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Abstract
When detecting cyberattacks in Industrial settings, it is not sufficient to determine
whether the system is suffering a cyberattack. It is also fundamental to explain why the
system is under a cyberattack and which are the assets affected. In this context, the
Anomaly Detection based on Machine Learning (ML) and Deep Learning (DL) tech-
niques showed great performance when detecting cyberattacks in industrial scenarios.
However, two main limitations hinder using them in a real environment. Firstly, most
solutions are trained using a supervised approach, which is impractical in the real in-
dustrial world. Secondly, the use of black‐box ML and DL techniques makes it impossible
to interpret the decision made by the model. This article proposes an interpretable and
semi‐supervised system to detect cyberattacks in Industrial settings. Besides, our proposal
was validated using data collected from the Tennessee Eastman Process. To the best of
our knowledge, this system is the only one that offers interpretability together with a
semi‐supervised approach in an industrial setting. Our system discriminates between
causes and effects of anomalies and also achieved the best performance for 11 types of
anomalies out of 20 with an overall recall of 0.9577, a precision of 0.9977, and a F1‐score
of 0.9711.
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1 | INTRODUCTION

The industry is moving towards the Industry 4.0 paradigm,
whose fundamental characteristic consists of automating in-
dustrial processes by introducing interconnected smart devices
in factories. These smart devices provide new and exciting
features in the industrial scenario related to how humans and
devices interact. Some examples could be the remote control
of devices or a sensorized factory that increases workers' safety.
To ease such features, typical devices introduced in industrial
scenarios are actuators and sensors that generate time‐series
data with cause‐effect relationships. In addition to new hard-
ware equipment, Industry 4.0 is also about introducing new
technologies to manage the behaviour of that hardware and

extract information from the data gathered by the smart de-
vices. Some of these technologies are Big Data [1] and Artificial
Intelligence [2].

However, these new features came at a price. Factories
have been isolated from external networks for decades, but
now they are connected to the Internet to bring all these
features [3]. As a result, the number of cyberattacks affecting
industrial factories has increased in the last years [4]. To protect
the factories, the research community has adopted the
Anomaly Detection (AD) paradigm to detect highly specialised
cyberattacks affecting the industry. These cyberattacks are
different from those launched in traditional data networks. In
this last scenario, cyberattackers take advantage of software
vulnerabilities to launch well‐known cyberattacks such as
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Denial of Service (DoS) or SQL Injection. However, in in-
dustrial scenarios, the main goal is to modify the process
behaviour to produce a competitive and economical loss [5].
The AD paradigm is based on modelling the normal behaviour
system to draw the boundary of normality. All behaviour
outside of this boundary is considered a cyberattack. In prac-
tice, one of the most effective ways to draw that boundary is
through Machine Learning (ML) and Deep Learning (DL)
techniques.

However, AD systems using ML/DL present two main
limitations that hinder their wide implementation in the real
industrial world. On the one hand, the lack of interpretability
and/or explainability of AD systems based on ML and DL
techniques makes it difficult to understand the decisions made
by these systems. Most AD systems in the literature inform
whether an anomaly is detected but not what sensor or actu-
ator is affected by the anomaly. By providing this information,
operators and administrators can dedicate their efforts to the
specific point responsible of the anomaly. Therefore, inter-
pretable AD systems save resources when selecting the proper
mitigation actions. On the other hand, a vast number of ML
and DL models used in industrial AD systems are trained using
a supervised approach because it tends to achieve the best
results. This means that a fully labelled dataset is required to
train these systems. However, this type of dataset is not always
available, and their generation requires investing a significant
amount of resources [5], being, therefore, impractical in real
scenarios. On these grounds, a semi‐supervised approach that
enables training AD systems using a dataset labelled only with
normal samples reduces the effort needed to train such sys-
tems in industrial scenarios.

To overcome the previous challenges, this work presents
the following contributions:

� The relationship between the four desirable properties of
interpretable ML/DL models and the industrial scenarios.
In particular, for each property, we discuss the expected
outcome.

� A system specially designed for industrial scenarios
composed of six steps to train semi‐supervised and inter-
pretable models. To discriminate between normal and
abnormal samples, the system computes a threshold based
on statistic measures. When a sample exceeds such
threshold, it is categorised as abnormal. This system pays
particular attention to the interpretability step where causal
inference model are used to discriminate between causes
and effects of anomalies. These techniques limit the usage of
our system to environments whose devices generate time‐
series data with cause‐effect relationships such as indus-
trial scenarios. Besides, the system presents specific steps
focussed on the feature extraction and AD method to
remove both highly correlated features and potential outliers
during threshold computation.

� The validation of the system in a realistic industrial scenario
called Tennessee Eastman Process (TEP) [6]. We proved
that our proposal not only discriminated between causes and
effects but also it achieved the best performance detection

for 11 types of anomalies out of 20 with an overall recall of
0.9577.

The remainder of this paper is structured as follows.
Section 2 discusses the different works focussed on AD in
industrial scenarios. Section 3 describes the desirable properties
of interpretable models in industrial scenarios. In Section 4, the
interpretable and semi‐supervised system is introduced.
Section 5 presents the system validation using the dataset
collected from the TEP. Finally, Section 6 presents the con-
clusions and the future work.

2 | RELATED WORK

This section discusses the works in the literature related to AD
in industrial scenarios. Besides, we review the existing meth-
odologies to detect anomalies in industrial scenarios.

Anomaly Detection is a vast area of study, and different
methods have been proposed [7]. However, due to the highly
specialised cyberattacks affecting the industry, the most suc-
cessful probed techniques are based on ML and DL. In this
context, the authors of ref. [8] proposed a non‐interpretable
and unsupervised approach based on a Variational Long
Short‐Term Memory (VLSTM) that tries to reconstruct the
input features. Besides, the authors considered three loss
functions to constrain the hidden variable during the learning
phase. To validate its proposal, the authors utilised a public
dataset named UNSW‐NB15, and they probed that VLSTM
improves accuracy and reduces the false rate. The same authors
highlighted the difficulty of getting labelled datasets, and they
proposed another non‐interpretable approach based on few‐
shot learning and Siamese Convolutional Neural Networks
(FSL‐SCNN) [9]. Similar to the previous work, the authors
proposed three loss functions, and the same dataset was used.
Regarding the performance, this work achieved good results,
although lower than the VLSTM approach.

The authors of ref. [10] presented a novel hybrid deep
random neural network (HDRaNN) for AD, with a non‐
interpretable and supervised approach. In particular, the
approach combined a deep random neural network and a
multilayer perceptron (MLP) with dropout regularisation to
avoid overfitting. The network comprised an input and output
layer, three recurrent layers, and three MLP. The authors tested
the architecture with two different datasets: DS2OS and
UNSW‐NB15. The authors of ref. [11] proposed another non‐
interpretable and unsupervised intrusion detection system
based on Stacked AutoEncoders (SAE) to distinguish between
normal and abnormal behaviour in real‐time. In particular, the
SAE proposed is based on LSTM neural networks, and it was
validated using the gas pipeline and UNSW‐NB15 datasets,
where the solution achieved an F1‐score of 97.89% and 97.55%
respectively. In terms of ensembles, the authors of ref. [12]
presented a novel architecture that combined multiple non‐
interpretable and supervised DL and ML models to detect
cyberattacks in industrial scenarios. In particular, they proposed
splitting the original dataset into various balanced datasets
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passed to diverse SAE to learn different data representations.
Then, the new data transformed by SAE were passed to
different Fully Connected Neural Networks (FCNN). Their
outputs were combined to form a super vector that finally was
passed to a Decision Tree (DT) that performed the classifica-
tion. This approach showed to be efficient when dealing with an
imbalanced dataset. In particular, the authors tested the
approach using a Gas pipeline and SWaT dataset, improving the
state‐of‐the‐art results. The authors of ref. [13] presented an
unsupervised and non‐interpretable approach that combines
the usage of an FCNN and a One‐Class Support Vector Ma-
chine (OC‐SVM). Besides, the authors presented a new regu-
larisation term that provides a model‐tuning mechanism based
on specific industrial requirements and performance metrics of
interest. The approach was tested on the SWaT dataset and
achieved the state‐of‐the‐art result in 15 out of 36 attacks.

Because of the high dimensional data present in industrial
scenarios, the authors of ref. [14] proposed a non‐interpretable
and supervised approach based on Generative Adversarial
Network (GAN) andDeepBeliefNetwork (DBN) togetherwith
some techniques to remove highly correlated features. Finally,
the authors of ref. [15] showed that a modification of Principal
Component Analysis (PCA) performed well in industrial sce-
narios. In particular, the authors proposed the usage of Multi-
variate Generalized Likelihood Ratio (GLR) and Moving
Window Interval Aggregation (MWIA) together with Interval
PCA (IPCA), which is a non‐interpretable and semi‐supervised
approach. The authors showed that the proposed approach
achieved state of the art in terms of general performance.

Regarding solutions that adopt interpretability or explain-
ability methods, we highlight [16], where the authors designed
a supervised approach based on Layer‐wise Relevance Propa-
gation (LRP) and FCNN. Using those techniques, an intrusion
detection model can be trained with a training dataset that does
not contain too much information. Such intrusion detection
model also have the ability to quickly analyse the relevance of
each feature. The authors validated their solution by using the
Gas Pipeline dataset. About solutions focussed on the analysis
of root causes, we highlight two of them. On the one hand, the
authors of ref. [17] applied the Joint Recurrence Plot (JRP) and
the Density‐based Spatial Clustering Application with Noise
(DBSCAN) algorithm. On the other hand, the authors of ref.
[18] presented a fault diagnosis framework. In particular, they
computed the Mutual Information (MI) between each pair of
features in the training dataset. When an anomaly was detected,
each pair of features with MI beyond the one computed in the
training dataset is examined by means of Time Delayed Mutual
Information (TDMI) analysis to determine the causal logic
between them.

In terms of algorithm comparison, the authors of ref. [19]
presented an analytical study of AD in industrial scenarios. The
dataset used was extracted from a Supervisory Control And
Data Acquisition (SCADA) that controls an aquatic storage and
distribution system. In particular, the authors evaluated six ML
techniques: Logistic Regression (LR), Linear Discriminant
Analysis (LDA), K‐Nearest Neighbours (KNN), Classification
And Regression Tree (CART), Gaussian Naive Bayes (NB), and

Support Vector Machine (SVM). In terms of performance,
CART was the model that achieved the best F1‐score (86%).
Another work that studied the performance of different ML
and DLmodels in industrial scenarios was presented in ref. [20].
In this case, the authors tested LR, Lasso, SVM, DT, Adaptive
Boosting (AB), Gradient Boosting (GB), Random Forest (RF),
and FCNN. The datasets selected to test these models were the
Gas pipeline and the TEP datasets. As shown by the authors,
the FCNN and RF achieved the best performance. The authors
of ref. [21] presented another study on how the number of
hidden layers, number of neurons in the last hidden layer, and
data augmentation impact the detection performance. The au-
thors tested their solution in fault detection and classification
setting using the TEP dataset. With respect to the number of
layers, the authors showed that using two to four hidden layers
achieved the best performance, being the difference between
them insignificant. In terms of the number of neurons in the last
hidden layer, the authors showed that having more neurons on
that layer improved the detection performance. Another study
of ensemble methods can be found in ref. [22]. In this study, the
authors tested supervised approaches that offer interpretability
mechanisms such as DT, RF, GB, AB, Light Gradient Boosting
(LGBM), Extreme Gradient Boosting (XGBoost), and Cat-
Boost (CB). To deal with the imbalance problem of AD
problems, the authors applied the Synthetic Minority Over-
sampling Technique (SMOTE). Furthermore, the authors
combined the previous ML models together with more
powerful interpretability mechanisms such as LIME and SHAP.
Finally, the authors concluded that XGBoost reached the best
performance when they tested on a heating, ventilation, and air
conditioning (HVAC) dataset [23]. In ref. [5], another com-
parison of different ML and DL models were presented. The
models were evaluated using Electra, a dataset collected from an
Electric Traction Substation. The authors studied the perfor-
mance of RF, SVM, OC‐SVM, Isolation Forest (IF), and
FCNN, concluding that the models that achieved the highest
performance was SVM and RF. Besides, the same authors
presented another study comparing the performance of these
models in terms of time evaluation [24]. The conclusion was
that FCNN outperforms the other models.

Respecting methodologies available in the literature, we
highlight MADICS [25] and the one presented in ref. [26].
Both are semi‐supervised methodologies. However, the first
one is oriented to training AD systems from normal behaviour,
while the second is focussed on training AD using a subset of
normal and abnormal behaviour. MADICS is a complete
methodology because it recommends specific actions for each
step that must be carried out in an AD task in industrial sce-
narios. However, the methodology presented in ref. [26] only
proposes a model with no recommendations about steps like
feature filtering or feature extraction. Although MADICS is a
complete methodology, it does not consider the potential
outliers when computing the threshold. Moreover, the features
extracted by MADICS were highly correlated because they
were computed using aggregate functions like minimum or
range. Finally, although MADICS gives a few recommenda-
tions about interpretability, the methodology does not cover
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this point completely, and it was not tested in this specific
aspect.

Table 1 shows a comparison between all the solutions
described above. As can be seen, a few of the proposed solutions
in the literature are focussed on semi‐supervised and inter-
pretable approaches. In fact, most of the solutions that offer
interpretability are based onML, and the interpretability method
relies on such an ML model. This work presents a solution that
overcomes the MADICS limitation commented above. To the
best of our knowledge, this solution is the only one that com-
bines interpretability and semi‐supervised approach in the in-
dustrial setting. First, we extract higher‐order features using
techniques suitable in industrial scenarios. Second, we remove
the outliers when computing the threshold, preventing them
from impacting the threshold computed. Third, we introduce a
new step to achieve interpretability, allowing operators to
identify the exact point where anomalies are produced.

3 | DESIRABLE PROPERTIES OF
INTERPRETABLE ML/DL IN
INDUSTRIAL SCENARIOS

This section introduces the interpretability in ML/DL models
together with the properties of interpretability methods and
their relationship to industrial scenarios.

Interpretability is the degree to which a human can un-
derstand the cause of a decision [27]. In many scenarios, this
property becomes mandatory since it allows us to obtain very
valuable information. For example, imagine an AD system in
an industrial setting that does not allow us to interpret the
result of a specific prediction. In this case, when a cyberattack
happens, we can detect it but we cannot know which specific
parts of the industrial system are affected. In contrast, if the
AD system deployed is based on an interpretable model or
offers a specific interpretable mechanism, we can know which
specific part is being attacked and make concrete decisions to
mitigate the cyberattack. In this way, interpretable models allow
us to take more effective actions at a lower cost when miti-
gating cyberattacks.

However, interpretability is not always easy to achieve
when using ML/DL models. In most cases, these techniques
are not interpretable out of the box, and it is necessary to
resort to other methods to interpret the results. In particular,
within the most popular ML models, RF, Linear Regression,
and LR offer certain degrees of interpretability. Unfortunately,
DL models have no built‐in mechanism to interpret the pre-
diction results. For both DL and ML models that do not offer
this feature, a wide variety of third‐party tools are available that
allow a certain degree of interpretability.

The authors of ref. [28] identified four properties of an
interpretability method that can be used to compare different

TABLE 1 Comparison of different AD solutions focussed on industrial scenarios.

Sol. Validated on Model Interpretability Approach

[8] UNSW‐NB15 VLSTM ✗ Unsupervised

[9] UNSW‐NB15 FSL‐SCNN ✗ Supervised

[10] DS2OS, UNSW‐NB15 HDRaNN ✗ Supervised

[11] Gas pipeline, UNSW‐NB15 SAE ✗ Unsupervised

[12] SWaT, gas pipeline Ensemble of SAE, FCNN, and DT ✗ Supervised

[13] SWaT FCNN and OC‐SVM ✗ Unsupervised

[14] TEP DBN and GAN ✗ Supervised

[15] TEP IPCA ✗ Semi‐supervised

[16] Gas pipeline FCNN ✓ Supervised

[19] Aquatic storage and distribution dataset LR, LDA, k‐NN, CART, NB, and SVM ‐a Supervised

[20] TEP, gas pipeline LR, Lasso, SVM, DT, AB, GB, RD, and FCNN ‐a Supervised

[21] TEP FCNN ✗ Supervised

[22] HVAC dataset DT, RF, GB, AB, LGBM, XGBoost, CB ✓ Supervised

[5] Electra RF, SVM, FCNN, OC‐SVM, and IF ‐a Supervised,
semi‐supervised

[26] TEP LSTM ✗ Semi‐supervised

[25] SWaT LSTM ✓ Semi‐supervised

Ours TEP LSTM ✓ Semi‐supervised

Abbreviations: AB, Adaptive Boosting; DBN, Deep Belief Network; DT, Decision Tree; FCNN, Fully Connected Neural Networks; FSL‐SCNN, few‐shot learning and Siamese
Convolutional Neural Networks; GAN, Generative Adversarial Network; GB, Gradient Boosting; HDRaNN, hybrid deep random neural network; HVAC, heating, ventilation, and air
conditioning; IPCA, Interval PCA; LGBM, Light Gradient Boosting; RF, Random Forest; SAE, Stacked AutoEncoders; TEP, Tennessee Eastman Process; VLSTM, Variational Long
Short‐Term Memory.
aSome of the models proposed offer interpretability properties.
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solutions. These properties are described below, along with
their relationship to industrial scenarios.

� Expressive Power. It refers to the mechanism by which the
decisions reached by the models are interpreted. Examples
of these mechanisms are languages based on IF‐THEN,
decision trees, thresholds, or graphs. Concerning industrial
environments, it is desirable that the mechanism selected is
easily and quickly understood by operators to allow fast
detection of the sensor/actuator affected when a cyber-
attack happens.

� Translucency. This property tells us the relationship between
the interpretability mechanism and the model and its pa-
rameters. For example, models with inherent interpretability
mechanisms, such as RF, offer a high degree of translucency.
In general, methods with a high degree of translucency have
access to more information and, therefore, allow the inter-
pretation of the result out of the box. However, these
mechanisms depend on the specific ML/DL model that
implements them, and, in critical fields such as AD in in-
dustrial environments, it is possible to change the model
when another one with better performance is obtained.

� Portability. This property refers to the range of ML/DL
models applicable to the interpretability mechanism. This
property is closely related to the previous one because highly
portable methods offer a low degree of translucency and
vice versa. In relation to industrial environments, highly
portable mechanisms are preferred because they can be used
with a wide range of models.

� Algorithmic Complexity. This property describes the algo-
rithmic complexity of the interpretability mechanism. In
industrial settings, the complexity needs to be low in order
to carry out detection and interpretation as quickly as
possible.

In Table 2, the previously discussed properties together
with the expected option in the industrial scenarios are
showed.

4 | A SEMI‐SUPERVISED AND
INTERPRETABLE APPROACH TO
ANOMALY DETECTION IN INDUSTRIAL
SCENARIOS

This work presents an interpretable and semi‐supervised sys-
tem composed of the typical steps in ML/DL.

1. Data preprocessing. In general, the first task usually carried
out in this step is to split the dataset into training, valida-
tion, and test datasets. The second task is in charge of
studying all features to discover spurious or corrupted
values. Finally, it is recommended to perform categorical
data encoding and scale features.

2. Feature filtering. This step applies different techniques to
remove features that do not provide useful information to
the model. To this task, we can combine three approaches.
The first one is to study the correlation between the fea-
tures and the label to determine if data leakage exists in the
dataset. The second one is to study the variance of feature
values and remove those that do not change in the whole
dataset. Finally, the third approach determines if the sta-
tistical distribution is preserved in the training, validation,
and test datasets, removing those features whose distribu-
tion is not preserved.

3. Feature extraction. This step consists in generating higher‐
order features that discriminate between normal and
abnormal system behaviour. Due to the repetitive nature of
time‐series data generated in industrial scenarios, it is rec-
ommended the usage of techniques that can deal with such
data and extract patterns from them.

4. Anomaly Detection method. In general, this step is in
charge of training and fine‐tuning the AD model. First, an
ML/DL model must be selected. In industrial scenarios,
and considering the time‐series data generated in such
scenarios, good options are the CNN or LSTM models. On
the one hand, these algorithms can model data patterns of
higher complexity than the ML approach. On the other
hand, LSTM and CNN models handle time‐series data out
of the box, which is not possible using simpler ML models.
Then, a typical second task is to select the range of the
hyperparameters used to train and fine‐tune the model.
Finally, when using a semi‐supervised approach based on a
regressor model, it is also required to compute a threshold
or set of thresholds from which a sample will be classified
as abnormal. In general, the z‐score offers good properties
to compute such thresholds.

5. Validation. In this step, the model trained in the previous
step is validated. To this end, proper metrics need to be
chosen. In particular, precision, recall, and F1‐score are
widely used metrics in AD tasks. Finally, it is required to
analyse the obtained result to check if they are appropriate.

Despite the previous steps, the core of our proposal is the
introduction of the interpretability step, together with the

TABLE 2 Desirable properties of interpretable mechanisms and their expected option in industrial scenarios.

Property Description What is expected in industrial scenarios?

Expressive power Refers to the mechanism by which the decisions reached by the models are interpreted Easy to understand

Translucency Relationship between the interpretability mechanism and the model and its parameters Low translucency

Portability ML/DL models range applicable to the interpretability mechanism High portability

Algorithmic complexity Time required to apply the interpretability mechanism Low algorithmic complexity
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contribution to the Feature Extraction and Anomaly Detection
Method steps. In particular, the new interpretability step
combines the previously extracted features and the computed
threshold to figure out the potential causes of the anomalies.
Then, different causal relationship discovery techniques are
applied to discriminate between effects and causes. This step
limits our solution to environments whose devices generate
time‐series data with cause‐effect relationship. Regarding the
contribution to the Extract Features step, we apply autocor-
relation and Discrete Fourier Transform (DFT) techniques and
extract the dominant coefficients. Besides, we propose a
technique to filter outliers when computing the error between
the ground truth and the values predicted by the ML/DL
model. Without such outliers, we can compute a more robust
threshold to determine whether a specific sample is normal or
abnormal.

In the following subsections, we detail the modification
proposed to the Feature Extraction and Anomaly Detection
Method. Furthermore, we also introduce the proposed
approach to determine the root cause of the anomaly.

4.1 | Feature extraction

Generally, in their task of controlling and monitoring equip-
ment, industrial devices perform repetitive actions. Therefore,
the feature extraction is carried out by means of two tech-
niques that exploit that behaviour. First, we apply the auto-
correlation function to a window so as to extract higher‐order
features. The formal definition of autocorrelation is shown in
Equation (1).

autocorrxw;k¼
Pw−k

i¼w−Wþ1ðxi − bxÞðxiþk − bxÞ
Pw

i¼w−Wþ1ðxi − bxÞ2
ð1Þ

where k is the lag introduced, W is the length of the window,
xw is the value of x at instant w, and bx is the mean of the x
values in the window.

Then, we use the DFT applied to a window to extract
higher‐order features. In particular, DFT provides an easy way
to convert a signal from time to frequency domain. The formal
definition of DFT is shown in Equation (2).

DFTxw;k ¼
Xw

j¼w−Wþ1

xje−2πi
W kðj−ðw−Wþ1ÞÞ ð2Þ

where xw is the value of x at instant w and W is the total
number of samples.

Once those two techniques are applied to a window, we
suggest an approach based on considering the dominant values
of the output of each technique. In particular, the dominant
values of the autocorrelation technique give an idea of how
similar is the time‐series signal with the same signal in the
future. Regarding the DFT technique, the dominant values or
frequencies correspond to frequencies with the highest

amplitudes in the signal. Assume that an anomaly originated by
a cyberattack in industrial scenarios will cause an alteration in
these values.

4.2 | Anomaly detection method

This step is in charge of selecting the proper model, its
hyperparameters, training and fine‐tuning the models, and
selecting the threshold to detect anomalies. In particular, we
propose to select the threshold based on the z‐score of pre-
diction error. First, the error of each sample between the
ground truth and the predicted result in the training dataset is
computed. Then, the mean (μe) and standard deviation (σe) of
these errors are computed. Next, the error for each sample in
the validation dataset is computed, and finally, to normalise the
errors, the mean (μe) is subtracted from the validation pre-
diction errors, ev, and it is divided by the standard deviation
(σe) as shown in Equation (3).

ze ¼
ev − μe

σe
ð3Þ

Based on this metric, we propose to select the largest z‐
score as the threshold. This threshold will serve to discrimi-
nate between normal and abnormal samples. However, the
main drawback of this approach is that it includes the error
outliers in the computation of the highest z‐score value. To
overcome this limitation, we propose using the Inter‐Quartile
Range (IQR), which is a more robust metric in the presence
of outliers [29]. The IQR is computed by subtracting the first
quartile of the z‐score, q1, from the third quartile of the z‐
score, q3 as shown in Equation (4).

IQR¼ q3 − q1 ð4Þ

Since we are not concerned about potential outliers with
very small values, we compute the threshold as a function of
IQR and the third quartile of the previously computed ze as
shown in Equation (5). This method helps to ignore outliers
present in the data during the threshold selection.

threshold ¼ q3 þ 1:5 ∗ IQR ð5Þ

4.3 | Interpretability

Here, some of the previous steps are taken into account to
make the trained model interpretable. The proposed inter-
pretability method is based on figuring out which is the specific
sensor/actuator that is affected by the anomaly. For example,
suppose that a cyberattack aims to alter the behaviour of a
reactor. In that case, this method will inform us not only that
the cyberattack is taking place but also that it is also affecting
the reactor. In this way, the plant operators will be able to
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invest time and effort in mitigating the cyberattack by putting
all their efforts into the reactor.

As explained before, an anomaly is detected when the
deviation between the actual and predicted values of any of the
feature exceeds a certain threshold. In this case, that deviation
would also contribute to interpret what is the cause of the
anomaly. However, the fact of using a feature extraction
scheme prevents us from using a naive approach and, there-
fore, forces us to use a procedure where the different previ-
ously calculated features are combined.

To solve the aforementioned problem, we propose
grouping features in different sets depending on the original
feature from which they were derived. In other words, if we
have a specific feature, x, we consider it together with the
autocorrelation features obtained from this feature, xautocorr,
and the frequency features obtained from it, xDFT. In this way,
when interpreting which is the sensor/actuator affected by the
anomaly, our system will report the sensors/actuators where at
least one of their related features exceed the threshold. After
carrying out the AD Method step, the features that exceed the
threshold will be considered as the affected ones.

However, we need to figure out the relationship between
these affected features to determine the original cause of the
anomaly. Therefore, we propose to build a graph that repre-
sents the relationship between those features. To build the
adjacency weighted matrix representing the graph, we use the
Distance Correlation (dCor) for three reasons. The first one is
its suitability to detect novel and non‐linear relationships [30].
The second is the lower asymptotic time complexity of dCor
versus other techniques. Specifically, dCor is Oðn2Þ [31], being
n the number of samples, whereas the time complexity of
Maximal Information Coefficient(MIC) is Oðn2:4Þ [32] and the
time complexity for Heller‐Heller‐Gorfine (HHG) is
Oðn2 log nÞ [33]. The third reason is that dCor is not only a
dependence test; it also returns the linear and non‐linear as-
sociation between two features, allowing us to establish the
relationship between them in a scenario under attack. None-
theless, the constructed graph presents two drawbacks. The
first one is that the graph will be fully connected, since all the
similarities will be greater than 0. Additionally, it will also
represent the underlying similarity of the normal behaviour, in
which we are not interested. The second drawback is that the
resulting graph is undirected, and, therefore, we cannot
distinguish which feature is the root cause and which features
are the effects.

To solve the first problem, we suggest computing the dCor
values between each pair of features for the normal samples
contained in the validation dataset, using these values as
additional thresholds. Concretely, dCor is a measure of
dependence between two vectors that do not necessarily have
the same dimension. The idea is to calculate the dCor for each
pair of features that exceeded the threshold during the previ-
ous step in each anomaly. However, this measure also includes
any intrinsic relationships associated with normal behaviour.
Therefore, we propose to determine the increase of similarity
between the scenario under attack and the normal scenario. In
this way, if the dCor value of two features from abnormal

samples is lower than the dCor value obtained for these fea-
tures in the validation dataset, that only contains normal
samples, the value of the adjacency matrix in that position will
be 0, removing the link between those features. This approach
tries to relate features based on the similarity in the abnormal
behaviour, ignoring its relationship in normal functioning.

To solve the second problem, we suggest using the well‐
known technique called Information‐Geometric Causal Infer-
ence (IGCI) [34] that, given two features, determines if they are
dependent or not, and in the case that they are dependent,
IGCI indicates which is the cause and which is the effect.
Information‐Geometric Causal Inference is a pairwise causal
discovery model considering the case of minimal noise Y = f
(X ) with f invertible and leverages asymmetries to predict
causal directions.

Table 3 summarises the properties offered by our inter-
pretability mechanism. To be specific, the mechanism offers an
expressive power based on a relationship graph that is intuitive
and easily understandable by operators. Besides, our method
also provides low translucency and high portability, which are
desirable properties in an industrial scenario. Additionally, this
interpretability method is model‐independent. Finally, its
algorithmic complexity is Oðn2 mÞ, being m the number of
features that exceeds the threshold. This algorithmic
complexity arises from the dCor function. Since only a certain
number of features will be considered, and it is not necessary
to perform the process in real time, it is suitable for industrial
environments.

5 | EXPERIMENTAL RESULTS

This section presents the TEP scenario and the dataset
generated from it, detailing all the steps carried out to train our
AD model. In order to perform the experiment, we used the
following tools: Keras [35] to train our DL model, Scipy [36] to
determine if samples came from the same distribution and to
compute correlation and variance study, Causal Discovery
Toolbox [37] to compute the IGCI, and Pingouin [38] to
calculate the dCor values.

5.1 | Dataset

In this work, we validate our proposal using the TEP [6], which
is a chemical simulation testbed widely used in AD. This testbed
introduces anomalies related to faults in the industrial process.

TABLE 3 Properties offered by our interpretability method.

Property Our method

Expressive power Graph

Translucency Low

Portability High

Algorithmic complexity Oðn2 mÞ
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The effect of those faults is the same that can be produced by a
cyberattack targeting industrial devices. In fact, cyberattacks on
these environments are different from traditional scenarios and
they are very specialised attack and mainly consist in alter values
in the industrial process as highlighted in ref. [5].

In the TEP testbed, four reactants in a gaseous state (A, D,
E, and C) are injected into the input pipeline, and they are
combined to generate two products (G and H) and one by‐
product (F). The whole simulation testbed is shown in
Figure 1. The testbed comprises five major modules: reactor,
condenser, liquid‐vapour separator, compressor, and stripper.
The four aforementioned reactants are fed into the reactor
generating products in the form of vapour and unreacted
components. Then, the vapour components are converted into
a liquid employing a cooler located in the condenser. Next,
liquid and unreacted components are injected into the liquid‐
gas separator, where the unreacted components are recycled
and reinjected at the input pipeline. In contrast, the liquid
components are passed to a product stripping unit where the
remaining reactants are filtrated to generate products G and H.

The authors of the testbed generated a dataset and made it
publicly available. However, we used the dataset generated in
2017 by Rieth et al. [39] because it is a much richer dataset with
several simulations per anomaly type. In particular, Rieth et al.
generated four files containing training and test datasets with 20
types of anomalies and training and test datasets free of
anomalies. Each file consists of 500 simulations for each
anomaly type. The training files contain 500 samples in each

simulation, while the test files have 960 samples in each simu-
lation. Each sample consists of 52 features, including 41 mea-
surement variables and 11 manipulated variables sampled every
3 min, giving 25 h for the training datasets and 48 h for the test
datasets. In addition, the authors included a column called
faultNumber that indicates the type of anomaly. A value of
0means that the sample is normal, and values from 1 to 20mean
that the sample belongs to one of the anomalous classes.

5.2 | Dataset preprocessing

First, we split the dataset provided by the authors into training,
validation, and test datasets. The authors provide the dataset in
four different files: faulty training, free‐fault training, faulty
testing, and free‐fault testing. We used the free‐fault training
file as our training and validation dataset. Since there are 500
simulations with 500 samples each, we selected the training
dataset as the first 350 samples of even simulations and the last
250 samples of odd simulations. The validation dataset
comprised the remaining samples: the last 150 samples of even
simulations and the first 250 samples of odd simulations.
Finally, the union of faulty testing and free‐fault testing files
was selected as our test dataset. The first 160 samples (8 h) of
each simulation in the test file were removed since they were
normal samples.

Next, we studied the features to discover spurious and
corrupted values. In this case, we excluded anomalies 3, 9, and

F I GURE 1 Tennessee Eastman process.
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15 because the perturbation introduced was not sufficient to
produce an anomaly [40]. Therefore, all samples labelled with
fault 3, 9, or 15 were removed.

Finally, we computed the mean and standard deviation of
feature values in the training dataset and used those metrics to
scale the training, validation and test datasets.

5.3 | Feature filtering

This section shows the insight obtained after applying the
techniques suggested by the second step of our proposal,
which tries to remove those features that do not contribute to
the model.

First, we performed a correlation study to discover if data
leakage exists between the features and the label in the dataset.
To compute the correlation, we used Pearson's correlation
coefficient. In this specific case, nine pairs of features are
correlated above the 90%, being XMV_7 and XMEAS_12 and
XMV_8 and XMEAS_15 the most correlated features with
99.99%. However, we did not observe a high correlation be-
tween any of the features and the label (faultNumber in this
case). In fact, the highest correlation that we found was
15.39% with XMEAS_22 feature. Because of the lack of high
correlation between the label and features, we concluded that
data leakage did not exist, and the problem is sufficiently

complex to apply advanced ML/DL techniques. Consequently,
we did not remove any feature in light of these results.

Second, we studied the variance of the training dataset to
find out features whose values did not change in the whole
dataset. Figure 2 shows the 10 features with the lowest vari-
ance. In this case, we can observe that all features suffer a
change in their values. Therefore, in this stage, we did not
remove any feature.

Finally, we performed a study regarding the statistical dis-
tribution of features between the training, validation, and test
datasets. This step is needed because ML and DL techniques
are only applicable when the statistical distribution between the
datasets is similar. The Kolmogorov–Smirnov (K‐S) test is a
good technique to measure the similarity between distributions,
which is computed using the Empirical Cumulative Distribu-
tion Function (ECDF). The closer K‐S statistic is to 0, the
more likely it is that both features are drawn from the same
distribution. In this specific case, we observed that the features
from all datasets were generated from the same distribution. In
fact, the highest K‐S statistic found was 0.061, and it was re-
ported by the XMV_9 feature, followed by the XMEAS_19
with a K‐S statistic of 0.059. Figure 3 shows, for the feature
with the highest K‐S statistic, the empirical cumulative distri-
bution from which the K‐S test was computed, the K‐S sta-
tistic itself, the histogram, and the value over time. As can be
observed, the ECDF of the different datasets are similar.
Furthermore, the histograms and the measures over time of all
the datasets are also similar.

5.4 | Feature extraction

This step applied the autocorrelation and DFT techniques to
extract higher‐order features that help the model to discrimi-
nate between normal and abnormal behaviour. These tech-
niques were applied over a window of data. The three
dominant frequencies obtained from the DFT, together with
the three dominant coefficients returned by the autocorrelation
technique, were added to the dataset. The size input window of
these techniques was a hyper‐parameter that will be shown in
the next section. After applying this step, the dataset containedF I GURE 2 The 10 features with the lowest variance.

F I GURE 3 Empirical cumulative distributions, histograms, and measures over time of the two features with the highest K‐S statistic for the training,
validation and test datasets.
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364 features. In particular, the original dataset contained 52
features, and each technique mentioned above (autocorrelation
and DFT) generated 156 features (3 values for each of the 52
original features). Finally, we computed the mean and standard
deviation of these features from the training dataset to scale
the training, validation, and test datasets since the new features
were in different ranges.

5.5 | Anomaly detection method

First, we considered models dealing with time‐series data, such
as LSTM or 1D‐CNN. In fact, we chose those two models and
let the fine‐tuning process decide which of both achieved the
best performance, that is, the lowest reconstruction error over
the validation dataset. The selected models received a sequence
of sensor data as input and predicted the value for those
sensors 6 minutes (two timesteps) in the future.

Second, we defined the hyperparameters and their range to
be tested during the fine‐tuning process. The hyperparameters
and their range can be seen in Table 4.

Third, we performed a random search to determine the
best hyperparameters combination. Strictly speaking, a grid‐
search strategy is the best approach. However, the large
number of hyperparameters combinations we had would
require a considerable amount of time to accomplish this task.
We selected a random combination of hyperparameters and
trained the model with the training dataset to perform the
search. The number of epochs of each training was set to 1
500, and an early stopping procedure was configured to stop
the training if the validation error did not decrease for 150
epochs. Once the training is finished, the mean squared error
of the validation dataset is computed. The total number of
random combinations was configured to be 50. The final

hyperparameters selected were those that achieved the lowest
mean square error over the validation dataset.

Table 5 shows both the model architecture and its hyper-
parameters that achieved the lowest reconstruction error over
the validation dataset. The model was trained with the Adam
optimiser. The optimal learning rate was 0.001, and the optimal
window sizes used with the model and feature extraction were
20 and 10 respectively.

Fourth, once the model was trained and fine‐tuned, we
used the validation dataset to compute the z‐score. To do this,
we computed the error between the predicted value of each
sensor in the next timestep and its actual value in the training
dataset. Then, we computed the mean and standard deviation
of these errors, and they were used to scale the prediction
errors in the validation dataset. Next, to ignore the potential
outliers, we used Equation (5) to compute the final threshold.
Finally, we selected the highest z‐score value among all fea-
tures, as explained in Section 4.

TABLE 4 Set of hyperparameters tested.

Hyper‐parameter Values tested

Type CNN, LSTM

Numbers of CNN layers 2, 3

Numbers of LSTM layers 2, 3

Number of dense layers 1, 2

Number of CNN neurons 128, 256, 512

Number of LSTM neurons 128, 256, 512

Number of dense neurons 512, 1024

CNN kernel size 3, 5

Dropout 0, 0.5, 0.7

Learning rate 0.001, 0.003

Activation function ReLU, LeakyReLU

Sequence input length (feature extraction
and DL model)

10, 20

Abbreviations: CNN, Convolutional Neural Networks; LSTM, Long Short‐Term
Memory.

TABLE 5 Architecture of model that achieved the lowest
reconstruction error over the validation dataset.

Layers Hyperparameters

1D convolutional layer Filters: 256

Kernel size: 3

Padding: Same

LeakyReLU Alpha: 0.5

Max pooling Pool size: 2

1D convolutional layer Filters: 128

Kernel size: 3

Padding: Same

LeakyReLU Alpha: 0.5

Max pooling Pool size: 2

Dense layer Neurons: 1024

Dropout Rate: 0

F I GURE 4 Graph built during anomaly 4.
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5.6 | Interpretability

In this step, we grouped the original, autocorrelation, and
frequency features by the sensor/actuator from which they
were obtained. In this way, we grouped the features in 52 sets
containing seven features each. Each set represents one
particular sensor/actuator being monitored and contains one
feature from the original dataset, together with three auto-
correlation features and three frequency features extracted
from the original feature. Then, we established that when any
of these six features exceeded the threshold, the anomaly
affected that sensor/actuator.

Additionally, we computed the dCor values between each
pairs of feature in the validation dataset. This served to
construct the adjacency matrix to build the relationship graph
in further steps. To speed up this process, we only used 1000
samples to compute the dCor for each pair of features.

Then, when an anomaly was detected, we created a batch of
sampleswith a size large enough to contain representative data of
the relationship between features during this anomaly, for
example, 2000. Toprevent large computation time,we computed

the 10 features that exceeded the threshold more frequently.
In case that more than 10 features exceeded the threshold with
the same frequency, all these features were considered. Next, to
build the relationship graph, we only considered those pairs of
features whose dCor value exceeded their corresponding
validation dCor. This process is intended to remove the under-
lying similarity of the normal behaviour. Finally, we used IGCI
for each pair of features to determine which of them is the cause
and which is the effect. An example of these cause/effects graph
can be seen in Figure 4, where the relationship between fea-
tures during the anomaly 15 is showed. In this example, we can
see that the nodes of XMEAS_6, XMEAS_7, and XMEAS_29
are presumably the causes of the anomaly 4.

5.7 | Validation

First, we defined the metrics to measure the detection per-
formance of our implementation. We used Precision, Recall,
and F1‐score, which are the common metrics to measure the
detection performance in AD.

TABLE 6 Recall rates for the different works.

#
FCNN
[20]

DBN
[14]

GAN‐DBN
[14]

GAN‐SRCC‐DBN
[14]

GAN‐PCC‐DBN
[14]

GAN‐MI‐DBN
[14]

FCNN
[21]

IPCA
[15] Ours

0 0.21 0.941 0.989 0.997 0.955 0.994 ‐ ‐ 0.9575

1 0.98 0.978 0.997 0.997 0.996 0.993 1 1 0.9917

2 0.99 0.951 0.981 0.998 0.984 0.985 0.9951 0.9954 1

3 0.25 0.208 0.241 0.330 0.402 0.283 ‐ ‐ ‐

4 0.98 0.972 0.983 0.992 0.988 0.977 1 1 1

5 0.98 0.936 0.938 0.967 0.974 0.971 1 1 1

6 1 0.992 0.999 0.999 0.997 0.991 1 1 1

7 1 0.957 0.971 0.973 0.981 0.971 1 1 1

8 0.98 0.934 0.943 0.950 0.954 0.935 0.9806 0.9846 0.9990

9 0.27 0.191 0.201 0.422 0.410 0.280 ‐ ‐ ‐

10 0.89 0.946 0.962 0.965 0.974 0.961 0.9396 0.9157 0.9542

11 0.94 0.948 0.948 0.971 0.955 0.970 0.9720 0.9567 0.9838

12 0.99 0.965 0.971 0.993 0.990 0.994 0.9869 0.9978 0.9997

13 0.96 0.917 0.931 0.957 0.940 0.955 0.9578 0.9623 0.8982

14 0.98 0.927 0.934 0.944 0.948 0.920 0.9997 1 1

15 0.31 0.471 0.510 0.633 0.552 0.603 ‐ ‐ ‐

16 0.92 0.775 0.907 0.924 0.919 0.902 0.9541 0.9570 0.9926

17 0.98 0.780 0.822 0.935 0.901 0.926 0.9593 0.9684 0.9032

18 0.98 0.914 0.943 0.955 0.961 0.949 0.9415 0.9515 0.8107

19 0.90 0.945 0.959 0.982 0.970 0.981 0.9918 0.9917 0.8669

20 0.91 0.881 0.900 0.952 0.932 0.9600 0.9362 0.9650 0.8804

Overall 0.8285 0.8347 0.8586 0.8970 0.8915 0.8810 0.9773 0.9792 0.9577

Note: Bold values indicate which approach achieved the best performance.
Abbreviations: DBN, Deep Belief Network; FCNN, Fully Connected Neural Networks; GAN, Generative Adversarial Network; IPCA, Interval PCA.
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To compute these metrics, and considering that our
approach is semi‐supervised, we converted the labels of the
TEP dataset, that is, the faultNumber column, to binary, being
0 a normal sample and 1 an abnormal sample. Then, we
evaluated our system with the test dataset. When any of the
features of a sample exceeded the threshold previously
computed, we predicted that sample as class 1 (abnormal).
Otherwise, the sample was predicted as class 0 (normal).

Second, we compared our work with the literature. In
particular, Table 6 shows the recall rates per anomaly type
achieved by different works. It is worth mentioning that we
only have compared with those works that offer a recall rate
and break down the results by anomaly type. For this reason,
the solutions presented in refs. [17, 26], and [18] are not
considered in this section.

As can be seen, our system achieved the best result in the
majority of anomaly types. To be specific, we achieved the best
results in 10 of them (2, 4, 5, 6, 7, 8, 11, 12, 14, and 16). In
contrast, the solutions presented in refs. [15, 21] are the second
and third that achieved the highest number of best results with
the anomaly types 8 and 6 respectively. Finally, the solutions
presented in [14, 20] achieved the best result in the anomaly
types 4 and 2 respectively.

In terms of the general result, the solution in ref. [15]
achieved the best result with a recall of 0.9792, followed by the
solution proposed in ref. [21] that achieved a recall of 0.9773.

Our solution is located in the third position achieving a recall
of 0.9577. This may be due to the anomalies 17, 18, 19, and 20,
where our system achieved the lowest results.

Finally, considering all anomalies, our system presents an
excellent precision rate with a result of 0.9974, a recall rate
above the average of the other works, as we saw previously,
with a result of 0.9577, and an F1‐score of 0.9771.

However, most of the related works were developed
following a supervised approach or, at least, a supervised
approach was used during the training of one part of the
models. To be specific, only our system and the solution
proposed in ref. [15] followed a purely semi‐supervised
approach.

Additionally, none of the works in the literature focussed
on AD provides information about the sensors or actuators
where the anomaly is produced. On the one hand, supervised
approaches only indicate whether an anomaly exists. In the
best case, they can inform about the probability of each type of
anomaly to occur. On the other hand, IPCA, which is a semi‐
supervised approach, is based on PCA that performs a
dimensionality reduction process, thus preventing the identi-
fication of the point where the anomaly is produced. Besides,
solutions focussed on fault diagnosis such as refs. [17, 18] do
offer information about where the fault is produced. However,
those solution have a significant limitation. Specially, both
solutions selected a subset of features to develop their

TABLE 7 Anomalies with its description and the potential causes.

# Anomaly description Causes of anomaly Feature description

1 A/C feed ratio, B composition constant XMEAS_9 Reactor temperature

2 B composition, A/C ration constant XMEAS_30 Component B (purge gas analysis)

4 Reactor cooling water inlet temperature XMEAS_6 Reactor feed rate

XMEAS_7 Reactor pressure

XMEAS_29 Component A (purge gas analysis)

5 Condenser cooling water inlet temperature XMEAS_30 Component B (purge gas analysis)

6 A feed loss XMV_3 A feed flow

7 C Header pressure loss‐reduced availability XMEAS_41 Component H (product analysis)

8 A, B, and C feed composition XMEAS_21 Reactor water temperature

10 C Feed temperature XMEAS_7 Reactor pressure

XMEAS_13 Separator pressure

XMEAS_16 Stripper pressure

XMEAS_41 Component H (product analysis)

11 Reactor cooling water inlet temperature XMEAS_9 Reactor temperature

XMEAS_29 Component A (purge gas analysis)

12 Condenser cooling water inlet temperature XMEAS_16 Stripper pressure

13 Reactor kinetics XMEAS_20 Compressor work

XMEAS_21 Reactor water temperature

14 Reactor cooling water valve XMEAS_9 Reactor temperature

XMEAS_41 Component H (product analysis)
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approaches, invalidating their results in terms of determining
causes of faults.

In contrast, our system is designed with interpretability in
mind and considering all the sensors/actuators in the industrial
setting. Therefore, it can determine the actuator/sensor
affected by the anomaly and their causes and effects.

Table 7 shows the features that presumably caused the
anomalies. The anomaly 15–20 were ignored because they are
not documented and, therefore, we cannot link the root of the
anomaly with the features. In contrast, anomalies 1–15 were
considered, and for each one, Table 7 shows its anomaly
number, description, features that caused the anomaly, and its
description.

6 | CONCLUSIONS AND FUTURE
WORK

This work presented an interpretable and semi‐supervised
system to detect cyberattacks on industrial control systems.
The core of our proposal is the introduction of a new step
focussed on interpretability that uses dCor and IGCI to
determine the effect of each anomaly. Furthermore, we also
present specific steps to carry out both the feature extraction
and AD model selection. In addition, we validated our pro-
posal using the TEP testbed, which is a simulation testbed
frequently used in AD. Our system achieved state‐of‐the‐art in
most anomaly types and the third‐best overall recall rate. To be
specific, it reached the best result in 11 out of a total of 20
anomaly types and achieved an overall recall rate of 0.9577.

As future work, we contemplate to study the anomalies in
which our system achieved a low recall rate in order to improve
the results. Moreover, we intend to test our modification in
other real testbeds, and we also consider to make a study of
origin of the outliers filtered with the IQR technique. Our
hypothesis is that once we know the origin, we can reduce the
number of outliers. Additionally, we plan to test other inter-
pretability methods to explain the adversarial samples gener-
ated in industrial scenarios.
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