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Abstract: Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that
remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets
of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-
exclusion chromatography and characterized by an orthogonal approach. High-performance liquid
chromatography–high-resolution mass spectrometry was used for lipidomic analysis. A total of
157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids,
glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl
ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their
larger membrane surface area. The distribution pattern was different, especially for sphingomyelins
(more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences
in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis
and functionality.

Keywords: extracellular vesicles; lipidomics; porcine; seminal plasma; subsets

1. Introduction

Seminal plasma is the complex biofluid that surrounds spermatozoa during and after
ejaculation. It is composed of a mixture of the secretions from the functional organs of the
male reproductive tract, mainly from the epididymis and the accessory sex glands [1]. Sem-
inal plasma contains a wide variety of molecules that play key roles in crucial reproductive
processes, such as the modulation of sperm functions [2,3] and the induction of maternal
immune tolerance to spermatozoa and embryos [4,5]. Some of these biomolecules, includ-
ing proteins [6], lipids [7], small non-coding and regulatory RNAs [8], are not only circulate
freely in seminal plasma, but are also loaded into cell-derived membrane-surrounded
nanovesicles, called extracellular vesicles (EVs), where biomolecules are protected from the
degradative activity of seminal plasma enzymes [9,10].

Extracellular vesicles play a key role in cell-to-cell communication and circulate freely
in all body fluids [11]. Seminal EVs (sEVs), like those of any other body fluid, are a hetero-
geneous population with different phenotypic characteristics [6,12,13]. This heterogeneity
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suggests the existence of different sEV subsets, which may have different cell origin, bio-
genesis pathways, cargoes, target cells and functional performance [14]. The isolation
and separate characterization of EV subtypes circulating in body fluid remains a scientific
challenge [15].

Two subsets of sEVs of different sizes, termed small sEVs (S-sEVs) and large sEVs
(L-sEVs), were successfully isolated from porcine seminal plasma using a size-exclusion
chromatography (SEC)-based isolation procedure [16]. Such size-associated EV subsets are
in line with the recommendation of the International Society for Extracellular Vesicles (ISEV)
to use terms referring to phenotypic characteristics, such as size, to define EV subsets [17].
The proteomic profile of these two sEV subsets revealed quantitative differences between
S-sEVs and L-sEVs in several proteins [6]. Such differences in protein cargo support the
concept of the coexistence of different sEV subsets in porcine seminal plasma, which
may have differences in their functionality, as EV functions are closely related to their
cargo [14,18].

In addition to proteins, EVs also contain lipids, a diverse family of macromolecules
that perform essential biological functions, including structural ones, as they are essential
components of membranes, energy storage and signaling [19]. The lipid composition
of EVs is determined by the biogenesis pathway in the cell of origin and contributes to
their intracellular trafficking, as well as their uptake and functional response in recipient
cells [18,20]. The lipid content of sEVs has received much less attention than that of proteins
or RNAs [10], and quantitative lipidomic studies of EVs are needed [21]. Quantitative
studies of the lipidomic profile of sEVs are essential for a better understanding of the under-
lying mechanisms of EV biogenesis and protein packaging, as well as for the exploration of
sources of molecular biomarkers of fertility in sEVs [22].

The aim of the present study was to provide a detailed lipidomic profile of two differ-
ently sized porcine sEV subsets using high-performance liquid chromatography (HPLC)
coupled to high-resolution mass spectrometry (HRMS), a high-throughput and highly sen-
sitive technology that allows comprehensive and quantitative analysis of a broad repertoire
of lipid species in any biological sample, including EVs [23]. To the best our knowledge,
there are only four studies that have reported the relative amounts of some lipid classes
in sEVs, two in humans [24,25], one in horses [26], and one in pigs [7]. Only the study by
Brouwers et al. was performed using MS-based technology for relative lipid quantifica-
tion [25], the other three studies used methods based on thin-layer chromatography (TLC),
an older technology that is less sensitive than MS-based technology [27].

2. Results
2.1. Characterization of sEVs

Total protein concentration was higher (p < 0.0001) in the S-sEV samples (mean ± SD:
184.76 ± 21.24 µg/mL) than in the L-sEV samples (70.35 ± 13.22 µg/mL) (Figure 1A). The
nanoparticle tracking analysis (NTA) showed that the particle concentration (mean ± SD)
was higher (p < 0.0001) in S-sEV samples (12.07 × 1011 ± 1.92 × 1011 particles/mL)
than in L-sEV samples (4.89 × 1011 ± 0.95 × 1011 particles/mL) (Figure 1B). It is in-
teresting to note that the number of particles per µg of protein in the S-sEVs samples
(6536.45 ± 695.50 particles/µg protein) was similar to that in the L-sEVs samples
(7358.61 ± 2687.63 particles/µg protein). The dynamic light scattering (DLS) analysis
showed that the particles were smaller (p < 0.01) in the S-sEV samples (119.63 ± 17.46, 78
and 155 nm for the 25th and 75th percentiles) than in the L-sEV samples (282.51 ± 26.61,
160 and 330 nm for the 25th and 75th percentiles) (Figure 1C). The transmission electron
microscopy (TEM) images confirmed that the S-sEV samples contained smaller EVs than
the L-sEV samples, and further showed that the EVs in the S-sEV samples were mostly
spherical in shape, whereas those in the L-sEV samples were more heterogeneous in shape
(Figure 1D).
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Figure 1. Phenotypic characterization of large (L) and small (S) porcine seminal extracellular vesicles 
(sEVs). Box plots showing (A) total protein concentration and (B) particle concentration measured 
by nanoparticle tracking analysis. (C) Particle size distribution measured by dynamic light scatter-
ing analysis (blue line indicates S-sEVs and red line indicates L-sEVs). (D) Representative transmis-
sion electron microscopy images showing the morphology of sEVs. **** p < 0.0001. Box plots: Boxes 
enclose the 25th and 75th percentiles, whiskers extend to the 5th and 95th percentiles, and line rep-
resents median. 

Flow cytometric analysis showed that most of the particles analyzed were EVs, as 
they were positive for carboxyfluorescein succinimidyl ester (CFSE). The percentages 
(mean ± SD) were similar for S-sEVs (79.64% ± 3.83%) and L-sEVs (80.89% ± 5.15%). Flow 
cytometry analysis also revealed high and similar levels of CD63 and HSP90β expression 
in S-sEV and L-sEV samples (Figure 2). Specifically, the percentages of S-sEVs and L-sEVs 
expressing CD63 were 79.62% ± 1.10% and 81.85% ± 4.54%, respectively. The percentages 
of S-sEVs and L-sEVs expressing HSP90β were 80.75% ± 5.98% and 88.06% ± 2.66%, re-
spectively. Finally, flow cytometry analysis showed that samples of S-sEVs and L-sEVs 
had low albumin content. Specifically, the percentage of albumin-positive particles was 
3.84% ± 1.47% in S-sEVs samples and 2.28% ± 0.75% in L-sEVs samples (Figure 2). 

Figure 1. Phenotypic characterization of large (L) and small (S) porcine seminal extracellular vesicles
(sEVs). Box plots showing (A) total protein concentration and (B) particle concentration measured by
nanoparticle tracking analysis. (C) Particle size distribution measured by dynamic light scattering
analysis (blue line indicates S-sEVs and red line indicates L-sEVs). (D) Representative transmission
electron microscopy images showing the morphology of sEVs. **** p < 0.0001. Box plots: Boxes
enclose the 25th and 75th percentiles, whiskers extend to the 5th and 95th percentiles, and line
represents median.

Flow cytometric analysis showed that most of the particles analyzed were EVs, as
they were positive for carboxyfluorescein succinimidyl ester (CFSE). The percentages
(mean ± SD) were similar for S-sEVs (79.64% ± 3.83%) and L-sEVs (80.89% ± 5.15%). Flow
cytometry analysis also revealed high and similar levels of CD63 and HSP90β expression
in S-sEV and L-sEV samples (Figure 2). Specifically, the percentages of S-sEVs and L-sEVs
expressing CD63 were 79.62% ± 1.10% and 81.85% ± 4.54%, respectively. The percentages
of S-sEVs and L-sEVs expressing HSP90β were 80.75% ± 5.98% and 88.06% ± 2.66%,
respectively. Finally, flow cytometry analysis showed that samples of S-sEVs and L-sEVs
had low albumin content. Specifically, the percentage of albumin-positive particles was
3.84% ± 1.47% in S-sEVs samples and 2.28% ± 0.75% in L-sEVs samples (Figure 2).
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Figure 2. Representative flow cytometry plots (violet side scatter [violet-SSC]/direct side scatter 
[FSC]) showing CFSE, CD63, HSP90β and albumin positive events in samples of small and large 
seminal extracellular vesicles (sEVs) isolated from porcine seminal plasma. 

2.2. Lipids Identified in sEVs by LC–MS Lipidomic Analysis 
The targeted lipidomic analysis identified and quantified a total of 157 lipid species 

belonging to four major lipid categories, namely sphingolipids (SP), glycerophospholip-
ids (GP), glycerolipids (GL), and sterol lipids (ST). The identified and quantified lipid spe-
cies belong to 14 lipid classes, specifically six SP, four GP, two GL and two ST classes 
(Figure 3). 

Figure 2. Representative flow cytometry plots (violet side scatter [violet-SSC]/direct side scatter
[FSC]) showing CFSE, CD63, HSP90β and albumin positive events in samples of small and large
seminal extracellular vesicles (sEVs) isolated from porcine seminal plasma.
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2.2. Lipids Identified in sEVs by LC–MS Lipidomic Analysis

The targeted lipidomic analysis identified and quantified a total of 157 lipid species
belonging to four major lipid categories, namely sphingolipids (SP), glycerophospholipids
(GP), glycerolipids (GL), and sterol lipids (ST). The identified and quantified lipid species
belong to 14 lipid classes, specifically six SP, four GP, two GL and two ST classes (Figure 3).
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Figure 3. Lipid species identified and quantified in porcine seminal extracellular vesicles distributed 
by lipid categories (each with a different box color) and lipid classes within each lipid category. The 
data show the number of lipid species that were identified and quantified. Cer: ceramides; DHCer: 
dihydroceramides; SM: sphingomyelin; DHSM: dihydrosphingomyelin; HexCer: hexosylcer-
amides; CDH: ceramide dihexoside; PC: phosphatidylcholines; LPC: lyso-phosphatidylcholines; PE: 
phosphatidylethanolamines; PE O-: ether-linked phosphatidylethanolamines; DG: diacylglycerols; 
TG: triacylglycerols; FC: free cholesterol; CE: cholesteryl esters. 

The 36 SP species identified and quantified were six ceramides (Cer), four dihy-
droceramides (DHCer), 12 sphingomyelins (SM), six dihydrosphingomyelins (DHSM), 
four hexosylceramides (HexCer), and four ceramide dihexosides (CDH). The 53 GP spe-
cies were 25 phosphatidylcholines (PC), 15 phosphatidylethanolamines (PE), four lyso-
phosphatidylcholines (LPC), and nine ether-linked PE (PE O-). The 59 GL species were 
eight diacylglycerols (DG) and 51 of triacylglycerols (TG). Finally, the nine ST species 
were free cholesterol (FC) and eight cholesteryl esters (CE) (Figure 3 and Table S1). Lipid 
species identified and quantified in both sEV subsets were uploaded to the Vesiclepedia 
database (Study ID: 3594) [28]. 
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sEVs. They accounted for 1.3% of the total lipid species that were identified and quantified 
in the S-sEV samples. In contrast, quantitative differences were found in virtually all iden-
tified and quantified lipid classes. The lipid to protein ratio of the two subsets of sEVs was 
different, being 5:1 for S-sEVs and 10:1 for L-sEVs. L-sEVs had higher relative amounts (p 
< 0.01) of the four major lipid categories, namely SP, GP, GL, and ST, compared to S-sEVs 
(Figure 4A–D). All the 14 identified and quantified lipid classes were more abundant in 
L-sEVs than in S-sEVs (p < 0.05), regardless of their lipid category (Figure 5A–D). 

Figure 3. Lipid species identified and quantified in porcine seminal extracellular vesicles distributed
by lipid categories (each with a different box color) and lipid classes within each lipid category. The
data show the number of lipid species that were identified and quantified. Cer: ceramides; DHCer:
dihydroceramides; SM: sphingomyelin; DHSM: dihydrosphingomyelin; HexCer: hexosylceramides;
CDH: ceramide dihexoside; PC: phosphatidylcholines; LPC: lyso-phosphatidylcholines; PE: phos-
phatidylethanolamines; PE O-: ether-linked phosphatidylethanolamines; DG: diacylglycerols; TG:
triacylglycerols; FC: free cholesterol; CE: cholesteryl esters.

The 36 SP species identified and quantified were six ceramides (Cer), four dihydro-
ceramides (DHCer), 12 sphingomyelins (SM), six dihydrosphingomyelins (DHSM), four
hexosylceramides (HexCer), and four ceramide dihexosides (CDH). The 53 GP species
were 25 phosphatidylcholines (PC), 15 phosphatidylethanolamines (PE), four lysophos-
phatidylcholines (LPC), and nine ether-linked PE (PE O-). The 59 GL species were eight
diacylglycerols (DG) and 51 of triacylglycerols (TG). Finally, the nine ST species were free
cholesterol (FC) and eight cholesteryl esters (CE) (Figure 3 and Table S1). Lipid species
identified and quantified in both sEV subsets were uploaded to the Vesiclepedia database
(Study ID: 3594) [28].

2.3. Comparison of Lipidomic Profile between S-sEVs and L-sEVs

Qualitative differences between S-sEVs and L-sEVs were found only in two CE species.
Specifically, CE (16:0) and CE (20:2) were identified and quantified only in the S-sEVs.
They accounted for 1.3% of the total lipid species that were identified and quantified in the
S-sEV samples. In contrast, quantitative differences were found in virtually all identified
and quantified lipid classes. The lipid to protein ratio of the two subsets of sEVs was
different, being 5:1 for S-sEVs and 10:1 for L-sEVs. L-sEVs had higher relative amounts
(p < 0.01) of the four major lipid categories, namely SP, GP, GL, and ST, compared to S-sEVs
(Figure 4A–D). All the 14 identified and quantified lipid classes were more abundant in
L-sEVs than in S-sEVs (p < 0.05), regardless of their lipid category (Figure 5A–D).
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Figure 4. Histograms showing the differences between large (L-) and small (S-) seminal extracellular 
vesicles (sEVs) in the relative abundance of sphingolipids (A), glycerophospholipids (B), glycer-
olipids (C), and sterol lipids (D). Data are expressed as pmol eq/mg protein and are the mean ± SD. 
**** p value < 0.0001, ** p value < 0.01. 

The four lipid categories were similarly distributed in S-sEVs and L-sEVs. GL was 
the dominant category with more than 50%, while ST was the minority with less than 1% 
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tionally more abundant in L-sEVs than in S-sEVs (Figure 6B). In the GP category, PC and 
PE were the predominant lipid classes in both sEV subsets, with no differences between 
sEV subsets (Figure 6C). In the GL category, TG was the more predominant lipid class in 
both sEV subsets, and the distribution of TG and DG was similar in L-sEVs and in S-sEVs 
(Figure 6D). In the ST category, FC was the predominant lipid in both sEV subsets, but FC 
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proportionally more abundant in L-sEVs than in S-sEVs, whereas CE were proportionally 
more abundant in S-sEVs than in L-sEVs (Figure 6E). 

Figure 4. Histograms showing the differences between large (L-) and small (S-) seminal extracellular
vesicles (sEVs) in the relative abundance of sphingolipids (A), glycerophospholipids (B), glycerolipids
(C), and sterol lipids (D). Data are expressed as pmol eq/mg protein and are the mean ± SD.
**** p value < 0.0001, ** p value < 0.01.

The four lipid categories were similarly distributed in S-sEVs and L-sEVs. GL was
the dominant category with more than 50%, while ST was the minority with less than 1%
(Figure 6A). Regarding the lipid classes within each lipid category, in the SP category, SM,
Cer and HexCer were the most predominant lipid classes in both sEVs subsets. However,
SM and Cer were present in different proportions in S-sEVs and L-sEVs (p < 0.05). SM were
proportionally more abundant in S-sEVs than in L-sEVs, whereas Cer were proportionally
more abundant in L-sEVs than in S-sEVs (Figure 6B). In the GP category, PC and PE were
the predominant lipid classes in both sEV subsets, with no differences between sEV subsets
(Figure 6C). In the GL category, TG was the more predominant lipid class in both sEV
subsets, and the distribution of TG and DG was similar in L-sEVs and in S-sEVs (Figure 6D).
In the ST category, FC was the predominant lipid in both sEV subsets, but FC and CE were
present in different proportions in S-sEVs and L-sEVs (p < 0.01). FC was proportionally
more abundant in L-sEVs than in S-sEVs, whereas CE were proportionally more abundant
in S-sEVs than in L-sEVs (Figure 6E).
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Figure 5. Histograms showing the differences between large (L-) and small (S-) porcine seminal 
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sterol lipids (D). Data are expressed as pmol eq/mg protein and are the mean ± SD. **** p value < 
0.0001, *** p value < 0.001, ** p value < 0.01, * p value < 0.05. 

Figure 5. Histograms showing the differences between large (L-) and small (S-) porcine seminal
extracellular vesicles (sEVs) in the relative abundance of identified and quantified lipid classes dis-
tributed by lipid categories: sphingolipids (A), glycerophospholipids (B), glycerolipids (C), and sterol
lipids (D). Data are expressed as pmol eq/mg protein and are the mean ± SD. **** p value < 0.0001,
*** p value < 0.001, ** p value < 0.01, * p value < 0.05.
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Figure 6. Pie charts and supplementary tables showing the distribution of different categories (A) 
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** p value < 0.01, * p value < 0.05, ns p value > 0.05. a, b, c, d, e indicates differences at p < 0.05 between 
lipid classes within a lipid category. SP: sphingolipids; GP: glycerophospholipids; GL: glycerolipids; 
ST: sterol lipids; Cer: ceramides; DHCer: dihydroceramides; SM: sphingomyelin; DHSM: dihydro-
sphingomyelin; HexCer: hexosylceramide; CDH: ceramide dihexoside; PC: phosphatidylcholine; 
LPC: lyso-phosphatidylcholine; PE: phosphatidylethanolamine; PE O-: ether-linked phosphatidyl-
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Figure 6. Pie charts and supplementary tables showing the distribution of different categories (A)
and classes of lipids (B–E) between small (S-) and large (L-) porcine seminal extracellular vesicles
(sEVs). Data in tables show the mean percentage (%) ± SD. **** p value < 0.0001, *** p value < 0.001,
** p value < 0.01, * p value < 0.05, ns p value > 0.05. a, b, c, d, e indicates differences at p < 0.05
between lipid classes within a lipid category. SP: sphingolipids; GP: glycerophospholipids; GL:
glycerolipids; ST: sterol lipids; Cer: ceramides; DHCer: dihydroceramides; SM: sphingomyelin;
DHSM: dihydrosphingomyelin; HexCer: hexosylceramide; CDH: ceramide dihexoside; PC: phos-
phatidylcholine; LPC: lyso-phosphatidylcholine; PE: phosphatidylethanolamine; PE O-: ether-linked
phosphatidylethanolamine; DG: diacylglycerols; TG: triacylglycerols; FC: free cholesterol; CE:
cholesteryl esters.
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3. Discussion

In the present study, the lipidomic profiles of two subsets of EVs of different sizes
isolated by SEC from porcine seminal plasma (sEVs), termed small sEVs (S-) and large sEVs
(L-), were characterized. Lipidomic studies of EVs are still limited, and those characterizing
the lipidomic profiles of EV subpopulations are even more limited. To the best of our
knowledge, only a few studies have compared the lipid profile of EV populations of
different sizes, all of which are secreted in vitro from body cells or single cell lines [29–32].
Therefore, the present study is the first to compare the lipidomic profile of EV subsets
of different sizes circulating in body fluids. The results of the above-mentioned studies
showing differences between small and large EVs in the relative amounts of several lipid
species are consistent with those reported here in that the relative amounts of many lipid
classes differ between S-sEVs and L-sEVs.

Separation of the two sEV subsets was achieved by centrifugation at 20,000× g, a
g-force that allows the sedimentation of the large particles, including the L-sEVs, while
leaving the smaller particles, including S-sEVs, in the supernatant [33]. Both subsets of
sEVs were then separately purified by SEC, a procedure that allows the recovery of a
large number of intact and minimally contaminated EVs [15]. The samples of sEVs were
characterized using an orthogonal approach and the results confirmed that S-sEVs and L-
sEVs differed in size, as expected, but also in concentration and morphology, in agreement
with previous studies [6,34]. Flow cytometry analysis showed that the isolated sEVs in
both S-sEV and L-sEV samples exhibited a high degree of purity, a necessary requirement
to obtain reliable results in EV composition studies such as the present one [21]. It should
be noted that the major non-EV particles co-isolated in EV samples are lipoproteins, which
are characterized by a hydrophobic lipid core [35]. Lipoproteins are usually co-isolated
with EVs due to their similar size to smaller EVs (≈25–80 nm for lipoproteins). This can
lead to the overestimation of some lipid species [21,36,37].

Extracellular vesicles are membranous structures derived from cell membranes. There-
fore, the lipid repertoire of EVs is expected to consist mainly of cell membrane lipids.
However, they may contain small amounts of other cytosol-derived lipids acquired during
biogenesis [11,21]. Indeed, the most abundant lipids found in both sEV subtypes were,
in descending order, TG, PC, SM, DG, and Cer. These results would be consistent with
those reported by Peterka et al., who found that TG, PC and SM were some of the most
abundant lipids in EVs isolated from human plasma [38]. Most of the lipids found in the
sEVs are typical structural lipids of cell membranes. In particular, PC, SM and Cer are
abundant structural lipids in plasma and endosomal membranes [39]. In contrast, TG and
DG are lipid classes present in the inner space of the bilayer but are not thought to play
a structural role [38]. This is the first study to report the presence of TG and DG in sEVs,
lipid classes that have also been found in EVs isolated from human blood plasma [38],
mouse urine [40], and human brain tissue [41]. The enrichment of TG in both sEV subsets
should be viewed with caution, as TG are important components of lipoproteins and lipid
droplets [42], which are common contaminants of EV samples, as discussed above. How-
ever, it is unlikely that the high levels of TG found in porcine sEV samples are solely due to
lipoprotein contamination. This contention would be supported by flow cytometry results
showing a very high percentage of CFSE+ events in both sEV samples, which would be
membrane-intact sEVs [43]; and by the relatively low amount of CE, another lipid class
abundant in lipoproteins [21,44]. Furthermore, TG have been found at high levels in EVs
produced in vitro by cell lines [45], which are less contaminated by lipoproteins than those
isolated from body fluids [21]. The high levels of TG found in sEVs may be due to the
binding of free lipoproteins circulating in seminal plasma to sEV membrane, which has
been shown to occur in EVs cultured in vitro [37,46]. It should be noted here that the
comparison of the lipidomic profile of EVs isolated from different body fluids or different
cell cultures may not be scientifically accurate. The lipid composition of EV samples is
strongly influenced by the isolation procedure used [47], in addition to the expected natural
influencing factors such as the biogenesis pathway, the cell of origin and its functional
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state, i.e., physiological or pathological [11]. Among other reasons, the variety of methods
used for EV isolation leads to the unpredictable presence of non-EV particles in isolated EV
samples, including lipoproteins as mentioned above. This can lead to inaccurate results
regarding the lipid composition of EVs, which makes comparisons between studies of little
scientific value.

In addition to the structural role of lipids in EVs, their role in cell-to-cell communication
must also be considered. Lipids are one of the active molecules that facilitate the transport
EVs from source cells to target cells [11,47]. With respect to sEVs, it is well known that
they bind to and deliver their cargo to spermatozoa, thereby regulating important sperm
functions such as capacitation [10]. Leahy et al. showed enrichment of the sperm proteome
after sEV binding, which would indicate transfer of proteins from sEVs to spermatozoa [48].
Lipid transfer from sEVs to sperm remains to be demonstrated [49], although the easy
transfer of lipophilic dye between epididymosomes and spermatozoa [50] suggests that
lipid exchange occurs between sEVs and spermatozoa.

Lipids are known to be involved in key sperm functions such as capacitation. Certainly,
key steps in sperm capacitation are the removal of cholesterol from the sperm surface and
the subsequent remodeling of membrane lipid to increase membrane lipid fluidity [51,52].
Sperm subjected to stressful conditions, such as cryopreservation, undergo so-called pre-
mature or false capacitation, rendering them incapable of fertilization [53]. Binding of sEVs
to spermatozoa prevents premature or false capacitation and stabilizes sperm membranes,
including acrosomal membranes [54–56]. This role of sEVs may be mediated, at least in
part, by the transfer of certain lipid species from sEVs to spermatozoa. Indeed, some of the
lipids found in the sEVs are associated with processes related to sperm physiology. For
instance, some specific PC and PE species that were detected in both sEV subsets, namely
PC (36:1), PC (38:4), and PE (34:4), have been proposed as sperm motility markers [57].
In addition, PC in particular, but also PE, is known to play a key role in the prevention
of phospholipid movement by binding to seminal plasma proteins, thereby maintaining
sperm membrane stability [58]. It has also been shown that the stabilizing effect of PC
on the sperm membrane prevents cold shock-induced ultrastructural damage in porcine
spermatozoa [59]. The degradation of PC by phospholipase A2 results in LPC, which has
been measured in S-sEV and L-sEV samples and could be another sEV lipids that modulates
sperm functionality, specifically the acrosomal reaction, as moderate amounts of LPC have
been shown to induce the acrosomal reaction in bovine and human spermatozoa [60–62].
PC can also be degraded to DG, which are abundant in the sperm membrane and whose
reduction is associated with infertility in bulls [63]. Concentrations of TG and FC in seminal
plasma have been shown to be significantly higher in cats with good than poor semen
quality [64]. Loss of sperm FC is a key early step in capacitation, as noted above. SM plays
an important role in slowing down FC loss, thereby influencing the timing of sperm capaci-
tation [65]. Therefore, it is plausible that one of the ways by which sEVs avoid premature
capacitation is through the transfer of SM to spermatozoa. L-sEVs would be more effective
in modulating sperm function via these lipid-dependent pathways because they contain
higher levels of all these lipid classes than S-sEVs. Recent evidence has shown that sEVs
decrease lyso-PC in porcine spermatozoa [66]. Thus, sEVs may also be involved in the
removal of “unneeded” molecules from spermatozoa, as suggested by Leahy et al. [48].

Lipidomic analysis revealed qualitative differences in two CE species, specifically CE
(16:0) and CE (20:2) between the two sEV subsets, which were identified in S-sEVs but not
in L-sEVs. CEs are energy storage lipids formed by the esterification of cholesterol to fatty
acids [67] and, as mentioned above, are abundant in the hydrophobic core of lipoproteins.
Therefore, the interaction of S-sEVs with lipoproteins circulating in the seminal plasma
may be responsible for the presence of these two CEs in S-sEVs. Small EVs are more
likely than large EVs to be surrounded by a peripheral coronal layer composed of active
molecules, including lipoproteins [68–70]. These fatty acid-bearing cholesterol lipids may
indicate the pool of fatty acids available to synthetize complex lipids [71]. One of the
two CEs present only in S-sEVs was CE (16:0), termed cholesteryl palmitate, which is
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formed by the esterification of cholesterol and palmitic acid (C16:0). Recently, Barreca et al.
developed an innovative approach for the metabolic labeling of a homogeneous population
of small EVs based on the tracking of a fluorescent palmitic acid analogue, called Bodipy
FL C16 [72]. They successfully demonstrated the localization of BODIPY FL C16 in specific
intracellular compartments, including the endoplasmic reticulum and the endolysosomal
compartment, while it was absent from the cell membrane of EV-producing cells. Therefore,
they hypothesized an association between palmitic acid and the intracellular origin of a
specific subpopulation of small EVs. The exclusive presence of CE (16:0) in S-sEV samples
would support that these samples are enriched with exosomes (i.e., endosome-derived
EVs) whose size matches that of S-sEVs. The other uniquely identified CE in S-sEVs, CE
(20:2), has not been previously reported. Whether these two lipids play a relevant role in
S-sEVs is therefore unknown. In contrast to the few qualitative differences, there were clear
quantitative differences in the lipid profile of S- and L-sEVs. L-sEVs had higher relative
amounts of the four major lipid categories and of each of the 14 identified lipid classes. Since
the number of sEVs/µg protein was similar in both sEV subsets, size differences between
S- and L-sEVs could be the reason for these quantitative differences. In this and previous
studies [21], it has been shown that the lipidomic profile of EVs is largely composed of
membrane lipids. Therefore, it is reasonable to assume that larger EVs have a greater
relative amount of lipids than smaller EVs due to their larger membrane surface area.

In addition to the relative amount, the proportion of each lipid category and class
was also compared between S-sEVs and L-sEVs. The four lipid categories were similarly
distributed in S-sEVs and L-sEVs, which would be consistent with the results reported by
Durcin et al. and Kim et al. in subtypes of EVs of different sizes from adipocytes and a
specific cell line (DU145 HRPC), respectively [29,31]. In terms of lipid classes, SM and Cer
were observed to have the most notable proportional differences between the two subsets
of sEVs. Hydrolysis of SM to Cer is a known pathway in the biogenesis of both exosomes
and ectosomes [11]. It is plausible that this pathway is more active in L-sEVs than in S-sEVs,
because L-sEVs had a higher Cer:SM ratio than S-sEVs. It is interesting to note that L-sEVs
contain more ectosomes than exosomes [73].

The quantitative lipidomic differences between S- and L-sEVs suggest differences
in functional roles between the two sEV-subsets. Indeed, a recent functional study in
pigs by Barranco et al. showed that L-sEVs were able to modulate sperm metabolism,
whereas S-sEVs had no detectable effect [74]. The different molecular composition of S-
and L-sEVs may explain the observed functional differences between the two subsets of
sEVs. This would be supported by the results of Barranco et al. who reported quantitative
differences between the two subsets of sEVs in proteins related to sperm functionality [6].
Unfortunately, lipidomics does not have the same background of functional data as pro-
teomics. Therefore, investigating the role of sEV lipids in modulating sperm function
remains a challenge.

4. Materials and Methods
4.1. Animals and Seminal Plasma Samples

Animal procedures were performed in accordance with international guidelines for the
protection of animals used for research purposes (Directive 2010-63-EU) and the experiment
carried out was approved by the Bioethics Committee of the University of Murcia at its
meeting on 25 March 2021 (research code: CBE: 367/2020). The reagents used were
provided by Merck (Darmstadt, Germany) unless otherwise stated.

Nine ejaculates were collected from nine mature, healthy, and fertile Pietrain boars
(one ejaculate per boar) housed in an artificial insemination (AI) center of AIM Iberica
(Topigs Norsvin España SLU). The boars were routinely used to produce AI semen doses
for commercial AI programs, and the ejaculates used in this study met the quality crite-
ria established for the commercial production of AI semen doses, namely greater than
200 × 106 sperm/mL with more than 70% motile spermatozoa and more than 75% mor-
phologically normal spermatozoa. Samples of 15 mL of each ejaculate were centrifuged
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twice at 1500× g for 10 min at room temperature (RT) (Rotofix 32A, Hettich Centrifuge
UK, Newport Pagnell Buckinghamshire, UK) to collect seminal plasma. The resulting nine
seminal plasma samples were randomly pooled three to three to generate three separate
pools, each containing three seminal plasma samples. One tablet of a protease inhibitor
cocktail (Roche protease inhibitor cocktail complete™, Basel, Switzerland) was added to
each seminal plasma sample and the samples were then stored at 5 ◦C until the isolation
of sEVs.

4.2. Isolation of sEVs

The isolation of sEVs was performed using the SEC-based protocol recently described
by Martínez-Díaz et al. with slight modifications [16]. Briefly, the three seminal plasma
samples (4 mL each) were centrifuged at 3200× g for 15 min at 4 ◦C (Sorvall™ BSTR40,
Thermo Fisher Scientific, Waltham, MA, USA) to remove debris. The resulting supernatants
were centrifuged at 20,000× g for 30 min at 4 ◦C (Sorvall™ Legend™ Micro 21R, Thermo
Fisher Scientific). The resulting pellets and supernatants were processed separately for
isolation of sEV subsets. Pellets were resuspended in 500 µL phosphate-buffered saline
filtered at 0.22 µm (fPBS) and stored at 5 ◦C until SEC. Supernatants were diluted in fPBS
(1:2, v:v), filtered (0.22 µm, Millex® syringe filters) and reconcentrated by ultrafiltration (UF)
using 3 kDa Amicon® Ultra-4 mL centrifuge filters (UFC8003, Merck KGaA, Darmstadt,
Germany) and multiple cycles of 3200× g centrifugation at 4 ◦C. Samples retained on the
ultrafilter (≈2 mL) were stored at 5 ◦C until SEC.

SEC was performed using home-made columns consisting of 10 mL of Sepharose
CL-2B® (Sigma Aldrich®, Burlington, MA, USA, Merck KGaA) packed into 12 mL filtration
tubes (Supelco® Filtration Tubes 12 mL, Bellefonte, PA, USA). The supernatant and pellet
samples from each 20,000× g centrifugation were separately subjected to SEC. Twenty
eluted fractions of 500 µL each were collected sequentially in each SEC. The EV-enriched
fractions (7 to 9) from each SEC were pooled to create a single sEV sample. Thus, two sEV
samples were obtained from each of the three seminal plasma pools, one enriched in smaller
sEVs (S-sEVs) from the SEC of the 20,000× g centrifugation supernatant and one enriched
in larger sEVs (L-sEVs) from the SEC of the 20,000× g centrifugation pellet. In total, six
samples of sEVs, three S-sEVs and three L-sEVs, were generated and stored at −80 ◦C
(Ultra Low Freezer; Haier Inc., Qingdao, China) until used for either EV characterization or
lipidomic analysis.

4.3. Characterization of sEVs

The sEVs from the three samples of S-sEVs and the three samples of L-sEVs were
characterized according to the minimal information for studies of extracellular vesicles
2018 (MISEV2018) guidelines [17]. For this, orthogonal characterization including total
protein concentration, particle concentration, particle size distribution, sEV morphology,
sEV protein-specific markers, and sEV purity was performed as described below.

Total protein concentration was measured using the bicinchoninic acid assay (Thermo
Scientific™ Pierce Micro BCA, Waltham, MA, USA) according to the manufacturer’s instruc-
tions. Each sEV sample was analyzed under two different conditions, lysed and unlysed.
Lysis was performed by mixing (1:1, v:v) sEV samples with lysis solution (0.1% of Triton
plus 0.1% of sodium dodecyl sulfate in fPBS) and the mixture was incubated at 37 ◦C for
30 min under gentle agitation (≈50 rpm). Absorbance was measured at a wavelength of
570 nm (PowerWave XS; BioTek Instruments, Winooski, VT, USA). Two technical replicates
were analyzed for each of the six biological samples. Results are expressed as µg per mL.

Particle concentration was measured by NTA using a NanoSight LM10 (Malvern
Instrument Ltd., Malvern, UK) equipped with a 405 nm laser and a complementary scientific
semiconductor metal oxide camera. Measurements were analyzed using NTA software
(version 3.3.; dev build 3.3.104) with min track length, max jump distance, defocus set
to auto, and the detection threshold set to five. The camera level was set to 15 and five
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30 second videos were recorded at a 30 fps. Two technical replicates were analyzed for each
of the six biological samples.

Particle size distribution was measured by DLS analysis using a Zetasizer Nano ZS
system (Malvern Panalytical, Malvern, UK) operating at 633 nm at 25 ◦C and recording
the backscattered light at an angle of 173◦. Samples of 50 µL were loaded into 10 mm
cuvettes. Light scattering was recorded for 150 s and 3 measurements were taken per
sample. Dispersion Technology v.5.10 software (Malvern Panalytical) was used to convert
the DLS signal intensity to size distribution. Particle diameter was determined from the
maximum peak of the normal function. The intensity-based distribution was recalculated to
volume and the results recorded as volume and intensity size distributions. Three technical
replicates were analyzed for each of the six biological samples.

The morphology of S-sEVs and L-sEVs was evaluated by TEM using a JEOL JEM
1011 microscope (JEOL Ltd., Tokyo, Japan). Sample preparation and visualization were
performed according to the protocol described by Théry et al. with slight modifications [75].
Briefly, 10 µL of sample was fixed in 2% paraformaldehyde for 30 min and applied to
carbon-coated copper grids for 15 min. Samples were washed with fPBS, fixed in 1%
glutaraldehyde, and washed with distilled water. The samples were then counterstained
with 1% uranyl acetate and immersed in 0.5% methylcellulose. After drying, the samples
were imaged at 80 kV.

The expression of the specific protein markers CD63 and HSP90β and the purity of
the sEV samples were analyzed by flow cytometry using a high-sensitive flow cytometer
(CytoFLEX S, Beckman Coulter, Life Sciences Division Headquarters, Indianapolis, IN,
USA) equipped with violet (405 nm), blue (488 nm), yellow (561 nm), and red (638 nm)
lasers according to the technical procedure described by Barranco et al. [34]. The accuracy
of the flow cytometer for EV input and counting was confirmed using recombinant EVs
expressing green fluorescent protein on their membrane surface (SAE0193, Merck). The
optical setup was adjusted to use the side scatter (SSC) information from the 405 nm laser
(violet SSC-A). The forward scatter (FSC) and violet SSC-A were set to a logarithmic scale
and the fluorescence channels were set to a logarithmic gain. Samples were analyzed in
low flow mode (10 µL/min) with a minimum of 104 events per sample. Distilled water was
used as the sheath fluid, while 0.1 µm-fPBS was used to ensure removal of background
noise. Analysis was adjusted for intact sEVs. For this, samples were incubated with
CellTrace™ CFSE (C34554, Thermo Fisher Scientific) and only CFSE-positive particles were
considered sEVs.

Flow cytometry analysis was performed according to the ISEV guidelines [76]. En-
richment of proteins belonging to the three categories established by MISEV2018 [17] was
assessed. Specifically, CD63 (anti-CD63-FITC, clone REA1055, Miltenyi Biotec, Bergisch
Gladbach, Germany) belonging to category 1; HSP90β (anti-HSP90β-PE, ADI-SPA-844PE-
050, Enzo Life Sciences, Farmingdale, NY, USA) belonging to category 2; and albumin
(anti-swine albumin-FITC, CLFAG16140, Cedarlane, Burlington, MA, USA) belonging to
category 3, that of non-EV protein markers.

All relevant data from the experiments were submitted to the EV-TRACK database
(EV-TRACK ID: EV240049) [77].

4.4. Lipidomic Analysis

Lipidomic analyses were performed by the Research Unit on Bioactive Molecules
(RUBAM) of the Institute of Advanced Chemistry of Catalonia (IQAC, Barcelona, Spain), mem-
ber of the Spanish National Research Council. Lipid extraction and lipid identification and
quantification were performed as described by Simbari et al., with minor modifications [78].

4.4.1. Determination of Total Protein Concentration

Total protein concentration of S-sEVs and L-sEVs was determined by bicinchoninic
acid assay (Thermo Scientific™ Pierce Micro BCA) using BSA as a standard according to
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the manufacturer’s instructions. Samples were then frozen, lyophilized, and resuspended
in 0.2 mL of MilliQ water.

4.4.2. Lipid Extraction

A total of 750 µL of a chloroform-methanol (2:1, v:v) solution containing internal
standards (16:0 D31_18:1 phosphocholine, 16:0 D31_18:1 phosphoethanolamine, 16:0
D31-18:1 phosphoserine, 17:0 lyso-phosphocholine, 17:1 lyso-phosphoethanolamine, 17:1
lyso-phosphoserine, 17:0 D5_17:0 diacylglycerol, 17:0/17:0/17:0 triacylglycerol and C17:0
choresteryl ester, N-dodecanoylsphingosine, N-dodecanoylglucosylsphingosine, N-
dodecanoylsphingosylphosphorylcholine, 0.2 nmol each, and 2 nmol stigmasterol, from
Avanti Polar Lipids, Alabaster, AL, USA) were added to 0.2 mL of S-sEVs and L-sEVs.

Samples were vortexed and sonicated until they appeared dispersed and extracted
at 48 ◦C overnight and cooled. Samples were then evaporated to dryness and stored at
−80 ◦C until analysis. Prior to analysis, 150 µL of methanol was added to the samples,
centrifuged at 13,000× g for 5 min and 130 µL of the supernatant was transferred to a new
vial and injected.

4.4.3. Liquid Chromatography–High-Resolution Mass Spectrometry

Lipids were analyzed by liquid chromatography high-resolution mass spectrometry
(LC–HRMS). LC–HRMS analysis was performed using an Acquity ultra-high-performance
liquid chromatography (UHPLC) system (Waters Co, Wexford, Ireland) coupled to a time-
of-flight detector (LCT Premier XE). Full scan spectra were acquired from 50 to 1800 Da,
and individual spectra were summed to produce data points every 0.2 s. Mass accuracy at
a resolution of 10,000 and reproducibility were maintained using an independent reference
spray (leucine enkephalin) via the LockSpray interference. Lipid extracts were injected
onto an Acquity UHPLC BEH C8 column (1.7 µm particle size, 100 mm × 2.1 mm, Waters
Co) at a flow rate of 0.3 mL/min and a column temperature of 30 ◦C. The mobile phases
were methanol with 2 mM ammonium formate and 0.2% formic acid (A)/water with 2 mM
ammonium formate and 0.2% formic acid (v:v) (B). A linear gradient was programmed as
follows: 0.0 min: 20% B; 3 min: 10% B; 6 min: 10% B; 15 min: 1% B; 18 min: 1% B; 20 min:
20% B; 22 min: 20% B. For HRMS analysis, the capillary voltage was set to 3.0 kV, the
desolvation temperature was set to 350 ◦C, and the desolvation gas flow was set to 600 L/h.

Positive identification of compounds was based on the accurate mass measurement
with an error <5 ppm and their LC retention time, compared to that of a standard (92%).
Quantification was performed on the extracted ion chromatogram of each compound,
using 50 mDa windows. Linear dynamic range was determined by injecting mixtures of
internal and natural standards as described above. In the absence of authentic standards,
identification was made by accurate mass measurement, elemental composition, calculated
error, double bond equivalents, and retention time. The relative amount of each lipid species
was measured as pmol equivalents to available standards, normalized to protein content
and expressed as pmol per mg protein. The LIPID-MAPS consortium lipid nomenclature is
used in this paper [79,80].

4.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 10.1.0 for Windows
(GraphPad Software, San Diego, CA, USA). The normal distribution of the data was
assessed using the Shapiro–Wilks test. Data were analyzed by paired t-test or one-way
ANOVA followed by Tukey’s multiple comparison test for comparisons between two or
more groups, respectively. The results of the sEV characterization are presented as the
mean ± SD, unless otherwise noted. Statistical differences were considered when p values
were <0.05.
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5. Conclusions

In conclusion, porcine seminal EVs have a complex lipid composition, including
157 lipid species belonging to 14 different lipid classes. Most of the identified lipids were
structural to cell membranes. However, some diacylglycerol and triacylglycerol species
were also identified, which may originate from circulating free lipoproteins in seminal
plasma bound to the sEV membrane. The two subsets of sEVs of different sizes showed
qualitative and quantitative differences in lipid profile. The most notable quantitative
differences were in sphingomyelins and ceramides, with the former in higher proportions
in small sEVs and the latter in large sEVs, differences that may reveal different biogene-
sis pathways.
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