.63 5.60 5.02 0.25 
Total 4.48 6.68 5.56 0.32 1.45 5.78 4.49 0.65 3.00 5.90 4.84 0.39 

 
Considering Bradley’s (1978) liberal criterion, and with 

distributions 1-8 (with γ1 up to 1 and γ2 up to 3), the F-

statistic is liberal with   ≤ .60 and, in some conditions, with 

  = .70 and .80. F-HF and F-GG are robust in all cases. 
With distribution 9 (with γ1 = 1.41 and γ2 = 3), the F-

statistic is liberal with  ≤ .60, but F-HF and F-GG are gen-

erally robust, except with small sample size (N = 10). With    
= .70 and .80, the F-statistic is liberal in some cases, whereas 
F-GG and F-HF are robust. 

With distributions 10-11 (with γ1 = 2 or 2.31 and γ2 = 6 

or 8), the F-statistic is liberal with  ≤ .60, and F-HF and F-
GG are also liberal with sample sizes equal to or below 30. 

With  = .70 and .80, the F-statistic is liberal in some cases, 

F-GG can become conservative with N = 10, and F-HF is 
robust in all conditions. 

With   = .90, and for all K and distributions, the F-
statistic was within the interval [2.5, 7.5] for considering a 
test as robust. F-GG can become conservative for N as small 
as 10, but F-HF is robust under all conditions. 

It can be seen in Table 9, which displays results accord-
ing to Bradley’s (1978) stringent criterion, that F-GG tends 
to be more conservative than F-HF, and also that the per-
centage robustness of F-GG is greater than that of F-HF 

with < .60, and lower with  ≥ .60. With  = .90, F-HF 
outperforms the F-statistic in terms of percentage robust-
ness. 

 
Table 9 
Percentage robustness of the F-statistic, F-GG, and F-HF according to Bradley’s stringent criterion. Conservative: Type I error < 4.5; robust: falls in the interval [4.5, 5.5]; liberal: > 

5.5. Shaded boxes indicate higher percentage robustness for each value of . 

  F   F-GG   F-HF  

 Conservative Robust Liberal Conservative Robust Liberal Conservative Robust Liberal 

.30a - - 100 2.4 64.6 33.0 2.4 56.5 41.1 

.40b - - 100 2.4 66.0 31.6 1.4 57.9 40.7 

.50 - - 100 10.3 75.1 14.6 1.7 72.7 25.6 

.60 - - 100 13.4 73.4 13.2 2.9 75.8 21.4 

.70 - - 100 23.1 75.9 1.0 6.9 84.4 8.8 

.80 - 4.0 96.0 33.7 65.6 0.8 9.9 86.3 3.8 

.90 0.2 43.4 56.5 35.9 63.3 0.8 14.2 83.1 2.7 

Note. Given that the same estimated ε value of F-GG and F-HF is reached with the lower limit of for each K, these percentages have been eliminated from 
the computation. a For K = 6; b for K = 4 and 6. 
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Empirical Power 
 
The empirical power of the F-statistic, F-GG, and F-HF 

showed the same behavior across mean patterns in each K as 
a function of distribution shape, sphericity, and N. Figures 1-
3 display empirical power for the three statistics with these 

variables collapsed by mean patterns. Table 10 shows the N 
at which a power of 80% is reached in each manipulated 
condition. We have removed the power of the F-statistic 

when   ≤ .60 because it was liberal in all conditions. De-
tailed tables are available as supplementary material. 

 
Figure 1 

Percentage empirical power as a function of distribution shape, sphericity ( ), and sample size for K = 3. In parenthesis: skewness (γ1) and kurtosis (γ2) coefficients. 
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Figure 2 

Percentage empirical power as a function of distribution shape, sphericity ( ), and sample size for K = 4. In parenthesis: skewness (γ1) and kurtosis (γ2) coefficients. 
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Figure 3 

Percentage empirical power as a function of distribution shape, sphericity ( ), and sample size for K = 6. In parenthesis: skewness (γ1) and kurtosis (γ2) coefficients. 
 

 
 

 

P
O
W
E
R 



476                                                               María J. Blanca et al. 

anales de psicología / annals of psychology, 2024, vol. 40, nº 3 (october) 

Table 10 

Sample size at which a mean power of 80% is reached as a function of distribution shape, sphericity ( ), and number of repeated measures (K) across all mean 
patterns. In parenthesis: skewness (γ1) and kurtosis (γ2) coefficients. 

  
Distribution 3 

(0.4, 0.8) 
Distribution 6 

(1, 1.5) 
Distribution 9 

(1.41, 3) 
Distribution 11 

(2.31, 8) 

K  F F-GG F-HF F F-GG F-HF F F-GG F-HF F F-GG F-HF 

3 .50 - 100 100 - 100 100 - 100 100 - 100 100 
.60 - 80 80 - 80 80 - 80 80 - 80 80 
.70 70 80 80 70 80 80 70 80 80 70 80 80 
.80 60 70 70 60 70 70 60 70 70 60 70 70 
.90 60 70 70 60 70 70 60 70 70 60 70 70 

4 .33 - 100 100 - 120 120 - 120 120 - 120 120 
.40 - 90 90 - 90 90 - 90 80 - 80 80 
.50 - 80 80 - 80 80 - 80 80 - 80 80 
.60 - 70 70 - 70 70 - 70 70 - 70 70 
.70 50 60 60 50 70 60 50 60 60 50 70 60 
.80 50 60 60 50 60 60 50 60 60 50 60 60 
.90 50 60 50 50 60 50 50 60 50 50 60 60 

6 .20 - 120 120 - 120 120 - 120 120 - 120 120 

.30 - 80 80 - 80 80 - 80 80 - 90 90 

.40 - 70 70 - 70 70 - 80 70 - 80 70 

.50 - 60 60 - 60 60 - 60 60 - 60 60 

.60 - 50 50 - 50 50 - 50 50 - 50 50 

.70 30 50 40 30 50 40 30 50 40 30 50 50 

.80 40 40 40 40 40 40 30 40 40 30 40 40 

.90 30 40 40 30 40 40 30 40 40 30 40 40 

 
Overall, power increases as sample size increases, the F-

statistic shows greater power than do the two adjusted F-
tests, and the power of F-HF is slightly greater than that of 
F-GG for small sample size as sphericity increases, especially 
for K = 4 and 6. The same profile of power for the three sta-
tistics is observed across distributions for each K. 

 
Discussion 
 
The purpose of this study was to conduct a detailed exami-
nation of Type I error and power of the F-statistic, F-GG, 
and F-HF under a wide number of conditions involving 
simultaneous violation of normality and sphericity, as may be 
encountered in real research situations. Our ultimate goal 
was to clarify the conditions in which each procedure may be 
used. To this end, we manipulated the number of repeated 
measures (K = 3, 4, and 6), sample size (from 10 to 300), 

sphericity ( , from its lower limit to .90, as a function of K), 
and shape of the distribution, from slight to extreme devia-
tions from normality. 

Overall, the results show that Type I error rates of the F-
statistic, F-GG, and F-HF depend on the degree of deviation 
from the normal distribution, the degree of sphericity viola-
tion, and sample size. 

Considering Bradley’s (1978) liberal criterion, the results 
for distributions with γ1 ≤ 1 and γ2 ≤ 3 indicate that the F-
statistic tends to be liberal under violation of sphericity. F-
GG and F-HF are robust in all conditions and are closer to 
5%. Therefore, in the presence of non-normal data with the 
above values of skewness and kurtosis, both F-GG and F-

HF can be used with violations of sphericity while still en-
suring that Type I error is in the interval [2.5, 7.5]. 

For a distribution with γ1 = 1.41 and γ2 = 3, the F-
statistic shows approximately the same behavior as with the 
aforementioned distributions, although its tendency to be 
liberal increases. Overall, F-GG and F-HF are robust, but 

with  ≤ .60 and a sample size as small as 10, their Type I er-
ror can become inflated. These results suggest that with se-
vere deviations from normality and sphericity, and very small 
sample size, these adjusted-F tests should be avoided. 

With distributions representing extreme deviation from 
normality, with γ1 ≈ 2 and 6 ≤ γ2 ≤ 8, the tendency of the F-
statistic to be liberal is exacerbated. The Type I error of F-

GG and F-HF depends on the  value and sample size. With 

 ≤ .60, both these adjusted tests tend to be liberal with 
sample size equal to or less than 30, and robust with larger 

sample sizes. With  = .70 and .80, F-GG can become con-
servative with N = 10, whereas F-HF is robust in all condi-
tions 

In all distributions, when  = .90 the Type I error of the 
F-statistic and F-HF are robust, whereas F-GG can become 
conservative for N as small as 10. 

When applying Bradley’s (1978) stringent criterion of ro-
bustness to achieve a more refined analysis, the results show 
that although F-GG tends to be more conservative than F-

HF, the robustness of both procedures depends on the  

value: F-GG is superior to F-HF with  < .60, and F-HF is 

superior to F-GG with  ≥ .60. In addition, F-HF is superior 

to the F-statistic for large values of , even when  = .90. 
Regarding empirical power, the results show that power 

increases as sample size increases, and also that the F-
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statistic shows greater power than either of the two adjusted 
F-tests. These results are expected as they reflect the known 
relationship between power and sample size, and between 
power and Type I error. The power of F-HF is slightly 
greater than that of F-GG as sphericity increases for small 
sample size, especially for designs with a higher number of 
repeated measures. The same profile of power for the three 

statistics is observed across distributions, values of , and 
number of repeated measures. Power decreases with lower 

values of , which indicates that a larger sample size is need-
ed to reach a power of 80% for a medium effect size. For 

example, for K = 3 and  = .50 the sample size required is 

100, whereas for  = .90 it is 60. 
These results highlight the following issues: 

1. The F-statistic is liberal with violation of sphericity. The 
more severe the violation, the more liberal it is. This re-
sult has been consistently found in previous research 
(Berkovits et al., 2000; Blanca et al., 2023b; Box, 1954; 
Collier et al., 1967; Haverkamp & Beauducel, 2017, 2019; 
Voelkle & McKnight, 2012).  

2. The tendency toward liberality of the F-statistic with viola-
tion of sphericity is aggravated with severe violation of 
normality. Blanca et al. (2023a) found that non-normality 
does not affect robustness of the F-statistic when sphe-
ricity is met. Our finding here therefore extends 
knowledge, showing that severe non-normality does have 
an impact on robustness when sphericity is simultane-
ously violated. 

3. Overall, F-GG tends to be more conservative than F-HF. 
This has been reported previously (Blanca et al., 2023b; 
Haverkamp & Beauducel, 2017; Huynh & Feltdt, 1976; 
Oberfeld & Franke, 2013) and has led some authors to 
recommend, as a general rule, the use of F-GG over F-
HF (Kirk, 2013; Maxwell & Delaney, 2004; Voelkle & 
McKnight, 2012). 

4. Violation of normality and sphericity has an impact on the 
robustness of F-GG and F-HF with small sample size (N 
≤ 30), and both statistics tend to be liberal with severe 

violation of both normality and sphericity (  ≤ .60). 
Berkovits et al. (2000) obtained similar results, but as 
they only considered four sample sizes (10, 15, 30, and 
60), it was not possible to determine more precisely the 
sample size at which the change from liberality to ro-
bustness of these statistics occurred. 

5. Application of Bradley’s (1978) stringent criterion of ro-

bustness indicates that F-GG outperforms F-HF with  

< .60, while F-HF outperforms F-GG with  ≥ .60. This 
can help to establish guidelines for RM-ANOVA in the 
event of discrepant results from these two statistics. Our 
findings here are in line with Blanca et al. (2023b) and es-
tablish a more restrictive cut-off for the use of F-GG and 
F-HF than has been proposed previously. For example, 
Huynh and Feldt (1976) and Barcikowski and Robey 
(1984) set the threshold at .75.  

6. F-HF is slightly more powerful than F-GG for larger  
values with small sample size, although the two have 
equivalent power with large samples. This finding has 
been reported previously (Algina & Keselman, 1997; 
Blanca et al., 2023b) and may be explained by the ten-
dency of F-GG to be more conservative than F-HF.  

7. Overall, the more severe the sphericity violation, the larger 
the sample size needed to achieve 80% power for a me-
dium effect size. It is important to take this into consid-
eration when planning research. 

 
Practical recommendations 
 
A number of practical recommendations may be pro-

posed based on the results. First, in order to keep Type I er-
ror within the interval [2.5, 7.5] when conducting RM-
ANOVA, researchers should consider three key aspects: de-
gree of deviation from normality, degree of sphericity viola-
tion, and sample size. Although both F-GG and F-HF may 
be adequate alternatives to the F-statistic in some conditions, 
our recommendation, in the event that the two adjusted F-
tests lead to the same statistical decision, is to use and report 
F-GG as it shows more conservative behavior than does F-
HF. The former may be used under violation of sphericity 
and slight or moderate deviations from normality, that is, 
with asymmetry and kurtosis coefficients equal to or lower 
than 1 and 3, respectively. With severe deviations from nor-
mality, for example, with asymmetry and kurtosis coeffi-

cients around 1.40 and 3, F-GG may be used with  ≥ .70 

but with  ≤ .60 a sample size larger than 10 is required. 
With extreme deviation from normality (asymmetry and kur-
tosis coefficients around 2 and 6-8), this statistic may be 

used with  ≥ .70, and with a sample size larger than 30 for  
≤ .60. 

 As a general rule, therefore, F-GG is a suitable alterna-
tive to the F-statistic when the data are non-normally dis-
tributed and sphericity is violated, provided that the sample 
size is larger than 30. The greater the deviation from normal-
ity (high values of asymmetry and kurtosis coefficients) and 

the violation of sphericity (lower values of ), the larger the 
sample size required to ensure the robustness and adequate 
power of these procedures. A power of 80% is usually used 
when a priori analysis of sample size is performed (Cooper 
& Garson, 2016; Kirk, 2013). We encourage researchers to 
perform this a priori power analysis to estimate the sample 
size required, considering potential distributional characteris-
tics with an approximate expected value of sphericity. 
G*Power software may be especially useful for this purpose 
(Faul et al., 2007). 

There is also the question of what to do when the F-GG 
and F-HF procedures yield discrepant results. For example, 
F-GG leads the researcher to accept the null hypothesis of 
mean differences, whereas according to F-HF it should be 
rejected. In such situations, and taking the Greenhouse-
Geisser epsilon estimate as a reference, we recommend the 
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use of F-GG with  < .60 and F-HF with  ≥ .60. F-HF 

should be used even with  = .90. This rule of thumb is in 
line with that proposed by Blanca et al. (2023b), who estab-
lished it under violation of sphericity with normal data. The 

present results extend this rule to situations involving simul-
taneous violation of normality and sphericity. Figure 4 sum-
marizes the analytic strategies that follow from these rec-
ommendations. 

 
Figure 4 
Analytic strategies as a function of the results of the simulation study (γ1: skewness coefficient; γ2: kurtosis coefficient) 

 
 

It should be noted that these practical recommendations 
are only valuable under certain circumstances. Although they 
can guide a large number of real research situations, they do 
not provide a solution to scenarios in which severe violations 
of normality and sphericity coexist with samples equal to or 
less than 30 and in which the researcher is unable to increase 
the sample size. Several statistical alternatives to ANOVA 
and adjusted F-tests have been proposed, including classical 
non-parametric analysis (the Friedman test), multivariate 
analysis, the linear mixed model, and the bootstrap method. 
However, the results of simulation studies suggest that the 
behavior of these statistical procedures is far from clear un-
der the circumstances mentioned above. For example, with 
small samples the Friedman test has been found to be robust 
when sphericity is violated with normal data (Harwell & Ser-
lin, 1994; Hayoz, 2007), and also for some non-normal dis-
tributions but with spherical data (Al-Subaihi, 2000). Multi-
variate analysis has been shown to be robust with N = 25 for 
4 and 6 repeated measures and an epsilon value of .50 (Voel-
ke & McKnight, 2012), although other studies have observed 

a tendency toward liberality with N < 30 and severe viola-
tions of sphericity and normality, under which conditions 
this approach performs worse than F-GG and F-HF 
(Berkovits et al., 2000). The linear mixed model (LMM), 
which does not require fulfillment of a strict sphericity as-
sumption, although it can account for different covariance 
structures (Muhammad, 2023), has been found to perform 
worse than F-HF when the sphericity assumption is violated, 
the sample size is quite small, and the number of repeated 
measures is large (Haverkamp & Beauducel, 2017). The re-
sults of other studies also suggest that use of the Kenward-
Roger correction with the LMM does not control type I er-
ror when N < 30 (Haverkamp & Beauducel, 2019). These 
divergent results are probably due to differences in the con-
ditions manipulated in simulation studies, but overall they 
suggest that none of these procedures can reliably be consid-
ered adequate under conditions of non-normality and non-
sphericity with samples equal to or less than 30. Further re-
search is warranted to clarify the behavior of these proce-
dures under these scenarios. 
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The most promising alternative in those scenarios where 
adjusted F-tests do not provide valid results may be the 
bootstrap method. Berkovits et al. (2000) found that boot-
strap-F appeared to offer reasonable Type I error control 
under violation of both normality and sphericity, even with 
fairly small sample size. However, these authors only ana-
lyzed Type I error in a limited number of conditions, namely 
four non-normal distributions, sample size equal to or less 
than 60, and values of epsilon of .48, .57, and .75 for a one-
way design with four repeated measures. Further research is 
needed to deepen and extend knowledge of the behavior of 

this technique, examining both Type I error and power and 
increasing the number of conditions manipulated. 
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