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A B S T R A C T   

Despite decades of research and handling of semen for use in artificial insemination (AI) and other 
assisted reproductive technologies, 5–10% of selected boar sires are still considered sub-fertile, 
escaping current assessment methods for sperm quality and resilience to preservation. As end- 
product, the ejaculate (emitted spermatozoa sequentially exposed to the composite seminal 
plasma, the SP) ought to define the homeostasis of the testes, the epididymis, and the accessory 
sexual glands. Yet, linking findings in the ejaculate to sperm production biology and fertility is 
suboptimal. The present essay critically reviews how the ejaculate of a fertile boar can help us to 
diagnose both reproductive health and resilience to semen handling, focusing on methods 
-available and under development- to identify suitable biomarkers for cryotolerance and fertility. 
Bulk SP, semen proteins and microRNAs (miRNAs) have, albeit linked to sperm function and 
fertility after AI, failed to enhance reproductive outcomes at commercial level, perhaps for just 
being components of a complex functional pathway. Hence, focus is now on the interaction 
sperm-SP, comparing in vivo with ex vivo, and regarding nano-sized lipid bilayer seminal extra-
cellular vesicles (sEVs) as priority. sEVs transport fragile molecules (lipids, proteins, nucleic 
acids) which, shielded from degradation, mediate cell-to-cell communication with spermatozoa 
and the female internal genital tract. Such interaction modulates essential reproductive processes, 
from sperm homeostasis to immunological female tolerance. sEVs can be harvested, character-
ized, stored, and manipulated, e.g. can be used for andrological diagnosis, selection of breeders, 
and alternatively be used as additives to improve cryosurvival and fertility.   
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1. Introduction 

The meeting entitled “Deep Freezing of Boar Semen” (Johnson and Larsson, 1985) held at SLU-Uppsala on August 25–27, 1985 
gathered researchers aiming to disclose why fertility with cervically artificially inseminated (AI) frozen-thawed boar ejaculated 
spermatozoa could not be improved despite fourteen very active years of research, following the birth of living offspring by three 
geographically distant groups (Crabo and Einarsson, 1971; Graham et al., 1971; Pursel and Johnson, 1971). The participants were 
sadly aware of the fact that unless fertility was improved, research in the area was to decrease, despite industry demands of using 
frozen semen for gene spreading. They knew the problem was dual; the freezing process was complex and led to low survival rates of 
the thawed spermatozoa (25–30%) which, in turn, resulted in low fertility after AI, obviously requiring a review of the methods 
involved. The goal of reaching similar fertility as with liquid semen is still far, or even utopic, but already at that initial meeting some 
cues were put forward to study: the interactions between spermatozoa, seminal plasma (SP) and extenders during cooling, and the 
overall need to maintain membrane structure and function as intact as possible. Sounds familiar? It should, and the series of meetings 
of the International Conference on Boar Semen Preservation (ICBSP) following that initial conference (II-1990-Beltsville, 
III-1995-Mariensee, IV-1999-Beltsville, V-2003-Doorwerth, VI-2007-Ontario, VII-2011-Bonn, VIII-2015-Champaign, IX-2019-New 
South Wales-Australia), have highlighted the same problems, yet with just few of them being solved, at least partially, over time. One 
take home-message by the organizers of the 1985-meeting had a striking impact on us: “Always adjust techniques to basic biology” 
(Johnson and Larsson, 1985). Pointing out that “Once the biological limitations are known, a working procedure can be designed” implied 
that we need to know more about the production of mature spermatozoa and the building of semen, to wide diagnostics of sperm 
function in relation to semen handling pressure. Moreover, with fertility depending on the interaction of semen with the female genital 
tract, exploring this interplay was mandatory. Alternative methods had to be further studied and improved, including the use of chilled 
semen, of vitrified spermatozoa or even of coated-cells, and they projected a period of 5–10 years for glimpses of success ahead, a goal 
yet to be reached. 

2. The past 40 years of boar semen research: back to basics 

Research during this interval provided interesting results along with the development of novel technologies as sperm cleansing, 
sexing, manipulation, etc. Do we know better? Yes, but not in all aspects. People still consider freezing-thawing of boar semen as quasi 
experimental, with low sperm cryosurvival and a shortened life-span among surviving cells (Roca et al., 2006). It is thus not surprising 
that <1% of boar semen is used as frozen AI-doses, while above 93% of females are inseminated with liquid semen (Mellagi et al., 
2023). Breeding boars considered good and bad freezers as well as siblings with varying fertility have always been present, and we 
need to detect those most fertile. Is it then wise to think we can use the same technique to freeze semen from any boar, as we do with 
liquid semen? Do we need to know more about how that handled semen interacts with the female during and beyond insemination? 

The overwhelming fact, perhaps pivotal, is that we are still looking for markers in a physiologically fractioned ejaculate that could 
foresee both the normality of the gonads and the post-gonadal maturation organs, as well as the fertility after AI. The goal is to 
distinguish the better boars from the good ones. Many have been the attempts to describe the pig ejaculate (Rodríguez-Martínez et al., 
2009), and the relevance of using specific fractions against the increasing use of bulk-ejaculate collection (Alkmin et al., 2014; 
Pérez-Patiño et al., 2019a), but… has any of the -omics (proteomics, genomics, epigenomics, transcriptomics, metabolomics, etc.) 
provided better answers explaining fertility after AI and/or other assisted reproductive technologies (ARTs)? Has the interplay be-
tween semen and female genital tract delivered suitable biomarkers? Difficult is to grasp practices to ameliorate the man-made climatic 
changes affecting pig reproduction, including how to best raise, select and handle the sires as well as to prepare and use their AI-semen 
under this context. Perhaps most interesting is the evident track-back to basics in many of the areas displayed as concerns for nearly 40 
years ago: how do we judge normality of semen production and make best use of the indicators our results provide? Answers reside in 
disclosing where the biological limitations for potential fertility are. Surely, we need to look back to the ejaculate and decipher how 
components interplay in relation to sperm resilience to ex-corpore handling and fertility. 

The present invited essay, therefore, aims to critically review how the ejaculate of a fertile boar can help us decipher diagnostics of 
reproductive health, focusing on methods, available and on development, that could advance identification of suitable biomarkers for 
(dys)function and fertility prognosis, applicable at commercial level. Not less relevant, we focus on sperm resilience after handling and 
cryopreservation (Yeste, 2016). One of the aspects considered is the interaction of spermatozoa with SP, comparing in vivo with ex vivo 
-omics screenings. The update is, obviously, not exhaustive enough to allocate the enormous amount of research performed during the 
past 40 years, most of which has been presented -one way or another- in the past nine ICBSP-meetings, and which shall likely renew 
and advance in the current volume. 

3. The normality of boar genital anatomy and physiology is reflected in the ejaculate 

The most relevant pre-requisite for a genetically selected stud boar is the production and delivery of large numbers of spermatozoa 
in the ejaculate depicting attributes required to attain high fertility, two inherent concepts, not necessarily positively related to each 
other. In general, sires undergo rigorous reproductive controls to ensure they deliver ejaculates with a mean of 50 × 109 total sper-
matozoa, most cells depicting linear progressive motility (>70%) and normal morphology (>75%). With this basic information in the 
ejaculate we assume the boar has normal spermatogenesis and sperm maturation, thus being potentially fertile (Rodriguez-Martinez, 
2014), but -as we shall describe latter- without knowing to what level. In fact, 5–10% of the highly selected breeding boars show 
fertility outcomes below breed average and are thus considered sub-fertile (Roca et al., 2015). This evidences our inability to reliably 
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prognose levels of fertility among stud boars, often due to its multifactorial nature and the additional confounding factors involved, 
from boar management to environmental stud conditions. More comprehensive semen analyses, including omics are apparently 
needed. 

3.1. Testicular sperm production 

The anatomy of the organs involved in sperm production and the endocrinological interplay controlling male behavior has been 
extensively reviewed (Bonet et al., 2013). Likewise, has Flowers recently made an excellent review of the factors affecting ejaculate 
production (season, photoperiod, nutrition, semen collection frequency, management, etc.) (Flowers, 2022). Boar sperm production 
obviously concerns the complex process of spermatogenesis (Swierstra, 1968). The seminiferous tubules, surrounded by a basal lamina 
and peritubular myoid cells are embedded in a capillary-rich interstitial stroma of connective tissue including macrophages and cells of 
the immune system and massive conglomerates of Leydig cells (LC). The pulsatile production/delivery of testosterone and other 
androgens by the LCs floods into the seminiferous tubules to modulate spermatogenesis (Berndtson, 2014). The looped tubules contain 
the seminiferous epithelium with somatic Sertoli cells (SC) and different stages of spermatogenic germ cells, from basally located 
diploid stem spermatogenic cells (SSCs) to ad-luminal haploid elongated spermatids (Swierstra, 1968). Spermatogenesis is cellularly 
highly organized within a section of the tubule, with a high degree of interaction between the SC and the spermatogenic cells, 
alongside all stages of the process (Fig. 1 a-b). The SC supports germ cells, both architectonically (allocating cells within branches of 
cytoplasmic projections) and building unique microchambers for each cell stage. Adjacent SC build lateral junctional complexes (tight 
junctions, desmosomes, gap junctions, ectoplasmic specializations, tubulo-bulbar complexes) separating two compartments: a basal 
containing the SSCs, committed undifferentiated spermatogonia and early primary spermatocytes; and an ad-luminal, containing 
meiotic/post-meiotic differentiation stages with spermatocytes (I and II) and spermatids (round to elongated). The tight junctions thus 
define a SC-barrier for immunologically foreign meiotic cells, constituting the main component of the hemo-testicular barrier (HTB) 
together with the endothelial continuous capillary bed (Luaces et al., 2023). Spermatogenesis can be separated into three processes 
where different events occur in different metabolic milieu: spermatocytogenesis, meiosis (I and II) and spermiogenesis, which shall end 
up in the delivery of testicular spermatozoa to the lumen (spermatoteleosis), all guided by the SCs. The SCs are responsible for the 
nutrition and hormonal control of the process of meiosis and subsequent differentiation, and for the selective regulation of the 
transport of relevant growth factors (i.e. GDNF, bFGF, IGF1, CSF1, WNT5A, LIF, retinoic acid, etc.) and other molecules (Garcia and 
Hofmann, 2015; Voigt et al., 2023) through the lateral junctional complexes. The niches they form are also characterized by different 
pathways controlling cellular metabolism, the basal ones being mainly glycolytic (anaerobic, converting glucose to pyruvate) con-
trasting to the ad-luminal niche where oxidative phosphorylation (i.e., aerobic) dominates (see the recent excellent article by (Voigt 
et al., 2023). Not only do these different metabolic pathways seem to promote the survival of SCCs and SC under hypoxic situations, but 
they also warrant the highly polarized SC to rule a constant flow of glycolysis-derived lactate/pyruvate to the developing germ cells, 
creating a metabolically unique, aerobic mitochondrial oxidative phosphorylation ad-luminal milieu (Voigt et al., 2023). 

Spermatogenesis is thus a complex process that includes mitotic proliferation of spermatogonia and formation of early sper-
matocytes, production of haploid round spermatids, chromatin condensation and nuclear shaping, removal of excess cytoplasm, and 
formation of the acrosome and sperm tail (Salilew-Wondim et al., 2020). A histological section of a boar testis depicts eight different 
stages of spermatogenesis (França et al., 2005; Swierstra, 1968), where each stage (in a transversal section, Fig. 1 a-b) contains four or 
five layers of germ cells associated according to a specific pattern, each representing a cell generation derived from a B spermatogonia. 
Each committed spermatogonium entering spermatogenesis gives rise to 64 testicular spermatozoa, 50 μm-long cells consisting of a 
head and a tail with specific structures (Briz and Fàbrega, 2013). Spermatozoa enter the lumen of the dual-opened seminiferous tubules 

Fig. 1. a-b: Histological sections of boar testis. In a, a partial view of two tubuli separated by the interstice (i) with numerous Leydig cells (Lc) and 
empty blood vessels (arrows, the testis was fixed by vascular perfusion). Sem epith: seminiferous epithelium, Lu: tubule lumen. In b, a higher 
magnification of the seminiferous epithelium showing the major cell types (SC: Sertoli cells, spg: spermatogonia, scyt: spermatocytes, round sptd: 
round spermatids, elong sptd: elongated spermatids; arrow: blood vessel; bl: basal lamina; Lc: Leydig cell (H&E, Photo: H. Rodriguez-Martinez). 
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Table 1 
Some significant biomarkers for sperm function and fertility in the boar ejaculate.  

Abbreviations: SP: seminal plasma, SPF: sperm-peak fraction, EpiTS: epididymis terminal segment, SRF: sperm-rich fraction. (Barranco et al., 2019; 
Casas et al., 2010; Hao et al., 2006; Kwon et al., 2014; Manásková et al., 2003; Manjarín et al., 2015; Michoset al., 2021; Rutherfurd et al., 1992; 
Vilagran et al., 2013; Zhang et al., 2023; Zhao et al., 2024; Zhu et al.,2021). 
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asynchronously, providing an overall continuous sperm release. This cyclic release of spermatozoa of each segment along the duct 
defines the spermatogenetic wave, with spermatozoa passively transported in a constant flow of testicular fluid. Boar testicular 
spermatozoa leave the epithelium every 8.6 days, thus taking 44 days for a spermatozoon to develop from a B spermatogonia (França 
et al., 2005; Malmgren et al., 1996). 

Such delicate processes as the recombination of genomic material during meiosis or the dramatic differentiation changes exposed 
by the haploid spermatids during spermiogenesis (Berndtson, 2014) can deviate from normal. A faulty spermiogenesis can result in 
morphological abnormalities easily recognized among ejaculated spermatozoa (Rodriguez-Martinez and Barth, 2007). Other modi-
fications escape morphological evaluations, being sub-cellular as the intactness of the chromatin (Didion et al., 2009) or defects in the 
masking of accessibility of the DNA for transcription. The latter include changes in chromatin configuration, DNA methylation, histone 
modifications, and the action of non-coding RNAs (ncRNAs), all regulating gene expression at fertilization -and beyond -without 
disrupting the DNA sequence and defining the epigenome, which “simply” regulates transcription (L. Zhu et al., 2021). Up to 90% of 
the genome is transcribed to some extent, depending on the availability of protein-coding messenger RNAs (mRNAs). These mRNAs are 
barely 1–2% of the total RNAs present in the spermatozoon, the rest being ncRNAs either classified into “housekeeping” RNAs (e.g., 
ribosomal RNAs, transfer RNAs, small nuclear RNAs, small nucleolar RNAs), as “regulatory” RNAs (e.g., small non-coding RNAs 
(sncRNAs), or as long non-coding RNAs (lncRNAs) involved in modulating gene expression both during spermatogenesis and after 
fertilization (Alvarez-Rodriguez et al., 2021; L. Zhu et al., 2021). The sncRNAs involved in sperm production include endogenous small 
interfering RNAs (endo-siRNAs), PIWI-interacting RNAs (piRNAs) and microRNAs (miRNAs, single-strand RNAs of 20–25 nucleotides). 
These sncRNAs are categorized depending on the involvement of the RNase III endonuclease DICER in their biogenesis. Endo-siRNAs 
and miRNAs are DICER-dependent, whereas piRNAs are DICER-independent, but predominantly expressed in tissues involved in male 
germ line development. DICER is essential for miRNA processing during haploid differentiation of germ cells, being relevant for 
stage-specific transcription during spermatogenesis, but also as post-transcriptional developmental regulators by binding -fully or 
partially- to the 3’-UTR of target mRNA. becoming associated to fertility (Martinez et al., 2022; Salilew-Wondim et al., 2020; Yadav 
and Kotaja, 2014). 

Ejaculated spermatozoa carries intact, healthy attributes (proteins, mRNAs, DNA methylation, histone modification, and miRNAs) 
that can be retrospectively related to the observed sire fertility (Rodriguez-Martinez, 2019; Rodriguez-Martinez and Larsson, 1998). 
Genomic-Wide Association Studies (GWAS) have aided to identify candidate genes associated with semen traits, including sperm 
numbers, motility and morphology (Gao et al., 2019; Y. Zhang et al., 2023; Zhao et al., 2020), rightly the same traits we currently 
routinely evaluate and that often reflect an acceptable level of sperm chromatin intactness (Khezri et al., 2019). The identification of 
miRNAs in ejaculated spermatozoa would both help disclose the roles of specific miRNAs during spermatogenesis as well as to indicate 
relations to fertility. 

Fertility, a major phenotypic difference among males, has increased during decades of selective breeding. Fertility depends on 
genetic variation (i.e., via single nucleotide polymorphisms, SNPs) (Krupa et al., 2023; Wang et al., 2023) as well as modifications of 
epigenetic factors. The latter include mostly environmentally induced (including management factors) changes at histone level, DNA 
methylation of CpG dinucleotides and/or the action of ncRNAs which are “memorized” by the offspring (Casas and Vavouri, 2014). We 
have recently identified genetic variation through GWAS in parallel with epigenetic differences of Differentially Methylated Regions 
(DMR) combining Genotyping by sequencing and methylated DNA immunoprecipitation in the genome of spermatozoa from stud 
boars with good semen attributes and specific and well-documented differences in fertility (farrowing rate) and prolificacy (litter size), 
categorized as with high (HF), low (LF) and unknown fertility (Pértille et al., 2021). A total of 165,944 SNPs were identified and 
explained 14–15 % of variance among selection lines, while 58 % of the variance between HF and LF could be explained by 169 SNPs 
at P ≤ 0.00015 level. The greatest differences in DMRs between HF- and LF-boars across the genome appeared located in chromosomes 
3, 9, 13, and 16; most DMRs being hypermethylated in LF-boars, with significant seasonal variation. These non-invasive methylome 
analyses on ejaculated spermatozoa discerning fertility levels in stud boars can be applied for detailed andrological diagnosis to aid sire 
selection via genomic differences, even among breeding lines (Table 1). It clearly waives using repeated biopsies damaging the 
well-vascularized testicular capsule (Ohanian et al., 1979) and the HTB, affecting sperm production. 

We have characterized the differential abundance of miRNAs in ejaculated pig spermatozoa collected from three different fractions 
of the pig ejaculate comparing breeding HF- and LF-boars after AI, using high-output small RNA sequencing. Four sperm miRNAs were 
identified (miR-182, miR-1285, miR-191, and miR-96) which target genes playing key roles in fertility, sperm survival or immune 
tolerance, and whose expression differed between HF- and LF-boars (Martinez et al., 2022). Again, we seem now capable of monitoring 
spermatogenesis by screening RNA material present in ejaculated spermatozoa and relevant for their fertility (Table 1). Furthermore, 
recent relevant findings have summarized the screening of blood-circulating miRNAs specifically linked to pig spermatogenesis (Y. 
Zhang et al., 2023). Some of the miRNAs (miR-10a, miR-125b, let-7 f, miR-186) were highly expressed in pig spermatogonia, 
pachytene spermatocytes, round spermatids, and spermatozoa (Chen et al., 2017). Likewise, SC could be followed by not less than 18 
miRNAs, including miR-7173, miR-217, miR-362, miR-202, and miR-149 (Chen et al., 2020), reinforcing our capacity to 
non-invasively monitor spermatogenesis in boars. 

3.2. Post-gonadal sperm maturation 

The so-called testicular spermatozoa (free elongated spermatids) have negligible motility and capacity to fertilize. Their sperm 
head (1/10th of the length) is flat (racket-like) and consists, apart from the nucleus, of an acrosome containing molecules involved in 
the binding to and the penetration of the glycoprotein-rich zona pellucida (ZP) during fertilization. The tail, which attaches to the 
sperm head via an implantation fossa (where an undifferentiated centriole is located), consists of a flagellum surrounded in the mid- 
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piece of about 80 mitochondria of a fibrous column-like sheath in the principal piece, to become “naked” by the tapered end piece (Briz 
and Fàbrega, 2013). The entire spermatozoon is covered by a "regionalized" plasma membrane, defining specific and distinguishable 
subdomains of a lipid bilayer including structural and attached proteins that can anchor and adsorb external proteins, peptides and 
other molecules (Tsai and Gadella, 2009). As soon as the testicular spermatozoa freely enter the tubular lumen, the membrane 
sub-domains are subjected to modifications of surface proteins, in preparation for events during fertilization. The most dramatic 
changes occur in the subdomains of the sperm head (Tsai and Gadella, 2009) particularly the apical ridge, considered to be in ca-
pacitated spermatozoa bearing an intact acrosome the sole area that -via specific receptors- able to recognize the ZP three constituent 
glycoproteins (ZPGs, ZP2, ZP3, ZP4), binding to a heterocomplex of ZP3 and ZP4) (Yonezawa et al., 2012). Such concept has been 
challenged by experiments using intact cumulus-cell coated oocytes inseminated with acrosome-reacted spermatozoa retrieved from 
the peri-vitelline space of zygotes, implying that other subdomains can be involved (Buffone et al., 2014). Once bound, the acrosome 
reaction occurs, which facilitates ZP-penetration and entry to the peri-vitelline space and binding to the oolemma. The large 
pre-equatorial domain, covering the front 2/3 parts of the acrosome participates in the acrosome reaction, while the adjacent equa-
torial segment recognizes and fuses to the oolemma during fertilization. The rest of the plasmalemma covering the neck, the midpiece 
and the rest of the sperm tail is also heterogeneous and participates in other events related to interaction with the surroundings and the 
regulation of sperm motility (Gautier and Aurich, 2022; Lehti and Sironen, 2017). Hence, testicular spermatozoa are 
membrane-interactive under the influence of numerous molecules, free or included in extracellular vesicles (EVs), from the testis to the 
ejaculate (Roca et al., 2022). The major process of maturation towards fertilization capacity is registered along the epididymis. 

3.3. Sperm maturation and storage in the epididymis 

The testicular spermatozoa are transported to the rete testis as immature cells, unselected in terms of defective morphology, 
negligible motility, and lack of fertilizing capacity (Crabo, 1985). They thereafter enter the 60–65 m long, highly convoluted 
epididymal duct. The organ is anatomically divided into caput, corpus and cauda areas which only partially relate to the functional 
events better defined as initial, middle, and terminal segments; where testicular fluid resorption, sperm maturation respectively 
storage of mature spermatozoa occur (Glover and Nicander, 1971) (Fig. 2). While the major rate of removal of defective spermatozoa is 
done in the rete testis and the initial segment, it continues along the epididymis alongside increases of the spermatocrit. The increasing 
bolus of the so-far immotile spermatozoa is moved forward by peristaltic contractions issued by the smooth muscle beneath the 
epithelium. We have recently reviewed the development, anatomy, and overall physiology of the boar epididymis (Rodriguez-Martinez 
et al., 2022). Very remarkable modifications occur during this10–12 days long transport all conspicuously occurring in the middle 
epididymal segment (Glover and Nicander, 1971) (Fig. 2). Here, the spermatozoa mature morphologically, which includes nuclear 
compaction by inherent reduction of disulfide bridges between cysteine residues of protamines, cytoskeletal rearrangements, and 
displacement of the cytoplasmic droplet from a proximal neck location to a distal annular placement. As well, subtle membrane 
modifications occur with evident changes in the composition of proteins, leading to the achievement of forward motility and, 
particularly, the acquisition of fertilizing capacity (Rodriguez-Martinez et al., 1990a). The estrogen- and androgen-dependent pseu-
dostratified lining epithelium of the duct builds a protective epididymal-blood barrier, providing peripheral immune tolerance to 
testicular spermatozoa despite displaying xeno-antigens (Pleuger et al., 2020). In spite of its apparent morphological simplicity, the 

Fig. 2. Sperm maturation in the boar epididymis occurs mainly in the mid-segment, where the lining epithelium releases extracellular nanovesicles, 
containing lipids, proteins and nucleic acids that can interact with the epithelium itself (autocrine action), bind to maturing spermatozoa or stay in 
the epididymal fluid. T: testis, initial segment at the epididymis head, terminal segment at the cauda and the adjacent first segment of the ductus 
deferens. Organs in scrotal position, with the epididymis tail dorsally (Created with BioRender.com). 
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epithelium rules electrolyte and pH luminal fluid changes, and produces novel proteins and sncRNAs (Rodriguez-Martinez et al., 
2022), modifying luminal spermatozoa during epididymal transit. Also in this segment, the cholesterol content of the sperm membrane 
decreases along with an increase in the amounts of long-chain polyunsaturated fatty acids (PUFAs), changes related to the increase in 
membrane fluidity that characterizes mature spermatozoa (Gautier and Aurich, 2022). Through mechanisms of both merocrine and 
apocrine secretion, the lining epithelium sequentially modifies the multiple generations of spermatozoa that leave the testis to 
accumulate as “mature” spermatozoa in the terminal segment (cauda epididymis and the adjacent first convoluted segment of the 
ductus deferens). In this terminal segment (Glover and Nicander, 1971) (Fig. 2), spermatozoa are kept metabolically quiescent and 
immotile, having their inbuilt instability of the plasmalemma/acrosome suppressed (Rodriguez-Martinez et al., 2022). The terminal 
segment displays a different protein and electrolyte composition than the rest of the epididymis, blood plasma, or testicular fluid 
(Einarsson, 1971). For example, osmotic pressure is high (330–360 mOsm) (Einarsson, 1971), pH is low (ca. 6) and bicarbonate levels 
are 10-fold lower than in blood (Rodriguez-Martinez et al., 1990b) contributing, together with a low oxygen content and high sper-
matocrit, to immobilize spermatozoa until ejaculation (Rodriguez-Martinez, 1991). 

In pig epididymal spermatozoa, many sncRNAs, including miRNAs, piRNAs, yRNA and tRNA-derived small RNAs (tsRNAs), are 
transcripts originating in the testes selectively retained in the epididymis (Martinez et al., 2022). These transcripts are maintained in 
ejaculated spermatozoa (Alvarez-Rodriguez et al., 2020; Curry et al., 2011; Kasimanickam and Kastelic, 2016) and beyond (through 
pregnancy days 9–15) as miR-92b-3p and miR-17–5p (Zhou et al., 2020). 

Further, the epididymal lining epithelium can deliver EVs (also called epididymosomes) to the lumen. These lipid bilayer nano-
vesicles, still ill-characterized in the pig and other species (Parra et al., 2023), are considered a major mechanism for the transfer of 
biomolecules, including proteins, to the epididymal spermatozoa (Barrachina et al., 2022) (Fig. 2). Among other known biomolecules 
affecting maturing spermatozoa, we can include the cytokine macrophage migration inhibitory factor (MIF) as a ruler of motility; 
lipoproteins, hyaluronan receptor CD44, tetraspanins, nucleic acids and many specific miRNAs, promoting oxidation-reduction and 
metabolic changes in spermatozoa (Alvarez-Rodriguez et al., 2021, 2019b; Barranco et al., 2019a; Roca et al., 2022; 
Rodriguez-Martinez et al., 2022). Epididymosomes follow the emitted spermatozoa at ejaculation, included in the small (2–5 %) 
contribution of caudal fluid to the ejaculate. Once a part of the ejaculate, epididymosomes might play another role, affecting sperm 
motility and fertilizing capacity. For instance epididymosomes could, by transferring their contents to the lining epithelium of the 
internal genital tract of the female (Padilla et al., 2023) influence the local immune responsiveness towards tolerance of sperm-xeno 
antigens (Alvarez-Rodriguez et al., 2019a; Rodriguez-Martinez et al., 2022, 2021) or even modulate post-translational events of 
epigenetic nature in relation to pregnancy and fertility (Martinez et al., 2020, 2019; Martinez and Rodriguez-Martinez, 2022). As we 
shall describe later, the presence and fold-change of specific miRNAs associated with caudal or ejaculated spermatozoa suggest these 
would be also valuable as non-invasive biomarkers for sperm maturation, function and, ultimately, for fertility. 

Fig. 3. a-d: The boar emits an ejaculate in fractions, even during natural mating (a), but the ejaculate can be collected while mounting a dummy, 
either as bulk (b) using a semi-automatic device or in three major separated fractions during operator-manual collection (c). Fractions are named 
pre-sperm (PSF), sperm-rich (SRF), where its initial 10–12 mL constitutes the sperm-peak portion (P1, ca. 25% of the total sperm numbers) and the 
postSRF (PSRF), where a clotting-gel secretion of the bulbourethral glands (BU) is finally voided (d, upper panel). The accessory sexual glands 
secrete variable amounts during ejaculation (d, upper panel), some constantly (prostate) and some in specific fractions (e.g. seminal vesicles (SV, 
protein-rich) and the BUs, in relation to the emission of spermatozoa (red line). The relative amounts of large proteins (mostly spermadhesins) in 
seminal plasma are presented in (d, lower panel) (●: PSP-I, ￭: PSP-II, ▫: AQN-1, Δ: AQN-3, ◆: AWN-1, O: AWN-2, ◇: inhibitor of acrosin/trypsin) as 
collected in consecutive samples of the boar ejaculate. 
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4. The ejaculate: how composition of fractions rules sperm function and resilience 

The voluminous boar ejaculate (250–300 mL for an adult boar) consists of spermatozoa emitted in small amounts of caudal fluid 
(2–5%) and suspended in a fluid derived from secretions of the accessory glands where seminal vesicles provide 15–20%, the bul-
bourethral glands 10–25% and the prostate the rest of the gel-free part of the SP. Different substances in the ejaculate can be used as 
markers to trace back origin and function. For example, the cauda epididymis fluid contains glyceryl phosphorylcholine (GPC) and 
alkaline phosphatase, the prostate secretion contains large amounts of electrolytes, especially sodium and chloride, the seminal vesicle 
secretion contains ergothioneine, inositol, citric acid, and fructose as well as the majority of the ejaculate proteins, while the bul-
bourethral glands secretes large amounts of sialic acid (Einarsson, 1971; Mann and Lutwak-Mann, 1981; Rodriguez-Martinez et al., 
2009). Ejaculation is fractionated, i.e., the epididymis and the accessory glands leave their secretions in a certain succession during 
natural mating (Fig. 3 a) and the same occurs during a semi-automatic collection of the bulk ejaculate (Fig. 3 b). Collecting semen 
manually (Fig. 3 c) allows the collection of three easily identified fractions, namely the clear pre-sperm-rich fraction (PreSRF) that 
mainly originates from the prostate and the bulbourethral glands containing some gel and a heavy degree of contamination by cell 
debris, urine and smegma from the preputium. The following fraction is the most easily recognized, the creamy-white sperm-rich 
fraction (SRF) mainly originating from the epididymis and the prostate. Finally, the post-sperm-rich fraction (PostSRF, PSRF) that goes 
from greyish to watery in aspect, with a decreasing sperm content alongside increasing amount of seminal vesicle secretion to mainly 
register, towards the end, a jelly-rich, tapioca-like floccular secretion from the bulbourethral glands; signaling the end of the ejacu-
lation process (Rodriguez-Martinez et al., 2009). This jelly-like secretion is considered to form a SP-coagulating plug in the cervix and 
in the corpus uterus after natural mating to limit the backflow from the uterus. If not removed during ex-corpore collection, it will 
eventually coagulate the semen. The components of the different fractions obviously mirror the gland secretions involved, preSRF 
contains mostly electrolytes, Na and Cl (urethral and prostate-dominated), the SRF increasing amounts of proteins but also of steroid 
hormones (testosterone and estrogens), GPC, fructose, glucose, inositol, citrate, bicarbonate and zinc (representing the caudal contents 
and the prostate); whereas the postSRF has increasing amounts of proteins, bicarbonate and Zn (seminal vesicles), and of Na, Cl and 
sialic acid (bulbo-urethral glands) (Mann and Lutwak-Mann, 1981). 

Comparison of the ejaculate fractions provide a clear view that sperm numbers are the greatest in the SRF decreasing steadily 
thereafter, alongside the PostSRF (Rodriguez-Martinez et al., 2009) (Fig. 3 d, upper panel). Of interest is that the large amounts of 
proteins of the boar SP, almost 40 mg/mL (Rodriguez-Martinez et al., 2011), where the large spermadhesins follow a contrasting 
pattern to sperm numbers; proteins dominate the postSRF fraction (Rodriguez-Martinez et al., 2009) (Fig. 3 d, lower panel). Over the 
past decade, a sperm peak-portion/fraction has been defined in terms of sperm numbers as the first 10 mL of the SRF (P1) where up to a 
25% of the spermatozoa in the ejaculate are emitted, and where the amounts of spermadhesins are distinctly lowest (Rodri-
guez-Martinez et al., 2009) (Fig. 3 d, lower panel). Over the years, it has also become evident that spermatozoa in this particular 
SRF-portion depict the highest resilience to sperm handling, including cryosurvival (Alkmin et al., 2014; Hossain et al., 2011; Peña 
et al., 2006; Saravia et al., 2009; Siqueira et al., 2011) and could constitute the vanguard sperm subpopulation reaching the oviductal 
sperm reservoir in vivo (Wallgren et al., 2010). This higher sperm homeostasis might relate to their fortuitous location a sperm 
peak-fraction with very low levels of spermadhesins (see Fig. 3 d, lower panel) and half of the amount of bicarbonate, a molecule 
known to destabilize the plasmalemma of the boar sperm (Rodriguez-Martinez, 1990) present in the postSRF (Saravia et al., 2009). A 
note of caution is to be raised here, the SP is -in vivo- in differential contact to spermatozoa, often briefly (for instance the vanguard 
spermatozoa are exposed mainly to prostate secretion). The SP placed by natural mating is removed from the female uterus and does 
not necessarily enter the oviduct beyond the sperm reservoir even if specific SP-proteins are attached to the plasmalemma phos-
pholipids (Müller et al., 2023) and follow spermatozoa to the oocyte, participating in fertilization (Caballero et al., 2005; Rodrí-
guez-Martinez et al., 1998). A different situation is present when either specific fractions (as the SRF) are collected and then extended 
with buffers, or the entire ejaculate is collected and spermatozoa exposed to a mixture of secretions, not necessarily close to the in vivo 
situation. This clarification becomes a point when considering that most analyses of the ejaculate are done ex-corpore, after semen is 
collected, fractionated, or in bulk. 

Classical (Mann and Lutwak-Mann, 1981) and more detailed recent studies of proteomic (Pérez-Patiño et al., 2019b, 2018), 
transcriptomic (Rodriguez-Martinez et al., 2021), genomic and metabolomic (Mateo-Otero et al., 2021) evaluations confirm that the 
boar SP contains free organic and inorganic components (Barranco et al., 2015a), hormones (Padilla et al., 2021), and large and small 
proteins and peptides (Pérez-Patiño et al., 2018). Some of these components, including metabolites, have been associated to sperm 
homeostasis and fertility and could thus be considered valuable biomarkers (see Table 1) for fertility and sperm cryotolerance. Specific 
components as the nerve growth factor-ß (NGF-ß), can stimulate ovulation (Robertson and Martin, 2022), and SP proteins can maintain 
the stability of the sperm plasma membrane and participate in the interaction of sperm with female lining epithelium and the oocyte 
vestments during fertilization (Rodriguez-Martinez et al., 2021). Some enzymes can keep reactive oxygen species (ROS) levels at 
physiological limits (Barranco et al., 2017, 2015c; Parrilla et al., 2020) or -as the proteins PSP-I and -II- stimulate invasion of poly-
morphonuclear leukocytes (PMNs) to counteract eventual pathogens and to eliminate defective and surplus spermatozoa and foreign 
proteins via phagocytosis (Rodriguez-Martinez et al., 2010). Fragile and short-lived cytokines (Barranco et al., 2019a; Padilla et al., 
2020a, 2020c) can influence the local female reproductive tract immune system to either tolerate or reject antigen-bearing sperma-
tozoa, embryos and placentae (Alvarez-Rodriguez et al., 2020, 2019b; Martinez et al., 2020). Semen, either by spermatozoa or SP 
components can dramatically change the expression of genes related to sperm function to warrant fertilization and conceptus 
development (Alvarez-Rodriguez et al., 2019a; Álvarez-Rodríguez et al., 2020; Martinez et al., 2020; Schjenken and Robertson, 2020), 
thus signaling the female immune system, the ultimate ruler for fertility. Perhaps the most interesting of these findings is the fact that, 
both in vitro (Barranco et al., 2020) and in vivo, gene expression changes appear in the mucosa of the internal genital tract of sows. In 
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vivo changes appear already after insemination in the pre- or peri-ovulatory period, as detected 24 h post mating or infusion with SP 
(Alvarez-Rodriguez et al., 2019a; Atikuzzaman et al., 2017) and are present along the different segments of the uterus, oviduct and 
particularly, of the sperm reservoir, a clearly immune-privileged compartment for vanguard spermatozoa (Rodriguez-Martinez, 2007). 
While expression of miRNAs (Álvarez-Rodríguez et al., 2024) and of crucial oxidative-reductive transcripts (Álvarez-Rodríguez et al., 
2023) also occur in the lining epithelium, the overall findings confirm earlier assumptions that semen, or even the SP per se, could 
clearly modulate the genital immunology of the female pig. When exposure to SP is done before a mating (Flowers and Esbenshade, 
1993; Robertson, 2007; Rodriguez-Martinez et al., 2009; Rozeboom et al., 2000) it appears to condition the tolerance to paternal 
antigens which, later on, may shape the fate of maternal receptivity to the hemi-allogeneic embryo (Waberski et al., 2018), promote 
the survival of the embryos and their placentae (Martinez and Rodriguez-Martinez, 2022). Moreover, SP infusion before AI was shown 
to enhance the expression of endometrial genes and pathways involved in embryo development (Gil et al., 2024; Martinez et al., 2020). 

Some different SP proteins may be related to sperm performance and fertility (Table 1). For instance, fibronectin-1 and N-acetyl-ß- 
hexosaminidase could be markers of sperm freezability (Vilagran et al., 2015; Wysocki et al., 2015) while particular proteins can be 
related to fertility (Perez-Patiño et al., 2016; Pérez-Patiño et al., 2018) (Table 1). Lipocalins (related to retinol transport, and pros-
taglandin synthesis, (Flower, 1996), lipocalin-type prostaglandin D-synthase or epididymal secretory protein-1, present in the 
sperm-peak portion have been related to boar fertility (Flowers, 2001). Glutathione peroxidase 5 (GPX5), an hydrogen peroxide 
(H2O2)-scavenging enzyme present at the highest levels in the SP-SRF, was positively associated with farrowing rate and litter size 
(Barranco et al., 2016; Novak et al., 2010). Similarly, paraoxonase type 1, a hydrolytic enzyme with protective capacity against 
oxidative stress particularly present in the sperm-peak portion was also positively related to farrowing rate (Barranco et al., 2015c) 
(Table 1). In contrast, the spermadhesin porcine SP-protein -I (PSP-I) was found negatively correlated with litter size (total piglets 
born) (Novak et al., 2010). Of interest, testing heterospermic breeding with high quality semen from stud boars displaying different 
concentrations of specific SP-proteins, revealed the 25.9 kDa/5.9 pI SP-protein as explaining 66% of the highly significant variation 
observed in the proportion of pigs sired within a litter among boars (Flowers et al., 2013, 2016). This particular protein, either possibly 
being transforming growth factor-β (TGFß active form, with a 26 kDa) or the serine protease 55 (F. Zhu et al., 2021), could promote 
fertility. Such effect could be effected by ensuring the mated/inseminated spermatozoa would maintain function in boars having large 
concentrations of this protein compared to sires which do not, or that could have more proteins with deleterious effects, for instance 
PSP-I (Novak et al., 2010). In any case, it will depend on the fraction of SP considered, as the relative proteins amounts are greater in 
some fractions than in others (Pérez-Patiño et al., 2018). 

The boar SP contains secreted biomolecules enclosed within seminal EVs (sEVs) (Fig. 4) (Foot and Kumar, 2021; Roca et al., 2022) 
in comparatively higher numbers than in blood (Skalnikova et al., 2019) which, secreted mainly by the epididymal Ms (Fig. 4 a) and 

Fig. 4. a-e: The mid segment of the pig epididymis (a, Ms), and the prostate (b, P) secrete nano-sized lipid bilayer pleomorphic (large or small) 
seminal extracellular vesicles (sEVs, c, Cryo-SEM of ejaculated sEVs isolated using size exclusion chromatography, SEC) holding a molecular cargo 
that besides affecting sperm maturation in the epididymis, can also influence the maturing/mature spermatozoa (d) and the female genital tract (e) 
affecting gene expression of immune genes. T: testis, Is: initial segment of epididymis, Ts: terminal segment, SV: seminal vesicles, BU: bulboure-
thral glands. 
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the prostate (Fig. 4 b) affect both the spermatozoa and the genital tract of mated female (Rodriguez-Martinez and Roca, 2022)(Fig. 4 
d-e). The EVs are defined according to their biogenesis as either exosomes (vesicles 30–100 nm released from cytoplasmic multi-
vesicular bodies) or ectosomes (100–1000 nm size out-budded plasma membrane vesicles) (Fig. 4 c) (Gurunathan et al., 2022; Jep-
pesen et al., 2023). Either type contains high contents of cholesterol and sphingomyelin (Piehl et al., 2013), lipids involved in the 
cryosurvival of boar spermatozoa. The EVs encapsulate fragile biological components i.e., lipids, signaling proteins, small non-coding 
and regulatory RNAs (Barranco et al., 2023). Proteins are also present in SP in free form, as already mentioned, being prone to rapid 
degradation upon exposure to SP proteases. Other enzymes present in SP, such as nucleases, can easily degrade other molecules, such 
as free RNAs. Such degradation of SP-free molecules can explain the irregular or even absent response to SP when used as an additive to 
improve sperm resilience, function, cryosurvival, or even fertility after AI (Rodriguez-Martinez and Roca, 2022). Boar sEVs are, on the 
other hand, able to survive collection, handling, and storage; preserving their contents (Barranco et al., 2024, 2023). The sEVs are able 
to interact (add, fuse, internalize) with spermatozoa (Roca et al., 2022) or the female genital tract epithelium (Aleksejeva et al., 2022), 
releasing to them loaded molecules to exert specific actions on spermatozoa, affecting capacitation and fertilizing capacity (Andrade 
et al., 2022) or even modifying the immune response of the female genital tract when exposed to paternally derived antigens (Tamessar 
et al., 2021), (Fig. 4d-e). In this regard, porcine sEVs carry cytokines (Padilla et al., 2023) and small ncRNAs, including miRNAs (nearly 
300 identified, representing 9% of total RNA) such as the fertility-related ssc-miR-10b (Xu et al., 2020); (Alvarez-Rodriguez et al., 
2020), and the modulation of immune responses by cytokines (Barranco et al., 2020)(Table 1). In fact, miRNAs found in boar sper-
matozoa (ssc-miR-503) or within small sEVs (ssc-miR-130a, ssc-miR-9) have been related to low sperm cryotolerance in boar semen, 
thus arising as potential “negative” markers for cryosurvival and hence, for decreased fertility (Pedrosa et al., 2021). 

Besides epididymosomes, EVs of other origins (most likely the prostate, i.e. prostasomes; eventually the seminal vesicles) are also 
present in the SP. This type of distinction seems to be mostly academic. Because semen fractions are per se composites of secretions (see 
Fig. 3 d, upper panel), such distinctions are difficult or even impossible requiring of intensive studies of rather difficult secretion 
isolates. Thus, it might be wise to define the EVs present in SP as one pleomorphic entity: sEVs (Parra et al., 2023). Due to their 
pleomorphism (Fig. 4 c), we should focus on concentrating research efforts on their phenotypic and compositional characterization to 
further elucidate eventual function roles (Roca et al., 2022) (Fig. 6 a). It should be noted, nonetheless, that the population of sEVs in a 
pig ejaculate, albeit heterogeneous in size and proteins (Barranco et al., 2019a), can be differentiated in subpopulations differing in 
proteomic load (Barranco et al., 2023) and probably also in RNA-cargo and lipid composition. Methods for isolation and character-
ization of EVs are evolving (Barranco et al., 2023; Chernyshev et al., 2023). 

5. The ejaculate and fertility: what are we (or should be) looking for? 

A classical, routine semen analysis, such as those performed in boar studs basically includes determining sperm numbers, motility 
and in some cases even morphology of some defects (cytoplasmic droplets, tail defects). These variables are not only readily assessed, 
but they display a clear, basic relation to fertility: a certain number of potentially fertile spermatozoa is needed for fertilization (Alm 
et al., 2006). Over the years, the industry has moved from inseminating high sperm numbers towards the use of smaller AI-doses, 
containing down to 1–2 × 109 spermatozoa (Roca et al., 2011), making more evident differences in fertility among boars, differ-
ences apparently masked by the previous use of high sperm numbers (Mellagi et al., 2023). Likewise, this decrease in sperm numbers is 
done by a higher extension of the sperm suspension, i.e. decreasing the amount of SP present in the AI-dose. Considering previous 
statements, this disclosure of fertility differences among boars might be dual, including spermatozoa and the SP. 

Andrological evaluations have in the past identified boars with evident flaws in their spermiogram that would, a priori, yield low 
fertility. In other words, basic evaluations of aspect, volume, pH, sperm count (concentration, total number), sperm motility (mass 
motility and individual motility), and sometimes, sperm morphology (unstained/stained, vital dyes (sperm nigrosine) and even sur-
vival resistance in vitro… have been valuable, and some of these analyses are still routinely used, as they provide a basic view of a 
“healthy” ejaculate, and thus could help discriminate between sires, and separate those potentially less fertile (Fig. 5). We are, 
however, aware that despite passing the thresholds of these evaluations, there is still a 5–10% of stud sires displaying sub-fertility, i.e., 
their fertility is lower than of the breed, batch and even among siblings (Roca et al., 2015). Use of newer methods including particle 
quantifiers for sperm numbers (Sevilla et al., 2023), Computer-assisted sperm analyses (CASA) for detailed kinematics, 
Computer-assisted sperm morphology analyses (ASMA) for morphology, use of fluorophores and flow cytometry (FC) for analyses of 
membrane intactness and for location of specific molecules related to essential events (as capacitation or acrosome exocytosis, (Keller 
and Kerns, 2023) have increased our capacity for semen evaluation, of value in academic settings and often in relation to intensive 
diagnosis or research (Hossain et al., 2011; Maside et al., 2023; Peña and Rodriguez-Martinez, 2023; Rodriguez-Martinez, 2014). 
Transcriptomics have been one of the most advanced techniques, for its association to male fertility (Indriastuti et al., 2022). Likewise, 
immunological evaluations have been pivotal for the characterization of sperm membrane proteins and the contents of EVs (Barranco 
et al., 2023; Rodriguez-Martinez, 2019)(Fig. 5). Genomics, transcriptomics, epigenomics, proteomics (and even metabolomics for the 
metabolic-poor spermatozoon) have revolutionized sperm research, by allowing the determination of gene changes/mutations during 
spermatogenesis, and of induction of changes in loads of DNA/RNA/ncRNA or different families during the post-testicular transport 
along the epididymis and ejaculation. In consequence, we now know more on the impact of methylation of DNA during spermato-
genesis on fertility, more about the impact of small and large proteins in the ejaculate, and of the relevance of the interchange of the 
load of various molecules between the EVs of the seminiferous and lining epithelia with spermatozoa, to name a few consequences. 

But which are the most relevant biomarkers for sperm resilience and fertility? Biomarkers are per definition molecules of different 
types that are present in semen and that ought to reflect their relevance for a certain sperm function, acquired during sperm production 
and maturation, but ultimately having a strong relation to fertility, irrespective if they are lipids, proteins, enzymes, or RNA molecules. 
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A short list of published significant biomarkers for fertility in boar semen is presented (Table 1), a list that is prompt to be revised by 
future research. 

A fact we described at the start of this essay was the large variation among boars in their capacity to withstand the process of 
cryopreservation. Quite early, it was established that the prevalence of some lipids in the boar plasma membrane contributed to such 
variation (Buhr et al., 1994; Maldjian et al., 2005). The changes in lipid composition arisen during sperm maturation in the epididymis, 
with an increase in PUFA contents make boar spermatozoa quite susceptible to ROS-attack, in the eventual absence of SP-antioxidant 
enzymes, as when the semen is extended in simple buffers. Today, after assaying different ways of modifying the relative contents of 
lipids (Kasimanickam and Buhr, 2016), it is reported that both lipid metabolism levels and long-chain PUFAs are main contributors to 
cryotolerance and therefore suggested that oleic acid and some PUFAs can become candidate biomarkers for cryosurvival (X. Zhang 
et al., 2023). Considering the destabilization of the sperm membrane as one of the relevant signs for impending capacitation, sperm 
capacitation has been again been put forward as a rightful biomarker for fertility (Keller and Kerns, 2023; Rodriguez-Martinez and 
Barth, 2007). 

Unfortunately, there are not too many proteomic studies that have compared the semen protein set of fertile and sub-fertile boars to 
identify candidate proteins as fertility biomarkers (Roca et al., 2020). Among the few existing studies, it is worth mentioning that of 
Perez-Patiño et al. (Pérez-Patiño et al., 2018), comparing the SP-proteome of boars with clear differences in fertility after AI of more 
than 25,000 sows (>100 sows inseminated per boar). This study identified 11 proteins that were quantitatively different between boars 
with high and low farrowing rates, and four proteins that were quantitatively different between boars with large and small litter sizes. 
Notably, some of the proteins identified as differentially abundant have never been associated with reproductive functions. For 
example, sphingomyelin acid phosphodiesterase 3 A, a protein found to be more abundant in boars with high farrowing rates, that 
regulates cholesterol, affects cell differentiation, and is involved in immune regulation (Shin and Chung, 2023; Zhang et al., 2022). 
These findings reinforce the relevance of omics to identify fertility biomarkers in semen, as they highlight novel or unexpected 
molecules involved in molecular pathways that regulate fertility. Other proteins that were found with potential fertility prediction as 
biomarkers include triosephosphate isomerase, calcium-binding messenger protein calmodulin, and mitochondrial malate 
dehydrogenase-2-NAD in non-capacitated spermatozoa (Kwon et al., 2015). Other proteins to be highlighted are those with clear 
antioxidant activities in SP (Song et al., 2024), defining an easily measurable total antioxidant capacity significantly related to fertility 
(Table 1) (Barranco et al., 2015d; Nedić et al., 2023). 

Apart from interferon-gamma (IFN-γ) which is positively related to increased sperm membrane permeability (Barranco et al., 
2019a) (Table 1), the boar SP contains at least other fourteen measurable cytokines (Barranco et al., 2015b), small-size proteins 
involved in cellular events and the immune system, playing crucial and different roles in modulating reproductive processes. These 
SP-cytokines are primarily produced in the testis, seminal vesicles, the prostate gland, and the epididymis (Fraczek and Kurpisz, 2015), 

Fig. 5. Overview of past, current and eventual future methods for semen analyses. Most past analyses, often those routine at commercial level have 
focused on the spermatozoa, and had been mostly operator-dependent. Currently, the increase in computer-aided equipment have made exami-
nations more objective (CASA, FC, ASMA, fluorophores) but still concern spermatozoa. Future methods (some of them already established) shall 
focus further on the relation sperm-SP intending disclosure of biomarkers for molecules (proteins/enzymes, RNAs or lipids) relevant to explain 
potential for capacitation and fertilization and with a significant association to fertility (Created with BioRender.com). 
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in concentrations varying across ejaculate fractions and seasons (Barranco et al., 2015b; Padilla et al., 2020b) and exerting multi-
faceted effects on reproductive physiology and fertility, and by inducing either pro-inflammatory or anti-inflammatory responses, 
contributing to immune modulation within the female reproductive tract and facilitating successful pregnancy (Dai et al., 2023; 
Parrilla et al., 2020). The transforming growth factor (TGF)-β1 isoform of the multifunctional cytokine TGF-β (Robertson et al., 2002) is 
found in high concentrations in boar SP (O’Leary et al., 2011), and has been infused intra-cervically to sows before insemination, 
without significant effects on either sow pregnancies or prolificacy (Parrilla et al., 2022), confirming previous negative results (Rhodes 
et al., 2006). This lack of effectiveness may be attributed to the interconnected networks in which seminal plasma cytokines operate, 
rather than on individual effects (Fraczek and Kurpisz, 2015). On the other hand, cytokine supplementation, either individually or in 
combination, to IVP media has shown positive effects across various species, increasing maturation rates, embryo quality, and cry-
otolerance (Javvaji et al., 2023; Oh et al., 2022; Wooldridge et al., 2019). For example, adding leukemia inhibitory factor to pig oocyte 
maturation medium improved maturation rates and quality of the blastocysts (Dang-Nguyen et al., 2014). A cocktail of fibroblast 
growth factor 2, leukemia inhibitory factor, and insulin-like growth factor-1 enhanced pig oocyte maturation and blastocyst devel-
opment, resulting in a fourfold increase in the number of genetically modified piglets (Yuan et al., 2017). Also, the addition of 
interleukin-6 to the embryo culture medium improved embryo development in pigs (Yin et al., 2020). These findings suggest that 
cytokine supplementation could be a feasible strategy to enhance IVP outcomes, but their generic use as biomarkers for fertility re-
mains elusive. 

We have found a series of miRNAs in boar spermatozoa (ssc-miR-362, ssc-miR-486, and ssc-miR-122–5p) involved in the regulation 
of sperm motility through a series of different pathways, particularly the mitogen-activated protein kinase (MAPK) signaling (Martinez 
et al., 2022) (Table 1). More recently, studies of sEV-coupled miRNA profiling have enabled the diagnostics of semen quality in stud 
boars, aiding more biomarkers to our current arsenal (Dlamini et al., 2023). 

Although we have certainly advanced in our capacity to identify molecules with a clear relation to fertility (after AI or in vitro) we 
must remark that none of these biomarkers have relevance unless they can be easily identified/quantified/validated in samples of 
semen in an easy manner, so that do not remain (as today) a simple academic question. Once again, we need to understand the biology 
behind it to be able to design a methodology, but in the case of biomarkers we even need to refine the methods to the very end, 
considering that we still need to preserve spermatozoa to improve industry-based breeding. It is thus logical to consider a major 
difference between using fertility-related biomarkers in spermatozoa versus those present in SP, even when both can be diagnostic in 
nature. 

How about intending to increase fertility? One could think of using sperm selection for those spermatozoa carrying the biomarker 
in a general sperm population, and then use only an enriched sperm sample, but this scenario is somewhat distant. Free proteins, 
enzymes, and cytokines presently identified in SP could, on the other hand be isolated and used as additives. Yet, their routine 
application in other ARTs as AI, has so far been deceiving (Parrilla et al., 2022). The use of 10–20% of bulk SP from high fertility or 
good freezer boars (Hernández et al., 2007; Recuero et al., 2019; Rozeboom et al., 2000) has, likewise, provided variable results. 

On the other hand, the use of sEVs as additives has been tested in vitro (Rodriguez-Martinez and Roca, 2022) and in vivo (Bai et al., 

Fig. 6. a-c: Seminal Extracellular Vesicles (sEVs) from the boar ejaculate, can be isolated, their constituent molecules characterized, and used as 
biomarkers (Panel a). Native sEVs or enriched lipid nanovesicles can be used for in vivo or in vitro supplementation, including for sperm freezing 
(Panel b). The EVs can be relevant for use as additives during artificial insemination or in vitro embryo production (Panel c). 
(Created with BioRender.com). 
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2018; Godakumara et al., 2022), yielding promising results facing the use of harvested and characterized sEVs from high-fertile boars 
(Fig. 6, panel a) to promote fertility in vitro and in vivo (by enriching AI-semen doses with sEVs) (Fig. 6, panels b-c). Considering sEVs 
can modulate gene expression of pig cumulus cells in vitro (Mateo-Otero et al., 2022) alternatives are also foreseen, including the 
enrichment of harvested sEVs with specific biomolecules or the laboratory preparation of lipid nanovesicles filled with specific cargos 
(Fig. 6, panel b) (Roca et al., 2022; Rodriguez-Martinez and Roca, 2022), including the transfer of CRISPR/Cas9 (Horodecka and 
Düchler, 2021). The ultimate goal is to employ suitable additives that are to easy to prepare, stored, and use on a routine basis. 

6. Future considerations 

What has advanced in our understanding of the reproductive function of a breeding boar over the time elapsed during the ICBSP 
meetings? Plenty, as exposed above, and much more is expected. We are now able to determine, using novel proteomic, (epi)genomic 
and transcriptomic analyses of the end-product: the semen, not only the status of the testes, the epididymis, or the accessory sexual 
glands, but even considering prognosis of fertility, by way of eventual biomarkers. Besides diagnostics and potential fertility prognosis, 
we now have the opportunity of using semen additives, such as specific molecules (proteins, peptides, enzymes, etc.) or of EVs and their 
valuable cargo, which is protected in nanovesicles that can be harvested, stored, and even manipulated or de novo produced in vitro. We 
should nevertheless remember that the first meeting in 1985 faced the problem of suboptimal cryopreservation. There is an increasing 
trend for the collection of bulk ejaculates using semi-automated methods, arguing for better welfare alongside cost-benefits. Sper-
matozoa are, under such handling, exposed to higher levels of spermadhesins and, with cholesterol being lost during handling, the cells 
have been difficult to cryopreserve. Spermatozoa from the SRF or of its sperm-peak fraction have shown a higher cryosurvival and 
resilience to freezing-thawing. Why? Could it be that those spermatozoa are exposed to a lower amount of spermadhesins? As well as 
they are exposed to large numbers of sEVs of epididymal and prostatic source? As already described, the sEVs fuse with spermatozoa, 
and apart from the cargo of specific proteins and nucleic acids, they contribute with their cholesterol-rich lipids, incorporating them to 
the sperm membrane. Would this be the most relevant future use of harvested sEVs? Undoubtedly, this possibility is to be tested, if the 
sEVs can be collected from highly fertile, good freezers boars, to start with (Fig. 6, panel b). There is high confidence that this area, 
evidently under-researched in producing animals, including the pig, is going to become a priority in the immediate future. 
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Peña, F.J., Saravia, F., Núñez-Martínez, I., Johannisson, A., Wallgren, M., Rodriguez Martinez, H., 2006. Do different portions of the boar ejaculate vary in their ability 

to sustain cryopreservation? Anim. Reprod. Sci. 93, 101–113. https://doi.org/10.1016/j.anireprosci.2005.06.028. 
Perez-Patiño, C., Barranco, I., Parrilla, I., Valero, M.L., Martinez, E.A., Rodriguez-Martinez, H., Roca, J., 2016. Characterization of the porcine seminal plasma 

proteome comparing ejaculate portions. J. Proteom. 142, 15–23. https://doi.org/10.1016/j.jprot.2016.04.026. 
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