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Abstract: The management of time is essential in most AI-related applications. In addition, we know
that temporal information is often not precise. In fact, in most cases, it is necessary to deal with
imprecision and/or uncertainty. On the other hand, there is the need to handle the implicit common-
sense information present in many temporal statements. In this paper, we present FTCProlog, a logic
programming language capable of handling fuzzy temporal constraints soundly and efficiently. The
main difference of FTCProlog with respect to its predecessor, PROLogic, is its ability to associate
a certainty index with deductions obtained through SLD-resolution. This resolution is based on
a proposal within the theoretical logical framework FTCLogic. This model integrates a first-order
logic based on possibilistic logic with the Fuzzy Temporal Constraint Networks (FTCNs) that allow
efficient time management. The calculation of the certainty index can be useful in applications
where one wants to verify the extent to which the times elapsed between certain events follow a
given temporal pattern. In this paper, we demonstrate that the calculation of this index respects the
properties of the theoretical model regarding its semantics. FTCProlog is implemented in Haskell.

Keywords: temporal reasoning; approximate reasoning; logic programming; possibilistic logic;
possibility and necessity degree; temporal Prolog; fuzzy temporal constraint
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1. Introduction

In the field of artificial intelligence and expert systems, there are multiple models
for reasoning about the time of occurrence of events or the temporal constraints between
them. Many proposals include the ability to handle uncertainty and/or imprecision in
time-related facts. For example, Allen’s temporal relations [1] are extended in the temporal
reasoning intelligent system Fuzz-time [2] to allow fuzzy time intervals to be compared.
Furthermore, this system allows this type of reasoning to be incorporated in a database.
The Possibility Theory [3] has also been applied in temporal reasoning in logical models
such as Timed Possibilistic Logic [4] or algebraic models such as Fuzzy Temporal Constraint
Networks or FTCNs [5–7], where possibility theory is used as a formalism to represent
imprecision in metric constraints between temporal instants. The temporal reasoner Fuzzy
Temporal Information Management Engine or FuzzyTIME [8] uses the FTCN model but
adds a module that allows for the representation of points and intervals, quantitative
and qualitative relations, and imprecision and uncertainty. FuzzyTIME is capable of
determining temporal consistency, searching for solutions and resolving queries.

The FTCN model allows for very efficient management of fuzzy temporal reasoning.
However, when the goal is to provide a framework that ensures soundness and com-
pleteness in reasoning, the use of formal logic and automated reasoning becomes of great
interest. Numerous works can be found that provide variations of logical deduction with
the ability to manipulate time [9], such as the temporal propositional logic included in
the MTPL system [10], or the modal temporal logics PNL [11] or GTL [12]. On the other
hand, in [13], a propositional temporal language based on fuzzy temporal constraints with
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consistent inference rules is proposed, while in [14], a first-order programming language
based on possibilistic logic is proposed for reasoning in environments with uncertainty and
lack of information, using a modus ponens-type rule. Another first-order language based
on LTL [15] is also proposed, which improves the treatment of variables in temporal logic
programming of the STeLP tool [16].

From our point of view, the combination of expressiveness and guarantees provided
by a logical model, along with the efficiency in handling time that can be achieved with an
algebraic model such as an FTCN, provides the most suitable framework for reasoning in
contexts where knowledge of the domain is as important as the temporal constraints (often
fuzzy or uncertain) between data or events associated with that domain.

The only model we know of that provides a reasoning mechanism (temporal resolu-
tion) that efficiently processes temporal constraints while making deductions associated
with domain data is the first-order fuzzy temporal logic model FTCLogic [17]. FTCLogic
is based on the FTCN model and possibilistic logic [18,19]. It has high expressiveness,
is sufficiently general in the sense that it is adaptable to any application area, has an
efficient inference rule (by combining the resolution principle with the minimization of
FTCN networks), and is sound and complete, which guarantees correctness in deductions.
These characteristics led to the implementation of the PROLogic language [20], which is an
implementation of FTCLogic that looks like Prolog. Although there are other proposals
for implementing a Temporal Prolog, such as [21–24], they do not include efficient, consis-
tent, and homogeneous handling of temporal and non-temporal information, as proposed
in PROLogic.

The resurgence of artificial intelligence has opened up new areas of significant interest,
such as Machine Learning or Explainable Artificial Intelligence (XAI) [25], emphasizing
the necessity of integrating models capable of effectively managing uncertainty [26] and
temporal information. For instance, in [27], the researchers investigated a safe learning
problem that satisfied linear temporal logic (LTL) constraints. On the other hand, in [28],
the FTCN model was employed to detect inconsistencies within pre-trained language
models in a specific application domain of a conversational agent. This agent is designed to
provide users with natural and accurate explanations. In [29], a time-dependent explainable
artificial intelligent system is introduced. It is based on novel temporal type-2 fuzzy sets
to analyze real-life processes accounting for their time dependencies. On the other hand,
in [30], the authors propose enhancing language models with temporal logical induction
capability using a method they call LECTER, or Logic Induction Enhanced Contextualized
Temporal Reasoning. Techniques from Inductive Logic Programming (ILP) are applied
to learn logic rules by generalizing from both temporal and relational data in [31], where
the authors propose what they term Temporal Inductive Logic Reasoning (TILR). Finally,
in [32], we can find a comprehensive survey of research on temporal reasoning for automatic
temporal information extraction from text.

In Figure 1, we present a PRISMA flow chart [33,34] to illustrate the process we
have followed for selecting and evaluating studies on Fuzzy Logic applied to Temporal
Reasoning, focusing on models capable of dealing with temporal constraints. As can be
seen, we have been particularly interested in the use of these models in the context of new
AI applications.

In this work, we present the tool FTCProlog. The methodology followed for its imple-
mentation begins with the theoretical definition of the temporal reasoning model FTCLogic.
This theoretical model makes deductions with clauses, each of which is associated with
an FTCN. At each step of the refutation process, the fuzzy constraints of these networks
intersect with each other, so that the information about the time elapsed between two events
becomes increasingly precise. If an inconsistent network is obtained, the process stops,
and no deduction is made. The PROLogic tool implements this process, as we mentioned
earlier. It is a logic programming language based on FTCLogic and implemented in Haskell.
However, in certain applications, it may be of interest to know to what extent the temporal
constraints in a given temporal pattern resemble those that relate to the occurrence of
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specific events. In this context, we introduce a modified version of PROLogic, which we
named FTCProlog, that allows a certainty index to be associated with each SLD-refutation.
This measure is obtained by calculating the compatibility of the fuzzy constraints involved
in the resolution process. We will demonstrate that this measure respects the soundness
and completeness properties proven for FTCLogic. Additionally, we study the behavior of
this index by introducing a simple example in FTCProlog.

This paper has been organized as follows. In Section 2, we explain, through the use of
simple examples, the theoretical foundations of the tool we propose: FTCLogic. We will
begin by presenting the main concepts of FTCN and summarizing the syntax and semantics
of FTCLogic. A complete definition of FTCLogic can be found in [17]. The PROLogic
language is the implementation of the resolution principle of this logic in Haskell. In
Section 3, we will use some examples to address the main issues associated with the use
of PROLogic programs. The complete description of the tool can be found in [20]. In
Section 4, we will present the main features of FTCProlog, paying special attention to
what sets this application apart from its predecessor PROLogic. In Section 4.1, we define
a certainty measure associated with each deduction. In Section 4.2, we demonstrate the
consistency of this measure and we outline how its calculation has been implemented, while
in Section 4.3, we study the values obtained for different instances of an example in the
context of marketing on an online sales page. Finally, Section 5 offers the main conclusions.
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Figure 1. PRISMA flow diagram for literature search on fuzzy constraint logic applied to temporal
reasoning for new applications in AI. Search conducted on Google Scholar.

2. FTCLogic

We begin by summarizing some basic FTCLogic issues through a simple example. The
full definitions of the syntax, semantics, and resolution principle of FTCLogic can be found
in [17].

2.1. Basic Notions of FTCN

Since FTCNs are an essential part of FTCLogic clauses, we start by exposing the most
basic concepts about them. A complete explanation can be found in [5–7].

Definition 1. A Fuzzy Temporal Constraint Network (FTCN) N =< X, L > is a pair made up
of a finite set of n + 1 temporal variables X = {X0, X1 . . . Xn} and a finite set of fuzzy temporal
binary constraints among them L = {Lij | i, j ≤ n}

The possible values of the difference between the variables Xj and Xi can be described
by a binary constraint Lij, defined by a possibility distribution πij over the set of real values
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R. In case the temporal constraint between the two variables Xi and Xj is not known, we
assume that there exists a universal constraint given by πU(x) = 1, ∀x ∈ R. To represent
an FTCN, a directed graph is generally used. In this graph, each node corresponds to a
variable while the arcs represent a binary constraint between two variables.

Definition 2. A σ-possible solution of FTCN N is defined as an n-tuple s = (x1, . . . xn) ∈ Rn

which verifies πS(s) = σ, where πS is:

πS(s) = min
i,j≤n

πij(xj − xi).

If there is at least one absolutely possible solution, the FTCN is said to be consistent. This case
occurs when the possibility distribution πS is normalized.

We say that two FTCNs are equivalent if they define the same n-ary fuzzy relation.
Two equivalent networks can differ in some constraints Lij. This is because there may
be other constraints that act on the variables Xi and Xj. That is, a more precise implicit
constraint between these variables can be induced by the rest of the constraints. If, to obtain
an induced constraint Mij between the variables Xi and Xj, all the other constraints of
FTCN have been used, this constraint is minimal with respect to inclusion. Mij contains
all the information available on the network. Given an FTCN N , we are interested in an
equivalent FTCN M, in which the minimal constraints are shown explicitly. This network
is called the minimal network and its constraints Mij are obtained by exhaustive constraint
propagation. The process of obtaining the minimal network can be implemented using
a fuzzy version of the path-consistency algorithm [35]. This algorithm will also serve to
detect temporal inconsistencies in the network.

We assume convex and normalized possibility distributions. This allows us to consider
constraints as fuzzy numbers representable by means of trapezoidal distribution [36]. These
can be defined by four parameters (α, β, γ, δ). In this way, arithmetic operations can be
performed efficiently.

The following definitions are important for the definition of FTCLogic:

Definition 3. Given two FTCN networks ρ and ρ′ defined on the same set of nodes, we can say
that ρ is included in ρ′, and we denote it as ρ ◁ ρ′ if, for each pair of nodes ni and nj belonging
to both networks, it is fulfilled that πij ⊂ π′

ij, where πij is the possibility distribution between ni

and nj in the network ρ and π′
ij is that corresponding to ρ′ for the same nodes. This means that

πij(x) ≤ π′
ij(x), ∀x ∈ R.

Definition 4. Given two FTCN networks ρ and ρ′ defined on the same set of nodes, we use ρ ∩ ρ′

to denote a new network obtained by making the fuzzy intersection between πij and π′
ij for each pair

of nodes ni and nj belonging to both networks, with πij being the possibility distribution between ni
and nj in the network ρ and π′

ij is that corresponding to ρ′ for the same nodes.

Definition 5. Given several networks ρ1, . . . , ρn, defined on the same set of nodes, we give the
name maximal network to a new network that obtains the πij possibility distributions associated
with each pair of nodes ni and nj as the fuzzy union of π1

ij, π2
ij, . . . and πn

ij, where π1
ij, π2

ij, . . . and
πn

ij are the possibility distributions between ni and nj in the ρ1, . . . and ρn networks, respectively.
The fuzzy union can be defined as follows:
(α1, β1, γ1, δ1)

⋃
(α2, β2, γ2, δ2) = (min{α1, α2}, min{β1, β2}, max{γ1, γ2}, max{δ1, δ2}).

In the following example, we can see how an FTCN is used to express the temporal
relationship between three events related to the occurrence of close contact in a case of
COVID-19 transmission.
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Example 1. Let us suppose we want to use an FTCN to establish the temporal relationship between
the occurrence of three events: the establishment of contact between two people (which occurred at a
time we call @T_CONT), the onset of symptoms of COVID-19 infection in one of these two people
(which occurred at time @T_SS), and the moment this person was considered a confirmed case of the
disease (corresponding to time @T_CC).

To consider the contact between these two people as a close contact, based on [37], we could
establish that the contact should occur between approximately 3 days before and approximately
7 days after the onset of symptoms for contagion to exist. On the other hand, this contact can occur
before, at the same time as, or after one of them is considered a confirmed case of the disease.

The network in Figure 2 establishes these temporal constraints, which could be considered as
a kind of temporal pattern associated with the concept of close contact. If we consider the fuzzy
number (−10, −8, 4, 6) as a possible translation of the quantity indicated by the expression “between
approximately 3 days before and approximately 7 days after”, the constraint between @T_CONT and
@T_SS establishes this amount of time as the approximate temporal distance between the occurrence
of contact and the onset of symptoms. On the other hand, since the contact (@T_CONT) could occur
before, at the same time as, or after the determination of a confirmed case (@T_CC), any amount
of time between @T_CONT and @T_CC would be consistent. This corresponds to the constraint
(−∞,−∞, ∞, ∞) that could be labeled with the expression “before or at the same time or after”.

(−∞,−∞,∞,∞) 

Figure 2. Temporal constraints between temporal variables @T_CONT, @T_CC, and @T_SS.

The FTCN in Figure 3 corresponds to the minimization of the FTCN in Figure 2.

(−∞,−∞,∞,∞) 

Figure 3. ρ2: Minimal FTCN equivalent to the network in Figure 2.

2.2. Syntax of FTCLogic

Let L represent a classic first-order language.
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Definition 6. The set C of FTCClauses is as a set of tuples (ς, ρ), where ς is a Horn clause of L,
in which k temporal variables appear, and ρ is the FTCN that relates them.

Each FTCClause has an associated Fuzzy Temporal Constraint Network or FTCN
as a second component. We can write an FTCClause without non-temporal information
as (Time, ρ), where Time is a special predicate. Furthermore, we can write a FTCClause
without temporal information as (ς, ρU), where ρU corresponds to a network in which
all constraints are πU , that is, a network without significant temporal information (see
Section 2.1).

We use the FTCLogic syntax in the following example.

Example 2. Let us suppose that on 15 November 2022, John tested positive for COVID-19 in
an active infection diagnostic test (PDIA). John stated that he started experiencing symptoms
compatible with the disease approximately 4 days prior to the positive test. The day before the onset
of symptoms, John met with his friend Louis and they went out for dinner. Additionally, on 5
November, John went to the movies with Peter.

The syntax of FTCLogic allows us to express these events with the following fact clauses:

• A predicate indicating that John tested positive in an active infection diagnostic test (PDIA)
for COVID-19 at the instant @t_pdia_john, associated with the network ρ1 in Figure 4. This
network specifies that the test was carried out on 15 November at 0:00 h. This is determined
by the restriction labeled with the fuzzy number (0, 0, 0, 0) between the indicated date and the
instant @t_pdia_john:
(pdia(john, covid, positive, @t_pdia_john), ρ1)

• A predicate indicating that John started experiencing COVID-19 symptoms at the time
@t_sym_john. The network ρU , associated with this fact, corresponds to the network in which
all the constraints are πU , that is, it is a network without information:
(start_sym(john, covid, @t_sym_john), ρU)

• A predicate indicating that Louis had a contact with John at the time @t_cont_jl. The
associated network is ρU , as before:
(contact(john, louis, @t_cont_jl), ρU)

• A predicate indicating that Peter had contact with John at the time @t_cont_jp:
(contact(john, peter, @t_cont_jp), ρU)

Nov 15
0:0:0  

@t_pdia_john
(0,0,0,0)

Figure 4. ρ1.

In FTCLogic, the temporal information contained in the example can be expressed with a clause
whose non-temporal component consists simply of the Time predicate, while the temporal part is a
network, the network ρT1, which includes all the temporal constraints between the previous facts:

(Time, ρT1)
We can see the network ρT1 in Figure 5 before minimization and in Figure 6 after minimization.
Suppose the fuzzy number (−7, −5, −3, −1) corresponds to the fuzzy temporal constraint

“approximately 4 days after”. (−5,−5,−5,−5) and (−10,−10,−10,−10) correspond to the precise
constraints “5 days after” and “10 days after”, respectively.

On the other hand, a possible pattern to confirm the existence of close contact of a person P2
with a confirmed case P1 of COVID-19 infection at the time @T_CC could be expressed with the
following rule clause:

(close_contact(P1, P2, covid, @T_CONT)∨
¬con f irmed_case(P1, covid, @T_CC)∨
¬start_sym(P1, covid, @T_SS)∨
¬contact(P1, P2, @T_CONT), ρ2)
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where ρ2 corresponds to the FTCN in Figure 3.

−5,−5,−5,−5  

(−
7
,−

5
,−

3
,−

1
) 

Figure 5. ρT1 not minimized.

(−5,−5,−5,−5) 

(−
7
,−

5
,−

3
,−

1
) 

(3,5,7,9) 

Figure 6. ρT1 minimized.

As we indicated in Example 1, we understand that a COVID-19 patient can transmit the
disease between approximately 3 days before the onset of symptoms and approximately 7 days after
this fact [37].

The start_sym and contact predicates correspond to basic facts. However, the predicate
confirmed_case associated with a patient P depends on the existence of a positive pdia. This is
expressed through the following clause:

(con f irmed_case(P, covid, @T_CC)∨
¬pdia(P, covid, positive, @T_PDIA), ρ3)
where ρ3 corresponds to the FTCN in Figure 7.
The constraint in this network indicates that a disease case becomes a confirmed case upon

obtaining a positive pdia, that is, the constraint between a confirmed case and pdia is simultaneous
or subsequent.

(−∞,−∞, 0,0) 

Figure 7. ρ3.

2.3. Semantics of FTCLogic

As we know, in an FTCLogic-clause, (ς, ρ), the component ρ is an FTCN. Therefore, as
we saw in Section 2.1, we can use the constraints of ρ to obtain the possibility distribution
πS, which assigns a degree of possibility to each resolved tuple s = (x1, . . . , xn). On the
other hand, each of the xi could also represent the value of a term in one of the predicates
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of ς. Hence, it is reasonable to inquire to what extent the temporal knowledge contained in
ρ implies the certainty of the clause ς.

In [17], we can find a detailed exposition of the semantics of FTCLogic. Here, we
retrieve some definitions that we will need later:

Definition 7. Let Ω be the set of possible interpretations for the language L. We define an
interpretation for a FTCClause (ς, ρ) as a pair τ = (ω, s), where ω ∈ Ω, and s = (x1, . . . , xn)
is a possible tuple solution of ρ.

Definition 8. An interpretation for a FTCClause (ς, ρ), τ = (ω, s), where ω ∈ Ω, and s =
(x1, . . . , xn) is a possible tuple solution of ρ, is a model of C = (ς, ρ) and is denoted with τ |= C,
if ω |= ς (in the classic sense), and the values for each xi are compatible with ω.

By compatible, we understand that those values correspond to a node that appears in a predicate of ς
which is certain under ω, or those values that correspond to a node that do not appear in any predicate
of t ς.

Definition 9. We define the network possibility measure ΠN , induced by πS, as a function
from C to [0, 1], defined by

ΠN ((ς, ρ)) = sup{πS(s), τ = (ω, s), τ |= (ς, ρ)}
πS defines the fuzzy set S of possible solutions of ρ and ω ∈ Ω.

ΠN indicates the degree to which the knowledge of the fuzzy temporal constraints
among the temporal variables of ρ is compatible with ς.

Definition 10. We define the network necessity measure NN , induced by πS, as a function
from C to [0, 1], defined by

NN ((ς, ρ)) = inf{1 − πS(s), τ = (ω, s), τ |= (¬ς, ρ)}
πS defines the fuzzy set S of possible solutions of ρ and ω ∈ Ω.

NN indicates the degree to which the knowledge of the fuzzy temporal constraints
among the temporal variables of ρ implies that ς is certain.

We will base the definition of the semantics on this last measure:

Definition 11. A clause C = (ς, ρ) is γ-certain if ς is certain in the classic sense and NN (C) = γ.

Definition 12. Given a set of FTCClauses C = {C1, C2, ..., Cn}, and an FTCClause C, we will say
that C is a logical consequence of C, and it is denoted as C |= C if, for each interpretation τ that
makes γi-certain to every Ci and γ-certain to C, it is fulfilled that γ ≥ max{γ1, ..., γn}.

The deduction problem consists in finding, given a set of classic clauses C∗ and the clause
ς, the maximal FTCN network (see Definition 5) associated with ς. We therefore define
Val(ς, C) as follows:

Definition 13. Val((ς, C)) = NN (ς, ρmax), such that ρmax is the maximal network obtained from
all the ρi such that C |= (ς, ρi).

Finally, when a set of FTCClauses is partially inconsistent (i.e., not in the classic sense),
it is in our interest to define the degree of inconsistency Incons(C), which we can achieve
as follows:

Definition 14. Incons(C) = NN ((⊥, ρmax)).

2.4. Resolution Principle in FTCLogic

To apply the FTCLogic resolution principle, based on that of [38], we consider the L
clauses as Horn clauses. That is, they correspond to one of the following types:
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• Fact clauses: (p(...), ρi);
• Rules clauses: (p1(...) ∨ ¬p2(...) ∨ ... ∨ ¬pn, ρi);
• Goal clauses: (¬p1(...) ∨ ¬p2(...) ∨ ... ∨ ¬pn, ρi).

where ρi is the FTCN associated with each L-clause.
In the unification process, the following formula is applied:
((p1(...) ∨ ¬p2(...) ∨ ... ∨ ¬pn(...)), ρ)
((¬p1(...) ∨ ¬pn+1(...) ∨ ... ∨ ¬pm(...)), ρ′)
((¬p2(...) ∨ ... ∨ ¬pn(...) ∨ ¬pn+1(...) ∨ ... ∨ ¬pm(...))σ, ρ′′)

where σ is the MGU (Most General Unifier) and ρ′′ is the FTCN network associated with
the resolvent clause.

ρ′′ is calculated as follows: we call πij the possibility distribution between ni and nj in
ρ, and π′

ij the possibility distribution in ρ′ for the same nodes. So, ρ′′ will be a new network
obtained by performing the fuzzy intersection between πij and π′

ij for each pair of nodes ni

and nj belonging to networks ρ and ρ′.
The resolution process will consist of seeking a refutation by applying the resolution

rule repeatedly.
We use the special clause (Time, ρT) to be able to handle temporal information without

explicitly associating it with non-temporal information. For this clause to be taken into
account in the refutation by the resolution process, it is necessary to add the literal ¬Time
to the goal clause.

We will also see this in the example below.

Example 3. Continuing Example 2, we can deduce that Louis is John’s close contact using the
resolution process we summarized in Figure 8.

We have colored the rules clauses in blue. On the other hand, we indicate the goal clause in
green. The rest (blank) are fact clauses or resolvent clauses.

The ρ1, ρ2, ρ3, and ρT1 networks are those of Figures 3, 4, 6, and 7. We present the obtained
networks ρ31, ρ312, and ρλ in Figures 9–11.

(confirmed_case(P, covid, @T_CC)∨
¬pdia(P, covid, positive, @T_PDIA), ρ3)

(pdia(john, covid, positive, @t_pdia_john), ρ1)

(confirmed_case(john, covid, @T_CC), ρ31)

(close_contact(P1, P2, covid, @T_CONT)∨
¬confirmed_case(P1, covid, @T_CC)∨

¬start_sym(P1, covid, @T_SS)∨
¬contact(P1, P2, @T_CONT), ρ2)

(close_contact(john, P2, covid, @T_CONT)∨
¬start_sym(john, covid, @T_SS)∨

¬contact(john, P2, @T_CONT), ρ312)

(start_sym(john, covid, @t_sym_john), ρU)

(close_contact(john, P2, covid, @T_CONT)∨
¬contact(john, P2, @T_CONT), ρ312)

(contact(john, louis, @t_cont_jl), ρU)

(close_contact(john, louis, covid, @t_cont_jl), ρ312) (¬close_contact(P1, P2, covid, @t_cont_jl) ∨
¬Time, ρU)

(¬Time, ρ312)(Time, ρT1)

(, ρ)

Figure 8. Refutation by resolution to verify that Louis is John’s close contact.
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(−∞,−∞, 0,0) 

(0
,0
,0
,0
) 

Figure 9. ρ31.

(−∞,−∞, 0,0) 

(0
,0
,0
,0
) 

(−∞,−∞,∞,∞) 

Figure 10. ρ312.

@t_pdia_john
(0,0,0,0)

Feb 15
0:0:0  

(0
,0
,0
,0
)

@t_sym_john

@t_cont_jl @T_CC
(5,5, 5, 5)

(5,5,5,5)

Figure 11. ρλ.

If we proceed in the same way with Peter, the resolution does not reach refutation. An incon-
sistency is detected in joining the information of the network ρ312 with the network ρT1. This is
because Peter contacted John before John was contagious (according to the pattern in Figure 3).
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2.5. Soundness and Completeness in FTCLogic

In [17], we provide proof of the following results:

Lemma 1. Given two FTCClauses, (ς, ρ) and (ς′, ρ′), if each model of ς′ is also a model of ς and
ρ ◁ ρ′, then NN ((ς′, ρ′)) ≤ NN ((ς, ρ)).

Theorem 1. (Soundness of the resolution rule)
Let C be a set of FTCClauses and C an FTCClause obtained from these by resolution. It is

fulfilled that C |= C, that is to say,

NN ((R(ς, ς′), ρ ∩ ρ′)) ≥ max(NN ((ς, ρ)), NN ((ς′, ρ′)))

Lemma 2. Given a clause (⊥, ρ), where ρ has been obtained from the intersection of the networks
ρ1, ..., ρn (according to Definition 4) which are associated with clauses (ς1, ρ1), ..., (ςn, ρn), it is
fulfilled that

NN ((⊥, ρ)) = max{NN (ς1, ρ1), ..., NN (ςn, ρn)}

Theorem 2. (Completeness and soundness of the refutation by resolution)
Let C be a set of FTCClauses. Then, the valuation of the optimal refutation by resolution for

C coincides with the degree of inconsistency.

3. PROLogic

The logical programming language PROLogic [20,39] is based on a logical model
called FTCLogic (or Fuzzy Temporal Constraint Logic) [17], which has been reviewed in
Section 2.

FTCLogic incorporates a temporal resolution module based on the model of Fuzzy
Temporal Constraint Networks (FTCNs) [5,6], which allows for the efficient manipulation
of temporal relationships. In fact, in FTCLogic, there are no temporal predicates that relate
temporal variables to each other; instead, they are all expressed as constraints in an FTCN.
To formalize this idea in syntax, it was considered that any clause would consist of a tuple
composed of two components: the classic disjunction of literals and an FTCN associated
with the temporal constraints existing between those literals. This avoids the need to work
with temporal predicates, providing efficiency, quality in responses, and homogeneity in
clauses. In terms of semantics, FTCLogic is based on possibilistic logic [18,19], which is
useful for measuring the degree of necessity or certainty of the classic part of the clause,
given the temporal network associated with it.

The fact that the implementation of PROLogic is based on a formal logical model
(FTCLogic) guarantees, on the one hand, that no inconsistent deductions can be made,
either in the classic sense or with respect to the compatibility of the times that relate
the different predicates; on the other hand, it also guarantees that any result that can be
obtained with classic Prolog and that involves temporal constraints that make that query
true can also be deduced with PROLogic. This is because the consistency and completeness
results for FTCLogic have been demonstrated.

PROLogic allows for temporal assertions and queries in the style of Prolog, compatible
with FTCLogic, to manipulate and obtain information about facts related to each other
through fuzzy temporal relationships.

Furthermore, PROLogic is a language based on Prolog, so its usage structure is similar:
on the one hand, we have programs that serve as a basis for rules and facts, and on the
other hand, an interpreter through which queries can be made on those programs.

Therefore, a program in PROLogic will consist of a set of rules and facts:

consequent :- antecedent1, antecedent2, ... antecedentN.
fact.

but in PROLogic, each rule or fact will be associated with an FTCN.
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This FTCN will appear separated from the classical part of the clause by a semicolon,
and it will be composed of a series of constraints, separated by commas and denoted in
one of the following two ways:

(<nodeX1>,<nodeX2>,(<double>,<double>,<double>,<double>),<unit>)

(<nodeX1>,<nodeX2>,relation)

<unit> can be ‘seconds ’,‘ minutes’, ‘days ’,‘ weeks’, ‘months ’, or ‘years’.
On the other hand, a relation defines a constraint in pseudo-natural language. In

PROLogic, a parser is utilized to convert these relations into an equivalent fuzzy number.

Example 4. We continue in the context of Examples 1, 2, and 3.
The following facts specify predicates associated with active infection diagnostic tests (PDIAs),

symptoms, or contacts between patients:

pdia(john, covid, positive,t_pdia_john);
(origin, T_PDIA=t_pdia_john, ’equal seconds’).

start_sym(john,covid,t_sym_john);
(origin, T_SS=t_sym_john, ’approximately 4 days after’).

contact(john, louis, t_cont_jl);
(origin, T_CONT=t_cont_jl, ’5 days after’).

contact(john, peter, t_cont_jp);
(origin, T_CONT=t_cont_jp, ’10 days after’).

We preferred to include each of the facts with their relation to a time origin, which we consider
to be the day of John’s diagnostic test.

As in FTCLogic, in PROLogic, both facts and rules have an FTCN associated with them,
either explicitly (separated by a semicolon from the classic clause) or implicitly (FTCN in which all
constraints are πU).

The time origin (origin) is associated with the date 15 November 2022 in the network
associated with the predicate time:

time;
(origin, (’2022-11-15T00:00:00’,’2022-11-15T00:00:00’,

’2022-11-15T00:00:00’,’2022-11-15T00:00:00’)),
(origin, today, ’112 days before’). %% ’today’ is March 7th, 2023.

The following rules establish a pattern that defines when a patient is a confirmed case of
COVID-19 and when a person is a close contact of another:

confirmed_case (P, VIRUS, T_CC):-
pdia(P, VIRUS, positive, T_PDIA),time;
(T_CC, T_PDIA, ’equal minutes or after’).

close_contact(P1, P2, VIRUS, T_CONT) :-
confirmed_case (P1, VIRUS, T_CC),
start_sym(P1,VIRUS,T_SS) ,
contact(P1, P2, T_CONT),time;
(T_CONT, T_CC, ’before or equal seconds or after’),
(T_CONT, T_SS, ’approximately 3 days before or approximately 7 days after’).

As we have already mentioned, a constraint can be expressed with a fuzzy number (a trapezoidal
distribution defined by the tuple (α, β, γ, δ)) or by a relation written in a pseudo-natural language.
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The PROLogic interpreter offers many possibilities. Next, we see some examples.

Example 5. The PROLogic interpreter allows us to make queries like the following:

• Check for an infected patient:

?-c:confirmed_case (P, VIRUS, T_CC).
P = john
VIRUS = covid
T_CC = T_CC

Temporal constraints:
(T_CC,T_PDIA=t_pdia_john,(-infinite,-infinite,0sec,0sec))
(T_CC,origin,(-infinite,-infinite,0sec,0sec))
(T_PDIA=t_pdia_john,T_PDIA=t_pdia_john,(0sec,0sec,0sec,0sec))
(T_PDIA=t_pdia_john,origin,(0sec,0sec,0sec,0sec))
(origin,origin,(0sec,0sec,0sec,0sec))

As we can see, each answer includes the temporal constraints of an associated FTCN.
• Check John’s close contacts:

?-c:close_contact(john, P2, VIRUS, T_CONT).
P2 = louis
VIRUS = covid
T_CONT = t_cont_jl

Temporal constraints:
(T_CONT=t_cont_jl,T_CONT=t_cont_jl,(0sec,0sec,0sec,0sec))
(T_CONT=t_cont_jl,T_CC,(5d,5d,infinite,infinite))
(T_CONT=t_cont_jl,T_SS=t_sym_john,(-2d,0sec,2d,4d))
(T_CONT=t_cont_jl,T_PDIA=t_pdia_john,(5d,5d,5d,5d))
(T_CONT=t_cont_jl,origin,(5d,5d,5d,5d))
(T_CONT=t_cont_jl,today,(3mo 3w 6d,3mo 3w 6d,3mo 3w 6d,3mo 3w 6d))
(T_CC,T_SS=t_sym_john,(-infinite,-infinite,-3d,-1d))
(T_CC,T_PDIA=t_pdia_john,(-infinite,-infinite,0sec,0sec))
(T_CC,origin,(-infinite,-infinite,0sec,0sec))
(T_CC,today,(-infinite,-infinite,3mo 3w 1d,3mo 3w 1d))
(T_SS=t_sym_john,T_SS=t_sym_john,(-6d,-2d,2d,6d))
(T_SS=t_sym_john,T_PDIA=t_pdia_john,(1d,3d,5d,1w))
(T_SS=t_sym_john,origin,(1d,3d,5d,1w))
(T_SS=t_sym_john,today,(3mo 3w 2d,3mo 3w 4d,3mo 3w 6d,3mo 4w 1d))
(T_PDIA=t_pdia_john,T_PDIA=t_pdia_john,(0sec,0sec,0sec,0sec))
(T_PDIA=t_pdia_john,origin,(0sec,0sec,0sec,0sec))
(T_PDIA=t_pdia_john,today,(3mo 3w 1d,3mo 3w 1d,3mo 3w 1d,3mo 3w 1d))
(origin,origin,(0sec,0sec,0sec,0sec))
(origin,today,(3mo 3w 1d,3mo 3w 1d,3mo 3w 1d,3mo 3w 1d))
(today,today,(0sec,0sec,0sec,0sec))

We can verify that this network is the same as the one in Figure 11 associated with the refutation
by resolution to check that Louis is John’s close contact.

• Is Peter a close contact of John?

?-c:close_contact(john, peter, AREA, covid, T_CONT).
No answers.

We can verify that if we ask if Peter is John’s close contact, the system detects the temporal
inconsistency and responds accordingly.
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Once a network is obtained, there are a series of commands to obtain additional
information. For example, it is possible to determine the first or last nodes of the network,
to know which node precedes or follows another, to assign an absolute time to each node
from a certain origin, etc.

Similarly, once a network is obtained, it allows for posing hypothetical questions
that enable understanding the compatibility between one of the network’s constraints
and a relation established by the user. This relation can also be written in semi-natural
language, and it returns a degree of possibility and another of necessity when comparing
both constraints.

A summary of both the syntax of PROLogic programs and the interpreter commands
(with an explanation of the possibilities it offers) can be found in [20]. An available version
of PROLogic can be found at [39].

4. FTCProlog

FTCProlog is a language similar to Prolog but with the ability to handle fuzzy temporal
constraints between variables. It is based on the theoretical model outlined in Section 2,
namely, the first-order logic FTCLogic [17]. FTCProlog is implemented in Haskell and
corresponds to the second version of the application PROLogic [20]. It is available at the
link in [40].

The main difference between FTCProlog and its previous version is that a certainty
index is added to each deduction. Recall that deductions obtained through the process of
resolution refutation are associated with an FTCN (Fuzzy Temporal Constraint Network).
This FTCN is obtained by intersecting the networks associated with each clause involved
in the process according to Definition 4. It is important to note that this network is entirely
consistent, as otherwise refutation would not be achieved. What the certainty index adds
to each of the deductions is an evaluation of the extent to which the constraints that have
been intersected to obtain the resulting FTCN resemble each other.

In Section 4.1, we will provide the definition of this index. On the other hand, we will
test the correctness of this measure in Section 4.2 and study its behavior through a simple
example in Section 4.3.

For a review of the syntax of FTCProlog programs, as well as the available commands
in the interpreter, we can consult the reference [20]. In any case, in Appendix A, we find a
summary of all this.

Finally, the pseudo-natural temporal language used in FTCProlog for expressing
constraints in textual form has also been redefined. The grammar definition that generates
this language can be found in Appendix B, following the syntax of the Alex [41] and
Happy [42] tools used for its implementation.

4.1. Associating a Certainty Index with Each Deduction

As we have seen in Section 2.4, given the clauses (ς, ρ) and (ς′, ρ′), at each step of the
resolution process, a fuzzy intersection is performed between the possibility distribution πij
for variables xi and xj in ρ, and the possibility distribution π′

ij in ρ′ for the same variables,
where ρ and ρ′ are the networks associated with the two clauses involved in the process.

The maximum value of this measure can be understood as a degree of compatibility
between the constraint πij and the network ρ′ [43]. In the case of FTCLogic, this calculation
is embodied in the formula:

Compatibility(πij|ρ′) = max( min
n∈DU

(πij(n), π′
ij(n)))

Similarly, a degree of entailment of πij by ρ′ can also be proposed as the dual definition of
this degree [43]. It would correspond to the following measure:

Entailment(πij|ρ′) = 1 − max( min
n∈DU

((1 − πij(n)), π′
ij(n)))
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In both cases, we understand DU as any universal domain.
However, in our case, we must take into account that we have two networks, and

therefore it will also be necessary to know and use the Entailment(π′
ij|ρ) measure. For this

reason, we propose a measure of dual entailment:

Definition 15. At each step of the resolution process in which the clauses (ς, ρ) and (ς′, ρ′) are
involved, the following certainty index will be calculated for each constraint between the constraints
πij and π′

ij associated with the variables xi and xj in the networks ρ and ρ′, respectively:

Certaintyij(ρ, ρ′) = min(Entailment(πij|ρ′), Entailment(π′
ij|ρ))

Let us consider the necessity for the distance between the variables xi and xj to be the
one specified by πij given π′

ij, and on the other hand, let us consider the necessity for the
distance between the variables xi and xj to be the one specified by π′

ij given πij. What this
measure calculates is the minimum between both values.

Example 6. Let us suppose we want to calculate the Certainty value for the constraints πij =
(1, 2, 13, 15) and π′

ij = (1, 3, 12, 14), interpreting each quadruple as a fuzzy number. In this case,
by observing Figure 12, we can verify that Certaintyij(ρ, ρ′) = min(0.667, 0.25) = 0.25.

 

Figure 12. Visualization of the values obtained for calculating the Certaintyij(ρ, ρ′) value assuming
that the constraints πij and π′

ij are, respectively, (1,2,13,15) and (1,3,12,14).

In general terms, if we consider the constraints as trapezoidal numbers represented
by a quadruple (α, α, δ, δ), it is easy to verify that the result will be 1 in cases where both
constraints are equal and there is no fuzziness in them, i.e., when all four components of the
quadruple coincide. This is also the case when comparing two identical constraints of the
type (α, α, δ, δ). In fact, the certainty index will measure, in a certain sense, the confidence
we have that the distance indicated by the compared constraints coincides. However, this
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measure is not exempt from counterintuitive examples, as there may be cases where the
certainty index is not 1 even though the two constraints are identical, as can be observed in
the following example.

Example 7. Let us suppose we want to calculate the Certainty value for the constraints πij =
(1, 2, 4, 5) and π′

ij = (1, 2, 4, 5), interpreting each quadruple as a fuzzy number. In this case, by
observing Figure 13, we can verify that Certaintyij(ρ, ρ′) = min(0.5, 0.5) = 0.5.

Indeed, the certainty index will be 0.5 in all cases where the πij and π′
ij constraints

are equal and trapezoidal. However, depending on the application, an exception could
be added to Definition 15 so that in these cases the value would be 1. As we will see in
Section 4.2, this will not affect the proof of Theorem 3.

 

Figure 13. Visualization of the values obtained for calculating the Certaintyij(ρ, ρ′) value assuming
that the constraints πij and π′

ij are, respectively, (1,2,4,5) and (1,2,4,5).

Finally, we understand that the degree of certainty will be given by the maximum of
the entailments for all the constraints of the network:

Definition 16. At each step of the resolution process in which the clauses (ς, ρ) and (ς′, ρ′) are
involved, the following certainty index will be calculated and associated with each resolvent clause
(R(ς, ς′), ρ ∩ ρ′):

Certainty(ρ, ρ′) = max
i,j≤n

{min(Entailment(πij|ρ′), Entailment(π′
ij|ρ))}
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It is interesting to note that the fact that this index is calculated for each pair of variables
xi and xj independently allows for an efficient implementation, so that it can be performed
locally while the intersection of constraints between xi and xj is being carried out. In other
words, a new traversal in the network is not necessary; instead, the values can be stored in a
list to then find the maximum of all of them. This means that the computational complexity
of each action performed by FTCProlog does not change; that is, it remains as analyzed
in [20]. Obtaining this list of certainty indices during the process has another advantage,
as it allows for the manipulation of its values according to the interests of the application.
It may be, for example, that calculating the average values of the certainty indices is of
interest, rather than the maximum. In this case, additional studies would be necessary
to verify the correctness of this new index. In Section 4.3, we present a small example in
which we have used Definition 16.

4.2. Soundness of the Certainty Measure

In this section, we demonstrate that the proposed measure Certainty(ρ, ρ′) for calcu-
lating the degree of certainty in each deduction in which the clauses (ς, ρ) and (ς′, ρ′) are
involved is correct, in the sense that it respects the consistency of FTCLogic.

As we have seen in Section 2.3, the semantics of FTCLogic are based on the measure
of necessity given in Definition 11, where NN (C) is calculated according to Definition 10.

Furthermore, let us remember that C |= C, meaning, a clause C is a logical consequence
of a set of FTCClauses C (according to Definition 12), if for each interpretation τ that makes
γi certain for every Ci and γ certain for C, it is fulfilled that γ ≥ max γ1, ..., γn.

Therefore, what needs to be demonstrated is that, given two FTCClauses (ς, ρ) and
(ς′, ρ′), the degree of certainty associated with the resolvent (R(ς, ς′), ρ ∩ ρ′), proposed in
Definition 16, respects this semantic condition. We demonstrate this in Theorem 3, but first
we need a definition:

Definition 17. We define the local network necessity measure LNN as a function defined by
LNN ((ς, ρ), i, j) = inf{1 − πij(xj − xi), τ = (ω, s), τ |= (¬ς, ρ), s = (x1, ..., xn)}

Lemma 3. For each FTCClause (ς, ρ), it holds that:

max
i,j≤n

LNN ((ς, ρ), i, j) = NN ((ς, ρ))

Proof. This equality is obvious from Definition 2 and Definition 10.

Since LNN ((ς, ρ), i, j) is the infimum of 1 − πij(xj − xi) for all assignable values to
variables xi and xj, we call πmax

ij (xj − xi) the value of πij(xj − xi) that yields this minimum;
that is to say,

LNN ((ς, ρ), i, j) = 1 − πmax
ij (xj − xi)

Thus, πmax
ij (xj − xi) is the maximum possibility value among all assignable values to

variables xi and xj.

Lemma 4. For any possibility distribution π′
ij between two variables xi and xj, it holds that:

πmax
ij (xj − xi) ≥ max min

n∈DU
(πij(n), 1 − π′

ij(n))

Proof. Obvious.

Now we are in a position to state and prove the following theorem:

Theorem 3. Given two FTCClauses (ς, ρ) and (ς′, ρ′), it holds that:
max(NN ((ς, ρ)), NN ((ς′, ρ′))) ≤ Certainty(ρ, ρ′)
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Proof. We consider the definition of the network necessity measure for the resolvent clause
(R(ς, ς′), ρ ∩ ρ′):

NN ((R(ς, ς′), ρ ∩ ρ′)) = inf{1 − πS(s), τ = (ω, s), τ |= (¬R(ς, ς′), ρ ∩ ρ′)}

as well as the local network necessity measures for each i, j ≤ n:

LNN ((R(ς, ς′), ρ ∩ ρ′), i, j) = inf{1 − πij(xj − xi), τ = (ω, s), τ |= (¬R(ς, ς′), ρ ∩ ρ′), s = (x1, ..., xn)}.

By Lemma 4, it holds that:

πmax
ij (xj − xi) ≥ max min

n
(πij(n), 1 − π′

ij(n))

πmax
ij (xj − xi) ≥ max min

n
(π′

ij(n), 1 − πij(n))

where πij is the possibility distribution between those two variables xi and xj in ρ, and π′
ij

is the possibility distribution between those two variables xi and xj in ρ′.
Therefore:

1 − πmax
ij (xj − xi) ≤ 1 − max min

n
(πij(n), 1 − π′

ij(n)) = Entailment(πij|ρ)

1 − πmax
ij (xj − xi) ≤ 1 − max min

n
(π′

ij(n), 1 − πij(n)) = Entailment(πij|ρ′)

Since 1 − πmax
ij (xj − xi) is less than or equal to both values, we can ensure that it is less

than or equal to their minimum, namely:

LNN ((R(ς, ς′), ρ ∩ ρ′), i, j) ≤ min(Entailment(πij|ρ′), Entailment(π′
ij|ρ))

or equivalently, for each i, j ≤ n:

LNN ((R(ς, ς′), ρ ∩ ρ′), i, j) ≤ Certaintyij(ρ, ρ′)

This implies that:

max
i,j≤n

LNN ((R(ς, ς′), ρ ∩ ρ′), i, j) ≤ max
i,j≤n

Certaintyij(ρ, ρ′)

By Lemma 3:

max
i,j≤n

LNN ((R(ς, ς′), ρ ∩ ρ′), i, j) = NN ((R(ς, ς′), ρ ∩ ρ′))

Furthermore, we know from Theorem 1 that:

max(NN ((ς, ρ)), NN ((ς, ρ′))) ≤ NN ((R(ς, ς′), ρ ∩ ρ′))

Summarizing:

max(NN ((ς, ρ)), NN ((ς, ρ′))) ≤ NN ((R(ς, ς′), ρ ∩ ρ′)) ≤ max
i,j≤n

Certaintyij(ρ, ρ′)

That is:

max(NN ((ς, ρ)), NN ((ς, ρ′))) ≤ Certainty(ρ, ρ′)

which is what we wanted to prove.
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We can observe that, as mentioned in Section 4.1, since Certainty(ρ, ρ′) is an upper
bound whose maximum value is 1, assigning an exceptional certainty index of 1 in situations
like Example 7 does not affect the proof.

4.3. Study of the Certainty Index through an Example

In this section, we present a small example of the use of FTCProlog where the use of
the certainty measure makes sense.

Example 8. Suppose in a specific online market study, we found it intriguing to examine the
correlation between the number of individuals viewing a product within the first few hours after its
publication on the web and the moment when that product reaches its peak visits.

This is compelling in terms of optimizing promotion results for the product, such as maximizing
visibility for a potential discount offered some time after its publication.

Specifically, from the analysis of historical data on an online shopping website, a pattern
emerges indicating that if, after 12 h following the publication of a product, there are more than a
specific number of visits (let us say 1000 visits), then the peak of user visits to that product will
occur approximately three days later.

This pattern can be expressed through the following FTCProlog rule:

standard_product(ID) :-
published(ID,PUB),
number_visits_reached(ID,yes,REACH),
peak(ID,PEAK),
time(ID) ;
(PUB,REACH, ’12 hours before’),
(PUB,PEAK, ’approximately 3 days before’).

Next, we create an FTCProgram containing that pattern and the facts corresponding to
eight products. By making a query as simple as

c:standard_product(ID).

we can determine all those products whose temporal constraints match the pattern’s completely
consistently (that is, the degree of possibility in the network is 1). What we are interested in in this
example is analyzing the degree of certainty returned by FTCProlog for each of these products.

The full program can be found in Appendix C. The process of obtaining results using this
program can be consulted in Appendix D. We summarize these results in Table 1.

As we already discussed in Section 4.1, the certainty index is only calculated for predicates
that match the pattern with a degree of possibility of 1. What this index measures is the extent to
which the temporal restrictions intersecting in the resolution process resemble each other. That is, it
measures how similar the network associated with the pattern (or rule) is to the network linking the
predicates or facts that are part of the program.

We must keep in mind that in certain applications, this measure would not be useful. There
are situations where the temporal constraints between facts are much more precise than those of the
pattern (being completely sound), and this is considered an advantage in deductions. In fact, the
new constraints obtained as the intersection of the original constraints between the same variables
could be considered as a contribution of information, in the sense that it reduces the uncertainty in
the time elapsed between certain events.

In the case of the example at hand, what matters is that the temporal constraints are as similar
as possible. In that sense, products prod1 and prod2 meet this expectation to the fullest, since
the constraints from publication time to visit count (PUB to REACH) and from publication time
to peak (PUB to PEAK) are exactly the same as those of the pattern. In the case of prod1, they
are expressed using the pseudo-natural language allowed in FTCProlog, while in prod2, they are
expressed with the explicit constraints to which those sentences are translated. For this reason, the
certainty measure in the deduction is 1. We should note that this is also due to the fact that one of
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the constraints is not a fuzzy measure but precise. As we saw in Section 4.1, two identical fuzzy
numbers could be evaluated with a certainty index different from 1.

Table 1. Summary of results from Example 8.

NAME PUB → REACH >1000 Visits PUB → PEAK Matches Pattern Certainty

prod1 ‘12 h before’ yes ‘approximately 3
days before’ yes 1

prod2 (12,12,12,12) h yes (0,2,4,6) days yes 1

prod3 ‘approximately
12 h before’ yes (0,2,4,6) days yes 0.5

prod4 (9,11,13,15) h yes (1,2,4,5) days yes 0.36486

prod5 (1,2,20,30) h yes (1,2,4,5) days yes 0.47945205

prod6 (1,2,20,30) h yes (2,2.5,3,3.5) days yes 0

prod7 (10,11,12,13) h yes (5,6,7,8) days no -

prod8 (12,12,12,12) h no (0,2,4,6) days no -

In deductions where the product prod3 is a standard product, the certainty index decreases to
0.5 because the visit count is not performed exactly at 12 h from publication, but approximately at
12 h after it was published.

More interesting are the certainty indices obtained for products prod4 and prod5. In this
case, we observe that the PUB-to-PEAK constraint is the same. On the other hand, the comparison
between the PUB-to-REACH constraint of each of these products with the corresponding constraint
in the pattern necessarily returns 0 in both cases, as the pattern’s constraint is non-fuzzy. This
means that the difference in the certainty index of prod4 and prod5 is due to a constraint that is
not explicitly provided in the FTCProgram, which is the one relating the visit count (REACH) to the
peak visits (PEAK). That is, the maximum value obtained in Definition 16 occurs when comparing
the constraint between REACH and PEAK of the pattern with the same constraint in each of the
products. This constraint, both in the pattern and in the eight products, is initialized to the universal
constraint. However, at each step of the resolution process, the networks associated with each clause
are minimized. This causes the values for the REACH-to-PEAK constraint to change, both in the
pattern and in products prod4 and prod5.

The value associated with this constraint can be obtained by minimizing the network corre-
sponding to each product. This minimization can be performed with a simple query, as reflected in
Appendix E. Specifically, it can be observed that in the pattern, the REACH-to-PEAK constraint
takes the value (−12h, 1d 12h, 3d 12h, 5d 12h), in prod4 the value would be (9h, 1d
11h, 3d 13h, 4d 15h), and in prod5 it would be (−6h, 1d 4h, 3d 22h, 4d 23h). As we
can see, the value of the constraint in prod5 is closer to that of the pattern, which results in a higher
certainty index.

In conclusion, we can affirm that this index is useful for comparing the similarity between
temporal constraints among the occurrence of different events, but not in isolation, but rather taking
into account the complete temporal context. This is because the resolution process incorporates
FTCNs and step-by-step minimization processes.

In Figure 14, the deduction process applied to prod4 is visualized. In the image, temporal
constraints that are compared between the network associated with the rule and the one associated
with prod4 are shown in similar colors.
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FCTProlog Yes 
Certainty: 0.36486 

c:standard_product(ID). 

QUERY 

Figure 14. Deduction process applied to prod4.

In the case of product prod6, what happens is that, although its network is consistent with
that of the pattern, the values of the constraints deviate enough for the certainty index to be 0.

Finally, products prod7 and prod8 do not appear as deductions; in the first case, due to
inconsistency in the temporal constraints compared to those of the pattern, and in the second because
the visit count does not reach 1000.

5. Discussion and Conclusions

In this work, we introduce FTCProlog, a language similar to Prolog but capable of
handling fuzzy temporal constraints among variables. FTCProlog is a modified version of
PROLogic. Both FTCProlog and PROLogic are based on FCTLogic, a logical model with
two fundamental characteristics:

• Reasoning is complete and sound.
• Treatment of time is efficient.

The properties of soundness and completeness are demonstrated in the definition
of FTCLogic, while efficient time management, including implicit common-sense tempo-
ral reasoning, is attributed to the incorporation of FTCNs (Fuzzy Temporal Constraint
Networks) to manipulate time.

In FTCLogic, clauses consist of a pair comprising a clause in the classical sense and
an FTCN that relates the temporal variables appearing in the former. At each step of
resolution, the fuzzy intersection between the constraints relating the same variables in
the two FTCClauses involved in the process is calculated, ensuring that only consistent
networks ultimately form part of a deduction.

As a novelty compared to PROLogic, FTCProlog introduces the computation of a
certainty index for each consistent deduction made. This certainty index measures the
degree to which the intersected temporal constraints resemble each other. In other words,
it quantifies how similar an FTCN associated with a logic rule is to the FTCNs associated
with each of the facts involved in the refutation process.

This measure may be of interest in applications requiring the comparison of a temporal
pattern with real observations among the same events. In this work, we have defined this
certainty index, demonstrated its soundness with respect to the semantics of FTCLogic,
and illustrated its utility with a small example.

Moreover, FTCProlog provides a language similar to natural language for expressing
fuzzy temporal constraints among variables. This language, already incorporated in
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PROLogic, has been redefined, and we present its grammar in the form of an appendix. The
Alex and Happy tools have been utilized for translating from this language to numerical
temporal constraints. The entire tool is implemented in Haskell and can be found at the
link in reference [40].
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The following abbreviations are used in this manuscript:

FTCN Fuzzy Temporal Contraint Network
FTCLogic Fuzzy Temporal Constraint Logic
FTCProlog Fuzzy Temporal Constraint Prolog
GTL Gödel Temporal Logic
ILP Inductive Logic Programming
LTL Linear Temporal Logic
MTPL Multi-Valued Temporal Propositional Logic
PNL Propositional Neighborhood Logic
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
STeLP Splittable Temporal Logic Program
TILR Temporal Inductive Logic Reasoning
XAI Explainable Artificial Intelligence

Appendix A

Appendix A.1. Program Syntax

<cons> [:- <ant1>, <ant2>, <ant3>, ..., <antN>]
[; [(<originNode>, <date>)],
constr1,
...
constrM].

constrX can be given as a fuzzy number or as a relation:

constrX =
(<nodeX1>,<nodeX2>,(<double>,<double>,<double>,<double>),
<unit>)
| (<nodeX1>,<nodeX2>,relation)

<unit> can be one of the following words: ‘seconds ’,‘ minutes’, ‘days ’,‘ weeks’,
‘months ’, or ‘years’.

A relation specifies a constraint using pseudo-natural language. PROLogic uses a
parser to convert the relations into an equivalent fuzzy number.

<originNode> indicates the name of a node that is associated with <date>.
<date> can be a fuzzy date or an absolute date:

<date> = (<dateISO1>,<dateISO2>,<dateISO3>,<dateISO4>)
| <dateISO>

<dateISO> indicates a date in ISO 8601 format, i.e., YYYY-MM-DDTHH:MM.
If no origin node is specified, PROLogic assigns an unnamed origin node by default,

dated 0:00 on January 1 of year 1.
It is possible to include comments in two different ways:

https://github.com/mariantocv/FTCProlog
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• Single-line comments. Start with % and continue until the end of the line.

%Single-line comment

• Multi-line comments. Start with /* and end with */ .

/* Multi-
line
comment. */

Appendix A.2. Command and Query Syntax

<command> [-<opt1> -<opt2> ... -<optN>]
[<arg1> <arg2> ... <argM>]
[: <goal> [; <FTCN>]].

<optX> is a letter that corresponds to an option.
<argY> is an argument.
<goal> is <atom1>, <atom2>, ..., <atomN>
<FTCN> is described as specified in the previous section.

Load a program
Use:
load <program_file>.
Description:
Load a PROLogic program from a file.

Make a query
Use:
c [-d|-h|-i] [node1 node2..nodeN] : <goal> [; <FTCN>].
Description:
Normal query of a goal. If no specific nodes are indicated, all will be displayed. If

nodes are indicated, only the temporal constraints between them will be written. By default,
infinite constraints are omitted. If the goal FTCN is omitted, the universal network will be
used by default. That is, an empty FTCN.

Options:
-d: Defuzzified constraints.
-h: Hide the FTCN in the answer.
-i: This shows the infinite constraints.

We can attain another answer, if any, with the n command.
Use:
n [-d|-h|-i] [node1 node2..nodeN].
Description:
Go to the next result of those obtained in the last query.
Options:
-d: Defuzzified constraints.
-h: Hide the FTCN in the answer.
-i: This shows the infinite constraints.

The command last allows us to obtain information about the last answer obtained.
Use:
last [-d|-h|-i] [node1 node2 .. nodeN].
Description:
Returns the current result.
Options:
-d: Defuzzified constraints.
-h: Hide the FTCN in the answer.
-i: This shows the infinite constraints.

Basic information regarding networks
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Commands that allow additional information about the network associated with the
last response to be obtained.
firsts tells us which nodes occurred before all the others. There may be several.

Use:
firsts.
Description:
Returns the nodes that represent the initial events of the result network. Returns more

than one if they occurred at approximately the same time.
lasts returns the end nodes in the network.

Use:
lasts.
Description:
Returns the nodes that represent the final events of the result network. Returns more

than one if they occurred at approximately the same time.
The commands pred and succ return all the nodes that precede and succeed the indicated
node, respectively.

Use:
pred <node>.
Description:
Returns the nodes that occurred approximately before <node> in the result network.
Use: succ <node>.
Description:
Returns the nodes that occurred approximately after <node> in the result network.

Network resolution
The commands time and resolv place each node at an absolute time using an origin node:

Use:
time [-d] [<node1>...<nodeN>].
Description:
It returns an absolute time for each node in the answer network, taking into account

the origin node of the network, if it exists.
Options:
-d: Defuzzified constraints.

We can indicate any origin node with the resolv command.
Use:
resolv [-d] <origin_node> <time> [<node1>...<nodeN>].
Description:
It returns an absolute time for each node in the answer network, taking into account

the <origin_node> argument.
Options:
-d: Defuzzified constraints.
Arguments:
<origin_node>: node from which the network is resolved.
<time>: time assigned to <origin_node> in ISO-8601 format: YYYY-MM-DDTHH:MM:SS.

Hypothetical queries
The command hypo allows you to determine the compatibility between a certain piece of
information and existing information.

Use:
hypo <node1> <relation> <node2>.
Description:
Compare a hypothetical constraint between two nodes and their real constraint, re-

turning the possibility and necessity values of the Possibilistic Logic.
Arguments:
<node1>: Initial node of the constraint.
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<relation>: Relation between the nodes, written in a fuzzy temporal language similar
to natural language. This is the same language as that permitted in the temporal relations
of the programs.

<node2>: Final node of the constraint.
The possibility degree is a measure between 0 and 1. A 0-value indicates that the

relation of the query is impossible, while a 1-value indicates that the relation is totally
possible. With respect to necessity degree, it measures the certainty of a relation, signifying
that a value greater than 0 would imply a possibility of 1, while a possibility value of 0
would imply a necessity of 0. A necessity value of 0 and a possibility of 1 mean that the
relation is completely possible but the certainty is unknown. This implies total ignorance.
Help command
The command help provides information regarding the syntax of all commands, along with
their descriptions and the meaning of their options and arguments.

Use:
help <command1> [<command2>...<comamndN>].
Description: Describe how to use the commands and their arguments.

End session
In order to close the application from the terminal, it is necessary to use the command q.

Use:
q.
Description: The running of the interpreter ends.

Appendix B

Grammar used by FTCProlog for relations in pseudo-natural language.
Token definition in Alex:

{
module HypoLexer where
}

$digit = [0-9]
@nconst = (\-)? $digit+ (\.)? ($digit+)?
@unit = second s? | minute s? | hour s? | day s? | week s? | month s? | year s?

tokens :-

$white+ ;
\( { \s -> LB }
\) { \s -> RB }
\, { \s -> COMA }
or { \s -> O}
approximately { \s -> APROXIMADAMENTE }
equal { \s -> IGUAL }
before { \s -> ANTES }
after { \s -> DESPUES }
more { \s -> MAS }
less { \s -> MENOS }
than { \s -> DE }
few { \s -> POCO }
many { \s -> MUCHO }
@nconst { \s -> CANTIDAD (read s) }
@unit { \s -> UNIDAD s }
. { \s -> ERROR }

{
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-- Token type
data Token =

LB |
RB |
COMA |
O |
APROXIMADAMENTE |
IGUAL |
ANTES |
DESPUES |
MAS |
MENOS |
DE |
POCO |
MUCHO |
CANTIDAD Double |
UNIDAD String |
ERROR
deriving (Show)

prueba = do
s <- getContents
print (alexScanTokens s)

}

Grammar definition in Happy:

{
module HypoParser where

import HypoLexer
import Exception
import Relaciones
import ManejoTiempo

}

%name parser
%tokentype { Token }
%error { parseError }
%monad { Ex } { thenE } { returnE }

%token
’(’ { LB }
’)’ { RB }
’,’ { COMA }
o { O }
aprox { APROXIMADAMENTE }
igual { IGUAL }
antes { ANTES }
despues { DESPUES }
mas { MAS }
menos { MENOS }
de { DE }
poco { POCO }
mucho { MUCHO }



Axioms 2024, 13, 472 27 of 33

cantidad { CANTIDAD $$ }
unidad { UNIDAD $$ }

%%

Relacion : Relacion o Rel { uneRelacion $1 $3 }
| Rel { $1 }

Rel : DistanciaTiempo { $1 }
| igual unidad { al_mismo_tiempo (strToUnidad $2) }
| aprox igual unidad { aproximadamente (al_mismo_tiempo (strToUnidad $3)) }

DistanciaTiempo : DireccionTiempoRel { $1 }
| ExtensionTiempo DireccionTiempoMod { $2 $1 }

ExtensionTiempo : ExtensionTiempoAbsoluto { $1 }
| OperadorExpansion ExtensionTiempoAbsoluto { $1 $2 }
| ExtensionTiempo OperadorExpansion ExtensionTiempoAbsoluto { mezclaRelacion $1 ($2 $3) }

DireccionTiempoRel : antes { antes segs }
| despues { despues segs }

DireccionTiempoMod : antes { antesM }
| despues { despuesM }

OperadorExpansion : mas de { mas_de }
| menos de { menos_de }

ExtensionTiempoAbsoluto : CantidadTemporal { $1 }
| aprox CantidadTemporal { aproximadamente $2 }

CantidadTemporal : ’(’ cantidad ’,’ cantidad ’,’ cantidad ’,’ cantidad ’)’ unidad { cantidadBorrosa ($2,$4,$6,$8) (strToUnidad $10) }
| cantidad unidad { cantidad $1 (strToUnidad $2) }
| poco unidad { poco (strToUnidad $2) }
| mucho unidad { mucho (strToUnidad $2) }

{
type Rel = Relacion
type CantidadTemporal = Relacion
type ExtensionTiempoAbsoluto = Relacion
type OperadorExpansion = Modificador
type DireccionTiempoRel = Relacion
type DireccionTiempoMod = Modificador
type ExtensionTiempo = Relacion
type DistanciaTiempo = Relacion

segs = strToUnidad "seconds"

lexer :: String -> [Token]
lexer = alexScanTokens

parse :: String -> Ex Relacion
parse = parser . lexer

-- Errores
parseError :: [Token] -> Ex a
parseError _ = failE "Parse error"
}
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Appendix C

Program in FTCProlog corresponding to Example 8:

/* Temporal pattern for a typical product. */
standard_product(ID) :-
published(ID,PUB),
number_visits_reached(ID,yes,REACH),
peak(ID,PEAK),
time(ID) ;
(PUB,REACH, ’12 hours before’),
(PUB,PEAK, ’approximately 3 days before’).

% Facts prod1
published(prod1,pub1).
number_visits_reached(prod1,yes,reach1).
peak(prod1,peak1).

% Temporal constraints detected among the previous facts
time(prod1) ;
(PUB=pub1,REACH=reach1, ’12 hours before’),
(PUB=pub1,PEAK=peak1, ’approximately 3 days before’).

% Facts prod2
published(prod2,pub2).
number_visits_reached(prod2,yes,reach2).
peak(prod2,peak2).

% Temporal constraints detected among the previous facts
time(prod2) ;
(PUB=pub2,REACH=reach2, (12,12,12,12) hours),
(PUB=pub2,PEAK=peak2, (0,2,4,6) days).

% Facts prod3
published(prod3,pub3).
number_visits_reached(prod3,yes,reach3).
peak(prod3,peak3).

% Temporal constraints detected among the previous facts
time(prod3) ;
(PUB=pub3,REACH=reach3, (9,11,13,15) hours),
(PUB=pub3,PEAK=peak3, (0,2,4,6) days).

% Facts prod4
published(prod4,pub4).
number_visits_reached(prod4,yes,reach4).
peak(prod4,peak4).

% Temporal constraints detected among the previous facts
time(prod4) ;
(PUB=pub4,REACH=reach4, (9,11,13,15) hours),
(PUB=pub4,PEAK=peak4, (1,2,4,5) days).

% Facts prod5
published(prod5,pub5).
number_visits_reached(prod5,yes,reach5).
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peak(prod5,peak5).

% Temporal constraints detected among the previous facts
time(prod5) ;
(PUB=pub5,REACH=reach5, (1,2,20,30) hours),
(PUB=pub5,PEAK=peak5, (1,2,4,5) days).

% Facts prod6
published(prod6,pub6).
number_visits_reached(prod6,yes,reach6).
peak(prod6,peak6).

% Temporal constraints detected among the previous facts
time(prod6) ;
(PUB=pub6,REACH=reach6, (1,2,20,30) hours),
(PUB=pub6,PEAK=peak6, (2,2.5,3,3.5) days).

% Facts prod7
published(prod7,pub7).
number_visits_reached(prod7,yes,reach7).
peak(prod7,peak7).

% Temporal constraints detected among the previous facts
time(prod7) ;
(PUB=pub7,REACH=reach7, (10,11,12,13) hours),
(PUB=pub7,PEAK=peak7, (5,6,7,8) days).

% Facts prod8
published(prod8,pub8).
number_visits_reached(prod8,no,reach8).
peak(prod8,peak8).

% Temporal constraints detected among the previous facts
time(prod8) ;
(PUB=pub8,REACH=reach8, (12,12,12,12) hours),
(PUB=pub8,PEAK=peak8, (0,2,4,6) days).

Appendix D

Results obtained in Example 8:

?-load ’examples/web.txt’.
Program "examples/web.txt" loaded successfully.
?-c:standard_product(ID).
ID = prod1

Certainty: 1.0

Temporal constraints:
(PUB=pub1,PUB=pub1,(0sec,0sec,0sec,0sec))
(PUB=pub1,REACH=reach1,(12h,12h,12h,12h))
(PUB=pub1,PEAK=peak1,(0sec,2d,4d,6d))
(REACH=reach1,REACH=reach1,(0sec,0sec,0sec,0sec))
(REACH=reach1,PEAK=peak1,(-12h,1d 12h,3d 12h,5d 12h))
(PEAK=peak1,PEAK=peak1,(-6d,-2d,2d,6d))
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?-n.
ID = prod2

Certainty: 1.0

Temporal constraints:
(PUB=pub2,PUB=pub2,(0sec,0sec,0sec,0sec))
(PUB=pub2,REACH=reach2,(12h,12h,12h,12h))
(PUB=pub2,PEAK=peak2,(0sec,2d,4d,6d))
(REACH=reach2,REACH=reach2,(0sec,0sec,0sec,0sec))
(REACH=reach2,PEAK=peak2,(-12h,1d 12h,3d 12h,5d 12h))
(PEAK=peak2,PEAK=peak2,(-6d,-2d,2d,6d))

?-n.
ID = prod3

Certainty: 0.5

Temporal constraints:
(PUB=pub3,PUB=pub3,(0sec,0sec,0sec,0sec))
(PUB=pub3,REACH=reach3,(12h,12h,12h,12h))
(PUB=pub3,PEAK=peak3,(0sec,2d,4d,6d))
(REACH=reach3,REACH=reach3,(0sec,0sec,0sec,0sec))
(REACH=reach3,PEAK=peak3,(-12h,1d 12h,3d 12h,5d 12h))
(PEAK=peak3,PEAK=peak3,(-6d,-2d,2d,6d))

?-n.
ID = prod4

Certainty: 0.3648648648648649

Temporal constraints:
(PUB=pub4,PUB=pub4,(0sec,0sec,0sec,0sec))
(PUB=pub4,REACH=reach4,(12h,12h,12h,12h))
(PUB=pub4,PEAK=peak4,(1d,2d,4d,5d))
(REACH=reach4,REACH=reach4,(0sec,0sec,0sec,0sec))
(REACH=reach4,PEAK=peak4,(12h,1d 12h,3d 12h,4d 12h))
(PEAK=peak4,PEAK=peak4,(-4d,-2d,2d,4d))

?-n.
ID = prod5

Certainty: 0.4794520547945206

Temporal constraints:
(PUB=pub5,PUB=pub5,(0sec,0sec,0sec,0sec))
(PUB=pub5,REACH=reach5,(12h,12h,12h,12h))
(PUB=pub5,PEAK=peak5,(1d,2d,4d,5d))
(REACH=reach5,REACH=reach5,(0sec,0sec,0sec,0sec))
(REACH=reach5,PEAK=peak5,(12h,1d 12h,3d 12h,4d 12h))
(PEAK=peak5,PEAK=peak5,(-4d,-2d,2d,4d))

?-n.
ID = prod6
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Certainty: 0.0

Temporal constraints:
(PUB=pub6,PUB=pub6,(0sec,0sec,0sec,0sec))
(PUB=pub6,REACH=reach6,(12h,12h,12h,12h))
(PUB=pub6,PEAK=peak6,(2d,2d 12h,3d,3d 12h))
(REACH=reach6,REACH=reach6,(0sec,0sec,0sec,0sec))
(REACH=reach6,PEAK=peak6,(1d 12h,2d,2d 12h,3d))
(PEAK=peak6,PEAK=peak6,(-1d 12h,-12h,12h,1d 12h))

?-n.
There are no more answers.

Appendix E

Queries to obtain the minimum network associated with the products prod4 and prod5:

?-load ’examples/web.txt’.
Program "examples/web.txt" loaded successfully.
?-c:time(prod4).
Yes.

Certainty: 0.0

Temporal constraints:
(PUB=pub4,PUB=pub4,(-6h,-2h,2h,6h))
(PUB=pub4,REACH=reach4,(9h,11h,13h,15h))
(PUB=pub4,PEAK=peak4,(1d,2d,4d,5d))
(REACH=reach4,REACH=reach4,(-6h,-2h,2h,6h))
(REACH=reach4,PEAK=peak4,(9h,1d 11h,3d 13h,4d 15h))
(PEAK=peak4,PEAK=peak4,(-4d,-2d,2d,4d))

?-c:time(prod5).
Yes.

Certainty: 0.0

Temporal constraints:
(PUB=pub5,PUB=pub5,(-1d 5h,-18h,18h,1d 5h))
(PUB=pub5,REACH=reach5,(1h,2h,20h,1d 6h))
(PUB=pub5,PEAK=peak5,(1d,2d,4d,5d))
(REACH=reach5,REACH=reach5,(-1d 5h,-18h,18h,1d 5h))
(REACH=reach5,PEAK=peak5,(-6h,1d 4h,3d 22h,4d 23h))
(PEAK=peak5,PEAK=peak5,(-4d,-2d,2d,4d))
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