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The Internet of Things (IoT), a network of interconnected devices, has grown and gained traction over the last 
few years. This paradigm can impact our lives while also providing significant economic benefits. However, 
although resource-constrained IoT devices offer numerous advantages, they are also vulnerable to cyberattacks. 
As a result, ransomware severely threatens IoT devices managing sensitive and relevant information. Solutions 
based on Machine and Deep Learning (ML/DL) that consider behavioral data have been identified as promising. 
However, most detection solutions have been developed for Windows-based systems, which generally have more 
resources than IoT devices. As a result, these solutions are not suitable for resource-constrained components. 
In addition, no solution compares the pros and cons of different behavioral dimensions of resource-constrained 
devices. Thus, this work presents a framework that combines three different behavioral sources with supervised 
and unsupervised ML/DL algorithms to detect and classify heterogeneous ransomware impacting resource-
constrained spectrum sensors. A pool of experiments has demonstrated the suitability of the proposed solution 
and compared its performance with a rule-based system. In conclusion, the usage of resources combined with 
local outlier factor and decision tree are the most promising combinations to detect anomalies and classify 
ransomware while consuming CPU, RAM, and time of devices in a reduced manner.
1. Introduction

The Internet of Things (IoT) paradigm has received great attention in 
recent years since resource-constrained devices significantly affect our 
daily lives and positively impact the economy and society. Nowadays, 
over 18 billion IoT devices are in use, bringing benefits to transporta-
tion, manufacturing, health care, or retail services, among other indus-
tries (Thierer and Castillo, 2015). However, using resource-constrained 
devices is not exempt from concerns and deficiencies. Poor security, 
lax device management procedures, software vulnerabilities, and low 
maintenance are common and can be exploited by cybercriminals.

After botnets, ransomware poses one of the most severe threats to 
the IoT ecosystem (Gazet, 2010). Ransomware is a type of malware that 
encrypts files to extort money from victims. Hive (2023a) and LockBit 
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(2023b) are two emerging ransomware examples that target different 
systems, including Linux-based devices, and leverage a ransomware-
as-a-service model. They have caused havoc in various industries, in-
cluding healthcare, technology, and education. An example of such an 
attack occurred on August 15, 2021, when the Hive ransomware dis-
rupted the daily operations of three hospitals by encrypting their IT 
infrastructure, forcing them to cancel essential surgical procedures and 
examinations.

Different options are available today in the literature to detect 
ransomware infections. Some are focused on static approaches look-
ing at signatures, but they can be easily overpassed using obfuscation 
mechanisms. Then, dynamic strategies using behavioral fingerprint-
ing were proposed to solve some limitations of static ones (Sánchez 
Sánchez et al., 2021). Within this family, manually defined policies of-
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fer lightweight solutions suitable for resource-constrained devices, but 
creating policies requires time, and specialized expertise (Huertas Cel-
drán et al., 2022). Most recently, with the increasing usage of Machine 
Learning (ML) and Deep Learning (DL) in cybersecurity, new intelligent 
and promising solutions have been proposed to detect ransomware.

Despite the benefits of previous solutions, the following challenges 
are still open and need more effort. Only a limited amount of re-
search focuses on detecting and classifying ransomware on resource-
constrained devices running Linux. Solutions focused on dynamic and 
intelligent detection (the most promising approach, as previously men-
tioned) do not study and compare the detection performance of het-
erogeneous behavioral data sources. Furthermore, most works only ex-
amine detection performance and ignore their resource consumption. 
Finally, there is insufficient research comparing the detection perfor-
mance and consumption of resources of policy-based methods versus 
ML anomaly-based solutions.

To address the previously mentioned challenges, the work at hand 
has the following contributions:

• The design and implementation of an intelligent and lightweight 
framework able to detect anomalies produced by zero-day ran-
somware samples and classify well-known families of them. The 
proposed framework considers behavioral fingerprinting to moni-
tor the usage of resources, kernel events, and system calls produced 
by resource-constrained devices. After that, unsupervised and su-
pervised ML/DL models are trained to detect malicious behaviors 
of ransomware samples. The code of the framework is available at 
Shushack (2023b,a).

• The deployment of the framework on a Raspberry Pi 3 Model B 
acting as an IoT spectrum sensor of a publicly available and well-
known crowdsensing platform called ElectroSense (2023). Then, 
the Raspberry Pi was infected with three heterogeneous and recent 
ransomware samples: DarkRadiation, RAASNet, and Ransomware-
PoC.

• The execution of a pool of experiments to measure the detection 
capabilities and consumption of CPU, RAM, and time of the pro-
posed framework while detecting the previous three ransomware 
samples in the Raspberry Pi. This work provides a detailed analysis 
of the detection performance and consumption of resources pro-
duced by the different configurations of the framework in terms 
of data sources and ML/DL models. Furthermore, the framework 
performance was compared to the one obtained by a rule-based 
system.

The remainder of this work is structured as follows. Section 2 re-
views related work dealing with dynamic ransomware detection sys-
tems. While Section 3 presents the design of the proposed framework, 
Section 4 shows its implementation details. Then, Section 5 introduces 
the device and ransomware samples used to validate the framework. 
Section 6 evaluates its detection performance and consumption of re-
sources in the previous scenario. Finally, Section 8 draws some conclu-
sions and future steps.

2. Related work

This section reviews how the literature has tackled the ransomware 
detection field, paying special attention to the solutions dealing with 
resource-constrained devices.

Ahmed et al. (2022) proposed an intelligent and industrial IoT 
framework for detecting ransomware in the early stages of infection. 
System calls were collected by running benign and ransomware sam-
ples in a virtual sandbox environment. Six different ML classifiers were 
employed, achieving a maximum accuracy of 98.64% with a low false 
positive rate of 1.7%. Another ML-based ransomware detection frame-
work was proposed by Almousa et al. (2021). In this work, 249 different 
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ransomware-specific system API calls and 229 benign API calls were ex-
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tracted by running 58 ransomware and 66 benign samples in a sandbox 
environment for 10 minutes each. As a result, the highest ransomware 
detection accuracy of 99.18% was achieved using the k-nearest neigh-
bors (kNN) algorithm.

By extracting Windows invocation sequences, the authors of Bae 
et al. (2020) created a framework that can distinguish between ran-
somware, malware, and benign files. This feat was achieved using six 
different ML algorithms for multi-class classification and yielded an ac-
curacy of 98.65%. Poudyal and Dasgupta (2021) used a hybrid reverse 
engineering technique to extract ransomware features from three dif-
ferent levels. These features include a list of the Dynamic Link Libraries 
(DLLs) called by the ransomware code, function calls, and the assembly 
instructions utilized by the malicious software. The ransomware detec-
tor combines a data mining approach with Natural Language Processing 
(NLP) to create a feature database and uses ML for classification. The 
highest ransomware detection accuracy of 99.72% with a 0.3% false 
positive rate was achieved with supervised learning using Support Vec-
tor Machine (SVM).

Almomani et al. (2021) extracted API and permission features from 
decompiled Android package (APK) files containing ransomware. For 
classification, the SVM algorithm was deployed alongside an oversam-
pling technique. As a result, an accuracy of 97.5% was reported. Imtiaz 
et al. (2021) compared the effectiveness of detecting malware, including 
ransomware affecting smartphones, using DL and ML malware detec-
tion approaches. The model data set included dynamic features such 
as API calls and power usage and static features such as intents and 
permissions. The results showed that a DNN outperformed other ML 
techniques in detecting and identifying malware on a static and dy-
namic layer. Another technique to detect ransomware by monitoring 
the energy consumption of smartphones was proposed by Azmoodeh et 
al. (2018). By subsampling the collected power consumption data and 
applying the kNN algorithm with dynamic time warping (DTW), a de-
tection rate of 94.27% was achieved.

Rhode et al. (2018) tried to identify 3000 ransomware samples 
by employing a behavior-based model analyzing a snapshot of per-
formance counter benchmarks such as memory and CPU usage in the 
early stages of infection. Based on recurrent neural networks, this ap-
proach correctly identified ransomware with a 94% detection rate in 
the first 10 seconds of file execution. A dynamic analysis detection ap-
proach was proposed by Ramesh and Menen (2020) monitoring the 
changes regarding system resources, the retention state of applications, 
and file operations/movement. A Finite State Machine (FSM) was uti-
lized for detecting ransomware. A state change is triggered whenever an 
anomaly in the monitored features is identified. Reaching one of three 
final states indicates a ransomware infection on the system. The paper 
achieved a breathtaking 99.5% accuracy and 0% false positive rate.

RAPPER is a two-step ransomware detection approach introduced by 
Alam et al. (2020). First, a Deep Neural Network (DNN) was trained to 
detect anomalies with time-series data of monitored HPC events repre-
senting normal device behavior. Fast Fourier Transformation (FFT) was 
applied to transform the time domain values into frequency domain 
values. This was done to help identify repetitive patterns triggered by a 
ransomware infection, such as opening, encrypting, and closing a file. 
In the last step, the transformed data was fed into a second DNN. The 
proposed framework was able to detect the WannaCry ransomware in 
5.313 seconds.

Berrueta et al. (2022) compared the ransomware detection effec-
tiveness of three ML algorithms by searching for specific read and write 
patterns in the network communication (encrypted and clear-text file 
sharing) between clients and file servers. The data collected to train 
the models include both traffic generated by benign programs and ran-
somware while accessing and operating on shared network file servers. 
An astonishing detection accuracy of 99.8% and a low false-positive rate 
of 0.004% was reported using neural networks. Another network-based 
approach was proposed by Almashhadani et al. (2019), where packet 

and flow-based network traffic was monitored to detect ransomware. 



Computers & Security 135 (2023) 103510A. Huertas Celdrán, P.M. Sánchez Sánchez, J. von der Assen et al.

Table 1
Overview of Ransomware Detection Techniques.

Work (year) OS Analysis Approach Algorithm Domain Accuracy

Ahmed et al. (2022) Windows Dynamic ML (Classification) LR, DT, kNN, SVM, AD, RF Software & Processes 98.64%
Almousa et al. (2021) Windows Dynamic ML (Classification) RF, SVM, kNN Software & Processes 99.18%
Bae et al. (2020) Windows Dynamic ML (Classification) RF, LR, NB, SGD, KNN, SVM Software & Processes 98.65%
Poudyal and Dasgupta (2021) Windows Hybrid ML, DL (Classification) LR, AD, SVM, NN, RF, NLP Other 99.72%
Almomani et al. (2021) Android Static ML (Classification) SVM Other 97.50%
Imtiaz et al. (2021) Android Hybrid ML/DL (Classification) DNN Resource Usage, Other 93.40%
Azmoodeh et al. (2018) Android Dynamic ML, DL (Classification) kNN, SVM, NN, RF Resource Usage 94.27%
Rhode et al. (2018) Windows Dynamic ML/DL (Classification) RF, KNN, SVM, MLP, DT, RNN Resource Usage 94.00%
Ramesh and Menen (2020) Windows Dynamic Knowledge (AD) Finite-State Machine Resource Usage 99.50%
Alam et al. (2020) Linux Dynamic DL (AD) DNN (LTSM) HPC -
Berrueta et al. (2022) Windows Dynamic ML, DL (Classification) DT, TEs, NN Network 99.80%
Almashhadani et al. (2019) Windows Dynamic ML (Classification) RF, RT, BN Network 97.92 - 97.08%
Faghihi and Zulkernine (2021) Android Hybrid Statistics (Classification) - Software & Processes 99.24%
Sharma et al. (2021) Android Static ML (Classification) GMM Other 98.08%
Huertas Celdrán et al. (2022) Linux Dynamic Rule (Classification, AD) - HPC, Resource Usage 89.80%
Huertas Celdrán et al. (2023a) Linux Dynamic ML (Classification, AD) RF, SVM, XGB, OC-SVM, IF, LOF Resource Usage 100%
Sánchez Sánchez et al. (2023) Linux Dynamic ML (AD) OC-SVM, IF, LOF Resource Usage 100%
For this, a multi-classifier detection framework based on ML was cre-
ated, consisting of two parallel operating classifiers. With an accuracy 
of 97.92% percent, the Random Tree algorithm was found to be the 
most accurate in detecting packet-based ransomware network activity. 
At the same time, the Bayes Network model provided the highest scores 
in flow-based ransomware network detection with 97.08%.

Faghihi and Zulkernine (2021) proposed RansomCare, a hybrid anal-
ysis system detecting novel crypto-ransomware on smartphones and 
recovering lost data from an attack. The proposed framework identifies 
known ransomware types in a signature-based static analysis compo-
nent by their hashes (SHA256). At the same time, zero-day crypto-
ransomware strains were detected by looking for anomalies in file mod-
ification and deletion I/O events. This was accomplished by calculating 
the entropy of files that were modified or deleted and comparing it to 
a predefined threshold. As encrypted files are usually unstructured and 
contain a large amount of random data, they will also have a high en-
tropy score, indicating a ransomware infection. An accuracy of 99.24% 
was observed with a false positive rate of 0.49%.

Sharma et al. (2021) extracted different ransomware features. 
These included permissions, images, intents, etc., from a total of 2076 
ransomware and 2000 benign APKs. Using Gaussian Mixture Model 
(GMM), an unsupervised clustering-based ML technique as a classifier, 
Ransomdroid achieved a detection accuracy of 98.08%. Huertas Cel-
drán et al. (2022) analyzed ransomware affecting resource-constrained 
devices used as spectrum sensors in the crowdsensing platform Elec-
trosense. Ransomware was identified by finding anomalies in Memory 
usage, CPU usage, I/O activities, HPC, and kernel events of the device. 
The administrator’s policies would then classify the device behavior as 
malicious or normal. Anomalies generated by two different ransomware 
samples were correctly identified with an 89.80% true positive rate. The 
same authors also explored ransomware detection, together with other 
malware types, in spectrum sensors using kernel events and ML/DL 
classification and anomaly detection (Huertas Celdrán et al., 2023a; 
Sánchez Sánchez et al., 2023). They were able to perfectly identify the 
presence of a simple ransomware sample, namely Ransomware-Poc, 
employed usually for research purposes.

As can be seen in Table 1, despite the advances in ransomware de-
tection made by the previous solutions, the following challenges are 
still open. First, most of the research dealing with ransomware de-
tection has been conducted on platforms running Windows. There is 
little research into detecting ransomware affecting resource-constrained 
and Linux-based devices. Besides, dynamic and hybrid approaches com-
bined with supervised ML/DL models are the most popular solutions 
in the reviewed literature, while anomaly detection is poorly studied. 
In other words, novel and sophisticated ransomware samples launch-
ing zero-day attacks, such as those provided as a customized service in 
3

the dark web, would not be detected. Additionally, different behavioral 
data sources have been used for detecting ransomware (resource usage 
and processes are the most popular). Still, there is no work comparing 
their efficiency regarding the detection and consumption of CPU, RAM, 
and time in resource-constrained devices. Finally, none of the papers 
compare policy-based approaches with ML/DL ones from detection and 
consumption points of view.

3. Framework design

This section describes the design details of the intelligent and 
behavioral-based framework used to detect and classify ransomware 
affecting resource-constrained devices. It includes an overview of the 
elements that make up the framework and its key design decisions.

The design of the framework follows a distributed architecture that 
allows its deployment on heterogeneous scenarios and devices with 
diverse hardware and software configurations. This design decision en-
sures that the workload on resource-constrained sensors remains as low 
as possible, providing the option of moving the ML/DL part to an ex-
ternal server. However, if the device is powerful enough, the whole 
framework can be deployed on the same device providing additional 
data privacy (behavioral data does not leave the device). Although the 
framework follows a distributed architectural design, it should be noted 
that it may not be suitable for IoT devices with extremely low computa-
tional power, as these devices may lack the ability to effectively monitor 
their behavior. Fig. 1 presents an overview of the framework architec-
tural design with its two main layers, modules, and components. More 
in detail, the following two layers make up the framework:

1. Fingerprinting Layer, in charge of monitoring the internal behavior 
of resource-constrained devices. The correct selection of behavioral 
dimensions and events is key to achieve accurate detections of het-
erogeneous ransomware samples.

2. Data Analysis Layer, focused on preprocessing behavioral data as 
well as detecting and classifying ransomware families in almost real 
time. A proper data preprocessing selecting representative features 
is key to achieve accurate detection performance.

3.1. Fingerprinting layer

This layer hosts three modules that periodically monitor hetero-
geneous behavioral data from resource-constrained devices. Since the 
encryption phase of ransomware samples might consume a relevant 
amount of computational resources and manage (open, read, close) a 
vast number of files, the three modules focus on: Resource Consumption 
(RES), Kernel (KERN), and System Calls (SYS). The text below provides 

details of each module.
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Table 2
Events Gathered by the RES Monitor.

time
ioread
iowrite
ioreadbytes
iowritebytes
ioreadtime
iowritetime
iobusytime
read_merge
write_merge
memory
net_in
net_out
pkt_in
pkt_out
err_in
err_out
drop_in
drop_out
cpu
cpu-migrations
minor-faults
page-faults
L1-dcache-load-misses
L1-dcache-loads
L1-dcache-store-misses
L1-dcache-stores
L1-icache-load-misses
L1-icache-loads

seconds
block:block_bio_frontmerge
block:block_dirty_buffer
block:block_split
block:block_touch_buffer
ext4:ext4_es_lookup_extent_enter
ext4:ext4_ext_load_extent
ext4:ext4_writepages_result
ext4:ext4_journal_start
filemap:mm_filemap_add_to_page_cache
filemap:mm_filemap_delete_from_page_cache
jbd2:jbd2_handle_stats
ext4:ext4_da_update_reserve_space
ext4:ext4_sync_file_enter
jbd2:jbd2_checkpoint_stats
ext4:ext4_free_inode
ext4:ext4_evict_inode
ext4:ext4_releasepage
ext4:ext4_unlink_enter
block:block_bio_remap
LLC-load-misses
LLC-loads
LLC-store-misses
LLC-stores
branch-load-misses
branch-loads
dTLB-load-misses
dTLB-store-misses
iTLB-load-misses

net:netif_rx
timer:tick_stop
sched:sched_process_exec
sched:sched_waking
gpio:gpio_value
irq:softirq_exit
pagemap:mm_lru_activate
rpm:rpm_return_int
fib:fib_table_lookup
raw_syscalls:sys_enter
random:credit_entropy_bits
kmem:kfree
kmem:kmem_cache_alloc
kmem:mm_page_alloc_zone_locked
kmem:mm_page_free
mmc:mmc_request_done
writeback:global_dirty_state
writeback:sb_clear_inode_writeback
writeback:wait_on_page_writeback
napi:napi_poll
armv7_cortex_a7/br_mis_pred/
armv7_cortex_a7/br_pred/
armv7_cortex_a7/bus_cycles/
armv7_cortex_a7/cpu_cycles/
armv7_cortex_a7/exc_return/
armv7_cortex_a7/exc_taken/
armv7_cortex_a7/inst_retired/
armv7_cortex_a7/l1d_cache/
armv7_cortex_a7/l1d_cache_refill/

task:task_newtask
sched:sched_stat_runtime
timer:timer_cancel
timer:timer_init
timer:timer_start
workqueue:workqueue_execute_start
branch-instructions
branch-misses
bus-cycles
cache-misses
cache-references
cpu-cycles
instructions
context-switches
armv7_cortex_a7/l1d_cache_wb/
armv7_cortex_a7/l1d_tlb_refill/
armv7_cortex_a7/l1i_cache/
armv7_cortex_a7/l1i_cache_refill/
armv7_cortex_a7/l1i_tlb_refill/
armv7_cortex_a7/l2d_cache/
armv7_cortex_a7/l2d_cache_wb/
armv7_cortex_a7/ld_retired/
armv7_cortex_a7/mem_access/
armv7_cortex_a7/pc_write_retired/
armv7_cortex_a7/st_retired/
armv7_cortex_a7/unaligned_ldst_retired/
armv7_cortex_a7/cid_write_retired
tcp:tcp_probearmv7_cortex_a7/br_immed_retired/
Fig. 1. Architectural Design of the Framework.

• The RES Monitor gathers specific behavioral events linked to the 
device hardware. These events include information on CPU and 
memory usage, disk utilization, kernel tracepoint events, or hard-
ware performance counters, among others. Table 2 shows the list 
of events considered by the RES Monitor.

• The KERN Monitor focuses on specific aspects of the device and 
tracks events related to disk I/O, CPU, kernel memory, and system 
call statistics. Events gathered by the KERN Monitor are shown in 
Table 3.

• The SYS Monitor collects the system calls for the entire device to 
properly monitor the requests made from the user to the kernel 
mode of the operating system. This monitor intends to detect ad-
4

vanced ransomware families encrypting small portions of files.
Apart from the previous three modules, the Fingerprinting layer 
hosts the Monitor Controller module to provide the following function-
ality:

• Configure Monitors. Final users can initiate, stop, and control 
the monitoring components using the Monitor Controller. Further-
more, they customize different aspects of the monitors, such as the 
monitoring time, which monitor to run in parallel, or the location 
of the data analysis layer (same device or external server).

• Establish Secure connections. The Monitor Controller enables se-
cure data exchange between two machines if the framework is 
deployed in a decentralized fashion by using asymmetric encryp-
tion.

• Send Data. It sends behavioral data collected by the RES, KERN, 
and SYS monitors to the Data Analysis Layer for further process-
ing. In addition, it sends metadata about the gathered data to the 
Data Analysis layer to initiate training and testing processes. This 
information includes the locations where the data is stored or the 
monitors used for the monitoring session, among others.

• Live Commands. It allows final users to start online monitoring 
sessions on the device. For that, it collects evaluation data for a 
defined time frame and forwards it to the Data Analysis layer for 
evaluation.

3.2. Data analysis layer

This layer is in charge of preprocessing, in an automatic fashion, the 
collected behavioral data, detecting and classifying ransomware fami-
lies, and providing a graphical interface for final users. The following 
three modules provide that functionality: Data Preprocessing, Detection, 
and Visualization

The Data Preprocessing module receives the raw behavioral data pro-
vided by the Monitor Controller and prepares it for the subsequent 
ML/DL pipeline. More in detail, behavioral data gathered by the RES 
and KERN Monitors contains only numerical values of the events indi-
cated in Table 2 and Table 3. However, the system calls gathered by 

the SYS Monitor contain both strings and numbers. Therefore, data pre-



Computers & Security 135 (2023) 103510A. Huertas Celdrán, P.M. Sánchez Sánchez, J. von der Assen et al.

Table 3
Events Gathered by the KERN Monitor.

time
timestamp
seconds
connectivity
alarmtimer:alarmtimer_fired
alarmtimer:alarmtimer_start
block:block_bio_backmerge
block:block_bio_remap
block:block_dirty_buffer
block:block_getrq
block:block_touch_buffer
block:block_unplug
cachefiles:cachefiles_create
cachefiles:cachefiles_lookup
cachefiles:cachefiles_mark_active
clk:clk_set_rate
cpu-migrations
cs
dma_fence:dma_fence_init
fib:fib_table_lookup
filemap:mm_filemap_add_to_page_cache

gpio:gpio_value
ipi:ipi_raise
irq:irq_handler_entry
irq:softirq_entry
jbd2:jbd2_handle_start
jbd2:jbd2_start_commit
kmem:kfree
kmem:kmalloc
kmem:kmem_cache_alloc
kmem:kmem_cache_free
kmem:mm_page_alloc
kmem:mm_page_alloc_zone_locked
kmem:mm_page_free
kmem:mm_page_pcpu_drain
mmc:mmc_request_start
net:net_dev_queue
net:net_dev_xmit
net:netif_rx
page-faults
pagemap:mm_lru_insertion
preemptirq:irq_enable
qdisc:qdisc_dequeue

random:get_random_bytes
random:mix_pool_bytes_nolock
random:urandom_read
raw_syscalls:sys_enter
raw_syscalls:sys_exit
rpm:rpm_resume
rpm:rpm_suspend
sched:sched_process_exec
sched:sched_process_free
sched:sched_process_wait
sched:sched_switch
sched:sched_wakeup
signal:signal_deliver
signal:signal_generate
skb:consume_skb
skb:kfree_skb
skb:skb_copy_datagram_iovec
sock:inet_sock_set_state
task:task_newtask
tcp:tcp_destroy_sock
tcp:tcp_probe

timer:hrtimer_start
timer:timer_start
udp:udp_fail_queue_rcv_skb
workqueue:workqueue_activate_work
writeback:global_dirty_state
writeback:sb_clear_inode_writeback
writeback:wbc_writepage
writeback:writeback_dirty_inode
writeback:writeback_dirty_inode_enqueue
writeback:writeback_dirty_page
writeback:writeback_mark_inode_dirty
writeback:writeback_pages_written
writeback:writeback_single_inode
writeback:writeback_write_inode
writeback:writeback_written
processing is necessary, as ML and DL algorithms rely on numerically 
expressed data.

On the one hand, for behavioral data gathered by the RES and KERN 
monitors, a general preprocessing procedure cleans the data, removes 
samples with constant values, removes highly correlated features, and 
normalizes their values. On the other hand, the Bag-of-Words approach 
is applied to the system calls gathered by the SYS monitor. More in de-
tail, system calls parameters, timestamps, and other metadata (apart 
from the system call name) are deleted. Then, a bag (document or 
dictionary) with the syscalls (terms or grams) monitored in all time 
windows is built. Then, it creates a vector with the syscalls executed 
per time window. Each bag entry can contain one or more syscalls de-
pending on the selected n-Gram, and each vector position represents 𝑛
syscalls. Finally, there are two ways to fill vector positions (extract fea-
tures). The first is called Frequency and counts the number of times that 
each n-Gram occurs in the time window. The second is Term Frequency-

Inverse Document Frequency (TF-IDF) and reflects the importance of the 
n-Gram in the vector by considering not only the repetitions but also 
the number of different syscalls per time window. Equation (1) presents 
the calculation of the TF-IDF value for a term 𝑡 in a document 𝑑, which 
belongs to the vector 𝐷, where 𝑛 stands for the number of terms in 𝑑, 
𝑓𝑖,𝑑 stands for the frequency of term 𝑖 in 𝑑, 𝑁 is the number of docu-
ments in the vector, and |{𝑑 ∈𝐷 ∶ 𝑡 ∈ 𝑑}| is the number of documents 
containing the term 𝑡.

𝑡𝑓 − 𝑖𝑑𝑓 (𝑡, 𝑑,𝐷) =
𝑓𝑡,𝑑∑𝑛

𝑖=1 𝑓𝑖,𝑑
∗ log 𝑁

|{𝑑 ∈𝐷 ∶ 𝑡 ∈ 𝑑}| (1)

The hashing approach is another feature extraction method similar 
to bag-of-words. Rather than just storing a dictionary of tokens (vocab-
ulary), this method creates a sparse matrix with the token occurrence 
counts, utilizing hashing. This hashing trick can be memory efficient 
when dealing with large data sets, as this extraction method does not re-
quire holding a large vocabulary in memory (HashingVectorizer, 2023).

Once data is ready for the ML/DL algorithms, the Detection compo-
nent is in charge of training and evaluating ML and DL models. This 
component is split into two main components. The first one focuses 
on anomaly detection, while the second deals with classification. On 
the one hand, the anomaly detection module can detect zero-day ran-
somware attacks. For this purpose, the framework employs both ML 
and DL algorithms, and the training data represents the device nor-
mal behavior (without ransomware infection). Then, testing data can 
contain both normal and under-attack behaviors. On the other hand, 
the classification component identifies the ransomware family and its 
5

behavior. For that, this method requires training data from each ran-
somware family as well as normal device behavior. Furthermore, this 
data must be labeled and balanced. Finally, it is important to remark 
that the anomaly detection and classification algorithms are evaluated 
in parallel during live monitoring to determine the device status (in-
fected versus not infected) and the ransomware family (in case of being 
infected).

The last module of the Data Analysis layer is the Visualization, which 
provides final users with a graphical interface for presenting live be-
havioral data of devices and the outputs of the Anomaly Detection and 
Classification components. Using this graphical interface, final users can 
choose the algorithm and monitoring data (RES, KERN, SYS, or com-
binations of them) they want to use to detect anomalies and classify 
behaviors. In addition, different plots help display live evaluation data.

4. Framework implementation

The proposed intelligent detection framework has been imple-
mented as a proof-of-concept for Linux-based and single-board devices. 
As mentioned, the framework is generic enough and suitable for hetero-
geneous devices with different hardware and software configurations 
since it follows a distributed architecture comprising two main layers. 
The only requirement to deploy the framework is that devices must be 
able to monitor the selected data sources. The implementation details 
of the main components belonging to each layer are provided below.

4.1. Fingerprinting layer

To capture behavioral data on Linux-based and single-board devices, 
three different monitoring scripts are implemented using the Linux Perf

performance analysis tool.
The RES monitoring script gathers the events shown in Table 7. More 

in detail, this module utilizes the library Psutil and the Linux utility Perf. 
The main code logic is split into classes, each tracking specific device 
metrics. There are two customization options for data output: CSV file 
creation or asynchronous messaging. The script gathers each event ev-
ery five seconds. Therefore, every data sample represents five seconds 
of monitoring data. The time-window decision was made according to 
different experiments and solutions existing in the literature (Huertas 
Celdrán et al., 2023b; Sánchez Sánchez et al., 2022).

The KERN Monitor script monitors the events shown in Table 8, 
which are related to disk I/O, CPU, kernel memory, and system calls and 
is written in bash. This module is executed every five seconds (as in RES 
monitor, this decision is made according to preliminary work (Huertas 

Celdrán et al., 2023b; Sánchez Sánchez et al., 2022)). A DNS server 
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Fig. 2. Overview of modules and interactions performed in the Data Analysis 
Layer.

is pinged as a first step to confirm that the device is connected to the 
internet (needed by some ransomware families). Then, Perf monitors 
the events defined by the user (see Section 3) for the specified time 
window. Finally, the SYS Monitor bash script records system call infor-
mation repeatedly over a ten-second interval. The Perf utility uses the 
trace command to capture all system calls executed on the sensor and 
saves these in a log file.

The Monitor Controller manages the RES, KERN, and SYS monitor-
ing scripts, which are implemented as systemd services. The following 
aspects identify the key benefits of deploying the scripts as a service.

• Provides a simple way to start, stop and control the monitoring 
scripts.

• Provides the ability to easily manage the monitoring scripts as ser-
vices with systemctl.

• Allows for defining the behavior after a program failure or reboot 
of the device.

• Streamlines the integration of the monitoring scripts into the Mon-
itor Controller.

The Monitor Controller provides multiple customization possibili-
ties while controlling the entire monitoring process. It also manages 
and records the status and elapsed time of current and past monitor-
ing sessions. This command-line interface tool is written in Python 3.5 
and uses an SQLite database for data persistence. In addition, the click
Python module is utilized for argument parsing and allows for simple 
user commands to be supplied, such as show, collect and send. Finally, 
the requests Python package facilitates communication with the server 
via REST API calls. A simple installer script was also developed to down-
load and install the required dependencies automatically.

4.2. Data analysis layer

The Data Analysis layer has been developed using the Flask open-
source web micro-framework for Python. Flask is a well-documented 
and user-friendly framework that integrates well with ML/DL-specific 
Python packages. Fig. 2 provides an overview of the design architecture, 
and a more detailed description of each component is shown below.

The Data Analysis Endpoint module exposes the REST endpoints 
through which the Monitor Controller module and final users can 
communicate with the Data Analysis Layer to detect and classify ran-
somware families. Its primary function is to manage the request flow 
by acting as an intermediary between the Visualization and the ML/DL 
models trained in the Detection module. As can be seen in Fig. 2, the 
Data Analysis Endpoint accepts requests from the Monitor Controller 
and the Visualization modules. The received data is then validated and 
transformed into a valid format. Finally, it is forwarded to the Data Pro-
cessing and Detection modules for further processing. Devices and final 
users also have their own endpoints. Device-specific endpoints forward 
incoming request data to the Detection module. A response is then di-
6

rectly sent back to the device Monitor Controller. User endpoints handle 
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Table 4
Complexity of ML/DL Algorithms (n = number of 
points in the Training set, d = dimensionality of the 
data, s = number of Support Vectors, i, j, k, l = num-
ber of nodes of the Autoencoder layers, t = training 
epochs).

Algorithm Complexity Order

Isolation Forest 𝑂(𝑛 ∗ 𝑙𝑜𝑔2(𝑛))
One Class-Support Vector Machine 𝑂(𝑛2)
Local Outlier Factor 𝑂(𝑘 ∗ 𝑛 ∗ 𝑑)
Autoencoder 𝑂(𝑛𝑡 ∗ (𝑖𝑗 + 𝑗𝑘+ 𝑘𝑙))

Logistic Regression 𝑂(𝑛𝑑)
Decision Tree 𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛) ∗ 𝑑)
Support Vector Machine 𝑂(𝑛2)
Random Forest 𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛) ∗ 𝑑 ∗ 𝑠)

users’ inputs from the Flask graphical interface (Visualization Layer). 
Behavioral data is exchanged between the Data Analysis Endpoint, De-
tection, and Visualization to detect ransomware attacks and show the 
models predictions. Finally, the Detection module contains the core 
layer logic, including interactions with the dataset, data preprocessing, 
and ML training/evaluation. The detection module uses Pyod and Ten-

sorflow as Python packages for ML/DL. After storing and preprocessing 
the incoming behavioral data, it is split into training (90%) and test 
(10%), and both sets are standardized. Then, the ML/DL algorithms are 
trained.

In the case of ML-based anomaly detection, the framework has con-
sidered One-Class Support Vector Machine (OC-SVM), Local Outlier 
Factor (LOF), and Isolation Forest (IF). For DL-based anomaly detection, 
Autoencoders are utilized. Table 4 shows the computational complexity 
of each algorithm during training. Once the algorithms are selected, the 
outliers present in the training data set, also known as the contamina-
tion factor, are set to 5%. Next, using the training data set, the anomaly 
detector ML/DL models are trained. Then, the test data is evaluated 
with the trained models to predict its anomaly scores. The training pro-
cess of DL anomaly detection is performed similarly. As the number of 
features can vary depending on the training data set, the dimensions 
of the Autoencoder layers are calculated before instantiation. In addi-
tion, the TensorFlow Early Stopping Callback prevents overfitting the 
model by stopping the training procedure when the validation error 
(mean absolute error) no longer decreases. After training the Autoen-
coder, the validation data set is processed, and its reconstruction errors 
are calculated. The Autoencoder uses two different thresholds for de-
tecting anomalies. The first threshold is specified by the interquartile 
range rule, while the second is defined as three standard deviations 
away from the mean of the reconstruction errors (as suggested in Patro 
and Sahu, 2015). The anomaly detection thresholds and reconstruction 
errors are then used to assign the anomaly scores to the validation data 
(0=normal, 1=abnormal).

In the case of classification, the primary function is to classify a data 
sample appropriately. Compared to anomaly detection, this method re-
quires training data from each class. For multi-class classification, the 
supervised ML algorithms Support Vector Machine (SVM), Logistic Re-
gression (LR), Decision Tree (DT), and Random Forest (RF) are utilized. 
Table 4 shows the computational complexity of each algorithm during 
training. Unlike anomaly detection, classification algorithms require la-
beled data and recommend a balanced number of samples for all classes. 
The procedure is similar to that used in training ML anomaly detection 
algorithms. Each pre-processed incoming data set is split (following the 
same 90/10% rate as in the past) and standardized. After this, the classi-
fiers are trained (using the training data with its respective class labels). 
Finally, a classification report is generated by comparing the actual class 

labels with the predicted labels of the validation data.
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5. Validation scenario: crowdsensing platform affected by 
ransomware

This section presents a real scenario where the proposed framework 
has been deployed and evaluated. In particular, crowdsensing is one 
of the most promising applications of the IoT paradigm, where large 
groups of individuals collaborate in a crowdsourcing fashion, typically 
leveraging resource-constrained devices. Spectrum sensing, consisting 
of monitoring the electromagnetic environment with sensors, has grown 
in prominence due to its broad applicability in consumer, regulatory, 
and military applications. In this context, the ElectroSense initiative 
marks an ideal solution due to its network of affordable radio sensors 
monitoring spectrum data for further analysis. Becoming part of this 
network requires a single-board computer such as a Raspberry Pi with 
a stable internet connection linked via a dongle (Radio Frontend) to an 
antenna. The data collected by the different sensors is sent to a central 
backend server and displayed to users on the ElectroSense website for 
further analysis (Rajendran et al., 2018).

Since Raspberry Pis are versatile single-board computers that in the 
past already were victims of ransomware attacks, this work has con-
sidered ElectroSense as a validation scenario. More in detail, infected 
Raspberry Pis of ElectroSense could have their data encrypted and, 
therefore, could not work correctly, significantly impacting the platform 
overall operation and accessibility to spectrum data. Therefore, this 
work has considered a Raspberry Pi 3 Model B with 1 GB of RAM and 
a Quad-Core 1.2GHz Broadcom BCM2837 64bit CPU. The ElectroSense 
Software, which is based on Raspbian, is utilized as an operating sys-
tem. The Raspberry Pi is connected via a Radio Frontend (RTL-SDR 
Silver v3) to an antenna, creating a suitable sensor for the ElectroSense 
platform. To guarantee a continuous internet connection, the device is 
connected via Ethernet cable to a Broadband internet provider.

As a proof-of-concept, the RansomwarePoC, DarkRadiation, and 
RAASNet ransomware families have been used to encrypt the Raspberry 
Pi and evaluate the detection and classification performance of the pro-
posed framework. At this point, it is essential to mention that these 
three ransomware samples present differences in library installation, 
encryption algorithms, encryption rate, encrypted files, and communi-
cations with external servers. These aspects cover the main differences 
between ransomware samples in the wild.

• Ransomware-PoC is a proof of concept open-source Python ran-
somware payload that can be downloaded from the following 
GitHub repository (Ransomware-PoC, 2023). This software allows 
malicious users to encrypt or decrypt files by providing a start-
ing directory. The ransomware scans a selected directory and its 
sub-directories for files with the proper extensions (list of file ex-
tensions in the source code). Then, it encrypts an AES (256-bit) key 
with an RSA public key, which is used for file encryption. As this 
ransomware allows the user to decrypt their files after encryption, 
the private RSA server key is also hardcoded into the payload. In 
this work, the Ransomware-PoC source code was modified slightly 
to display the starting and ending timestamps of the encryption 
phase.

• DarkRadiation is a ransomware that targets Linux-based systems. 
This sophisticated ransomware is implemented entirely in bash, 
using the messaging application called Telegram, as its command-
and-control server. DarkRadiation employs an SSH worm that 
downloads the ransomware payload after connecting with the vic-
tim’s device. The ransomware communicates with the attackers 
using the Telegram API and encrypts files using the OpenSSL AES 
algorithm (256-bit key length). As a first step, the ransomware 
checks to determine if it has root privileges and then downloads all 
the needed dependencies using curl and OpenSSL. Next, changes in 
user activity (new logins, logouts) are transmitted to the command 
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and control server (Lakshmanan, 2021).
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• RAASNet. As ransomware attacks have become more lucrative and 
prevalent in recent years, a new type of service, Ransomware-as-a-
Service (RaaS), has appeared on the darknet. This service is offered 
as a franchise model and is marketed toward attackers with little 
or no previous programming experience. This new way of selling a 
tool to commit a crime enables ordinary (non-technical) individuals 
to participate in the ransomware economy (Meland et al., 2020). 
In this context, an open-source Ransomware-as-a-Service written 
in Python called RAASNet shows how simple it is to create and 
deploy ransomware and can be downloaded from GitHub (RAAS-
Net, 2021). This cross-platform tool offers an intuitive graphical 
user interface, allowing users to develop customized ransomware. 
In addition, it includes a built-in command and control server for 
receiving private encryption keys.

6. Experiments

This section presents a pool of experiments that evaluates the perfor-
mance of the proposed framework while detecting and classifying the 
ransomware families introduced in Section 5. It is important to mention 
that during the experiments, diverse malicious behaviors considered by 
each ransomware sample (such as the installation of different depen-
dencies, the encryption algorithm and rate, and the communications 
with external servers) have been considered.

6.1. Evaluation metrics

Specific metrics help evaluate the ML and DL algorithms. Different 
performance indicators can be employed depending on the training cat-
egory (supervised, unsupervised). This work uses confusion matrices as 
a basis for the evaluation. The true positives (TP) refer to the number 
of ransomware infections correctly identified by the ML/DL algorithms, 
while the true negatives (TN) reflect correctly identified instances of 
normal behavior. False positive (FP) and false negative (FN) values in-
dicate the number of incorrect predictions.

Regarding anomaly detection, the following two performance met-
rics have been considered:

1. True Positive Rate (TPR). It indicates the proportion of correctly 
predicted ransomware infections from all actual ransomware infec-
tions:

𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

2. True Negative Rate (TNR). It indicates the proportion of correctly 
predicted instances of normal behavior from all actual instances of 
normal behavior:

𝑇𝑁𝑅 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Similarly, a confusion matrix can be created for multi-class classi-
fication. Matrix labels would indicate different classes instead of the 
state of infection. In classification problems, the TPR, also known as
recall, indicates the number of correct class predictions divided by the 
total number of class instances. The following performance metrics have 
been used to evaluate classification performance:

1. Accuracy compares the accurate predictions according to all pre-
dictions:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

2. Precision measures the overall precision of correctly predicting a 
class out of all predictions of this class:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Table 5
Anomaly Detection Performance.

Monitor Features
Algorithm
(ML/DL)

Training
Time
(s)

Testing time
per sample
(s)

TNR
Val
(%)

TPR Dark
(%)

TPR PoC
(%)

TPR RAAS
(%)

RES Monitor

114 IF 0.79 0.030 98.10 95.88 96.94 75.78
114 OC-SVM 2.05 0.001 96.19 100.00 100.00 94.53
114 LOF 0.19 0.240 93.33 100.00 100.00 100.00
114 Autoencoder STD 16.49 0.160 97.14 100.00 100.00 38.28
114 Autoencoder IQR 16.49 0.160 96.19 100.00 100.00 80.47

KERN Monitor

77 IF 0.62 0.033 98.21 94.74 93.52 55.30
77 OC-SVM 2.20 0.001 94.64 100.00 100.00 90.90
77 LOF 0.16 0.009 90.17 100.00 100.00 100.00
77 Autoencoder STD 17.49 0.083 98.21 100.00 100.00 30.30
77 Autoencoder IQR 17.49 0.083 98.21 100.00 100.00 56.06

Hashing 1-gram SYS

1024 IF 7.81 0.032 96.29 91.89 67.57 52.69
1024 OC-SVM 8.72 0.002 0.00 100.00 100.00 17.20
1024 LOF 0.51 0.016 0.00 100.00 100.00 19.35
1024 Autoencoder STD 7.04 0.102 0.00 100.00 100.00 12.90
1024 Autoencoder IQR 7.04 0.102 0.00 100.00 100.00 27.96

Frequency 1-gram SYS

2443 IF 9.36 0.038 96.29 86.49 56.76 41.94
2443 OC-SVM 24.03 0.004 100.00 100.00 2.70 15.05
2443 LOF 0.93 0.029 100.00 62.16 0.00 6.45
2443 Autoencoder STD 36.82 0.098 100.00 100.00 37.84 30.11
2443 Autoencoder IQR 36.82 0.098 97.53 100.00 59.46 64.51

TF-IDF 1-gram SYS

2443 IF 9.68 0.051 96.29 89.18 67.57 51.61
2443 OC-SVM 24.49 0.005 100.00 100.00 8.11 17.20
2443 LOF 1.00 0.038 100.00 56.76 1.35 9.68
2443 Autoencoder STD 36.27 0.092 100.00 100.00 51.35 26.88
2443 Autoencoder IQR 36.27 0.092 96.29 100.00 71.62 79.57
3. F1-Score combines the recall and precision metrics:

F1-Score = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

6.2. Anomaly detection experiment

The anomaly detection experiment aims to evaluate and compare 
the performance and effectiveness of ML/DL models detecting anoma-
lies produced by ransomware. Furthermore, this experiment attempts to 
identify the best ML/DL model and behavioral dimension for detecting 
ransomware.

The first step was to gather the behavioral data modeling the nor-
mal behavior of the Raspberry Pi, which is required for training ML/DL 
models. More in detail, the Monitor Controller and the RES, KERN, and 
SYS monitoring scripts were deployed and executed on the Raspberry 
Pi 3, acting as an ElectroSense sensor. The monitoring session was per-
formed for 15 hours to ensure an adequate training data sample size.

Then, each ransomware sample was executed, and the three moni-
toring scripts ran for 15 minutes in parallel. More in detail, RAASNet 
and Ransomware-PoC begin the file encryption process shortly after 
execution starts (after approximately two seconds). In the case of Dark-
Radiation, it first installs several dependencies before starting the file 
encryption process. To compare the three ransomware strains, the mon-
itoring procedure of DarkRadiation was initiated after receiving the 
encrypt home files began message from the C&C. Ransomware-PoC was 
utilized in a second attack scenario to test the capability of encrypting 
the entire sensor. It took only two minutes and 27 seconds for the ran-
somware to crash the sensor due to the encryption of the system and 
library files.

The first step in the evaluation process was to verify the ML/DL al-
gorithms to identify normal behavior on the sensor correctly. As the col-
lected data should reflect the normal state of the sensor, a TNR close to 
100% was expected. The results received from the 10% validation data 
sample are shown in Table 5. It can be seen how the TNR was superior 
to 95% in most cases. The best-performing algorithm for KERN and RES 
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was LOF, having 93% TNR, the fastest training time, and the best ran-
somware detection accuracy (with 100% overall ransomware samples 
detection). However, when syscall hashing was performed as prepro-
cessing, the TNR of SVM, LOF, and Autoencoder was 0%. In this case, 
the model always outputs anomaly, being unable to evaluate the pro-
vided data samples correctly. From the attack detection perspective, ML 
and DL models trained with system call monitoring data (Monitor SYS) 
detected the ransomware DarkRadiation without issue. However, most 
of these ML algorithms failed to identify a Ransomware-PoC or RAAS-
Net infection. DL seems to be more promising. The DL Autoencoder 
with an interquartile-based threshold (IQR) using the TF-IDF system 
call features recognized all ransomware samples (TPR >50%). Similar-
ities emerge when comparing the detection performance of algorithms 
trained with the RES and KERN monitoring data. Both DarkRadiation 
and Ransomware-PoC were detected accurately. However, a RAASNet 
ransomware infection appeared more challenging for the algorithms to 
identify. This is most likely due to its slow encryption process (the slow-
est out of the ransomware samples).

As expected, the training time depends on the ML/DL model and the 
number of features used. DL Autoencoders showed the most extended 
training times, followed by One-Class SVM (OC-SVM). In terms of test-
ing time, it is quite acceptable, being a few milliseconds for almost all 
models. As more features were included in the extracted system call 
data, the training and testing times increased.

6.3. Classification experiment

Similar to the previous experiment, the goal of this one is to evaluate 
and compare the performance and effectiveness of ML/DL models and 
behavioral data sources while classifying different ransomware families 
and normal behavior.

For this experiment, the following four behavioral classes were de-
fined: normal behavior, DarkRadiation, Ransomware PoC, and RAAS-
Net. The first step was to collect samples for each class. Therefore, each 
of these data collection sessions ran for approximately four hours. Note 
that the standard storage capacity of the sensor was insufficient to pro-

vide the required number of target files for encrypting for four hours. 
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Table 6
Classification Performance.

Monitor Features Algorithm
Training Time
(s)

Testing time
per sample
(s)

Macro avg F1-score Weighted avg F1-score

RES Monitor

114 Logistic Regression 50.00 0.0001 0.99 0.99
114 Decision Tree 0.27 0.0003 0.99 0.99
114 Support Vector Machine 0.22 0.0006 0.99 0.99
114 Random Forest 1.50 0.0130 0.99 0.99

KERN Monitor

77 Logistic Regression 34.94 0.0002 0.99 0.99
77 Decision Tree 0.15 0.0002 0.99 0.99
77 Support Vector Machine 0.26 0.0004 0.98 0.98
77 Random Forest 1.15 0.0120 0.98 0.98

Hashing 1-gram SYS

1024 Logistic Regression 124.93 0.0001 1.00 1.00
1024 Decision Tree 0.18 0.0001 1.00 1.00
1024 Support Vector Machine 3.03 0.0013 0.93 0.93
1024 Random Forest 0.69 0.0159 1.00 1.00

Freq. 1-gram SYS

2084 Logistic Regression 349.24 0.0003 1.00 1.00
2084 Decision Tree 0.21 0.0002 1.00 1.00
2084 Support Vector Machine 7.99 0.0082 0.99 0.99
2084 Random Forest 0.65 0.0130 1.00 1.00

TF-IDF 1-gram SYS

2084 Logistic Regression 326.19 0.0004 1.00 1.00
2084 Decision Tree 0.25 0.0003 1.00 1.00
2084 Support Vector Machine 7.88 0.0029 0.99 0.99
2084 Random Forest 0.81 0.0120 1.00 1.00
Fig. 3. Monitor Controller Resource Usage (C: Controller).

Therefore, an external solid-state drive (SSD) containing 100 gigabytes 
of sample dummy files was used and the ransomware was configured to 
encrypt those files and achieve a four-hour monitoring session. These in-
clude files of varying sizes and file types. Then, the data was prepared 
for training by randomly shuffling, splitting between training and test-
ing, and normalizing.

Table 6 presents the macro and weighted average F1-scores cal-
culated for the different classification algorithms. As can be seen, ex-
ceptional classification results were observed for all monitoring scripts 
(SYS, RES, and KERN) with an overall accuracy of 90-100%. In terms of 
time, DT and SVM combined with RES and KERN events are the models 
needing less time to be trained (less than 1 second).

6.4. Resource consumption experiment

This experiment aims to measure the CPU and RAM consumption of 
the framework when deployed on the Raspberry Pi acting as an Elec-
troSense sensor. For that, the resource consumption data was measured 
while running the Monitor Controller and the Data Analysis layer.

First, the resource consumption of the Monitor Controller was as-
sessed for the four distinct monitoring configurations. Fig. 3 shows the 
results obtained by performing ten-minute monitoring sessions. As can 
be seen, the RES monitor consumes less CPU and RAM than the SYS 
monitor. This is due to the complexity of gathering events by each mon-
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itor and the amount of data acquired by each monitor.
Table 7
Consumption of Training & Evaluation with RES.

Category Task
CPU
(%)

RAM
(%)

Processing Preprocessing RES 17.74 50.90

Anomaly 
detection

Train IF 31.19 52.40
Evaluate IF 27.22 52.40
Train OC-SVM 26.48 52.45
Test OC-SVM 39.74 52.50
Train LOF 31.18 52.69
Test LOF 56.05 53.18
Train Autoencoder 38.41 54.59
Test Autoencoder 30.40 55.37

Classification

Train Logistic Regression 29.38 55.38
Test Logistic Regression 47.37 55.40
Train Decision Tree 29.00 55.40
Test Decision Tree nan nan
Train SVM 30.84 56.99
Test SVM 30.60 55.60
Train Random Forest 29.35 56.05
Test Random Forest 11.26 57.60

Secondly, the resource consumption of the Data Analysis layer run-
ning on the Raspberry Pi was evaluated by executing classification and 
anomaly detection training and testing procedures for each monitor 
(KERN, RES, and SYS). Timestamps were employed to track specific 
tasks, such as preprocessing, training, and evaluation. For anomaly de-
tection, 2133 data samples were used, and 4266 for classification. 10% 
of the data was utilized for evaluation.

Table 7, Table 8, and Table 9 show the Raspberry Pi CPU, and RAM 
consumed by the framework. In terms of preprocessing, the RES moni-
tor is the one consuming less CPU (∼17%) compared to KERN (∼25%) 
and SYS (∼50%). The RAM is similar for the three monitors (∼50%). 
Dealing with the CPU consumption during training for Anomaly De-
tection and Classification, no major differences exist between the algo-
rithms used with the data gathered by RES and KERN monitor (between 
26% and 38%). However, the models trained with the SYS monitor 
consumed more CPU (∼50%). Finally, regarding RAM, there are no sig-
nificant differences between the three monitors, having a consumption 

close to 50%.
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Table 8
Consumption of Training & Evaluation with KERN.

Category Task
CPU
(%)

RAM
(%)

Processing Preprocessing KERN 25.19 45.58

Anomaly 
detection

Train IF 37.20 46.56
Evaluate IF 33.90 46.6
Train OC-SVM 31.60 46.74
Test OC-SVM 33.75 46.8
Train LOF 35.29 47.09
Test LOF 63.15 47.48
Train Autoencoder 35.26 48.98
Test Autoencoder 4.18 49.50

Classification

Train Logistic Regression 29.38 53.70
Test Logistic Regression 8.13 53.73
Train Decision Tree 27.67 53.7
Test Decision Tree nan nan
Train SVM 33.12 55.63
Test SVM 30.17 53.80
Train Random Forest 30.89 54.17
Test Random Forest 28.42 56.00

6.4.1. Time assessment of ML/DL per sample

It illustrates the time-related performance metrics per sample for 
each monitoring script (RES, KERN, and SYS). It considers the time re-
quired by the framework to:

1. Preprocess a single data sample.
2. Evaluate the sample with the best anomaly detection algorithm.
3. Evaluate the sample with the best classification algorithm.

Table 10 summarizes the previous results. The preprocessing column 
refers to preprocessing the data for anomaly detection. The preprocess-
ing for classification is omitted, as it is almost the same procedure and 
requires around the same time. Furthermore, the preprocessing for the 
SYS monitor is the time needed to clean the data, create the corpus, and 
apply the appropriate vectorizer.

In conclusion, the resource usage experiment demonstrated that 
training and evaluation are possible on the Raspberry Pi for monitor-
ing data KERN and RES. However, training ML/DL algorithms with 
extracted system-call data (SYS Monitor) on the sensor is not rec-
ommended. As only storage capacity is limited and a large amount 
of memory is required, the training/evaluation should only occur on 
a high-powered machine. Furthermore, online evaluation is a viable 
method for live anomaly detection and classification because it does 
not require a significant amount of time to preprocess the data and 
evaluate the ML/DL algorithms.

6.5. Comparison with related work

This experiment compares the detection performance and resource 
utilization of the proposed framework with an existing rule-based solu-
tion that can be found in Huertas Celdrán et al. (2022). The objective 
of this comparison is to identify the strength and weaknesses of each 
solution.

At this point, it is essential to mention that Ransomware-PoC and 
DarkRadiation affecting a Raspberry Pi 3 acting as an ElectroSense sen-
sor are considered in both works. Furthermore, since the RES monitor 
obtains the best detection performance in the paper at hand, and the 
rule-based approach previously mentioned and described in Section 2
uses the same monitor, the comparison is focused on that dimension. 
In this context, Huertas Celdrán et al. (2022) proposed the three rules 
detailed in Table 11 and described below. The rules were created by 
following the next steps. First, the maximum and minimum values of 
each metric were selected as thresholds. Then, the administrator de-
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cided what metrics and behavioral categories were incorporated into 
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Table 9
Consumption of Training & Evaluation with SYS.

Category Task
CPU
(%)

RAM
(%)

Proc.

Cleaning log files 51.63 45.30
Create Corpus 55.34 48.08
Create Count Vectorizer Freq. 52.13 48.21
Apply Count Vectorizer Freq. 51.41 48.46
Create TF-IDF Vectorizer 51.29 48.11
Apply TF-IDF Vectorizer 51.44 48.58
Create Hashing Vectorizer nan nan
Apply Hashing Vectorizer 52.7 50.37

AD

Train IF Freq. 53.84 47.76
Evaluate IF Freq. 52.43 47.80
Train IF TF-IDF 53.66 47.80
Evaluate IF TF-IDF 51.65 47.80
Train IF Hashing 53.28 48.08
Evaluate IF Hashing 53.38 47.90
Train OC-SVM Freq. 54.13 47.8
Evaluate OC-SVM Freq. nan nan
Train OC-SVM TF-IDF 47.03 47.80
Evaluate OC-SVM TF-IDF nan nan
Train OC-SVM Hashing 45.03 47.90
Evaluate OC SVM Hashing nan nan
Train LOF Freq. 48.6 47.8
Evaluate LOF Freq. 53.68 47.8
Train LOF TF-IDF 72.03 47.8
Evaluate LOF TF-IDF 63.73 47.8
Train LOF Hashing 55.43 47.93
Evaluate LOF Hashing 54.96 47.7

Classif.

Train Logistic Regression Freq. 47.03 51.40
Evaluate Logistic Regression Freq. nan nan
Train Logistic Regression TF-IDF 24.53 51.40
Evaluate Logistic Regression TF-IDF nan nan
Train Logistic Regression Hashing 33.99 51.41
Evaluate Logistic Regression Hashing 17.03 51.40
Train Decision Tree Freq. nan nan
Evaluate Decision Tree Freq. nan nan
Train Decision Tree TF-IDF 63.73 51.40
Evaluate Decision Tree TF-IDF nan nan
Train Decision Tree Hashing 15.69 51.40
Evaluate Decision Tree Hashing nan nan
Train Support Vector Machine Freq. nan nan
Evaluate Support Vector Machine Freq. 57.03 51.40
Train Support Vector Machine TF-IDF 57.03 51.40
Evaluate Support Vector Machine TF-IDF nan nan
Train Support Vector Machine Hashing 25.03 51.40
Evaluate Support Vector Machine Hashing nan nan
Train Random Forest Freq. 26.13 51.40
Evaluate Random Forest Freq. 28.88 51.40
Train Random Forest TF-IDF 26.89 51.40
Evaluate Random Forest TF-IDF 29.36 51.40
Train Random Forest Hashing 27.21 51.40
Evaluate Random Forest Hashing 27.53 51.40

each rule. Then, the importance of each metric and category was de-
fined, as well as the thresholds of each category and the rule. Finally, 
during evaluation time, if the thresholds of a given metric were ful-
filled, the metric weight was added to the category weight. If the sum 
of all metrics weights of one category reached the category threshold, 
the category weight was added to the rule weight. Finally, if the rule 
weight reaches the rule threshold, the rule is executed.

• Abnormal Rule. It is created by only looking at normal behavior and 
its goal is to detect anomalies or zero-day attacks.

• Ransomware-PoC Rule: It is created looking at normal and Ransom-
ware-PoC behaviors. Therefore, it classifies the previous two be-
haviors, and each behavioral category has a different weight.

• DarkRadiation Rule: It is created looking at normal and DarkRadi-
ation behaviors. Different weights are selected for metrics within 

the CPU category.
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Table 10
Evaluation Time for a Single Data Sample.

Monitor Preprocessing (s) Best Anomaly Algorithm Evaluation Time (s) Best Classification Algorithm Evaluation Time (s)

RES 0.015 LOF 0.240 Decision Tree 0.0003
KERN 0.011 LOF 0.009 Decision Tree 0.0002
SYS Hashing 0.531 IF 0.032 Decision Tree 0.0001
SYS Frequency 0.524 Autoencoder with IQR 0.098 Decision Tree 0.0002
SYS Tf-idf 0.519 Autoencoder with IQR 0.092 Decision Tree 0.0003
Table 11
Rules Metrics and Weights.

Category CPU I/O Memory Netw. Others

Abnormal Rule
Category weight 500 500 500 500 500
Metrics weight 16.0 18.0 35.0 40.0 45.85
N of metrics 59 28 9 11 6

Ransomware-PoC Rule
Category weight 250 250 100 0 100
Metrics weight 35 17.5 50 - 100
N of metrics 4 15 2 0 1

DarkRadiation Rule
Category weight 250 250 100 0 100
Metrics weight 20-50 13.71 50 - 33.34
N of metrics 7 17 2 0 3

Table 12
Rule-base System Detection Performance.

Behaviors Rules

Abnormal Ransomware-PoC DarkRadiation

Normal 100% TNR 100% TNR 100% TNR
Abnormal 100% TPR 100% TNR 96.49% TNR
Ransomware-PoC 94.91% TPR 93.22% TPR 98.30% TPR
DarkRadiation 89.80% TPR 100% TNR 55.10% TPR

Table 12 shows that the Abnormal rule almost perfectly iden-
tified the four different behaviors (normal, abnormal, Ransomware-
PoC, and DarkRadiation). In addition, the rule focused on classifying 
Ransomware-PoC also provided excellent results. In the case of the 
DarkRadiation rule, normal, abnormal, and Ransomware-PoC were well 
detected, but the behavior of DarkRadiation was only detected with 
55.10% TPR. In terms of resource consumption, the previous rules con-
sumed about 10% of CPU and 2MB of RAM. Finally, the detection time 
was about 10 seconds.

Comparing the rule-based approach to the ML/DL-based proposed in 
this work, all ML/DL algorithms from the experiments outperformed the 
rule-based approach (see 5). Regarding classification, a similar observa-
tion can be made when looking at the F1-score values of the Decision 
Tree in Table 6. As noted above, the ML/DL results might have been im-
pacted by the shorter duration of training data captured. Furthermore, 
creating the previous three policies requires a significant investment of 
time to identify the various levels between normal and ransomware in-
fection behaviors. However, a key advantage of the rule-based approach 
is that it requires fewer CPU and RAM than ML/DL algorithms.

From the perspective of resource usage monitoring and ML/DL-
based ransomware detection, previous works (Huertas Celdrán et al., 
2023a; Sánchez Sánchez et al., 2023) have claimed perfect performance 
detecting Ransomware-PoC in Linux devices, as can be seen in the com-
parison of Table 13. However, as Table 5 shows, this ransomware is 
easy to detect compared to more sophisticated samples such as RAAS-
Net, which has not been evaluated in previous works. Besides, these 
works only consider resource usage as the monitoring approach, while 
the paper at hand has explored and compared the usage of diverse re-
sources (RES and KERN monitors) and the monitoring of the device 
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system calls.
Table 13
Overview of Ransomware Detection Techniques.

Work (year) Approach ML/DL
Algorithm

Ransomware 
Samples

Accuracy

Sánchez Sánchez 
et al. (2023)

Resources 
Usage

(ML/DL) AD Ransomware-
PoC

100%

Huertas Celdrán 
et al. (2023a)

Resources 
Usage

(ML/DL) 
Classification 
and AD

Ransomware-
PoC

100%

This work (2023) Resources 
Usage, 
Syscalls

(ML/DL) 
Classification 
and AD

Ransomware-
PoC, Dark-
Radiation, 
RAASNet

90-100%

7. Discussion

This section discusses the main approach, contributions, and limi-
tations of the proposed framework. As previously mentioned, the pro-
posed framework combines three behavioral dimensions (usage of re-
sources, system calls, and kernel events) with ML/DL models to detect 
zero-day ransomware samples and classify them. A set of experiments 
has compared the detection performance, time, and resource consump-
tion with a well-known approach based on rules. At this point, it is 
important to mention that the framework has been designed to be de-
ployed on different devices with heterogeneous hardware and software. 
However, the detection performance of the framework depends on sev-
eral aspects. In this context, a crucial aspect to consider is the stability 
of the normal behaviors of the device. If a device exhibits a consis-
tent set of normal behaviors, then the proposed framework is effective 
(as it has been demonstrated in the previous experiments with an Elec-
troSense sensor). However, as the level of behavioral freedom increases, 
the problem becomes much more complex due to the difficulty of distin-
guishing between normal and abnormal behaviors. In this sense, aspects 
such as network variations could affect the framework performance de-
tection.

Another interesting discussion topic is the alternatives to ML/DL 
in order to detect attacks. In this context, the literature has identified 
rules, statistical, knowledge, and time series-based solutions (Sánchez 
Sánchez et al., 2021). Table 14 compares the advantages and limita-
tions of each detection mechanism. More in detail, rule-based solutions 
are commonly used for ransomware classification and anomaly detec-
tion by creating behavioral profiles in a straightforward fashion. This 
approach is ideal for devices with well-defined behavior and a limited 
range of actions. It defines a set of rules that dictate the desired behavior 
of the device, essentially creating a behavioral fingerprint. These rules 
can be static (predetermined actions) or dynamic (based on the device 
historical actions). Any deviation from the rules can be considered an 
anomaly provoked by ransomware attacks. In addition, rules can also 
model different ransomware samples to classify them. The main ad-
vantages of this approach are its simplicity and speed, but it requires 
prior knowledge of the device behavior and is not suitable for complex 
or changing scenarios. Statistical-based approaches are another alterna-
tive and involve basic statistical data processing techniques to extract 
meaningful information from behavioral data samples. This approach is 
commonly employed in data preprocessing and ransomware detection. 
The key advantages of this approach are its simplicity and the fact that it 

does not necessitate large datasets. However, it may struggle with multi-
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Table 14
Detection Approaches Comparison.

Approach Simplicity Expert knowledge Low consumption Large datasets Large training time Explainability

ML/DL-based no no no mainly DL mainly DL partial
Rule-based yes yes yes no no yes
Statistical yes yes yes no no no
Knowledge-based partial no no no no yes
Time series no no no yes yes no
dimensional data, and making consistent evaluation decisions requires 
domain expertise. Statistical functions such as average, standard devi-
ation, quartiles, maximum, and minimum are often used to infer fea-
tures during preprocessing. Knowledge-based solutions aim to extract 
knowledge from received data and build a reasoning system capable of 
inferring new knowledge. Typically, this knowledge is constructed us-
ing ontologies, and decision-making relies on if-then derivation rules. 
The main benefits of this approach are the explainability of the inferred 
solutions and the ability to solve problems with incomplete data. How-
ever, this approach is time-consuming and lacks scalability, as the sys-
tem can become overly complex when large amounts of data are used. 
Knowledge-based approaches are primarily utilized for ransomware de-
tection, with finite-state machines being the main techniques employed. 
Time series analysis uses sequential data measurements where each 
value is related to the previous and subsequent ones. This approach 
encompasses a wide range of algorithms and models, including those 
based on ML/DL or statistical methods. Time series analysis is employed 
for both anomaly detection and ransomware classification, either di-
rectly in model generation or as a step in data preprocessing. The 
main advantage of this approach is its superior performance compared 
to single-value processing methods. However, it requires a substan-
tial amount of data to identify temporal patterns, and the processing 
time can be significant. Time series analysis methods can be classified 
into two types: frequency-based methods, which analyze data as a sig-
nal with a specific frequency, and time-based methods, which examine 
data evolution over time. Finally, the approach considered in this work 
focuses on ML/DL, which has gained significant traction in various re-
search fields, driven by increased processing power and available data. 
ML/DL approaches offer several advantages, including the ability to de-
tect complex data patterns, handle multi-dimensional and multi-variate 
data, and adapt to dynamic and heterogeneous scenarios using exten-
sive data. However, a major drawback is the lack of explainability in 
model decisions due to the black-box nature of some of the models. Ad-
ditionally, DL algorithms, in particular, require substantial amounts of 
training data and consume significant time and resources for training. 
Most algorithms also require parameter tuning, which involves repeat-
ing the training process multiple times.

Despite the excellent performance of ML/DL models considered by 
the proposed framework, ethical aspects are key due to the potential 
impacts and implications for society. As an example, the proposed ran-
somware detection framework involves analyzing sensitive data, such 
as the usage of resources, system calls, and kernel events. In this sense, 
ethical considerations should ensure that privacy rights are respected by 
minimizing the risk of unauthorized access or misuse. Trustworthy AI is 
another important aspect that has not been considered by the proposed 
solution (Huertas Celdran et al., 2023). As humans, we should be able 
to know if a model or prediction is trustworthy or not. In this context, 
trusted AI can greatly assist in the detection of ransomware in particular 
and malware in general by ensuring the reliability and integrity of the 
detection process. One of the primary challenges in malware detection 
is the ability to differentiate between genuine and malicious behaviors 
accurately. Trustworthy AI systems employ a range of techniques to en-
hance the accuracy and effectiveness of malware detection algorithms. 
These systems prioritize transparency, interpretability, robustness, and 
fairness, enabling security analysts to understand the decision-making 
process and identify potential biases or false positives. Additionally, 
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trustworthy AI systems integrate robust security measures to protect 
against adversarial attacks, ensuring that the detection models remain 
resilient to malicious attempts to evade detection. By instilling trust in 
the detection process, trustworthy AI empowers security professionals 
with reliable tools to combat ever-evolving malware threats and safe-
guard critical systems and data.

Aligned with data privacy and its ethical implications, Federated 
Learning (FL) is another powerful paradigm (Rey et al., 2022), not con-
sidered by the proposed framework, that trains models collaboratively 
between different devices while protecting the privacy of data. In this 
context, FL can play a crucial role in the detection of ransomware by 
leveraging its decentralized and privacy-preserving approach. In tra-
ditional malware detection systems, sensitive data is often centralized, 
posing potential security and privacy risks. However, with FL, the model 
training process takes place directly on users’ devices, allowing them to 
contribute their local data without exposing it to a central server. This 
distributed approach enables collective learning from a set of clients 
(Raspberry Pis in this work) while maintaining data privacy. By ag-
gregating the knowledge and insights from diverse sources, FL can 
effectively detect ransomware patterns, identify new threats, and con-
tinuously update and improve the detection models. Furthermore, FL 
allows for real-time updates and adaptability, ensuring a more robust 
and proactive defense against evolving malware threats in a privacy-
preserving manner. These aspects have not been explored in the docu-
ment at hand and would be powerful extensions to improve detection 
capabilities. Finally, the evaluation and comparison of performance (in 
terms of detection rate, time, and resource consumption) with more de-
vices and families of malware such as botnets, backdoors, cryptojackers, 
or rootkits is also something missing in this work and worthy of explor-
ing in the future.

8. Conclusion

This work designed and developed a distributed anomaly detection 
and classification framework for resource-constrained devices. Differ-
ent behavioral data sources focused on the usage of resources, kernel 
events, and system calls were considered to train ML/DL algorithms. 
The detection performance of ML/DL was analyzed and compared while 
detecting and classifying three families of ransomware (Ransomware-
PoC, DarkRadiation, and RAASNet) affecting Raspberry Pis acting as 
spectrum sensors. These results were then compared to an existing rule-
based solution.

In conclusion, this work has demonstrated that ML and DL can assist 
in ransomware detection and classification while consuming resources 
in an acceptable manner. In this sense, when trained with RES and 
KERN monitoring data, anomaly detection algorithms yielded the best 
results (overall ransomware samples). The LOF algorithm was identified 
to be the most promising regarding anomaly detection when using RES 
and KERN monitoring data. However, compared to rule-based systems, 
it is also more CPU-demanding during training. Regarding classifica-
tion, SYS, KERN, and RES monitoring data have been demonstrated 
as suitable for ransomware detection based on ML classification. The 
decision tree classifier yielded the best overall classification results (per-
formance and training time) for RES, KERN, and SYS. The implemented 
ML/DL algorithms outperformed the rule-based approach regarding 
anomaly detection and classification. Regarding resource consumption, 

system call monitoring produces a large volume of data compared to 
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RES and KERN monitors. In addition, processing of this data is very 
time and memory intensive. Therefore, the RES monitor is the most 
suitable data source to detect anomalies and classify ransomware while 
consuming resources in a reduced manner.

There are several areas where further investigation could prove ben-
eficial in improving ransomware detection and classification. These 
include assessing the impact of network activity on the monitoring re-
sults and isolating those factors which negatively influence the process. 
Another future area of research is to identify the optimal balance be-
tween training data size/monitoring duration and ML/DL ransomware 
detection accuracy.
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