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Summary. Mesenchymal stem cells (MSCs) are
multipotent stromal cells that can be derived from a wide
variety of human tissues and organs. They can
differentiate into a variety of cell types, including
osteoblasts, adipocytes, and chondrocytes, and thus
show great potential in regenerative medicine. Traumatic
brain injury (TBI) is an organic injury to brain tissue
with a high rate of disability and death caused by an
external impact or concussive force acting directly or
indirectly on the head. The current treatment of TBI
mainly includes symptomatic, pharmacological, and
rehabilitation treatment. Although some efficacy has
been achieved, the definitive recovery effect on neural
tissue is still limited. Recent studies have shown that
MSC therapies are more effective than traditional
treatment strategies due to their strong multi-directional
differentiation potential, self-renewal capacity, and low
immunogenicity and homing properties, thus MSCs are
considered to play an important role and are an ideal cell
for the treatment of injurious diseases, including TBI. In
this paper, we systematically reviewed the role and
mechanisms of MSCs and MSC-derived exosomes in the
treatment of TBI, thereby providing new insights into
the clinical applications of MSCs and MSC-derived
exosomes in the treatment of central nervous system
disorders.

Key words: Mesenchymal stem cell, Microglia,
Regenerative medicine, Traumatic brain injury, Exosome

Corresponding Author: Gang Ding, School of Stomatology, Shandong
Second Medical University, Baotong West Street No. 7166, Weifang,
Shandong, China. e-mail: dinggang@sdsmu.edu.cn or Xiaoling Ding,
Clinical Competency Training Center, Shandong Second Medical
University, Baotong West Street No. 7166, Weifang, Shandong, China.
e-mail: wfyxydxl@163.com

www.hh.um.es. DOI: 10.14670/HH-18-716

Introduction

Traumatic brain injury (TBI) is one of the leading
causes of death and disability on a global scale. Despite
the exploration of some therapeutic approaches, such as
surgical and pharmacological interventions and
rehabilitation, outcomes have been less than optimal
(Carbonara et al., 2018; Williamson et al., 2020; Dams-
O'Connor et al., 2023). The majority of patients with
brain injury continue to experience long- or short-term
complications, such as neurodegenerative diseases,
motor dysfunction, psychiatric disorders, cardiovascular
diseases, and metabolic disorders (Howlett et al., 2022;
Kornblith et al., 2022; Lai et al., 2022; Pelo et al., 2023;
Ruchika et al., 2023), indicating a poor prognosis (Li et
al., 2020; Lu et al., 2023). To date, it is well-accepted
that the mechanisms of brain injury treatment are
complex and multifaceted, and the precise treatment
methods and mechanisms remain elusive (Ma et al.,
2019; Kattan et al., 2023). Mesenchymal stem cells
(MSCs) are pluripotent stem cells with the ability to self-
renew and differentiate into a diverse range of cell types,
including chondrocytes, osteoblasts, adipocytes, etc.
Presently, stem cell therapy is a burgeoning therapeutic
approach for central nervous system (CNS) disorders
(Zhang et al., 2021a; Borlongan and Rosi, 2022). A
plethora of experiments have demonstrated that MSCs
possess neuroprotective, neurogenic, and immunomodu-
latory properties, and can stimulate cell proliferation and
angiogenesis by mitigating inflammatory responses,
while also secreting a multitude of bioactive molecules
that participate in tissue regeneration; these findings
offer a promising outlook for the development of
treatments for brain injuries (Andrzejewska et al., 2021;
Li and Sundstrom, 2022; Monsour et al., 2022).

TBI

As one of the most common diseases of the CNS,
TBI is known as acquired organic damage to head or
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neck tissues caused by the direct or indirect action of
external mechanical stresses (Menon et al., 2010); the
most common causes include traffic accidents, falls, etc.,
ultimately causing degeneration and death of CNS cells
(Rosenfeld et al., 2012). It can affect people of all ages,
especially young individuals under 40 years of age, and
is the leading cause of death and disability in this
population (Maas et al., 2017). Globally, more than 50
million people are reported to suffer from TBI each year,
resulting in an additional economic expenditure of $400
billion per year (Maas et al., 2017). In addition, patients
who survive TBI have a poor prognosis and most have
many sequelae, including cognitive and memory deficits,
motor behavior disorders, visual impairment, and
various psychological problems, etc (Fox et al., 2019;
Semple et al., 2019; Lambez and Vakil, 2021;
Subramanian et al., 2022). In addition, TBI is a known
risk factor for chronic neurodegenerative diseases (e.g.,
Alzheimer's disease, Parkinson's disease, etc.) (Li et al.,
2017b; Brett et al., 2022), and TBI can cause a variety of
temporary or permanent neurological changes, severely
affecting the quality of life of patients. It is one of the
main causes of long-term disability and is becoming a
major global public health event (Mollayeva et al., 2018)
and a worldwide health problem (Li and Sundstrom,
2022).

TBI is a complex and highly heterogeneous injury
that is usually classified into primary and secondary
injuries according to the pathological process (Hill et al.,
2016; Stocchetti et al., 2017). Primary injury refers to
localized intracranial brain tissue damage caused by
direct violence, or when a percussive injury is caused at
the site of the blow, due to the transient action of
external forces thus causing early tissue destruction and
deformation, resulting in acute hemorrhage, necrotic cell
death, nerve fiber breakage, neuronal loss, and efferent
dysfunction, which occur immediately at the time of
injury (Tian et al., 2008). In contrast, secondary injury is
further damage caused by the pathophysiological
changes induced by the primary injury (Hukkelhoven et
al., 20006), where a series of cascade reactions, caused by
changes in the local microenvironment of the injury, lead
to renewed damage to surviving neural tissue. It usually
occurs minutes to days or even months after the primary
injury and can lead to diffuse and persistent damages
(Pearn et al., 2017).

Current treatment for TBI includes symptomatic
treatment (surgery, hyperbaric oxygen therapy), as well
as pharmacological treatment and rehabilitation (Aertker
et al., 2016; Maas et al., 2017; Robinson, 2021).
Although some effects have been achieved to control the
progression of the disease and alleviate patients’
symptoms to some extent, the definitive recovery effect
on neurological tissues remains limited. In severe
patients, current interventions such as craniotomy,
debridement, and decompression only focus on relieving
physical symptoms to keep the patient alive but do not
directly address the underlying damage at the

biochemical and cellular levels, and post-trauma
recovery still relies mainly on endogenous healing
mechanisms to restore brain function (Walcott et al.,
2012; Zhou et al., 2016; Galgano et al., 2017; Chu and
Gao, 2022). Therefore, the urgent need to identify
potential therapeutic targets and introduce new
treatments to improve the clinical prognosis of patients
with TBI appears to be crucial (Yang et al., 2017;
Khellaf et al., 2019; Jarrahi et al., 2020).

Microglia in TBI

The immune system of the CNS is a highly efficient
network of mononuclear phagocytes composed mainly
of innate immune cells (Xu et al., 2022), in which tissue-
resident macrophages, also known as microglial cells,
are the most abundant (Van Deren et al., 2022),
accounting for 5-15% of the brain cells of the adult brain
(Aguzzi et al., 2013; Frost and Schafer, 2016; Liu et al.,
2021). The dynamic movement of microglia is
considered to be the vanguard sentinel for monitoring
neuronal activity and detecting local cerebral changes
and switching on a specific response pattern (DiBona et
al., 2019; Umpierre and Wu, 2021), and thereby play a
key role in the immune defense of the CNS (Kin et al.,
2021).

In the CNS, the neuroinflammatory process after
brain injury is mainly mediated by microglia, which are
rapidly activated after the onset of TBI, as they are
unable to efficiently transmit antigens when exposed to
external stimuli, however, their plasticity allows them to
rapidly adapt to changes in the microenvironment,
respond differently to different stimuli, and maintain the
ability to make functional transitions in response to
changes in the internal environment (Donat et al., 2017,
Liu et al., 2023), generating multiple response
phenotypes with neuroinflammatory and neuroprotective
properties (Borst et al., 2021). Similar to peripheral
macrophages, microglia are usually classified into two
categories based on their role upon activation: classically
activated M1-type microglia and alternatively activated
M2-type microglia (Xiong et al., 2016), which can
respectively lead to neurodegeneration or tissue repair
(Minhas et al., 2021; Wang et al., 2022). Therefore,
microglia-targeted therapies have a promising
application in the treatment of CNS diseases (Prinz et
al., 2021). Ideal therapies should target microglia,
modulate them from a pro-inflammatory phenotype to an
anti-inflammatory phenotype, reduce neuroinflammation
and neuronal apoptosis, improve neurological function,
and promote neurogenesis and functional recovery after
TBI. Although some drugs have been shown to be
effective in in vitro experiments, most conventional
drugs cannot readily cross the blood-brain barrier (BBB)
(Pardridge, 2016), and no drugs have yet been shown to
act as modulators of microglia directional polarization in
clinical settings. Therefore, it would be valuable to
explore new ways to modulate microglia polarization to
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reduce the neuroinflammatory response after trauma.
MSCs

Stem cells, as a specific type of undifferentiated or
incompletely differentiated cell capable of self-renewal,
have the capacity for clone formation and directed
differentiation into different types of tissue cells (Ma et
al., 2018; Somredngan et al., 2023). Stem cells can
regulate cellular inflammation (Zhao et al., 2021),
attenuate the destruction of neurons (Cheng et al., 2018),
promote angiogenesis and nerve regeneration (Yin et al.,
2020), and have important applications in regenerative
medicine (Hoang et al., 2022).

MSCs are non-hematopoietic stem cells derived
from the mesoderm that have both a fibroblast-like
morphology and the ability to differentiate into different
cell types such as osteoblasts, adipocytes, and
chondrocytes, and have been widely studied due to their
unique biological properties (Lim and Khoo, 2021) (Fig.
1). They are not only widely available and easy to obtain

Bone marrow  Adipose tissue  Umbilical cord Teeth oo

MSC Exosome

Microglia polarization

from almost all tissue sources in vivo, such as bone
marrow, adipose tissue, umbilical cord, and dental pulp
(Andrzejewska et al., 2019), but are also easy to isolate,
culture, expand, and purify, with good survival
characteristics (Cai et al., 2020), retaining stem cell
characteristics after multiple passages. Furthermore,
MSCs also have homing properties (Lin et al., 2017).
Under normal conditions, MSCs are in a quiescent state,
but when stimulated by biological signals such as tissue
injury, MSCs will be activated and will home to the site
of injury according to the injury environment, replacing
damaged cells, differentiating into the corresponding
functional cells, and integrating into the damaged tissues
of the host to improve the function of the damaged site
(Xia et al., 2014; Zhang et al., 2016; Li et al., 2017a).
Due to the strong multi-directional differentiation
potential, self-renewal ability, low immunogenicity, and
homing, MSCs are currently considered ideal seed cells
for the treatment of injurious diseases, providing new
possibilities and great promise in the field of tissue
repair and regenerative medicine (Mishra et al., 2020).
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Fig. 1. Isolated from bone marrow, adipose tissues, umbilical cord, tooth tissues, etc., mesenchymal stem cells (MSCs) or MSC-derived exosomes are
capable of modulating immune responses by increasing microglia M2 polarization, suppressing inflammation, promoting neuroprotection and nerve
regeneration, accelerating blood vessel formation, inhibiting apoptosis of neurons, thereby reducing lesion areas, stimulating neural regeneration,
improving motor-sensory function, slowing disease progression, and facilitating functional recovery in traumatic brain injury models. This figure was
created using Figdraw.
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In recent years, stem cell-derived exosomes, in
addition to stem cell transplantation, have opened new
avenues for treating a wider range of diseases. Recent
studies found that exosomes are nanosized vesicles, with
a diameter of about 40-160 nm, a lipid bilayer membrane
structure, and a complex internal composition, secreted
by different types of cells (Camussi et al., 2011; Azmi et
al., 2013). These microvesicles can carry therapeutic
loads such as proteins, lipids, RNA, enzymes,
metabolites, and other important cellular molecules, and
have good biological properties that reflect the state of
the mother cell (Stremersch et al., 2016). Exosomes are
released from the source cells and then taken up by the
target cells, interacting with the receptors on the target
cells and transporting the proteins, lipids, and nucleic
acids they carry as signaling molecules to the receptor
cells, thereby altering the different biological behaviors
and functional states of these cells (Xu et al., 2013),
facilitating the transfer of information between cells
(Pegtel and Gould, 2019) to regulate physiological
homeostasis and control disease progression (Xunian
and Kalluri, 2020).

Studies have shown that stem cell therapy is more
effective than traditional therapeutic strategies and
improves the quality of life of patients (Wu et al., 2018;
Tien et al., 2019; Chen et al., 2021). There is growing
evidence that functional recovery after brain injury may
also benefit from stem cell therapy (Weston and Sun,
2018; Das et al., 2019), and this is now considered one
of the most promising therapies for the treatment of TBI
(Chen et al., 2020a,b; Bjorklund et al., 2021) (Fig. 1).

Application of MSCs for TBI and possible
mechanisms

MSC-mediated therapy for TBI is shown below and
in Table 1. Due to experimental limitations, most in vitro
studies have had difficulty reproducing secondary brain
injury after TBI and, therefore, the therapeutic
experiences with MSC presented in this review focus on
primary injury associated with TBI. However, previous
experiments have also demonstrated greater loss of brain
tissue at the site of injury 14 days after TBI, which is
consistent with the course of secondary injury (Ni et al.,
2019). After an episode of TBI, without intervention,
more and more brain tissue is lost in and around the site
of injury, and the exacerbated secondary injury leads to
excessive neuronal cell death. In addition, exosome
administration reduced post-traumatic brain tissue loss
and reduced lesion size compared with the 14-day PBS
group, which simultaneously validates previous findings
that MSCs are equally beneficial for post-traumatic
secondary injury (Li et al., 2011).

Modulation of the immune
suppression of inflammation

response and

TBI is followed by a neuroinflammatory response
that produces microglia at the site of injury (Yan et al.,

2022), which act as first responders to the CNS and
rapidly initiate an immune response after injury. Cellular
rupture following primary brain injury activates
microglia as antigens, transforming them from
phenotype MO to the pro-inflammatory and neurotoxic
M1 phenotype. Although microglia normally exhibit a
mixed M1 and M2 phenotype with a dynamic balance of
anti-inflammatory and pro-inflammatory properties after
the onset of injury (Wolf et al., 2018), the secondary
inflammatory response inhibits the activation of their
anti-inflammatory M2 phenotype and converts them to a
predominantly pro-inflammatory M1 phenotype
(Gardner et al., 2018). In contrast, in the later stages of
inflammation, microglia are activated to an anti-
inflammatory M2 phenotype that suppresses the
inflammatory state and functions as a tissue repair agent
(Xin et al., 2021). Related studies (Lv et al., 2018; Wu et
al., 2021) have shown that by polarizing microglia from
phenotype M1 to M2, the inflammatory response after
TBI can be attenuated, thereby promoting recovery from
injury.

Evidence suggests that the presence of MSCs and
their exosomes in a pro-inflammatory environment plays
an important role in both inhibiting microglia activation
and modulating the cellular phenotype to attenuate
inflammation (Heo et al., 2019; Maiti et al., 2019). Ni et
al. (2019) injected rat bone marrow MSCs (BMSCs)-
derived exosomes into a TBI rat model via the medial
orbit and found a decrease in M1-type microglial cell
markers around the lesion area and a significant increase
in the expression of M2-type microglial cell markers in
the treatment group. Compared with the control group,
the exosome-treated group significantly suppressed the
expression levels of pro-inflammatory cytokines,
demonstrating that BMSC-exo have the effects of
regulating the immune response and suppressing
inflammation. Moreover, Li et al. (2017) showed, for the
first time, that exosomes produced from stem cells from
human exfoliated deciduous teeth (SHED-exo0) have
therapeutic effects on TBI in rats. SHED-exo were
injected locally into the TBI rat model, and the exosome-
treated group was able to significantly reduce the
cellular markers of the pro-inflammatory microglia M1
phenotype and induce the differentiation of microglia to
the M2 phenotype in a dose-dependent manner,
suggesting that SHED-exo could alter the polarization of
microglia to attenuate neuroinflammation after injury (Li
et al., 2017c¢). In a recent study, Ruppert et al. injected
human adipose-derived mesenchymal stromal cells
(ADMSCs) via the tail vein into a rat model of
controlled cortical impact at an early (three days) and
delayed (14 days) time after injury (Ruppert et al.,
2020). The expression of M1 (CD32", CD86") and M2
(CD163™) microglia markers was analyzed by flow
cytometry, and the results demonstrated that ADMSCs
effectively reduced M1 microglia at three days post-
injury; the percentage of CD163" microglia and the
M2/M1 ratio of the treatment group increased
significantly at 14 d post-injury, suggesting that
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treatment with ADMSCs had an inhibitory effect in TBI
and play a major role in immunomodulation and
promoting homeostasis in vivo. Kodali et al. investigated
the effect of a single intranasal (IN) administration of
human MSC-derived extracellular vesicles (MSC-EV) in
TBI and demonstrated that MSC-EV naturally enriched
with activated microglial regulatory miRNAs inhibited
the chronic activation of NLRP3-p38/MAPK signaling
after TBI at an optimal IN dose, which reduced the
release of pro-inflammatory cytokines and exerted a
preventive effect against persistent brain dysfunction
(Kodali et al., 2023b).

Neuroprotection
regeneration

and promotion of nerve

The occurrence of vascular hemorrhage, impaired
synaptic plasticity, disruption of BBB integrity, neuronal
apoptosis, and necrosis resulting from TBI ultimately
leads to loss of neurological function. Consequently, the
primary approaches for achieving neurological recovery
following TBI involve minimizing neuronal loss and
promoting neurogenesis (Vandenbark et al., 2019).

MSCs could not only promote the proliferation and
differentiation of primitive neural stem cells but also
differentiate into neuronal cells and glial cells with strong
regenerative behaviors to compensate for damaged brain
cells (Lian et al., 2021). Additionally, the paracrine effects
of MSCs (Kamei et al., 2007; Marsh and Blurton-Jones,
2017) can promote neurogenesis and support neuronal
survival and development by secreting a variety of
neurotrophic and chemotactic factors (Bothwell, 2014;
Popova et al., 2017) to alleviate secondary neurological
injuries and be effective in neuroprotection after TBI (Yan
et al., 2019). Studies have shown that MSCs can
significantly improve neurological function after TBI
(Mastro-Martinez et al., 2015; Yuan et al., 2020b), partly
because they can actively interact with microglia to
proliferate, migrate, and release a variety of growth factors
after brain injury, which promotes neural repair after TBI
(Burda et al., 2016; Jassam et al., 2017). In a previous
study, Xu et al. collected a secretion set of human
ADMSCs under hypoxic conditions and injected TBI rats
with ADMSCs via the tail vein for seven days.
Neurological function in TBI rats was assessed by the
neurological severity score and Morris water maze tests;
the data demonstrated that ADMSCs reduced the
neurological deficits and cognitive deficits in TBI rats (Xu
et al., 2020a). Chen et al. injected human ADMSCs
intravenously into rats three hours after TBI and examined
the recovery of neurological function by using the
neurological function assessment angle test, and found that
the ADMSC-treated group had no immunological side
effects, effectively protected the structural integrity of the
brain, and significantly enhanced neurological function
after TBI (Chen et al., 2020b). MSC exosomes (MSC-exo)
were shown to play an important role in the recovery of
neurological function after TBI (Yang et al., 2017; Das et
al., 2019), and one possible mechanism is that exosomes

act as carriers to facilitate intercellular communication by
transferring microRNAs, thereby promoting synaptic
growth and nerve regeneration (Xin et al., 2012).
Furthermore, the integration of MSCs with low-intensity
transcranial ultrasound therapy and the gelatin hydrogel
system can synergize with host cells to establish a defense
mechanism aimed at attenuating cerebral edema,
decreasing the extent of damage within the region of
injury, increasing neuronal survival, and inducing
neuroprotective mechanisms (Zhang et al., 2018; He et al.,
2019; Tan et al., 2020). The TBI model used in an
experiment conducted by Darkazalli et al. induced a
significant increase in the number of neoplastic cells in the
subventricular zone, confirming that MSCs are activated
only in response to injury and, in the absence of injury,
intravenous injection of MSCs does not alter the baseline
level of endogenous cell proliferation in the subventricular
zone. This suggested a relationship between endogenous
neural progenitor cells and the ability of MSCs to prevent
TBI-induced depression and other behavioral deficits
(Darkazalli et al., 2016). Another recent study conducted
by Kodali et al. investigated the effect of MSC-EV
treatment after TBI on preventing the decline in
hippocampal neurogenesis and synaptic loss in the chronic
phase of TBI. It was experimentally demonstrated that a
single IN dose of MSC-EV 90 minutes after TBI
attenuates TBI-induced declines in BDNF-ERK-CREB
signaling, hippocampal neurogenesis, and synapses
(Kodali et al., 2023a).

Promotes blood vessel formation

Angiogenesis can improve the plight of brain tissue
ischemia by providing oxygen and nutrients to the brain,
thereby promoting structural remodeling of damaged
brain tissue to repair dysfunction after TBI (Xiong et al.,
2010, 2015). In a previous study, Guo et al. transplanted
mice BMSCs into TBI mice. Next, brain tissues were
isolated from the mice 14 days post-transplantation, and
the distribution of blood vessels in the brain tissues was
visualized by immunohistochemistry. The data showed
that the group treated with BMSCs stained more
microvessels than TBI mice, suggesting a potential
mechanism by which BMSC transplantation promotes
microvessel formation in brain tissue after TBI, which
may improve function by promoting angiogenesis (Guo
et al., 2017). Shi et al. intravenously transplanted mouse
MSCs over-expressing hypoxia-inducible factor (HIF)-1
alpha within six hours of injury in TBI mice and
demonstrated that mice in the treatment group exhibited
significantly more angiogenesis, as well as an increase in
vascular endothelial growth factor and erythropoietin
expression measured by quantitative RT-PCR and
western blotting. Accordingly, the over-expression of
HIF-1 alpha augmented the ability of BMSCs to induce
functional recovery after TBI by stimulating
angiogenesis (Shi et al., 2018). A series of recent studies
focused on the use of MSC-exo as a potential therapeutic
agent for TBI, demonstrating an improved vascular
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plasticity capacity in the exosome intervention group in
animal models (Yang et al., 2017; Willing et al., 2020;
Mot et al., 2023). Zhang et al. subjected TBI rats to a
single intravenous injection of miR-17-92 cluster-
enriched exosomes one day after injury. Five weeks
later, brain tissues were taken for immunohistochemical
analysis and stained with 5-bromo-2'-deoxyuridine/
endothelial barrier antigen to detect newly generated
endothelial cells. In comparison with the exosome-
empty treatment, the exosome treatment group formed
an increased number of endothelial cells and enhanced
angiogenesis, showing that increased cerebral vascular
density and neovascularization played a role in
functional recovery after TBI (Zhang et al., 2021b).

Inhibit apoptosis

Adverse outcomes of TBI are usually associated
with cell apoptosis (Butterfield and Reed, 2016). In a
previous study, Aaron Williams et al. established a swine
TBI model and received human MSC-exo treatment one
hour after injury. Seven days after treatment, Bcl 2-
associated X proteins (Bax), which are well-known pro-
apoptotic proteins that play a key role in mediating
apoptosis, were compared between brain tissues of the
various groups. The results showed that the expression
of Bax in the exosome treatment group was significantly
lower than in the control group, which proved that
exosome treatment was related to the attenuation of
apoptotic markers, and promoted cell survival and
proliferation to achieve the improvement of TBI through
the inhibition of apoptosis (Williams et al., 2020b). In
another study, Chen et al. demonstrated that human
ADMSC-derived exosome (ADMSC-exo0) treatment
promoted functional recovery in TBI rats by ADMSC-
exo intra-cerebroventricular micro-injections into a
weight-loss-induced rat model of TBI within 24 hours of
injury, as evidenced by NeuN immunofluorescent
staining of mature neurons in the brain tissue and
TUNEL staining of apoptotic cells in the border zone of
the lesion, partly through the inhibition of apoptosis
(Chen et al., 2020a). Because more and more studies
have demonstrated that transplantation of MSC-exo
improves functional recovery after TBI in rats, Xu et al.
tested a new hypothesis using the injection of brain-
derived neurotrophic factor (BDNF)-induced MSC-Exo
through the tail vein into a rat model of TBI. They
confirmed that the BDNF-induced MSC-exo could
inhibit apoptosis better than rats MSC-exo following
TBI, a mechanism that may be related to the high
expression of miR-216a-5p, by TUNEL staining (Xu et
al., 2020b).

Results of pre-clinical studies

Transplanted MSCs can migrate across the BBB into
damaged brain tissue and exert therapeutic effects
through multi-directional differentiation, paracrine
secretion, and the release of exosomes.

Previous studies demonstrated the ability of
transplanted MSCs to differentiate into astrocytes and
neuron-like cells in rat models of brain injury, as well as to
stimulate neural regeneration and improve motor-sensory
function, thereby facilitating functional recovery and
slowing disease progression after TBI (Anbari et al., 2014;
Hasan et al., 2017). Zhang et al. intravenously
administered BMSCs into a rat TBI model assessed
behavioral outcomes, measured cytokines in brain tissue
homogenates, and analyzed their effects on neuro-
inflammation. They discovered that MSC treatment
decreased the area of brain injury following TBI,
decreased the presence of microglia in the injured brain
parenchyma, and could improve neurological recovery
after TBI by upregulating TNF-a-stimulated gene 6
protein, reducing peripheral blood leukocyte density at the
injury site, increasing anti-inflammatory cytokines, and
decreasing pro-inflammatory cytokines (Zhang et al.,
2013). Hu et al. performed immunofluorescence and
histopathological examinations to assess BMSC survival
and TBI lesion volume by pre-injecting the calpain
inhibitor MDL28170 into the lesion site 30 minutes after
TBI, followed by a local injection of green fluorescent
protein-labeled BMSCs from rat sources into the site of
brain injury in TBI rats 24 hours after TBI. The results
showed that MDL28170 improves the BMSC
transplantation microenvironment by increasing the
survival of BMSCs and enhances neurological recovery
after TBI, suggesting that new combinational therapeutic
strategies can be employed to advance the role of
transplanted BMSCs in TBI (Hu et al., 2019).

Current studies found that exosome therapy, as an
anti-inflammatory agent, can achieve similar therapeutic
effects as MSCs in animal models of TBI (Tsiapalis and
O'Driscoll, 2020) and promote regeneration of neuronal
cells and astrocytes by facilitating neural vascular
remodeling (angiogenesis and neural regeneration),
inhibiting inflammatory responses in the area of injury,
and decreasing neuronal apoptosis, which in turn
ameliorates the adverse effects of TBI, avoids secondary
injuries (Mot et al., 2023), and facilitates functional
recovery from TBI (Zhang et al., 2017). Zhang et al.
injected BMSC-exo into the tail vein of rats 24 hours
after TBI injury and assessed the recovery of cognitive
and sensorimotor functions by the modified Morris
water maze, neurological severity score, and foot-fault
tests. This study demonstrated that exosome treatment
significantly increased the number of neonatal
neuroblasts and mature neurons in the dentate gyrus
(DG) as well as the number of neonatal endothelial cells
in the lesion border zone and the DG, in addition to
improving the recovery of cognitive and sensorimotor
functions and decreasing brain inflammation. They
demonstrated, for the first time, that exosomes produced
by MSCs were effective in improving functional
recovery by reducing inflammation in rats after TBI, at
least in part, by promoting endogenous angiogenesis and
neurogenesis (Zhang et al., 2015). In a recent study,
Williams et al. observed changes in various indices
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seven days post-injury by establishing a swine TBI
model and treating it early with a single dose of human
BMSC-exo one hour after injury. The results showed
that the Neurologic Severity Scoring of animals in the
exosome-treated group was significantly lower in the
first four days after injury, which proved that their
neurological recovery was also significantly faster.
Moreover, the average brain injury size of exosome-
treated animals was significantly reduced, along with the
expression levels of several inflammatory factors
detected by ELISA. Furthermore, the ability to promote
neuroprotection, improve the integrity of the BBB, and
promote neuroplasticity confirmed the effectiveness of
exosome treatment (Williams et al., 2020a,b). In
conclusion, data on MSC-derived exosomes in porcine
and rodent models of TBI yielded consistent results for
increasing the levels of anti-inflammatory factor
expression in the brain after TBI, reducing
inflammation, and improving cognitive function, thus
providing a new cell-free therapy for TBI and other
neurological disorders (Willing et al., 2020).

Studies show that cell number and stem cell route of
administration play a key role in the success of
improving organ dysfunction after cell therapy (Chen et
al., 2020b). Pal et al. previously conducted an
experiment in which MSC transplantation was
performed at two different doses (2 and 5 million
cells/kg body weight) and two different routes of
transplantation (injury site and lumbar puncture) in an
animal model of CNS injury (Pal et al., 2010). The
results showed that visualization of the transplanted
MSCs took place at the site of injury rather than of
injection, the transplantation of MSCs significantly
improved motor and sensory function in the
experimental group, and the results were dose-related,
confirming that the determining factor in the outcome of
MSC transplantation is not the number of grafts but the
number of MSCs that can successfully migrate to the
injured area. Thus, facilitating the migration of MSCs to
the site of injury is an important factor in their use for
the treatment of CNS injuries. In addition, several
studies have shown that, in CNS disorders, repeated
multiple injections increase the number of effective
MSCs and enhance the recovery of neurological function
at damaged tissue sites, improving the effectiveness of
treatment (Li et al., 2010; Kim et al., 2015).

Common routes of MSC administration reported to
date include intravenous, intracranial, intrathecal, local
cerebral, medial orbit, IN, etc. Among the advantages of
administering MSCs intravenously, the most important
property is that it is simple and non-invasive, the
disadvantages are that cell migration to the lesion is low,
not all of the infused cells reach the site of the injury, cells
may be trapped far from the injury, such as in the liver,
spleen, gastrointestinal tract, and lungs, and only a small
percentage of cells may enter the injured brain region,
raising concerns about the number of cells reaching the
target organ (Sanchez-Diaz et al., 2021; Petrou et al.,
2022). Intrathecal injection may be associated with local

tissue damage and might be a more favorable and safer
route for repeated delivery of MSCs to the brain (Kim et
al., 2015). The IN route has also recently been validated as
a potentially safe and simple alternative for MSC treatment
of CNS disease (Kodali et al., 2023a,b).

Clinical trials

Despite the time and effort spent by researchers and
clinicians on TBI research and treatment, most early
treatments, unfortunately, did not achieve very
satisfactory results, and there has been a lack of
successful neuroprotective treatments for TBI. The
dilemma has not improved until recent years, when more
and more neuroprosthetic strategies such as stem cell
therapy have been applied to TBI research and treatment
(Schepici et al., 2020). The bone marrow precursor cell
(BMPC) or bone marrow mononuclear cell (BMMNC)
fraction contains mesenchymal and hematopoietic stem
cells. Numerous preclinical studies have shown that
these cells, as components of the bone marrow, can
preferentially migrate to the site of brain injury and
differentiate into neurons and cell-supporting tissues,
improving functional outcomes in animals (de Leeuw et
al., 2020; Huang et al., 2020; Sherif et al., 2021).
BMMNC:s and their derived cells (BMSCs) can provide
neuroprotection in TBI, and significant therapeutic
advances have been made in repairing neural structures
and re-establishing neurological function (Liem et al.,
2019; Huang et al., 2020; Takamura et al., 2020). Thus,
the cells involved in the clinical trials outlined here
include MSCs, BMPCs, and BMMNCs.

We conducted a comprehensive search of the
clincaltrials.gov database using the terms "head injury"
and "stem cells". A total of 36 clinical studies were
identified, and we screened only clinical trials involving
the use of MSCs in the treatment of patients with TBI,
obtaining a total of 14 clinical trials, as shown in Table
2. We then conducted further PubMed searches using the
terms "traumatic brain injury" and "mesenchymal stem
cells" or "mesenchymal stromal cells" or "bone marrow
mononuclear cells" or "bone marrow precursor cells".
Each article type was then limited to "clinical trials" to
find any other published studies that were not already
registered in Clinictrials.gov. Autologous BMMNCs
were used in most of these experiments, followed by
stem cells of autologous adipose origin, in addition to
other sources such as BMSC and umbilical cord-derived
mesenchymal stem cells (UCMSC). The dose of cells
used in these clinical trials also varied, ranging from
1x10 to 2x108 cells, and the route of transplantation for
the experiments was mostly intravenous, but also IN,
among others.

Clinical Trials Recorded in Clinicaltrial. Gov
BMMNCs

NCTO01575470: The main objective of this research
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was to assess the safety and impact on functional
recovery by using autologous BMMNCs for treating
acute severe TBI in adults. It recruited 25 volunteers
between the ages of 18 and 55 with Glasgow Coma
Scores (GCS) between 5 and 8 all of whom also had an
initial injury that occurred within 24 hours. The research
commenced by collecting bone marrow (5 ml/kg body
weight) from these individuals within 36 hours of the
trauma. This was followed by administering a solitary
intravenous dose of self-derived BMMNCs at 6, 9, and
12x10° cells per kilogram of body weight, representing
low, medium, and high quantities, respectively, within
48 hours of the individual's injury. The subjects were
then assessed for plasma inflammation before treatment,
after treatment, and during one and six months of follow
up and the healing effect was also assessed by GCS
changes and cerebrovascular accident (CVA). The study
findings indicated that after intravenous administration
of BMMNCs, the subjects experienced no serious
adverse effects, a trend toward downregulation of
plasma levels of the major inflammatory cytokines, and
a clear tendency toward significant preservation of white
matter volume in the low- and medium-dose treatment
groups compared with the untreated patient population.
This trial is the initial experiment to examine BMMNCs
as therapy for TBI and affirms that intravenous
autologous BMMNCs are both secure and viable for
treating adults with severe TBI (Cox et al., 2017).

NCT02525432: This study is a phase 2b study of
NCTO01575470, designed to investigate the impact of
intravenous infusion of autologous BMMNCs on brain
structure and neurocognitive/functional outcomes in
adults who had experienced severe TBI. Thirty-seven
adults aged 18 to 55 years with a GCS between 3 and 8,
suffering from non-penetrating closed head trauma were
recruited for the study and randomized at a 3:2 ratio into
two groups, an autologous BMMNC infusion group and
a placebo control group. Using a Bayesian adaptive dose
escalation design, the treatment begins with the
minimum dosage of 6x10¢ cells/kg body weight and
gradually increases to a higher dosage of 9x10° cells/kg
body weight. The experimental group will undergo a
simulated bone marrow extraction and receive saline
solution as a substitute. To measure the macroscopic and
microstructural properties of gray matter (GM) and
white matter (WM) regions, the study will utilize high-
resolution anatomical magnetic resonance imaging
(MRI) and diffusion tensor imaging. Additionally,
neuroinflammatory biomarkers will be analyzed in
cerebrospinal fluid and plasma samples, and group
comparisons will be conducted. During the 14 days
following the infusion, subjects will be carefully
observed for any infusion-related toxicities and
complications, while receiving the typical standard of
care for TBI. Evaluations of safety and results will occur
at 1, 6, and 12 months after the injury. The research is
presently in progress and is anticipated to conclude by
April 2024.

The safety of using autologous BMMNCs for

treating severe TBI in children was assessed in study
NCT00254722. Ten children, aged 5 to 14 years, with a
GCS between 5 and 8, who had sustained injury within
24 hours, received intravenous administration of 6x10°
autologous BMMNCs/kg body weight over a period of
48 hours. The safety of the procedure was evaluated
based on the children's logistic organ dysfunction score,
MRI data, and neurologic function indices. The findings
indicated that every patient survived, the majority had a
positive outlook, and there were no instances of
infusion-related toxicity, thus verifying the safety and
suitability of bone marrow collection and intravenous
mononuclear cells as a therapeutic approach for severe
TBI in children (Cox et al., 2011).

In 2013, a subsequent study numbered
NCTO01851083 was carried out to investigate the impact
of intravenous administration of autologous BMMNCs
on the structural and neurocognitive/functional results of
the brain following serious injury in young individuals.
Researchers randomized 47 children between the ages of
5 and 17 with GCS scores between 3 and 8 into
experimental and control groups. They administered a
single dose of 6x10° cells/kg or 10x10° cells/kg body
weight of BMMNCs to the experimental group, while
the control group was injected with a 0.9% sodium
chloride placebo within 48 hours of injury. Quantitative
diffusion tensor magnetic resonance imaging (DTMRI)
metrics, assessed and compared with untreated controls
following injury, were used to validate the safety of
intravenous administration of autologous BMMNCs as
well as its role in influencing structural and neuro-
cognitive/functional outcomes in the brain. The results
of this study have not been published.

The objective of research NCT05293873 is to assess
the safety and effectiveness of transplanting mono-
nuclear cells derived from the patient's own bone
marrow for the treatment of neurological complications
following TBI. Adult volunteers, aged 20 to 50, of any
gender, who have experienced closed head injuries, have
been living with a TBI for 6-12 months, and have a
Functional Independence Measure (FIM) score below
69, will be included in the study. The main result will be
evaluated based on the occurrence of severe adverse
events after the transplant, the assessment and grading of
patients' functional status using FIM and the Glasgow
Extended Outcome Scale (GOS-E). The study is still in
the recruitment phase.

ADMSCs

The purpose of the NCT04063215 trial was to assess
the safety of Hope Biosciences Adipose-derived
Mesenchymal Stem Cell (HB-adMSC) infusion and its
therapeutic impact on brain structure, neurocognitive/
functional outcomes, and neuroinflammation in adults
with subacute and chronic neurologic injury. Twenty-
four adults aged 18 to 55 years with GOS-E scores >2
and <6 who have had the disease for more than six
months were recruited for a single-arm, non-randomized
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study in which adult patients with subacute or chronic
neurological injuries were infused with HB-adMSCs
(2x108 total cells per dose) on three occasions. The
safety and therapeutic efficacy of the treatment will be
assessed by comparing glucose, calcium, albumin, total
protein, and total sodium in the blood at six months and
one year after the infusions. The study is currently
ongoing and is expected to be completed by December
2024.

Study NCT04744051 is a Phase I clinical safety
study designed to provide an initial assessment of the
safety, tolerability, and clinical remission of symptoms
associated with Post-Concussion Syndrome (PCS, also
known as Chronic Concussion Syndrome, CCS).
Inclusion criteria for volunteers were 20 adults of either
sex between the ages of 18 and 65 years old, undergoing
randomized assignment into four groups to receive a
dose of 50 million, 150 million, or 300 million ADMSCs
or placebo, via infusion therapy within one hour.
Primary outcomes will be assessed by a 36-item short-
form health survey (SF-36), verbal fluency, visual
attention and task-switching ability, spatial learning, and
memory ability; the study is currently ongoing with an
expected completion date of January 2024.

Clinical trial NCT05951777 aims to assess the safety
and potential therapeutic effects of intravenous infusion
of HB-adMSCs on brain structure, neurocognitive/
functional outcomes, and neuroinflammation in adults
with TBI and/or hypoxic-ischemic encephalopathy. This
study is prospective, randomized, double-blind, and
placebo-controlled. The study plans to enroll 51
participants, with inclusion criteria of adults of either sex
between the ages of 18 and 55 years with an injury or
disease process episode or diagnosis of more than six
months to meet both GOS-E scores >2 and <6. Subjects
will receive three infusions (2x108 cells per dose) of
autologous HB-adMSCs spaced 14 days apart and will
be assessed by telephone monitoring at 4 hours post-
infusion and 24 hours post each infusion and by testing
blood for glucose, calcium, albumin, total protein, and
total sodium to assess whether subjects have infusion-
related toxicity. After the last HB-adMSC infusion at 6
and 12 months and 2 years (by phone), if infusion-
related adverse events are suspected, safety assessments
will be performed more frequently to determine the
safety of the treatment and the therapeutic efficacy. The
study is currently ongoing and is expected to be
completed by December 2026.

BMSCs

Clinical trial NCT02795052 aims to assess the
potential improvement in neurological function for
patients with specific neurological disorders by isolating
and transferring autologous BMSCs into the vascular
system and lower third of the nasal cavity. Through
single group assignment, the study recruited 500
individuals who are adults aged 18 years and above for
BMSC injections administered intravenously and

intranasally (in the lower third of the nasal cavity). The
main result will be determined by neurologic function
before treatment (0 months) and changes in neurologic
function at 1, 3, 6, and 12 months after treatment will be
compared to the pretreatment using the Neurologic
Quality of Life (Neuro-QOL) questionnaire. The
research is currently in progress and is anticipated to
conclude by July 2024.

The objective of trial NCT03724136 is to assess the
effectiveness of autologous BMSCs in enhancing
cognitive impairments in individuals with Alzheimer's
Disease and other dementias and improving behavioral
and social challenges in adults with autism spectrum
disorders. Additionally, this study will examine the
efficacy of Near Infrared (NIR) Light and BMSC usage.
The research enrolled 100 individuals who were adults
aged 18 years or older. These participants were required
to have either documented cognitive impairment or a
diagnosis of a condition linked to cognitive impairment,
like Alzheimer's disease or autism spectrum disorder.
The research is categorized into three categories: an
intravenous BMSC portion, an intravenous BMSC
portion along with near-infrared light exposure, and an
intravenous BMSC portion along with a localized
BMSC portion administered through the nasal route.
Participants will be divided into three groups, and their
main results will be observed and reevaluated after 1, 3,
6, and 12 months following the treatment using the
Mini-Mental State Examination (MMSE) and the
Autism Spectrum Quotient Examination. The research is
currently in progress and is anticipated to conclude by
October 2024.

MSCs from other sources

The safety and effectiveness of administering
UCMSCs through intravenous infusion will be examined
in trial NCT05018832 for the purpose of treating TBI.
The research aims to recruit 20 individuals, including
children, adults, or older adults of any gender who have
been diagnosed with TBI. Participants will be
administered a single intravenous infusion of UCMSC:s,
totaling 100 million cells. The safety and effectiveness
of the treatment will be assessed by monitoring subjects
for any potential adverse events or complications one
month before treatment and at 1, 6, 12, 24, 36, and 48
months after treatment. Currently, the study is underway,
and it is expected to be completed by November 2025.

Study NCT02742857 aims to demonstrate the
potential for reversing brain death by using a
combination of intrathecal bioactive peptides, stem cells,
laser, transcranial intracranial intravenous laser, and
median neurostimulation as an adjuvant in cases of brain
death caused by TBI and diffuse axonal damage. Twenty
individuals aged 15 to 65 were enrolled in the research,
meeting the criteria of being declared deceased by MRI
due to TBI and undergoing various interventions (BQ-A
peptide extracts, MSCs, transcranial laser therapy, and
median neurostimulators). The main objective was to
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evaluate the reversal of brain death, which was assessed
through clinical examination or electroencephalogram.
The findings of the research unavailable are as yet.

Published Clinical Trials

Tian et al. conducted a clinical study to validate the
effectiveness and safety of autologous BMSCs for
treating TBI through lumbar puncture. Autologous
BMSCs were transplanted into the subarachnoid space
via lumbar puncture, treating a total of 97 patients. The
assessment of long-lasting vegetative condition and
physical ability indicated that there were no significant
issues following 14 days of therapy. Conversely, a few
patients experienced improvement in their brain
function, awareness, or physical ability to some degree
after undergoing BMSC transplantation. This outcome
validates the safety and efficacy of BMSC
transforaminal lumbar puncture treatment for TBI.
Furthermore, the curative impact is negatively correlated
with the age of the patient, with younger individuals
having a higher likelihood of experiencing improvement
compared with older individuals. The impact of
initiating cell therapy during the subacute phase of TBI
is directly correlated with the duration, and the sooner
the treatment commences, the more favorable the
treatment outcome becomes (Tian et al., 2013).

An investigation designed to examine the effects of
UCMSC transplantation in patients with complications
of TBI was designed by Wang and colleagues. The study
involved randomly assigning 40 patients to either a
group receiving UCMSC treatment or a control group.
Via lumbar puncture, the individuals in the UCMSC
treatment category were administered a 2 ml cell
suspension consisting of 1x107 stem cells. Before and 6
months after UCMSC transplantation, all subjects
underwent a Fogel-Meyer assessment and an FIM. After
transplantation, the UCMSC group exhibited progress in
motor, self-care, and social cognitive skills, as indicated
by the assessment results after 6 months. The findings
validated that the transplantation of UCMSCs could
greatly enhance neurological function in individuals
suffering from TBI consequences, thus affirming the
efficacy and safety of UCMSCs for treating TBI
sequelae (Wang et al., 2013).

A retrospective cohort study was carried out by Liao
et al. utilizing information from the phase 1 clinical trial
NCT00254722. The trial involved children between the
ages of 5 and 14 who were administered 6 million
autologous BMMNCs/kg body weight intravenously
within 48 hours of the injury. Assessment metrics like
the Pediatric Intensity Level of Therapy scale and the
Pediatric Logistic Organ Dysfunction score were used to
compare with pediatric controls matched in terms of age
and severity. The research showed that using autologous
BMMNC treatment lessened the impact of inflammation
during the initial period after TBI and decreased the
level of therapy required for children with severe TBI,
once again validating the dependability of the preclinical

information (Liao et al., 2015).
Current problems and possible solutions

Although the brain has limited regenerative
functions, techniques to promote and expand the
regenerative functions of brain tissue have not yet
matured while the complexity and multifaceted nature of
post-TBI may be a key reason for clinical treatment
failure (Weston and Sun, 2018). To intervene in the
natural evolution of post-TBI and improve patient
prognosis, multiple therapeutic goals need to be
achieved simultaneously.

The efficacy and safety of MSCs as a potential
treatment for brain injury remain controversial
(Dehghanian et al., 2020). For example, MSCs may be
contaminated or mutated during in vitro culture and
processing prior to transplantation (Hu et al., 2018), and
inappropriate homing and implantation of transplanted
cells may lead to the spread of foreign pathogens and
may convert the good repairing ability of MSCs into an
oncogenic ability that provides energy to cancer cells
and promotes tumor growth and metastasis (Chen et al.,
2019). The potential of MSCs to survive and
differentiate after transplantation is limited by a number
of factors, such as transplantation rate, survival rate, low
proliferation rate, and poor graft exertion. The
intravenous route of MSCs is the least traumatic and
causes the least damage to MSCs in the brain tissue
(Chrostek et al., 2019) but the effect is unsatisfactory.
Therefore, various measures to improve the safety of
MSC therapy, such as finding the appropriate timing of
administration, safe and accurate routes of
administration, stable and reliable sources of cells, and
perfect methods of cell culture, storage, and
transportation, are worth further exploration.

In addition, the possibility of the host’s own immune
cells generating an immune response to MSCs, such as
the risk of thromboembolism and tumor proliferation,
should not be ignored (Boltze et al., 2015). The use of
MSC-exo may avoid the problems associated with cell
transplantation; however, further pre-clinical and clinical
studies are needed to discover the therapeutic potential
of MSCs and MSC-exo, there are insufficient clinical
trials to demonstrate the direct efficacy of MSC
therapies on the pathological manifestations of TBI
(Wang et al., 2020). Additionally, long-term, systematic
in vivo studies are required to clarify the safety of the
application of MSCs and MSC-exo before eventual
clinical translation.

MSCs are widely available and easy to obtain, and
most previous studies have used BMSCs, however, due
to some impairment in obtaining BMSCs, alternative
sources of MSCs have now been sought (Tomic et al.,
2011). For example, human UCMSCs avoid the invasive
procedures required to harvest BMSCs (Thein-Han and
Xu, 2011), ADMSCs can be easily obtained by
liposuction, and are not only less immunogenic but also
have stronger immunomodulatory properties than MSCs
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from other sources (Mattar and Bieback, 2015). One of
the advantages of tooth-derived stem cells is that they
are easy to harvest from pulp, gingiva, and periodontal
of wisdom teeth, deciduous teeth, and pre-molars that
need to be extracted for orthodontic reasons, which
makes dental stem cells an increasingly important source
for regenerative medicine research (Raza et al., 2018;
Abuarqoub et al., 2023).

TBI is an intricate condition, and despite certain
advancements in clinical experiments, numerous
unresolved issues persist. For instance, clinical studies
are scarce, and while a few studies have noted a slight
enhancement in patients' sensorimotor function
following treatment (Tian et al., 2013; Wang et al.,
2013), there is a dearth of longitudinal studies
demonstrating significant positive effects. Consequently,
it is imperative to conduct large-scale randomized
controlled trials to acquire more dependable clinical data
that substantiate our claim. Moreover, the duration of
subsequent clinical trials is typically brief (Wang et al.,
2013; Cox et al., 2017), necessitating the creation of
novel approaches to assess the enduring safety and
effectiveness of cellular therapy. Furthermore, it is
necessary to establish uniform evaluation standards in
clinical studies, since the evaluation methods differ from
one trial to another. Likewise, the magnitude and
fluctuation of TBI seem to influence the effectiveness of
stem cell treatment (Smith et al., 2021; Alouani and
Elfouly, 2022), and an equally crucial aspect is gaining a
more profound comprehension of the pathophysiological
mechanisms involved in TBI.

Conclusions and future perspectives

TBI poses a very serious risk to society, families,
and individuals. Over the past several decades, there has
been no effective improvement in the treatment of
patients with TBI, nor has there been a well-established
treatment program to stop the progression of the injury.
Currently, surgical, physical, pharmacologic, or
rehabilitative treatments have not been particularly
effective, and few single treatments have been
successfully applied in clinical practice.

Both MSCs and MSC-exo have strong therapeutic
potential and show great therapeutic promise and
protective effects in experimental brain injury. Although
they still have some problems in clinical application,
they are still regarded to be a very promising treatment
for TBI. This also hints at the potential of cell-free
therapies, which would overcome important issues
related to intrinsic cellular heterogeneity and safety. In
addition, the use of MSCs in combination with other
drugs may improve therapeutic outcomes compared with
monotherapy.

With advances in technology, the use of biomaterials
and modified exosomes to deliver MSCs to targeted
lesions has been successfully applied in clinical settings,
which greatly improves the therapeutic effects, effectively
improving the healing of brain injury, and proposes a new

therapeutic model (Yuan et al., 2020a).
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