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A B S T R A C T   

Compared to soil or aquatic ecosystems, the atmosphere is still an underexplored environment for microbial 
diversity. In this study, we surveyed the composition, variability and sources of microbes (bacteria and fungi) in 
the near surface atmosphere of a highly populated area, spanning ~ 4,000 Km2 around the city center of Madrid 
(Spain), in different seasonal periods along two years. We found a core of abundant bacterial genera robust across 
space and time, most of soil origin, while fungi were more sensitive to environmental conditions. Microbial 
communities showed clear seasonal patterns driven by variability of environmental factors, mainly temperature 
and accumulated rain, while local sources played a minor role. We also identified taxa in both groups charac-
teristic of seasonal periods, but not of specific sampling sites or plant coverage. The present study suggests that 
the near surface atmosphere of urban environments contains an ecosystem stable across relatively large spatial 
and temporal scales, with a rather homogenous composition, modulated by climatic variations. As such, it 
contributes to our understanding of the long-term changes associated to the human exposome in the air of highly 
populated areas.   

1. Introduction 

The composition and dynamics of the microbial diversity present in 
the atmosphere is still under intensive research and discovery. Bacteria 
and fungi propagules constitute a significant fraction of this aerobiota, 
which are aerosolized from different terrestrial and aquatic ecosystems 
(Fröhlich-Nowoisky et al., 2016). Although the atmospheric conditions 
may not favor their survival, meteorological factors like rainfall or wind 
currents are key factors affecting their abundance and prevalence in the 
air (Burrows et al., 2009; Smets et al., 2016). Moreover, air masses can 
carry these particles across trans-continental distances before being 
precipitated (Cáliz et al., 2018; Griffin et al., 2017; Maki et al., 2019; 
Mayol et al., 2017). During their presence in the atmosphere they play 
an ecological role by acting like ice nuclei, activating cloud formation 
and triggering the bioprecipitation (Morris et al., 2014), although a 
minor part is also withdrawn by dry deposition (Jones et al., 2008). 

Once deposited, microbial interactions start in the new environment and 
contribute to the biogeochemical cycles (Falkowski et al., 2008). Some 
times they can also exert a negative effect by disseminating plant and 
animal diseases throughout both natural and livestock (Bradford et al., 
2013; Fisher et al., 2012). Furthermore, because of their ubiquity, their 
adaptable metabolism and the large volume of biomass that they 
represent as a whole, monitoring microorganisms may be crucial in a 
climate change scenario (Cavicchioli et al., 2019; Smith et al., 2019). 

Among all environments, the characterization of these microorgan-
isms in metropolitan areas is attracting much attention because such 
particles may have harmful consequences on human health. As part of 
the inhalable fraction, some may trigger allergic reactions, cause pul-
monary diseases or aggravate respiratory pathologies (Murray et al., 
2018). However, the dynamics and composition of the microbial aero-
sols within the cities is still unclear due to several factors. Firstly, 
different land-use can provide diverse sources of microorganisms, 
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setting up differences in abundance and diversity between urban loca-
tions depending on the degree of urbanization or the particularities of 
surrounding areas (Bowers et al., 2011a; Mhuireach et al., 2016; New-
bound et al., 2010; Stewart et al., 2020). Thus, urban parks provide soil 
and plant-related niches, in addition to fauna-related microbes, while 
ponds and fountains are sources of aquatic microbial life (Després et al., 
2012). In addition, it is known that environmental changes drive 
important variations in the airborne communities both at short-term 
(Fierer et al., 2008; Gusareva et al., 2019; Yan et al., 2018) and asso-
ciated to seasonal variability (Bowers et al., 2012; Cáliz et al., 2018; Fan 
et al., 2019; Innocente et al., 2017; Núñez et al., 2019; Tignat-Perrier 
et al., 2020). Especially relevant are the latter. Since many of the mi-
crobial organisms are commensals or saprophytes, they are linked to the 
life cycle of higher organisms to grow and multiply, which are usually 
synchronized with seasonal changes, e.g. plant growth and decay. 
Lastly, atmospheric transport and mixing of air masses as well as 
extreme atmospheric events (dust intrusions, pollution hazes or storms) 
may add biological variability across time and space (DeLeon-Rodriguez 
et al., 2013; Gat et al., 2017; Mazar et al., 2016; Yan et al., 2016; Yoo 
et al., 2018). Altogether, the potential influence of these many envi-
ronmental factors may hinder the characterization of the aerobiota in 
urban environments. Although urbanization has been proposed to ho-
mogenize airborne microbiota (Barberán et al., 2015; Docherty et al., 
2018) the influence of different environmental factors on prokaryotic 
and eukaryotic diversity in the urban atmosphere is not properly un-
derstood yet. 

Previous works on the effect of seasonality in the air microbiome of 
urban environments have been conducted in one or a few points in the 
same city (Bowers et al., 2013; Genitsaris et al., 2017; Hiraoka et al., 
2017; Innocente et al., 2017; Lee et al., 2017; Stewart et al., 2020). On 
the other hand, amplicon-based surveys of largely sampled urban areas 
have been usually restricted to short time periods (Docherty et al., 2018; 
Li et al., 2019; Mhuireach et al., 2016; Mhuireach et al., 2019). Here, we 
used targeted amplicon sequencing to simultaneously survey bacterial 
and fungal communities at 11 different sites scattered throughout a large 
metropolitan region in Madrid (Spain), across different seasonal periods 
for two years. The sampling locations are representative of urban sce-
narios with different degrees of urbanization and population density. 
Combined with meteorological and air pollution data, the present work 
provides a comprehensive analysis of the dominant and season specific 
bacterial and fungal taxa present in the near surface atmosphere of a 
wide urban area, evaluating the relative contribution of spatial and long- 
term temporal characteristics and assessing the influence of different 
environmental and pollution factors. 

2. Materials and methods 

2.1. Sampling sites characteristics 

Eleven sites scattered throughout the Community of Madrid (Spain) 
(Fig. 1a), were sampled, covering an area of ~ 4,000 Km2 around the 
city center and being representative of different urbanization levels. The 
Community of Madrid is located in the center of the Iberian Peninsula, 
ca. 320 Km away from any coastal place and 678 m above mean sea 
level. Total population is estimated in 6,6 million people differently 
distributed throughout the territory, with over 3 million living in the 
city center. 

Around 16 million journeys are made each day by the population, 
43% related to daily commuting (official data from Madrid Regional 
Transport Consortium, 2018, https://www.crtm.es/). Aerial pictures of 
the region (Google Earth version 7.3.3; https://www.google. 
com/earth/download/ge/) were used to examine the percentage of 
green areas, parks and non-urbanized lots in 1 Km around the sampling 
point and, accordingly, the sites were classified into “Green” (>7% non- 
urbanized area: G1-G3), “Parks” (between 3 and 7%, P1-P3) or “Built” 
(<3%, B1-B5). Thus, G sites (mostly found in the north of the region) are 

mainly residential areas characterized by large wild zones, clearing 
areas and large green zones. Sampling points in P sites (eastern regions) 
are set in urban environments but surrounded by short buildings and 
some urban parks. B sites (center and southern region) are placed in 
highly built areas, with scarce or small green areas and busy streets 
around. General district demography associated to the sampling sites 
showed that G and P places are less populated (median: 2500 ± 1937 
and 2563 ± 2558 inhabitants/km2, respectively), compared to B sites 
(median: 4359 ± 2181 inhabitants/km2) (official data 2018, http:// 
www.madrid.org/iestadis/). 

2.2. Sampling methodology and DNA extraction and quantification 

Samples at the 11 sites were collected simultaneously using volu-
metric spore traps (Burkard Manufacturing Co., England, UK), placed 
rooftop at a height of 15–21 m. Each sample covers a 7-days collection 
period, corresponding to ~ 100 m3 of air sampled (at the typical rate of 
the spore traps, which is 10 L/min). Sampling procedures, DNA 
extraction (DNeasy PowerSoil Kit, Qiagen®) and quantitation (Quant-iT 
PicoGreen double-stranded DNA (dsDNA) assay kit (Invitrogen, Molec-
ular Probes) were performed as described previously in (Núñez et al., 
2017), obtaining a range of DNA concentration of 0.10–48.90 pg/µl 
across the samples (median = 4.66 pg/µl; mean = 3.03 pg/µl). A syn-
chronous sample collection was conducted each season along a period of 
two years (henceforth year A and B), starting Summer 2015 and fin-
ishing Spring 2017. A total of 87 samples were collected (1 sample was 
missing because of a device failure during collection in site B2, Fall.A). 

2.3. High-throughput DNA sequencing 

High-throughput sequencing analyses were performed using the 
purified DNA from each sample in a targeted amplicon sequencing (TAS) 
approach. Hypervariable regions V3-V4 of the 16S rRNA gene of bac-
teria and region 5.8S – ITS2 of fungi were amplified using the following 
universal primers attached to adaptors and multiplex identifier se-
quences: Bakt_341 (F): 5′- CCTACGGGNGGCWG- CAG − 3′; Bakt_805 
(R): 5′- GACTACHVGGGTATCTAATCC − 3′ (Herlemann et al., 2011) for 
bacteria; and ITS86 (F): 5′- GTGAATCATCGAATCTTTGAA-3′ (Turenne 
et al., 1999); ITS-4 (R): 5′-TCCTCCGCTTATTGATATGC − 3′ (White 
et al., 1990) for fungi. Purified-amplicon libraries were sequenced in 
Illumina® MiSeq platform (2 × 300 bp reads) at Madrid Scientific Park 
(Madrid, Spain), with a minimum sequencing depth of 100,000 reads/ 
amplicon. 1 sample of the 16S library (G3 Winter.B) was discarded 
because DNA amplification failed, so a total of 86 samples were analyzed 
for bacteria. DNA from a negative control (sample obtained with the 
same procedure applied in sample collection but keeping the device off) 
was also included in the sequencing protocol to discard sample 
contamination. 

2.4. Sequence preprocessing 

PANDAseq v2.8 (Masella et al., 2012) was used for assembling 
paired-ends sequences of the 16S DNA library, filtering by Q-score 
quality (0.6), trimming the primers sequences and excluding the se-
quences exceeding the length of the amplicon (min: 400 bp, max: 500 
bp). For fungal sequences, the average length of the amplicon (<300 bp) 
would lead to complete overlap between the reads, so we first employed 
“read_fastq” from Biopieces v2.0 (http://maasha.github.io/biopieces/) 
to remove the primer sequence at the end of the amplicon, followed by 
“fastq-join” (Aronesty, 2013) (https://github.com/brwnj/fastq-join) to 
pair the sequences. Global processing of the sequences was conducted in 
Qiime suite environment (Caporaso et al., 2010) (version 1.9.1, http:// 
qiime.org). Chimeras were excluded using USEARCH v8.1 (https:// 
drive5.com/usearch/) in default mode. OTUs clustering and taxo-
nomic assignments were performed with the default algorithm of Qiime 
(pick_open_reference_otus.py), using UCLUST as method for picking 
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OTUs (Edgar, 2010) at 97% similarity cutoff. Silva database 
(release_132) for bacteria (Quast et al., 2013), and UNITE v7.0 (Kõljalg 
et al., 2013) for fungi were used for the taxonomic assignments. OTUs 
assigned to chloroplast, mitochondria, “Unassigned” or that did not 
reach a defined taxonomic rank at Phylum level were filtered out. For 
bacteria, we conducted an additional manual revision to search for po-
tential contaminations from insect or human-skin microbiota during 

manipulation, as in (Núñez et al., 2019), identifying a total of 9 OTUs 
that were removed for further analyses. 

2.5. Filtering and normalization 

Since spurious OTUs with very low counts may appear due to PCR 
and sequencing errors (Quince et al., 2011; Weiss et al., 2017), we 

Fig. 1. Sampling points and overview of the airborne microbial composition. Geographical location of the sampling sites (a). Contribution of the different predicted 
sources of bacterial taxa to the relative abundance across each sampling site (b). Relative abundances of the 10 most abundant bacterial genera by sampling location 
(c) or season (d). Relative abundances of the Top 10 fungal genera by sampling location (e) or season (f). 
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estimated a ‘noise floor’ following the statistical procedure outlined in 
(Núñez et al., 2019), which resulted in one and two counts for bacteria 
and fungi, respectively. As a pre-analysis step, we thus removed sin-
gletons (OTUs present with an abundance of one count in one sample 
and zero in the rest) for bacteria, as well as singletons and doubletons for 
fungi. This procedure eliminated 16,845 OTUs in bacterial samples 
(30% of the original table) and 3,582 in fungal samples (26%). However, 
they only represented between 0.3 and 1.5% (bacteria) or 0.2–0.29% 
(fungi) of the samples relative abundances. 

To establish the core of bacterial and fungal genera (taxa, at the 
Genus level, present in at least 95% of all samples) we considered a more 
restrictive criterion of ‘presence’ taking into account experimental 
variability with duplicate and simultaneously running spore traps, as 
described in (Núñez et al., 2019). This sets a threshold of 0.032% in 
relative abundance for an OTU to be reliably observed in a given sample, 
which we used as a criterion for presence/absence. 

In all calculations comparing relative abundances (as those shown in 
Fig. 1 and Figures S3, S4, S9) we corrected for biases due to differences 
in size between samples using cumulative sum scaling normalization 
(Paulson et al., 2013), as implemented in the “metagenomeSeq” 
package. 

2.6. Environmental and pathogen annotations 

We collected the top 150 OTUs of every sample (covering at least 
70% of relative abundance per sample, giving a total of ~ 2,000 OTUs) 
as representatives of the airborne bacterial community. The predicted 
sources (Fig. 1b and Figure S1) were assigned using the Seqenv pipeline 
(Sinclair et al., 2016). Briefly, DNA sequences corresponding to the 
OTUs are aligned against the NCBI database. The taxonomic information 
for each sequence is extracted and associated with Environmental 
Ontology (ENVO) annotations. The annotations of the top 5 matches 

Fig. 2. Alpha-diversity estimators change across seasons. Chao1 index (species richness) and Pielou’s index (relative evenness) for airborne bacteria (a and b, 
respectively) and fungi (c and d, respectively). Welch’s-tests were performed to determine statistical differences between seasons and asterisks represent their 
significance: ***: P < 0.001; **: 0.001 < P < 0.01; *: 0.01 < P < 0.05. 
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(>97% similarity) for each sequence were taken and assigned to 7 
different habitats: Animal-related (which includes gut- and skin related 
microbiota), Plant (phyllosphere and rhizosphere-related bacteria), 
Water (including Freshwater, Marine or Aquatic when the annotation 
was not specific enough to discern the type of aquatic environment) and 
Soil (including sediment, sand, sludge, desert, and related expressions). 
The most frequent habitat of those 5 annotations was selected as the 
predicted habitat for each sequence submitted, or the term “Generalist” 
was used when a tie occurred, which is a relatively common situation for 
bacteria (many of which are usually isolated, for instance, from plant 
surfaces as well as soil samples). For those sequences without environ-
mental assignation but defined to species level, a manual assignment of 
the ecological habitat was set based on the related literature. A total of 
654 (~33%) bacterial OTUs could not be assigned to any habitat (NA), 
mainly sequences from culture-independent studies and incomplete 
taxonomic description (rank Family or higher). 

The same pipeline was used to assign most likely habitats to fungal 
taxa, including a Lichen category (Figure S1). The top 150 OTUs per 
sample (giving a total of ~ 2,600 OTUs) covered > 90% of the relative 
abundance in each sample. However, around 54% of fungal OTUs could 
not be associated to a defined habitat using this procedure. 

The ecological guilds for fungal OTUs were assigned using the 
FUNGuild pipeline (Nguyen et al., 2016) for the whole set of fungal taxa. 
We gathered the results in the eleven different categories shown in 
Figure S2, including each taxon into one or several of these categories 
according to their potential ecological guild. Around 18% of fungal 
OTUs could not be assigned to any guild. 

For the identification of pathogenic bacteria and fungi (Figure S9), 
we compiled a list of potential human pathogens from references (Abd 
Aziz et al., 2018; Fan et al., 2019; Kowalski and Bahnfleth, 1998; Liu 
et al., 2018). 

2.7. Richness and evenness estimates 

Indexes for estimation of alpha-diversity were calculated based on 
Hill numbers (effective number of species) (Chao et al., 2014) as 
implemented in the package ‘iNEXT’ (Hsieh et al., 2016). For richness 
(total number of species) we give the asymptotic estimate (Chao1 
index), and for evenness (similarity in species relative abundance in a 
sample) we use Pielou’s evenness index (Jost, 2010). Pielou’s index 
varies between 0 and 1, with larger values representing more even 
distributions in abundance among species. This index is calculated from 
the asymptotic values of the Hill numbers q = 0 (Chao1 richness) and q 
= 1 (Shannon diversity, SD) as ln(SD)/ln(Chao1). 

2.8. Mantel tests 

A matrix of spatial distances (in Km) between the different sampling 
locations was obtained from the latitude and longitude coordinates of 
each sampling site, using the function ‘distm’ from package ‘geosphere’ 
with geodesic distance. The Mantel test was calculated with function 
‘mantel’ in ‘vegan’ R package, using Spearman rank correlation and 
permutation tests (1,000 permutations) for significance. 

2.9. Beta-diversity 

The Morisita-Horn distance was used as it is an abundance-based 
measure of similarity dominated by the most abundant species, resis-
tant to under-sampling (rare species have little effect) (Chao et al., 
2006). Since composition in our samples is dominated by few relatively 
abundant and pervasive genera, this distance allows a better visualiza-
tion of spatiotemporal influences on the similarity of our microbial 
communities. Principal Coordinate Analysis (PCoA) was applied after 
rarefaction to minimum sampling depth and Hellinger standardization. 
Taxa abundances were grouped at the genus level. Contributions to 
principal coordinates axes were corrected for negative eigenvalues using 

‘cailliez’ method. PERMANOVA tests were performed with ‘adonis’ 
function in ‘vegan’ package, checking first for homogeneity of group 
variances (‘permutest.betadisper’ function in ‘vegan’). 

For Fig. 3a,b and Fig. 4, the samples in each location belonging to the 
same seasonal period were combined (summing up abundances of 
common OTUs in the two different years). The most abundant genera 
were correlated to dimensions in principal coordinates space using 
‘envfit’ function in ‘vegan’ (Fig. 3a,b). 

2.10. Indicator species 

Species indicators of a given group of samples (e.g. a seasonal period) 
are characterized by an index (IndVal) between 0 and 1, which is the 
product of two components (Dufrêne and Legendre, 1997): specificity, 
or abundance of the species in the group relative to its total abundance, 
and fidelity, or relative frequency of occurrence of the species in samples 
belonging to the group. IndVal indices for all bacterial and fungal genera 
were obtained with the R package labdsv. Significance was calculated by 
10,000 randomizations of groups, followed by Benjamini-Hochberg 
correction for multiple testing. Only species with IndVal values > 0.4/ 
0.5 (for bacteria and fungi respectively) and P < 0.01 are shown in 
Fig. 3. 

2.11. Environmental characteristics and data of Madrid area 

The Community of Madrid is located in the center of the Iberian 
Peninsula, flanked by the mountain chain “Sistema Central” (with 2,000 
m high peaks) to the north and the plateau “Meseta Central” of the 
Peninsula to the south. The weather in the region shows features of both 
semiarid and Mediterranean climates. Winters are mildly cold and not 
very rainy, while summers are dry and hot. 

According to the data provided by the State Agency of Meteorology 
in Spain (AEMET, “Agencia Estatal de Meteorología”, http://aemet.es), 
normal temperature values in urban areas ranged from 6.0 to 25.6 ◦C, 
with an average value across the year of ~ 15 ◦C (Figure S10). The 
lowest temperatures are found in Winter, with an average value of 
6.5 ◦C, although normal minimum temperatures range 0.0–2.6 ◦C, and 
normal maximum temperatures vary between 10.4 and 12.5 ◦C. On the 
other hand, July and August are the warmest months, with mean tem-
peratures over 25 ◦C, maximum values around 32.5 ◦C and minimum 
ones in the range 15.4–18.0 ◦C. 

The climate is slightly dry, with average relative humidity values 
that fluctuate between 36% (Summer) and 77% (Winter), and a mean 
relative humidity of 56–58% throughout the year. In correspondence 
with a Mediterranean weather, the rainy seasons are Fall-early Winter 
and Spring. The number of days with precipitation over 1 mm is always 
below 60, compiling ~ 410 mm of total annual precipitation with peaks 
in October/November and April/May (40–60 mm), and finding the 
lowest values in July/August (~10 mm). The region of Madrid accu-
mulates annually ~ 100 clear days, with peaks of solar radiation in July. 

The average wind speed varies between 2 and 3 m/s throughout the 
year (Figure S11), being Winter and Spring the seasons with the highest 
values. NE seems the dominant one for most of the year, mainly coming 
from central Europe and eastern Mediterranean regions (Gregale). There 
are significant contributions from W winds in Winter (Ponente, humid 
current from the Atlantic Ocean), and SSE in Fall (likely originated in 
dry conditions from the North Africa deserts). 

In accordance with this global description of the climate in the re-
gion, sampling times coincide with periods that represent typical char-
acteristics of each season (red lines in Figure S10). 

With respect to the atmospheric pollution of Madrid area, there is an 
Air Quality Network with a total of 24 air quality stations distributed 
across the region and classified in 3 urban areas and 3 rural areas 
(http://gestiona.madrid.org). All these stations take hourly measures of 
the main atmospheric pollutants in Madrid area affecting human health 
(NO2, O3, particulate matter < PM10) and some of them also measure 
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levels of other pollutants such as SO2, CO, benzene, PM2.5 or NO. In 
addition, Madrid central district has its own air quality network with 
another 24 stations scattered across the city center, providing hourly 
measures of some contaminants (https://www.madrid.es/portal/site/m 
unimadrid). 

Among all the pollutants, NO2 is the most problematic in the region, 
especially in the central district with daily heavy traffic conditions 
(around 80% of this pollutant is originated by road traffic). NO2 mean 
values are thus higher in densely urbanized areas compared to locations 
with parks or vegetation (Figure S12). An annual mean of 40 µg/m3 is 
considered as a risk threshold for human health and this limit is over-
passed in downtown sampling sites B3 and B5. The concentration of 
tropospheric O3 is over the limits (daily mean of 120 µg/m3) only in 

certain days of Summer, when high temperatures and lack of wind co-
incides. The values in less urbanized areas tend to be higher than in 
urban environments (Figure S12), although monthly average concen-
trations are clearly under the risk limit and daily values never exceeded 
it during the sampling periods. Concerning particulate matter (PM), its 
presence in the tropospheric air is due both to human activity (traffic, 
industrial processes, coal heaters) as well as to natural sources (such as 
calimas, or dust storms originated in the Sahara Desert). The risk limit of 
PM10 concentration for human health (daily mean of 50 µg/m3) was only 
surpassed during Fall.B and Winter.B periods in four of the eleven lo-
cations surveyed. Possible causes were a sporadic biomass combustion 
event registered in Fall.B and a calima from North Africa affecting Spain 
central region in Winter.B (Table S3). 

Fig. 3. Seasonal gradients in microbial communities and indicator taxa. Principal Coordinates Analysis of samples grouped by seasonal period for bacteria (a) and 
fungi (b) using Morishita-Horn distance (Methods). The most abundant taxa (at the genus level) of each community were correlated to the ordinations, and statistically 
significant correlations are shown as arrows within the ordination plots. Arrow lengths are proportional to the correlation, and point towards the direction of most 
rapid change of the explanatory taxa. Asterisks represent significance: ***: P < 0.001; **: 0.001 < P < 0.01; *: 0.01 < P < 0.05. Bacterial (c) and fungal (d) genera 
indicator of different seasonal periods. Only genera with an indicator value (IndVal) ≥ 0.4 (for bacteria) or ≥ 0.5 (for fungi) are shown, together with their relative 
abundances in all samples. 
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SO2 concentrations are always very low in the city compared to the 
risk limit (daily mean 125 µg/m3, and hourly mean 350 µg/m3, see also 
Figure S12), and it is not considered a significant problem for human 
health in Madrid. 

All meteorological and pollution data used for factor analyses and 
constrained dbRDA were obtained from above mentioned governmental 
open access resources (Agencia Estatal de Meteorología, AEMET, 
http://www.aemet.es/; Air Quality Network of Comunidad de Madrid h 
ttp://gestiona.madrid.org and Air Quality Network of Madrid central 
district https://www.madrid.es/portal/site/munimadrid), assign-
ing each sampling site to the nearest meteorological and air quality 
stations. We collected daily averaged data of temperature, relative hu-
midity, wind speed, and PM10, NO2 and ozone levels, as well as total 
amount of precipitation and solar radiation during the sampling periods. 
These were the environmental factors with available data in all surveyed 
locations during the sampling periods. The environmental matrix (the 
set of environmental factors assigned to each sample) contained weekly 
averages of these environmental factors for each sampling week, with 
the exception of rain (total amount). 

2.12. Analysis of environmental variables 

2.12.1 Factor analysis 
Exploratory factor analysis was performed using the R package 

FactoMineR (Lê et al., 2008). Principal component analyses (PCA) were 
done on the environmental matrix with standardized data, 

2.12.2 dbRDA 
PCoA ordinations of taxa grouped at Genus level, using Hellinger 

standardization after rarefaction and Morishita-Horn distance, were 
constrained to the environmental variables using function capscale in 
vegan package. Variance explained by the different variables was cor-
rected as in (Peres-Neto et al., 2006) (adjusted R2). Biases due to linear 
dependencies between explanatory (environmental) variables were 
assessed calculating variance inflation factors (vif) with function ‘vif. 
cca’ in ‘vegan’. In addition, we explored environmental variables 
significantly associated to community variation applying model 

selection with function ‘ordiR2step’ in ‘vegan’. After these pre-analysis 
steps, we retained for final analyses variables with values of vif < 3, 
keeping only unbiased factors with more plausible ecological meaning 
and stronger associations. In this way, we excluded ozone, solar radia-
tion and relative humidity from further analysis based on strong corre-
lations with temperature, and weaker explanatory power than 
temperature as assessed by model selection. For constrained dbRDA 
ordinations in Fig. 4, we only show the variables that were significantly 
associated to community variation (permutations tests using ‘anova.cca’ 
function for ‘terms’). 

3. Results 

3.1. Composition and sources of microorganisms 

Using spore traps (Núñez et al., 2017), we collected air samples along 
four seasonal periods during two years. We sampled simultaneously in 
11 sites scattered across a wide area within the territorial demarcation of 
the Community of Madrid, Fig. 1a. The sampling sites include three 
locations within Madrid city center (G2, B3 and B5) as well as different 
urban and peri-urban scenarios belonging to medium to large population 
size towns surrounding the central area (Methods). A total of 87 samples 
(7-days period each) were subjected to targeted amplicon DNA 
sequencing to monitor the bacterial and fungal diversity gathered in 
every sampling site (Methods and Table S1). 

We first analyzed the composition and possible sources of the taxa 
present in our samples. Most of the bacterial taxa were of soil origin 
(~70% of the total number of taxa with identified origin, Figure S1a), 
according to the most frequent matches of Environmental Ontology 
(ENVO) terms (Methods), followed by those related to aquatic environ-
ments (~14%). These potential sources agree with other studies of 
airborne bacterial composition in urban and rural environments (Bar-
berán et al., 2015; Bowers et al., 2013; Bowers et al., 2011a; Bowers 
et al., 2011b; Cáliz et al., 2018; Hiraoka et al., 2017). In contrast to some 
of these studies, however, we found a quite low proportion of bacteria 
(~3%) directly associated to plants, likely because of the different 
approach used to assign the predicted source (Methods). The 

Fig. 4. Environmental factors explain main trends 
in seasonal changes. Constrained ordinations of 
samples grouped by seasonal period with environ-
mental factors (Methods). Asterisks represent sig-
nificance of the environmental variables under 
permutation tests (1,000 permutations): *** P <
0.001; ** 0.001 < P < 0.01; * 0.01 < P < 0.05. The 
represented variables explain ~ 27% of the sample 
variance for bacteria and ~ 41% for fungi (adjusted 
partial variances), with temperature the most 
explanatory variable for both communities. The or-
dinations shown correspond to correlation biplots: 
angles between samples and arrows reflect their 
correlations. Other statistical information from 
dbRDA is shown in Table S4.   
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contribution of different habitats to bacterial relative abundance was 
rather homogeneous across sampling locations, Fig. 1b. This agrees with 
other works on airborne communities that found no significant differ-
ences between frequency of potential sources among rural and urban 
areas (Barberán et al., 2015). 

Fungal communities were also dominated by taxa of soil origin 
(~60% of total number of taxa with assigned source, Figure S1b) and to 
a less extent by fungi frequently associated to plants (~20%). Fungal 
taxa were also classified into different ecological guilds (Methods and 
Figure S2). Many of the identified taxa (~46%) were saprotrophs, as it is 
the case for many fungi found in soil. Especially frequent in this group 
were taxa related to wood decay (Figure S2, ‘Wood saprotroph’), with 
ubiquitous presence of several species of Peniophoraceae. Many of the 
fungal taxa were also potential plant and animal pathogens, with similar 
frequency distributions across sampling sites, Figure S1. 

To provide a comprehensive characterization of bacterial and fungal 
diversity, we first gathered the abundance of all OTUs belonging to the 
same genus. This resulted in 1,086 identified bacterial genera (distrib-
uted across 27 different phyla) and 570 identified fungal genera (5 
phyla). We then investigated the existence of steady airborne commu-
nities across space and time, looking for taxa (at the genus level) present 
in at least 95% of all samples (Methods). For bacteria, we found a 
common core of 26 genera, Table S2. Remarkably, these few common 
genera constituted a sizable fraction of all the samples (between 31% 
and 72% of individual sample abundance, ~50% of total prokaryotic 
abundance). The prokaryotic core is dominated by members of Actino-
bacteria and Proteobacteria, which are the most common phyla found in 
soil(Delgado-Baquerizo et al., 2018), such as Sphingomonas, Kocuria, 
Pseudomonas and Paracoccus Fig. 1c-d and Figure S4a-b. These genera 
can be also found within the most abundant taxa in other studies on very 
different urban areas (Li et al., 2019; Polymenakou et al., 2020; Serrano- 
Silva and Calderón-Ezquerro, 2018; Yan et al., 2018). 

The dominant genera were distributed in similar proportions across 
sites (Fig. 1c) and seasonal periods (Fig. 1d) with the exception of 
Pseudomonas, whose presence is remarkably higher in Spring at the less 
urbanized sampling locations (G1-G3). This increase is however 
observed only during the first spring period (P < 0.05, Welch’s test), 
Figure S3b, pointing out to characteristic environmental conditions fa-
voring the outbreak of some Pseudomonas species. In particular, the 
accumulated precipitation during the two weeks previous to this sam-
pling period was much higher in these locations. Cloud formation can be 
triggered by ice nucleation activity proteins present in several species of 
Pseudomonas. Thus, these bacteria can be deposited on the earth surface 
and increase their local abundance rapidly (Failor et al., 2017). In 
addition, many Pseudomonas species are saprophytes and plant patho-
gens, which would favor their rise in sites with abundant plant covering. 

The fungal community was dominated by Ascomycota, and to a much 
less extent by Basidiomycota (Figure S4c-d). We identified only 4 core 
genera (Cladosporium, Alternaria, Epicoccum and Eurotium, all assigned to 
Ascomycota) that made up a noticeable but very variable fraction of the 
eukaryotic community across all the samples (between ~ 4% and 86% of 
individual sample abundance, and ~ 54% of total fungal abundance). 
This inter-sample variability of the core taxa suggests that fungal 
airborne communities are more sensitive to local sources or environ-
mental factors than prokaryotic communities. A possible explanation is 
that most of the prevalent fungal taxa found in our samples are soil and 
plant saprotrophs feeding from debris of dead plants, whose presence 
may be largely influenced by the climatic season and the availability of 
nearby sources. As for bacteria, we collected the 10 most abundant 
genera across all samples and calculated their distribution by sampling 
sites, Fig. 1e, or seasonal period, Fig. 1f. Apart from the above 
mentioned core genera, other fungal genera such as Penicillium or 
Sporobolomyces are highly prevalent (>90% of the samples). While 
different sites show a rather homogeneous distribution of the main 
fungal taxa, seasonal periods display significant differences, with a 
smaller contribution of these genera in Fall/Winter samples compared to 

the Spring/Summer periods (Welch’s test, P < 0.001). 

3.2. Seasonal features modulate microbial diversity 

The microbiome in the near surface atmosphere can be influenced by 
changes both from nearby sources and from environmental factors 
(Bowers et al., 2011b; Fierer et al., 2008; Fröhlich-Nowoisky et al., 2016; 
Jones and Harrison, 2004; Mhuireach et al., 2019; Tanaka et al., 2019). 
As a first characterization of diversity across space and time, we esti-
mated two alpha-diversity indicators for each sample: number of taxa 
(richness, Chao 1 index (Gotelli and Chao, 2013)) and similarity in 
species relative abundance (evenness, Pielou’s index (Jost, 2010)) 
(Methods). We then grouped these indicators by samples belonging to 
the same location or seasonal period. 

For each location, richness exhibited a large variability depending on 
the sampling period, Figure S5, which prevents to detect significant 
differences among sites. In contrast, gathering samples by seasonal 
period revealed different trends among seasons. For bacteria, Spring/ 
Winter periods are characterized by significantly lower richness than 
Fall/Summer samples, Fig. 2a. Evenness estimates are relatively high in 
all seasonal periods (Fig. 2b), consistent with the presence of a core of 
highly abundant taxa varying across seasons. Summer samples differed 
from each other less than those collected in other seasons, in agreement 
with other works in urban areas (Bertolini et al., 2013), which hints to a 
strong effect of temperature on bacterial community composition. Sea-
sonal variations in the number and abundance of airborne bacteria have 
been observed in previous studies, with a larger abundance during 
Summer periods in many of them (Be et al., 2015; Bertolini et al., 2013; 
Bowers et al., 2012; Bowers et al., 2011b; Genitsaris et al., 2017). Other 
studies, however, reported a higher bacterial diversity in different sea-
sons (Cáliz et al., 2018; Du et al., 2018; Lee et al., 2017) pointing to an 
influence of multiple environmental factors combined with the climatic 
characteristics of the region. 

Fungal communities show a significant increase in richness during 
Fall, Fig. 2c. In contrast to bacteria, all seasonal periods exhibited 
marked differences in evenness, Fig. 2d, with the more dissimilar com-
munities corresponding to the Summer periods. This agrees with the 
results of previous surveys in the Iberian Peninsula using microscopy 
techniques that showed an increase in abundance and types of fungal 
spores during Summer and, especially, Fall seasons (Díez-Herrero et al., 
2006; Oliveira et al., 2009; Sánchez-Reyes et al., 2016). 

Analyzing seasonal diversity in different years, similar general trends 
are observed (Figure S6). However, some inter-annual variability is also 
apparent. In bacteria, richness is significantly different between the 
Spring periods of both years, Figure S6a (likely associated to a dust event 
from North Africa, Table S3). Fungal communities show significant 
inter-annual differences in richness in Fall, Winter and Spring samples 
(Figure S6c). 

We next studied spatial and temporal variation in species composi-
tion between samples (beta-diversity). We first investigated the possi-
bility of spatial correlation in our data (if closer locations contain more 
similar microbial communities) using Mantel tests separately for each 
sampling period (Methods). No significant correlations were found 
among beta-diversity and site geographical distances for the sampling 
periods analyzed. In addition, we used Mantel correlograms and 
distance-based Moran eigenvalue maps to check that no significant 
spatial structure is present in the microbial communities sampled. Then, 
we applied principal coordinate analysis (PCoA), as described in 
Methods, to visualize gradients in our samples. When taxa were grouped 
by seasonal period, we observed a clear separation by season in both 
bacterial and fungal samples, Fig. 3a,b [R = 0.5 and 0.8 for bacteria and 
fungi, respectively, P < 0.001, permutational analysis of variance 
(PERMANOVA)]. In contrast, grouping by sampling location did not 
show a significant influence (using PERMANOVA tests). Seasonal pat-
terns were still distinguishable and significant irrespectively of the year 
(Figure S7), albeit with smaller contributions to total variance (R = 0.29 
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and 0.32 for bacteria and fungi, respectively, P < 0.001, PERMANOVA). 
To find which taxa are mainly responsible for the observed seasonal 

gradients, we fitted the most abundant genera to the ordinations. Taxa 
with most significant correlations with sample ordinations are shown as 
correlation arrows in Fig. 3a, b. In analogy with the results for alpha- 
diversity (richness and evenness), the Winter and Spring samples were 
significantly different from the Fall/Summer samples in the composition 
of bacterial communities. The differential abundance of pervasive 
genera accounted for the main gradients, such as the increase in abun-
dance of Pseudomonas during Spring. The gradient along the second 
main component in Winter samples is due in part to the increased 
presence of Hymenobacter, whose species are known to be well adapted 
to extreme temperature and desiccation conditions. Summer samples are 
especially enriched in some genera of Actinobacteria, such as Nocar-
dioides and Corynebacterium, whose environmental species are 
frequently found in soil environments and usually resistant to the high 
irradiation, temperature and dryness characteristic of this season. 

Fungal taxa show even stronger seasonal trends, where species 
belonging to the most abundant genera (Cladosporium/Davidiella, 
Alternaria, Aureobasidium and Penicillium) fluctuate in abundance 
following seasonal environmental changes, Fig. 3b. In addition to sea-
sonal gradients, the fungal communities show a clear separation by year 
of sampling, Figure S7 [R = 0.35, P < 0.001, PERMANOVA], suggesting 
a higher sensitivity to particular environmental conditions. A consistent 
difference between both years was observed in the total amount of rain 
during Fall and Winter sampling periods, being significantly larger 
during the second year in most locations (Figure S13). This environ-
mental factor is indeed strongly correlated to the separation of both 
years along the two main coordinates in PCoA (Figure S7). 

3.3. Indicator taxa 

Despite main gradients in ordinations are due to seasonal variations 
of most abundant taxa (corresponding to core genera in bacterial sam-
ples), we also investigated the presence of taxa characteristic of specific 
seasons, using indicator species values (Methods). Several microbial 
genera were identified as indicators for each season (Fig. 3c,d), while 
there were no indicators for type of site (G, P or B) or specific locations 
(P > 0.1 with Benjamini-Hochberg correction for multiple testing). 
Summer presented the highest number of indicators for bacteria, and 
Fall for fungi, in correspondence with the seasons showing the highest 
species richness for each community. With the exception of Rose-
nbergiella and Succinivibrio, Gram-positive actinobacteria were predom-
inant indicators of the Summer season, likely due to their resistance to 
dry conditions. The abundance of Streptococcus, also Gram-positive 
bacteria related to the human microbiome, increases notably in 
Winter. In addition, two genera with acidic soil-related members, Ter-
riglobus and Endobacter, were identified as characteristic of the Winter 
season. 

Several fungi of the phylum Basidiomycota were associated with 
Summer season such as Tilletia spp., a pathogen of several species of 
grasses, and Fomes spp., a wood-decay fungi. The Ascomycota Erysiphe 
spp., obligate parasite of leaves and fruits, was also characteristic of the 
warm season. Most of the genera identified as indicator for the Spring 
period belong to the order Erysiphales: Blumeria, Golovinomyces, Podos-
phaera and Sawadaea, that cause the powdery mildew on plants and 
trees during the growing season favored by humidity and moderate 
temperatures. 

In contrast to the bacterial community, which did not show specific 
genera indicative of the year of sampling, up to 20 fungal genera 
appeared as indicator taxa of the sampling year with indval values > 0.5 
(Figure S8). They were mostly plant leaves colonizers and pathogens. Of 
note, some abundant genera, Fig. 1e-f, with potentially harmful repre-
sentatives for humans like Aureobasidium, Cryptococcus or Epicoccum 
were selected as fungal markers for the first year of sampling, in 
accordance with their predominant presence during this year (99%, 89% 

and 93% respectively). Some habitants of angiosperms surfaces, such as 
Botrytis spp. and Stemphylium spp. were almost exclusively present 
during the second sampling year. 

3.4. Human pathogens and aeroallergens 

Pathogenic microorganisms are frequently found in air microbiome 
studies (Abd Aziz et al., 2018; Fan et al., 2019; Kowalski and Bahnfleth, 
1998; Liu et al., 2018). In our survey, we found a small fraction of 
potentially pathogenic bacteria (average 12% per sample, Figure S9). 
Some of the most abundant genera with pathogenic taxa (Pseudomonas, 
Geodermatophilus, Staphylococcus, Roseomonas, Acinetobacter and Clos-
tridium), are also included in the bacterial core (prevalence > 95%), 
while other abundant pathogenic genera such as Streptococcus and Ba-
cillus are also highly prevalent (>90% of the samples). The most abun-
dant Streptococcus species found in our samples, Streptococcus 
gallolyticus, is an opportunistic pathogen causing septicemia and endo-
carditis, and also associated to colorectal cancer (Pasquereau-Kotula 
et al., 2018). Likewise, Acinetobacter baumannii and Acinetobacter lwoffii, 
two documented human pathogens found in health care units (the 
former being listed by the WHO as a critical antibiotic resistant micro-
organism), are the dominant species of this genus in our survey. 

Some of the relatively abundant pathogens identified show a clear 
seasonal influence, as it is the case with Thermoactinomyces vulgaris, 
associated to pneumonia and peaking in Fall. Especially abundant in Fall 
are also Serratia plymuthica and Serratia marcescens, both causing 
opportunistic infections. With lower abundance, we identified DNA of 
Pseudomonas aeruginosa and Pseudomonas pseudoalcaligenes, cause of 
widespread infections in hospitals, with almost exclusive presence in 
Spring and Winter, respectively. 

Occasionally, potential enteropathogens like Campylobacter jejuni, 
Enterobacter cloacae or Escherichia coli were also found, but their pres-
ence was detected in very few samples and with low abundance. This is 
also the case with representatives of the genus Legionella, responsible for 
the Legionaries’ disease and Pontiac fever (Sánchez-Parra et al., 2019). 

Regarding fungal taxa, because of their life style, around a third of 
the total sequences was associated to plant or animal pathogens, with 
the core genera Cladosporium, Alternaria, and Epicoccum among the most 
relevant for human health as cause of different allergy symptoms. The 
most abundant allergenic species identified across samples were Cla-
dosporium herbarum (Davidiella tassiana), Epicoccum nigrum, Aureobasi-
dium pullulans, Alternaria tenuissima and Alternaria alternata. These 
allergens showed an almost exclusive presence only in one of the sam-
pling years (year A for the first four species, and year B for Alternaria 
alternata). Other fungal pathogens showed also high inter-annual vari-
ability, as it is the case of some Penicillium spp. (Penicillium digitatum, 
P. expansum, P. chrysogenum) causing keratitis and mycosis, only 
detected during the first sampling year, and Fusarium proliferatum 
detected only during the second year in Fall samples. Other prevalent 
pathogenic taxa showed a marked seasonal variability, such as Asper-
gillus niger and Aspergillus fumigatus, causing pulmonary infections, 
which were especially abundant during Fall. As with bacteria, some 
pathogens were detected very occasionally in our samples, as it is the 
case of Cryptococcus neoformans and Cryptococcus albidus. 

3.5. Influence of environmental variables on airborne microbial 
communities 

The seasonal patterns apparent in the community composition of 
airborne microorganisms are likely driven by long-term changes in 
environmental factors. We collected a common set of meteorological 
and pollution data taken from meteorological and air quality stations 
close to the different sampling sites (Section 2.11 in Methods). These 
data included daily values of air temperature, amount of rain, relative 
humidity, solar radiation and wind speed, as well as daily levels of 
particulate matter (<PM10), NO2 and O3. Values of environmental 
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variables across the different sampling periods are summarized in 
Figure S13, showing clear seasonal trends but with some differences 
among years, particularly in the amount of rain and PM10 during Fall 
and Winter periods. 

We first investigated the structure of the environmental variables 
using factor analysis (Methods). Samples were clearly grouped by sea-
sonal period in the principal components of the environmental matrix 
(Figure S14a), with temperature, relative humidity, solar radiation and 
ozone levels explaining the scatter of samples along the first dimension, 
while values on the second component were mainly influenced by the 
amount of rain and PM10 levels. The third dimension, which also 
contributed noticeably to the amount of explained variance, was almost 
exclusively determined by wind speed. The environmental variables 
were not all independent. Regarding pollutants, we observed a strong 
positive correlation of ozone levels with temperature and solar radia-
tion, and a negative correlation between ozone and NO2, Figure S14b. 
These correlations are well documented and likely due to the chemistry 
of ozone production and destruction (Coates et al., 2016). With respect 
to meteorological variables, temperature and relative humidity showed 
also a significant negative correlation (Figure S14b), as expected from 
the climatic conditions of Madrid, with a mixture of cold semiarid and 
Mediterranean characteristics. In addition, and due to atmospheric 
transmittance, solar radiation is highly correlated with air temperature 
and relative humidity. 

To assess the influence of different environmental variables on sea-
sonal changes in community composition, we regressed the species 
matrix on the environmental factors using distance-based redundancy 
analysis (db-RDA) (Borcard et al., 2018; Legendre and Anderson, 1999). 
Explanatory variables were selected based on possible collinearities 
among factors and significant associations by model selection (Section 
2.12.2 in Methods). 

Seasonal trends in bacterial diversity are most significantly 
explained by the temperature gradient (Fig. 4a), followed by amount of 
PM10 and average wind speed. While total rain fallen during the sam-
pling periods was not selected as one of the main explanatory variables, 
it may show an influence on the composition of the Winter communities 
in the ‘green’ locations, where especially G1 and G3 sites registered an 
elevated amount of precipitation during this season. 

Temperature was also the dominant environmental factor explaining 
seasonal variations in fungal communities. Unlike bacteria, these com-
munities seem to be also especially sensitive to rain levels (Fig. 4b), 
while wind speed explains the trend of Winter samples, in a similar way 
as in bacteria. Of note, the main representative fungal genus in our 
samples, Cladosporium, has been found to be positively influenced by 
temperature (Katial et al., 1997; Oliveira et al., 2009; Peternel et al., 
2004), in agreement with its more abundant presence in Summer and 
Spring samples (Fig. 1f). 

Regarding chemical contaminants, NO2 levels were not significantly 
associated to changes in composition of bacterial or fungal communities. 

Solar radiation, ozone levels and relative humidity were ruled out 
from final analyses due to their strong correlations with temperature. In 
addition, relative humidity showed either no significant (for bacteria) or 
weak (for fungi) associations with community variation as assessed by 
model selection. Solar radiation and ozone levels were statistically 
associated to compositional variations, but their impact on the con-
centration of airborne microorganisms is less clear than that of tem-
perature. On one hand, there is no evidence for a direct influence of 
ozone levels on bacteria or fungi at the concentrations present in the 
near surface atmosphere of Madrid (maximum of ~ 100 μg/m3 in some 
Summer samples, Figure S13) (Sousa et al., 2008; Ueda et al., 2016). On 
the other hand, although solar radiation can influence the viability of 
bacteria in the air, its effect on bioaerosol concentrations is difficult to 
assess independently of temperature and relative humidity. Several 
studies in fungi pointed that spore release could be favored by increasing 
solar radiation incident on leave or soil surfaces, which acts by reducing 
surface moisture and promoting release (Jones and Harrison, 2004). 

Solar radiation can also have also an impact on short-term variability of 
airborne bacteria, such as in diurnal cycles (Lighthart, 1997). A recent 
extensive study of diel variability of microorganisms (bacteria and 
fungi) in the air (Gusareva et al., 2019) showed that temperature had the 
strongest effect on diurnal cycles. 

4. Discussion 

The presence of a common abundant core of bacterial genera 
modulated by environmental factors resembles findings in very different 
ecological niches, such as the soil (Delgado-Baquerizo et al., 2018), 
marine (Fuhrman et al., 2015) and gut microbiomes (Falony et al., 2016; 
Zhernakova et al., 2016). The bacterial core found in the near atmo-
sphere of Madrid metropolitan area conforms a rich microbiome, stable 
across different spatial and temporal changes. Many of these core genera 
have been identified in other culture dependent and sequencing surveys 
in the air of different cities (Table S5), suggesting that urban environ-
ments constitute an ecosystem with many similarities around the globe. 
Sphingomonas, Corynebacterium, Nocardioides, Clostridium, Kocuria and 
Paracoccus are usually among the most abundant genera across studies, 
with changes in relative abundances that could be caused by the 
different biases in sampling methods and the specific features of the 
urban areas surveyed. While the vast majority of the bacterial taxa found 
in our samples are of soil origin, as expected in the near surface urban 
air, other long time series of airborne diversity, as in high elevations 
(Cáliz et al., 2018; DeLeon-Rodriguez et al., 2013), tropical (Gusareva 
et al., 2019) or rural environments (Bowers et al., 2013) show a greater 
diversity of habitat. 

The fungal community was less diverse and dominated by a few 
genera of Ascomycota, corresponding to taxa commonly found in soil 
that dominate across different ecosystems and geographies (Egidi et al., 
2019; Tedersoo et al., 2014). These genera are also ubiquitous in the 
atmosphere, and have been found in places with different environmental 
conditions and urbanization levels (Barberán et al., 2015; Grinn-Gofron 
and Bosiacka, 2015; Oliveira et al., 2009; Tanaka et al., 2019; Woo et al., 
2018), Table S6. The likely reasons for the global prevalence of these 
taxa are their wind dispersal abilities, but also their flexible trophic 
capabilities and the higher potential for resource utilization (Egidi et al., 
2019), as it is the case with members of Alternaria, which are potential 
opportunistic plant pathogens, or Cladosporium, also common in-
habitants of organic debris. 

Evaluating the proportion of variance in beta-diversity explained by 
location, land coverage, seasonal period and year of sampling, we 
clearly found a large contribution of seasonal factors driving variations 
in community composition across relatively large spatiotemporal scales. 
These seasonal shifts of airborne microbes have been observed in other 
studies with different sampling methodologies and environments 
(Bowers et al., 2013; Bowers et al., 2012; Cáliz et al., 2018; Franzetti 
et al., 2011; Hiraoka et al., 2017; Innocente et al., 2017; Lee et al., 2017; 
Tignat-Perrier et al., 2020; Zhong et al., 2016). Seasonal variations are 
mainly manifested as changes in the abundance of pervasive and most 
representative taxa, some of which are especially adapted to particular 
climatic conditions. This is the case of the bacterial genus Hymenobacter, 
whose species are found in cold ecosystems and show a strong signal in 
Winter. In addition, we found some taxa unequivocally associated to 
particular seasonal periods, especially to Summer for bacteria and Fall 
for fungi. In contrast to seasonal indicators, we did not find taxa 
significantly associated to sampling sites or land coverage. This may 
seem unexpected, since other studies have found that local sources and 
plant cover may play important roles (Bowers et al., 2011a; Mhuireach 
et al., 2016; Mhuireach et al., 2019; Stewart et al., 2020). We notice that 
our samples represent the accumulated microbial diversity along a 
week, which could hinder the clear identification of local representative 
taxa as well as of short-term variability in community composition 
(Bertolini et al., 2013; Fierer et al., 2008; Gusareva et al., 2019). On the 
other hand, our study supports the idea that the atmospheric 
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microbiome is quickly homogenized and redistributed among relatively 
distant areas. 

In addition to seasonal changes, we also found a noticeable inter- 
annual variability among airborne fungi, with some prevalent taxa 
preferentially present in one of the sampling years. This could be partly 
attributable to inter-annual differences in meteorological conditions, 
particularly precipitation levels (Shi et al., 2020), and hints to a greater 
sensitivity of fungi to climatic drivers (Tedersoo et al., 2014; Vetrovsky 
et al., 2019). 

The seasonal patterns in airborne community composition can be 
explained in part by seasonal variations in environmental factors. 
Temperature had a strong effect on both fungal and bacterial diversity, 
followed by average precipitation levels for fungal communities. Global 
studies of soil fungal communities have shown that temperature and 
precipitation explain main variations in worldwide fungal diversity 
(Bahram et al., 2018; Tedersoo et al., 2014; Vetrovsky et al., 2019; Zhou 
et al., 2016), with stronger contribution than soil features. Thus, it is 
reasonable to expect seasonal variations of these two factors to be tightly 
linked to seasonal changes in the composition of airborne fungi. These 
variables can influence in different ways fungal bioaerosols: tempera-
ture can directly accelerate metabolic rates favoring organism multi-
plication (Brown et al., 2004; Zhou et al., 2016) and also contribute to 
physical detachment of fungi from soil and plant surfaces (Jones and 
Harrison, 2004). Likewise, precipitation can play different roles both 
altering the structure of the soil and plant communities (Shi et al., 2020), 
the main source of airborne fungi, as well as influencing their dispersion 
by promoting production of conidia or spore release (Jones and Harri-
son, 2004). 

As for airborne bacteria, several works have reported an increase in 
total bacterial numbers during warm seasons (Genitsaris et al., 2017; 
Harrison et al., 2005) consistent with the effect of air temperature on 
growth rates (Harrison et al., 2005; Zhou et al., 2016). This could 
explain the high richness and low inter-sample variability found during 
the summer periods. In contrast to fungi, total particulate matter (PM10) 
is found to be significantly associated to seasonal changes in bacteria, 
and likely influences both Summer and Fall communities. Due to their 
smaller sizes, bacteria can easily attach to fine inorganic particles and be 
transported jointly. In fact, previous studies have found correlations 
between total particulate matter and the amount and diversity of 
airborne bacteria (Du et al., 2018; Hara and Zhang, 2012). 

5. Conclusions 

In summary, our study provides evidence that the urban air micro-
biome is dominated by a few cosmopolitan taxa frequently found in soil, 
with a more homogenous composition than the airborne microbiome of 
rural or pristine environments, or at high altitudes. This urban com-
munity is likely assembled by emission and dispersal from nearby 
sources, and homogenized by typical transport processes in the bound-
ary layer of the atmosphere. While particularities of the local sources, 
such as plant coverage or differences in human activity, can have an 
impact on short-term and spatial variability, we find that most of long- 
term variability is associated to seasonal and climatic changes. The 
present work thus contributes to our knowledge of the human exposome 
in metropolitan areas and to the environmental drivers responsible for 
its variation. 
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O., et al., 2016. Bioaerosols in the Earth system: Climate, health, and ecosystem 
interactions. Atmos. Res. 182, 346–376. https://doi.org/10.1016/j. 
atmosres.2016.07.018. 

Fuhrman, J.A., Cram, J.A., Needham, D.M., 2015. Marine microbial community 
dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146. 
https://doi.org/10.1038/nrmicro3417. 

Gat, D., Mazar, Y., Cytryn, E., Rudich, Y., 2017. Origin-Dependent Variations in the 
Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms. 
Environ. Sci. Technol. 51, 6709–6718. https://doi.org/10.1021/acs.est.7b00362. 

Genitsaris, S., Stefanidou, N., Katsiapi, M., Kormas, K.A., Sommer, U., Moustaka- 
Gouni, M., 2017. Variability of airborne bacteria in an urban Mediterranean area 
(Thessaloniki, Greece). Atmos. Environ. 157, 101–110. https://doi.org/10.1016/j. 
atmosenv.2017.03.018. 

Gotelli, N.J., Chao, A., 2013. Measuring and Estimating Species Richness, Species 
Diversity, and Biotic Similarity from Sampling Data. In: Levin, S.A. (Ed.), 
Encyclopedia of Biodiversity (Second Edition). Academic Press, Waltham, 
pp. 195–211. 

Griffin, D.W., Gonzalez-Martin, C., Hoose, C., Smith, D.J., 2017. Global-Scale 
Atmospheric Dispersion of Microorganisms. Microbiol. Aerosols 155–194. https:// 
doi.org/10.1002/9781119132318.ch2c. 

Grinn-Gofron, A., Bosiacka, B., 2015. Effects of meteorological factors on the 
composition of selected fungal spores in the air. Aerobiologia (Bologna) 31, 63–72. 
https://doi.org/10.1007/s10453-014-9347-1. 

Gusareva, E.S., Acerbi, E., Lau, K.J.X., Luhung, I., Premkrishnan, B.N.V., Kolundzija, S., 
et al., 2019. Microbial communities in the tropical air ecosystem follow a precise diel 
cycle. Proc. Natl. Acad. Sci. USA 116, 23299–23308. https://doi.org/10.1073/ 
pnas.1908493116. 

Hara, K., Zhang, D., 2012. Bacterial abundance and viability in long-range transported 
dust. Atmos. Environ. 47, 20–25. https://doi.org/10.1016/j.atmosenv.2011.11.050. 

Harrison, R.M., Jones, A.M., Biggins, P.D.E., Pomeroy, N., Cox, C.S., Kidd, S.P., et al., 
2005. Climate factors influencing bacterial count in background air samples. Int. J. 
Biometeorol. 49, 167–178. https://doi.org/10.1007/s00484-004-0225-3. 

Herlemann, D.P., Labrenz, M., Jurgens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F., 
2011. Transitions in bacterial communities along the 2000 km salinity gradient of 
the Baltic Sea. ISME J. 5, 1571–1579. https://doi.org/10.1038/ismej.2011.41. 

Hiraoka, S., Miyahara, M., Fujii, K., Machiyama, A., Iwasaki, W., 2017. Seasonal Analysis 
of Microbial Communities in Precipitation in the Greater Tokyo Area, Japan. Front. 
Microbiol. 8, 1506. https://doi.org/10.3389/fmicb.2017.01506. 

Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and 
extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. 
https://doi.org/10.1111/2041-210X.12613. 

Innocente, E., Squizzato, S., Visin, F., Facca, C., Rampazzo, G., Bertolini, V., et al., 2017. 
Influence of seasonality, air mass origin and particulate matter chemical composition 
on airborne bacterial community structure in the Po Valley, Italy. Sci. Total Environ. 
593–594, 677–687. https://doi.org/10.1016/j.scitotenv.2017.03.199. 

Jones, A.M., Harrison, R.M., 2004. The effects of meteorological factors on atmospheric 
bioaerosol concentrations—a review. Sci. Total Environ. 326, 151–180. https://doi. 
org/10.1016/j.scitotenv.2003.11.021. 

Jones, S.E., Newton, R.J., McMahon, K.D., 2008. Potential for atmospheric deposition of 
bacteria to influence bacterioplankton communities. FEMS Microbiol. Ecol. 64, 
388–394. https://doi.org/10.1111/j.1574-6941.2008.00476.x. 

Jost, L., 2010. The Relation between Evenness and Diversity. Diversity 2, 207. https:// 
doi.org/10.3390/d2020207. 

Katial, R.K., Zhang, Y., Jones, R.H., Dyer, P.D., 1997. Atmospheric mold spore counts in 
relation to meteorological parameters. Int. J. Biometeorol. 41, 17–22. https://doi. 
org/10.1007/s004840050048. 
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