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A B S T R A C T

Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned
with reducing carbon emissions and energy consumption optimization. While this concern increases, the
number of cyberattacks causing sustainability issues in industries also grows. These cyberattacks impact
industrial systems that control and monitor the right functioning of processes and systems. Furthermore, they
are very specialized, requiring knowledge about the target industrial processes, and being undetectable for
traditional cybersecurity solutions. To overcome this challenge, we present SUSAN, a Deep Learning-based
framework, to build anomaly detectors that expose cyberattacks affecting the sustainability of industrial
systems. SUSAN follows a modular and flexible design that allows the ensembling of several detectors to
achieve more precise detections. To demonstrate the feasibility of SUSAN, we implemented the framework
in a water treatment plant using the SWaT testbed. The experiments performed achieved the best recall rate
(0.910) and acceptable precision (0.633), resulting in an F1-score of 0.747. Regarding individual cyberattacks
that impact the system’s sustainability, our implementation detected all of them, and, concerning the related
work, it achieved the most balanced results, with 0.64 as the worst recall rate. Finally, a false-positive rate of
0.000388 makes our solution feasible in real scenarios.
1. Introduction

Green technologies are playing an increasingly significant role in
changing the course of socio-economic world growth. In this revolu-
tion, sustainability is crucial to allow present and future generations
to live in a prosperous and healthy environment. Different industrial
sectors, such as energy, agriculture, or water treatment, are progres-
sively changing the production processes of their industrial plants to
produce goods and services in a sustainable fashion. In this context, the
reduction of carbon emissions, the optimization of energy consumption,
the purification of water resources, or recycling processes are just a few
examples of the impact that green technologies have on our society.

To cope with the challenge of optimizing resources and produc-
ing goods sustainably, the evolution of technology has reached the
industrial area and influenced the rising of the fourth stage of indus-
trialization, also known as Industry 4.0 [1]. In this setting, the next
generation of mobile networks (5G), the big data, or the Internet of
Things (IoT), bring immense opportunities for the realization of sustain-
able manufacturing [2]. 5G, for example, enables millions of devices
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connected simultaneously with minimum latency and high bandwidth,
the big data analyze large amounts of information in just a few seconds
to make intelligent decisions, and IoT connects heterogeneous and
resource-constrained devices to ease the daily life of citizens.

However, the integration of the previous technologies and
paradigms in the industry also opens the door to new cyberattacks
concerning the sustainability of industrial processes [3]. In this respect,
despite most of the reported cyberattacks affecting the industry and
its industrial control systems (ICS) have been focused on disrupting
supplied services or stopping the production of goods, they can also
affect the sustainability of industrial processes. Over the years, several
examples of these cyberattacks have been documented in the literature,
especially those that affect the water [4] and energy [5] sectors.
One of the latest cyberattacks affecting sustainability in water supply
happened on May 29th, 2019. In this cyberattack, a small city of
35,000 inhabitants located in Florida was hit by a ransomware after
an employee of the police department opened an infected email. This
ransomware spread quickly in the local government network affecting
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the local water utility, comprising computer systems controlling pump-
ing stations and water quality testing. In the field of energy supply,
the cyberattacks that took place in Ukraine in 2015–2016 were aimed
at affecting the sustainability of power-grids processes. In particular,
these cyberattacks, performed by a highly skilled group of hackers,
were capable of causing a power outage in three electricity distribution
companies, cutting out the power for more than 200,000 customers.

Traditional cybersecurity systems used to detect intrusions (IDS) are
no longer efficient because they rely on signatures stored in datasets.
Cyberattackers are aware of this and modify the cyberattack vectors
to ensure that their signatures are different from those stored in the
databases. Besides, traditional solutions are not capable of detecting
new families or types of unseen cyberattacks. Nowadays, the current
trend to avoid this problem is the utilization of Anomaly Detection
(AD) systems based on machine learning (ML) and deep learning (DL)
techniques [6–8]. However, these techniques are not without problems.
For example, ML and DL models are vulnerable to evasion attacks [9].
These attacks consist in modifying an abnormal sample that will be
misclassified by the IDS, reaching the industrial device and having an
effect on the physical world.

In this context, we identified several open challenges in the ICS
field because existing anomaly detectors focus on identifying service
disruptions or malfunctions [10,11] and they miss the relevance of
sustainability in the industrial processes. The main reason for this
limitation is the set of features considered in traditional anomaly
detectors based on ML and DL techniques. To be precise, most of the
current solutions consider the original features in the dataset without
using a feature extraction process to generate high-order features that
discriminate between different behaviors in the ICS. Furthermore, the
design of existing solutions is focused on general cyberattacks and does
not minimize the impact of cyberattacks hitting system’s sustainability.
The main reason for treating cyberattacks that affect sustainability
independently from others is that the AD-based IDS can focus on the
specific sustainability properties. Therefore, this approach allows the
detection of a larger number of such cyberattacks than a general AD-
based IDS. This aspect is crucial since sustainability will become a key
aspect in the upcoming years [12]. In fact, some authors point out
a lack of sustainability in Industry 4.0 projects [13]. Therefore, it is
necessary to devote more effort to developing solutions that improve
the sustainability of factories.

In order to meet the previous challenges, the contributions of the
current paper can be summarized in the following points:

• A framework, called SUSAN, for building detectors of anoma-
lies produced by cyberattacks that affect the sustainability of
industrial processes. SUSAN-based anomaly detectors use DL tech-
niques and are flexible enough to be integrated with other detec-
tors specialized in other types of anomalies.

• A set of sustainability-based features that gather the resource con-
sumption routines for modeling the behavior of industrial sensors
and actuators related to sustainability. Cyberattacks impacting
the resource consumption could affect those features and, thus,
the sustainability of some industrial processes.

• Validation of the proposal using the well-known Secure Water
Treatment testbed, SWaT, which was impacted by several cyber-
attacks affecting the sustainability of different water treatment
processes.

The remainder of this manuscript is structured as follows. Section 2
eviews the state of the art in anomaly detection techniques that
etect cyberattacks affecting the sustainability of cloud infrastructures,
mart buildings, and ICS environments. The motivating example of
ection 3 analyzes the cyberattacks affecting the sustainability of SWaT
nd justifies the need for an anomaly detector capable of identifying
ustainability anomalies. In Section 4, we present the design and com-
onents of SUSAN as well as how to integrate a SUSAN-based anomaly
2

detector with others. The set of sustainability-based features proposed
to detect the cyberattacks are detailed in Section 5. In Section 6, we
analyze the performance of a SUSAN-based anomaly detector in the
SWaT testbed. In Section 7, we discuss the framework presented among
its advantages and limitations. Finally, the conclusions and future work
are presented in Section 8.

2. Related work

This section reviews the state-of-the-art solutions aimed at detecting
anomalies generated by cyberattacks affecting the correct functioning
and resource consumption of different computational systems rang-
ing from cloud general computing infrastructures to particular ICS
environments.

2.1. Anomaly detection affecting the energy sustainability of smart buildings

In the field of smart buildings, there is a significant number of
solutions that detect anomalies affecting energy consumption and,
therefore, building sustainability. Miller et al. [14] reviewed solutions
dealing with sustainability in non-residential buildings. They focused
on unsupervised statistical learning techniques, and the most important
reviewed families were: clustering, novelty detection (where anomaly
detection is included), motif and discord detection, rule extraction,
and visual analytics. The authors also analyzed the technologies used
in each of the previous families, emphasizing smart meters, portfolio
analysis, operations, controls optimization, and anomaly detection.

In novelty detection, Araya et al. [15] proposed a contextual
anomaly detection framework that used sliding time windows to aggre-
gate data related to energy consumption and contextual features. Some
of the most relevant features considered in this work were the mean and
median of data values monitored by sensors in each time window, the
standard deviation of data in each window, and differences between
the elements of one and several windows, among others. Moreover,
autoencoder (AE) was used to detect typical consumption patterns and
anomalies. Fan et al. [16] proposed another solution that uses several
AE architectures and training schemes to detect anomalies in the energy
consumption of buildings. The outputs of this work demonstrated that
AE are an alternative when extracting high-level features to detect
energy consumption anomalies. AE provided good performance while
alleviating the data preprocessing workload.

Tasfi et al. [17] proposed a deep semi-supervised Convolutional
Neural Network (CNN) with confidence sampling to detect anomalies in
the electrical consumption of Heating, Ventilating, and Air Condition-
ing (HVAC), lighting, and heat pumps. The authors used two networks,
the first one aimed at the reconstruction and usage of unlabeled data,
while the second one used the labeled data to classify anomalies. To
quantify anomaly detection confidence, a valuable metric in anomaly
detection, the network used a dropout sampling method. The accuracy
of the proposed approach was evaluated and demonstrated with real-
world electrical data from systems such as HVAC, lighting, and heat
pumps.

In conclusion, as in the previous section, the solutions presented in
this section focused on the detection of anomalies that affect sustain-
ability in the smart building context. Thus, the features computed in the
previous approaches do not exploit the repetitive nature of ICS. There-
fore, they do not help to detect cyberattacks affecting sustainability in
an industrial context.

2.2. Detection of anomalies caused by cyberattacks in ICS

The AD paradigm is gaining prominence in the detection of cyber-
attacks in industrial scenarios [8]. In general, AD in ICS is frequently
treated as a time-series classification problem due to its repetitive
nature. In the literature, many existing solutions rely on techniques
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dealing with the time dimension, such as CNN and LSTM Neural
Network.

By way of example, Kravchik and Shabtai [18] considered LSTM
and 1-Dimensional CNN (1D-CNN) to detect anomalies in ICS. New
features dealing with the relationships of current and past values were
proposed by the authors as well. Some experiments concluded that
1D-CNN obtains a better performance and its training is faster than
LSTM. Following the same direction, Shalyga et al. [19] proposed
an automatic optimization architecture based on Genetic Algorithms
(GA) that tested Dense Neural Network (DNN), 1D-CNN, and LSTM
networks. Another solution was proposed by Zizzo et al. [20], where
an IDS based on LSTM neural network was presented. The Cumulative
Sum (CUSUM) method, computed from the residual error calculated
from the ground truth and model predictions, was considered to detect
anomalies. Li et al. [21] proposed a Generative Adversarial Network-
based Anomaly Detection (GAN-AD) for ICS scenarios. The authors
implemented an LSTM network in the core of the GAN-AD to capture
the distribution of the multivariate time series of sensors and actuators
under normal conditions in an ICS. Kim et al. [22] also used LSTM
networks, presenting a Sequence-to-Sequence LSTM neural network for
anomaly detection. The LSTM network was trained using data under
normal conditions and used attention mechanisms.

Apart from the previous solutions, which are based on LSTM and
CNN, other DL and ML techniques have been proposed to detect
anomalies in ICS. For example, Grammatikis et al. [23] proposed an
AD system for IEC 60870-5-104 protocol which is commonly used in
industrial settings. Before implementing the AD system, the authors
studied the protocol and its vulnerabilities. The solution monitored
the network traffic and applied filters based on a whitelist in which
all legitimate Medium Access Control (MAC) and Internet Protocol
(IP) addresses were stored. Then, the solution extracted flows features
that were evaluated by three different ML models. In particular, the
models were One-Class Support Vector Machine (OC-SVM), Local Out-
lier Factor (LOF), and Isolation Forest (IF), reaching the latter the
best result in terms of the F1-score. Khraisat et al. [24] presented a
novel ensemble, named Hybrid Intrusion Detection System (HIDS), to
protect sensors and actuators. The approach combined C5 Decision Tree
(C5 DT) classifier and OC-SVM. The proposed ensemble two different
paradigms. In the first stage, the solution employed the Signature
Intrusion Detection System paradigm by means of the C5 DT classifier.
The rules of the classifier were applied to test if a sample was normal or
abnormal. If a particular sample matched an attack rule, the HIDS raises
an alarm. Otherwise, the sample went to the Anomaly-based Intrusion
Detection System stage, where the OC-SVM was used to determine
if the sample was normal or abnormal. Another work is presented
by Caselli et al. [25], where they discussed the possibility of a sequence
of events attack. The authors state that samples in industrial envi-
ronments must be evaluated in a sequence fashion since a particular
valid sequence of events samples can elude the detection system and
damage the industrial infrastructure. Therefore, the authors proposed
a sequence-aware intrusion detection system based on Discrete-Time
Markov Chains (DTMC) that was validated using data from a realistic
scenario. Inoue et al. [26] designed and evaluated an application that
used unsupervised ML to detect anomalies in Cyber–Physical Systems
(CPS). They compared Deep Neural Network (DNN) and Support Vector
Machine (SVM), both adapted to work with time-series data. Gómez
et al. [27] proposed a methodology to generate reliable anomaly detec-
tion datasets by selecting and deploying cyberattacks, capturing their
traffic and computing features. The Electra dataset, which contains
cyberattacks affecting an electric traction substation used in the railway
industry, demonstrated the usefulness of the proposed methodology.
Finally, several experiments with Random Forest (RF), SVM, OCSVM,
IF, and DNN measured the Electra relevance. Kravchik and Shabtai
[28] proposed a DL solution based on AE and 1D-CNN. The authors
filtered features to select those more suitable for the anomaly detection
3

task. Finally, the authors proposed a feature extraction procedure that
computes features on the frequency domain using the Discrete Fourier
Transform (DFT). Elnour et al. [29] presented a novel semi-supervised
architecture based on Dual Isolation Forest (DIF), which uses two IF
models. One of these IF is trained using the normalized raw data, while
the other is trained using a preprocessed version of the data with PCA.
Both models were trained using the normal samples from the training
and test dataset, while abnormal samples were used to create the test
dataset.

It is worth mentioning that, although it is less common due to its
drawbacks, some authors also proposed to detect cyberattacks in an in-
dustrial environment employing a signature-based approach. For exam-
ple, Ghaeini and Tippenhauer [30] proposed a hierarchical monitoring
intrusion detection system (HAMIDS) for industrial environments. The
approach aimed at detecting anomalies at the lower network levels in
an industrial plant. To do so, the data gathered from the sensors and
actuators were aggregated in one point for analysis in further stages.
The proposal was implemented as an extension of the Bro tool, which is
a powerful tool for security monitoring and network traffic analysis. In
this context, the intrusion detection proposed by the authors makes use
of the Bro tool and raises an alarm when a pattern stored in a database
is matched.

Table 1 details some of the most representative proposals in the
literature and compares them with the proposed framework. As can
be seen, there is no anomaly detector in the ICS field focused on
detecting anomalies that affect the sustainability of industrial processes
and plants.

In conclusion, this section has revealed the lack of solutions for
detecting anomalies caused by cyberattacks that affect energy con-
sumption and sustainability of ICS scenarios. Specifically, we have seen
that existing solutions focused on detecting anomalies in ICS scenarios
do not consider the sustainability of ICS. They based on metrics and
characteristics related to the proper functioning of the industrial plant.

3. Case study: Impact of cyberattacks on sustainability in indus-
trial control systems

This section motivates the added value and importance of our
proposal. For this purpose, it uses the well-known Secure Water Treat-
ment testbed (SwaT) [31], which is a fully operational scaled-down
water treatment plant with a small carbon footprint, producing five
gallons/minute of doubly filtered water. This testbed replicates large
modern plants for water treatment, such as those found in cities.

The SWaT testbed is illustrated in Fig. 1 and consists of six processes
that treat the water for its distribution. Process 1 (P1) is responsible for
keeping the raw water tank with enough water to supply the other pro-
cesses. Process 2 (P2) pre-treats the water to ensure acceptable levels
of quality. If the raw water tank in P1 is not of a satisfactory quality
(measured by sensors AIT201, AIT202, and AIT203), the pumps (P201,
P203, and P205) are opened, and chemical dosing is applied to correct
water deficiencies. Once the water is of an appropriate quality, it flows
to Process 3 (P3). At this stage, the undesired materials remaining
in the water are removed through an Ultrafiltration (UF) system by
using a filtration membrane. During Process 4 (P4), any remaining
chlorine is removed by a dechlorination process that uses Ultraviolet
(UV) lamps. The next stage consists in reducing the inorganic impurities
present in the water. To accomplish this task, the dechlorinated water
is pumped into the Reverse Osmosis (RO), which represents Process 5
(P5). Finally, Process 6 (P6) leads to the water being made available
for its distribution.

From the sustainability point of view, SWaT has an optimal water
treatment process. This means that, under normal conditions, resources
(chemical and power consumption) are used in an optimal fashion. If
any external factor, such as a cyberattack, alters resource consumption,
there may be two consequences. On the one hand, lower resource
consumption can result in poor water quality, making it useless for

distribution and, therefore, demanding a new water treatment. On the
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Table 1
Comparison of solutions that detect anomalies affecting sustainability.

Sol. Scenario Sustainability Cyberattack Techniques Features

Araya et al. [15]
and Fan et al. [16]

Smart
buildings

✓ ✕ AE Statistical data from
building sensors

Tasfi et al. [17] Smart
buildings

✓ ✕ CNN Statistical data from
HVAC, lightning
and heat pumps

Kravchik and
Shabtai [18]

ICS ✕ ✓ LSTM and CNN Current and
historical data from
ICS sensors

Shalyga et al. [19] ICS ✕ ✓ GA, DNN, 1D-CNN
and LSTM

ICS sensors time
series

Li et al. [21] ICS ✕ ✓ GAN-AD and LSTM Time series of
sensor and actuators

Grammatikis et al.
[23]

ICS ✕ ✓ OC-SVM, LOF, and
IF

Flow features

Khraisat et al. [24] ICS ✕ ✓ C5 DT and OC-SVM Flow features

Caselli et al. [25] ICS ✕ ✓ DTMC Network packet, log
files, and process
variables

Inoue et al. [26] ICS ✕ ✓ DNN and SVM Time-series data
from ICS sensors

Gómez et al. [27] ICS ✕ ✓ RF, SVM, OCSVM,
IF and DNN

Time-series data
from ICS sensors

Elnour et al. [29] ICS ✕ ✓ DIF Raw and PCA
processed data from
ICS sensors

Current proposal ICS ✓ ✓ LSTM Statistical and
time-series data
from ICS sensors
Fig. 1. SWaT testbed and its processes.
ther hand, high resource consumption can give rise to two issues: (1)
esource wastage, causing monetary losses; (2) over-processed water,
ffecting its quality for distribution and human consumption.

In the SWaT testbed, a total of 41 cyberattacks was deployed.
ost of these cyberattacks were focused on compromising the system

ybersecurity, trying to interrupt the service, or producing water at a
ower rate than required. However, among the cyberattacks launched,
e identified 9 cyberattacks (numbers 6, 11, 19, 20, 22, 24, 28, 38
nd 40 in [31]) compromising the sustainability of the system. More
pecially, these cyberattacks targeted the sensors or actuators managing
hemical dosing or UV lamps. These cyberattacks are detailed below.
4

• Cyberattack 6. This cyberattack targets AIT202, a sensor that
measures the HCl level in P2. The cyberattack consists in setting
the value of this sensor to a fixed value of 6 for 4 min. The goal
of this cyberattack is to decrease water quality.

• Cyberattack 11. It affects the FIT401 sensor and sets its value to
a fixed value of 0 for 9 min. The cyberattack goal is to shut down
the UV actuator, causing a reduction in energy consumption and
resulting in water not suitable for distribution.

• Cyberattack 19. Its objective is the AIT504 chemical sensor, in
charge of measuring the NaCl level of the permeate tank in P6.
The cyberattack sets the value of the AIT504 sensor to a fixed
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value of 16 for 4 min. The goal of this cyberattack is to shut down
the RO process and drain water.

• Cyberattack 20 is similar to cyberattack 19. It also affects the
AIT504 sensor and has the same goal, but this time the value of
the AIT504 sensor is set to a fixed value of 255 for 6 min.

• Cyberattack 22. It affects multiple sensors and actuators. In par-
ticular, the UV lamps actuator (UV401), a chemical sensor in
charge of measuring NaOCl level (AIT502), and the pump sending
dechlorinated water to RO (P501). This cyberattack was executed
for 8 min and consisted of stopping the UV lamps, setting the
value of the AIT502 sensor to a fixed value of 150, and forcing
P501 to remain. The goal of this cyberattack was to damage the
RO process.

• Cyberattack 24. It targets chemical actuators in charge of dosing
HCl (P203) and NaOCl (P205). The cyberattack was launched for
5 min and consisted of retaining those actuators off to change the
water quality.

• Cyberattack 28. It affects the second pump in P3 (P302). The
cyberattack consists in keeping the pump closed during 9:30 h
to stop the input flow in the first tank of P4. Ultimately, the
cyberattack caused a sustainability issue by reducing resource
usage.

• Cyberattack 38. It affects chemical sensors measuring the HCl and
NaOCl levels in P4 (AIT402), and NaOCl in P5 (AIT502). The
cyberattack was launched for 5 min and set both sensors to 260
to drain the water because of overdosing.

• Cyberattack 40. It targets the sensor that measures the water flow
in the tank of P4 (FIT401). The cyberattack was launched for
5 min and consisted in setting the FIT401 sensor value to 0. It
has the same goal as cyberattack 39, that is, to shutdown the UV
process, and send the water to the RO process.

All the cyberattacks that affect sustainability cause an increase in
ater treatment resource consumption and, consequently, significantly

mpact the carbon footprint resulting from the process. To face this
roblem, systems that can detect cyberattacks causing sustainability
ssues must be adopted in industrial environments. However, the most
odern anomaly detection systems capable of detecting specialized

yberattacks are focused on modeling the system’s overall behavior (as
hown in Section 2), which could miss sustainability cyberattacks or
iscover them too late. Moreover, we believe that both alerting on most
evere anomalies and minimizing false positives are critical in anomaly
etection focused on sustainability. Imagine a cyberattack on a water
reatment plant that causes an increase in chemicals that are highly
armful to humans. In this case, the cyberattack needs to be detected
s soon as possible to prevent human poisoning. However, the false-
ositive rate needs to be low so that it will not overwhelm the operator
nd prevent him/her from responding inappropriately.

To overcome these issues, an anomaly detection system is required
hat considers sustainable features such as power consumption and
hemical consumption, among others. Furthermore, due to the phys-
cal nature of industrial systems, sensors and actuators experience a
igh correlation between them. This means that an anomaly detection
ystem focused on sustainability must also detect cyberattacks that
ndirectly target sustainability. An example of this effect is produced
y cyberattack 28, which does not directly affect the sensors/actuators
elated to sustainability. However, it stops the input water flow and,
herefore, decreases resource consumption.

. SUSAN: Sustainability-aware anomaly detection framework for
CS

This section details the design characteristics of the proposed DL-
nabled framework, called SUSAN, for building detection systems of
nomalies caused by cyberattacks that affect the sustainability of in-
ustrial processes. The left-hand side of Fig. 2 shows the modules
5

and components making up SUSAN. In contrast, the right-hand side
depicts the integration of a SUSAN-based anomaly detector with others
oriented to different anomalies.

SUSAN is composed of four different modules that work together
to build sustainability-aware anomaly detectors. These four modules
are: Data Preprocessing, Sustainability-based Features Generation, Model
Generation and Sustainability Anomaly Detector. The Data Preprocessing
module is in charge of cleaning the data, encoding features, generating
training, validation, and test datasets, and scaling the features. The
Sustainability-based Features Generation module filters those features
not suitable to be modeled with DL algorithms and extracts new higher-
order features related to sustainability. The Model Generation module
allows generating the model that will predict anomalies. Finally, the
Sustainability Anomaly Detector module is responsible for making
predictions on new unseen data handling the previously generated
model. The different modules are executed automatically by SUSAN.
However, in certain situations, e.g., to decide the features to remove,
the operator/administrator intervention is necessary. Table 2 shows
the symbols and their definitions used in this section.

4.1. Data preprocessing

The Data Preprocessing module prepares the data for DL tech-
niques. It consists of the following components: Data Cleaning, Features
Encoding, Dataset Generation, and Features Normalization.

The Data Cleaning component receives raw data from existing
databases and cleans them. These databases store the historical values
monitored by sensors and actuators deployed in the industrial scenario.
Each value is labeled to indicate if it comes from a standard system
behavior or if a cyberattack produces it. The type of sensor and ac-
tuator can vary depending on the industrial process. In general, these
databases will store values of electrical consumption, chemical usage,
and other resources consumed, as well as operational information from
pumps, motorized valves, and other electro-mechanical devices used in
the industrial process. To clean the databases, this component explores
the data and removes spurious or corrupted values. After that, it checks
whether the data contain missing values and marks them as non-valid
data. Other techniques such as imputation or directly removing those
columns should be avoided. There are main reasons for this: firstly,
the usage of imputation techniques can lead to inconsistent values in
the industrial domain. One of the most frequent operations to perform
imputation is the mean. However, using the mean over categorical
features produces meaningless values; and secondly, because an explicit
missing data value can provide relevant information about the exis-
tence of anomalies. Using imputation or removing those features can
lead to missing some important information.

The Features Encoding component is in charge of transforming
features to make them suitable for use with DL models. At this point,
the component encodes categorical values of data by applying One-Hot
Encoding (OHE), yielding a binary feature for each different categorical
value. For example, consider a feature collected from an industrial
pump with two possible states: open and closed. After applying OHE,
this feature is replaced by two binary features representing the open
and closed pump states. However, original features are maintained to
process them in further modules.

The Datasets Generation component is in charge of creating the
three datasets that will be used to train and validate the model,
i.e., training, validation, and test datasets. In particular, this component
considers that most features of an industrial control system are time-
dependent, and therefore, the samples cannot be selected randomly to
generate the datasets. This means that the samples included the dataset
will be selected based on their temporal order. In other words, in cases
where authors do not provide a partitioned dataset, the training dataset
will include the first samples, the validation dataset will comprise the
following samples, and the last samples will be selected as the test

dataset.
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Table 2
Math symbols used along Section 4 (in order of appearance in the text).

Symbol Definition Symbol Definition

𝑋 Original dataset 𝜎𝑓𝑒𝑎𝑡2 Standard deviation of
feature 𝑓𝑒𝑎𝑡2

𝑋′ Transformed dataset 𝜇𝑓𝑒𝑎𝑡1 Mean of feature 𝑓𝑒𝑎𝑡1

𝑋𝑡 Original training
dataset

𝜇𝑓𝑒𝑎𝑡2 Mean of feature 𝑓𝑒𝑎𝑡2

𝑓𝑒𝑎𝑡1𝑖 A specific value of
feature 𝑓𝑒𝑎𝑡1

𝜎2 Variance

𝑓𝑒𝑎𝑡2𝑖 A specific value of
feature 𝑓𝑒𝑎𝑡2

𝑛 Number of samples

𝑥 A specific value smaller
than the number of
samples, 𝑛

𝜇𝑡 Mean of each feature of
the training dataset

𝑒𝑢𝑛𝑠𝑒𝑒𝑛 Error of unseen samples 𝜎𝑡 Standard deviation of
each feature of the
training dataset

𝑦𝑢𝑛𝑠𝑒𝑒𝑛 Predicted unseen values 𝑚𝑖𝑛() Minimum function

𝑦̂𝑢𝑛𝑠𝑒𝑒𝑛 Ground-truth unseen
values

𝑚𝑎𝑥() Maximum function

𝑒𝑛 Error normalized 𝑃𝑓𝑒𝑎𝑡1,𝑓𝑒𝑎𝑡2 Pearson correlation
between 𝑓𝑒𝑎𝑡1 and
𝑓𝑒𝑎𝑡2

𝜇𝑒𝑡 Mean of the error in
the training dataset

𝜎𝑓𝑒𝑎𝑡1 Standard deviation of
feature feat1

𝜎𝑒𝑡 Standard deviation of
the error in training
dataset

𝑊 Set of all time windows
({𝑤𝑖 ∣ 𝑖 =
1… 𝑙𝑒𝑛(𝑥) − 𝑙 + 1})

𝐹 Set of selected
statistical functions
(𝑚𝑒𝑎𝑛, 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒1, 𝑚𝑒𝑑𝑖𝑎𝑛,
𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3,
𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒,
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑚𝑖𝑛,
𝑚𝑎𝑥, 𝑠𝑢𝑚 and 𝑟𝑎𝑛𝑔𝑒)

𝑤𝑗 jth element in the time
window

𝑘 Lag for autocorrelation
and DFT

𝜇𝑤 Mean of the time
window

𝑙 Length of the time
window

𝑐𝑜𝑣(𝑓𝑒𝑎𝑡1, 𝑓𝑒𝑎𝑡2) Covariance between
𝑓𝑒𝑎𝑡1 and 𝑓𝑒𝑎𝑡2

False Positive (FP) Number of normal
samples incorrectly
classified

False Negative (FN) Number of anomalous
samples incorrectly
classified as normal
samples

True Positive (TP) Number of anomalies
correctly detected

True Negative (TN) Number of normal
samples correctly
classified as normal
Fig. 2. Modules and components making up the SUSAN framework.
Finally, the Feature Normalization component studies the distribu-
tions of the features to perform the normalization process. If a feature
6

follows a normal distribution, the component applies a standard nor-
malization taking the mean and standard deviation from the training
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dataset. The formal definition can be observed in Eq. (1). However, if
data follow other distributions than normal, the component applies a
min–max normalization. The formal definition can be seen in Eq. (2).
Note that this operation needs to be performed three times, one per
dataset, i.e., training, validation, and test. The goal of the previous
techniques is to convert the values of the dataset that have different
range values to a common scale.

𝑋′ =
𝑋 − 𝜇𝑡

𝜎𝑡
(1)

𝑋′ =
𝑋 − 𝑚𝑖𝑛(𝑋𝑡)

𝑚𝑎𝑥(𝑋𝑡) − 𝑚𝑖𝑛(𝑋𝑡)
(2)

4.2. Sustainability-based features generation

The Sustainability-based Features Generation module contains two
components: Feature Filtering and Feature Extraction.

Feature Filtering studies the features contained in the databases and
selects those most discriminative to detect sustainability anomalies.
This component removes those features highly correlated with the
label and constant features whose value does not change in the whole
database. It is normal and even desirable in industrial systems that
features have a high correlation with other features. For example, when
the water quality output from a raw tank is low, the pumps solving
this deficiency are open. However, the correlation between a feature
and the label (indicating the presence or absence of a cyberattack)
probably points to a data leakage. In order to find the correlation
between each feature, the component uses the Pearson correlation [32]
that is computed using the covariance and the standard deviation of
the features. The formal definition of the Pearson correlation is defined
in Eq. (3).

𝑝𝑋,𝑌 =
𝑐𝑜𝑣(𝑓𝑒𝑎𝑡1, 𝑓𝑒𝑎𝑡2)

𝜎𝑓𝑒𝑎𝑡1𝜎𝑓𝑒𝑎𝑡2
(3)

The covariance measures the joint variability of 𝑓𝑒𝑎𝑡1 and 𝑓𝑒𝑎𝑡2. If
reater values for 𝑓𝑒𝑎𝑡1 correspond to greater values for 𝑓𝑒𝑎𝑡2 or lesser
alues for 𝑓𝑒𝑎𝑡1 correspond to lesser values for 𝑓𝑒𝑎𝑡2, the covariance
s positive. Otherwise, the covariance is negative. The formal definition
f covariance is defined in Eq. (4).

𝑜𝑣(𝑓𝑒𝑎𝑡1, 𝑓𝑒𝑎𝑡2) =
∑𝑛−1

𝑖=0 (𝑓𝑒𝑎𝑡1𝑖 − 𝜇𝑓𝑒𝑎𝑡1)(𝑓𝑒𝑎𝑡2𝑖 − 𝜇𝑓𝑒𝑎𝑡2)
𝑛

(4)

Furthermore, this component also carries out a variance study to
remove those features whose values do not change in the whole dataset.
The formal definition to compute the variance can be seen in Eq. (5).

𝜎2 =
∑𝑛−1

𝑖=0 (𝑓𝑒𝑎𝑡1𝑖 − 𝜇𝑓𝑒𝑎𝑡1)
𝑛

(5)

This component also performs a study of datasets distribution to
remove those features whose statistical distribution is not preserved
across datasets. In particular, it uses the Kolmogorov–Smirnov (K-S)
test [33] to check if two sets of continuous features follow the same
statistical distribution. The K-S statistic quantifies a distance between
the empirical cumulative distribution function of the sample and the
cumulative distribution function of the reference distribution. The cu-
mulative distribution function describes the probability that a feature
𝑓𝑒𝑎𝑡1 with a given probability distribution will be found at a value less
than or equal to 𝑓𝑒𝑎𝑡1𝑖. The empirical distribution function is defined
as shown in Eq. (6).

𝐹 (𝑥) = 1
𝑛

𝑛
∑

𝑖=1
1(−∞,𝑥](𝑓𝑒𝑎𝑡1𝑖) (6)

1(−∞,𝑥](𝑓𝑒𝑎𝑡1𝑖) is determined in Eq. (7).

[−∞,𝑥](𝑓𝑒𝑎𝑡1𝑖) =
{

1 if 𝑓𝑒𝑎𝑡1𝑖 ≤ 𝑥 (7)
7

0 otherwise a
To test whether two cumulative distribution functions 𝐹1(𝑓𝑒𝑎𝑡1) and
2(𝑓𝑒𝑎𝑡1) are probably the same, the K-S statistic is defined as shown

n Eq. (8).

= max
𝑦

(𝐹1(𝑥) − 𝐹2(𝑥)) (8)

If the features under study come from the same distribution, 𝐷 is
lose to zero. Otherwise, the result from 𝐷 will be larger depending on
he dissimilarity between the feature distributions.

Finally, the Feature Extraction component extracts higher-order
eatures from the original ones, trying to add more information to dis-
riminate between normal and cyberattack behavior. Section 5 provides
ore details of the higher-order features proposed for sustainability.

.3. Model generation

The Model Generation module receives the previous preprocessed
ata and creates a model capable of detecting anomalies caused by
yberattacks affecting the sustainability of industrial scenarios. The
ollowing three components make up this module: Anomaly Detec-
ion Model Selection, Model Fine-tune, and Model Trainer Engine and
alidation.

The Anomaly Detection Model Selection component aims to choose
he most suitable model to detect sustainability anomalies. SUSAN
roposes a range of DL regressor models applied to a feature window
ecause it can model more complex behavior than ML techniques.
oreover, these models are suitable to model time-series data. More

pecifically, they model the problem as time-series data regression
nstead of a predictive model based on a statistical summary window
or two main reasons: (1) signals from ICS sensors and actuators follow
temporal pattern that can be modeled with a regressor; and (2) the

doption of both a regression model and a proper threshold provides
nformation about the sensor/actuator causing the anomaly, which
ontributes to the desirable interpretability requirement. Besides, the
nterpretability requirement is usually mandatory in most anomaly
etection systems in industrial environments, since it allows to know
he exact point where the anomaly is produced. This knowledge allows
oth administrators and operators to define different mitigation schema
epending on the point where the anomaly is detected. Among the
ptions proposed by SUSAN, the administrator selects the most suitable
odel according to the needs. The model selected will receive time-

eries data from sensors and actuators (𝑥0, 𝑥1...𝑥𝑛−1) to predict the
equence of data (𝑥𝑛+ℎ, 𝑥𝑛+ℎ+1, 𝑥𝑛+ℎ+𝑚) where 𝑛 is the length of the
equence, 𝑚 is the number of predictions made in the future, ℎ is the
rediction horizon, and 𝑥0...𝑛−1 as well as 𝑦𝑛+ℎ...𝑛+ℎ+𝑚 are the network
nput and output, respectively.

Once the most suitable model is chosen, the Model Fine-tune com-
onent selects a set of hyper-parameters and their respective ranges of
alues to be fine-tuned. The goal of this fine-tuning process is to im-
rove the result achieved by the AD model. The hyper-parameters can
e divided into two groups. The first group contains hyper-parameters
elated to the input data, while the second group includes those exclu-
ively associated with the model. The latter group of hyper-parameters
epends on the model and is defined once the model is set, while
he first group is fixed. This component considers the following three
yper-parameters of the first group: the window length, 𝑛, the timestep
n the future from which the model starts to predict, ℎ, and the number
f predicted timesteps 𝑚. It is worth mentioning that these parameters
mpact the time required to detect anomalies. In the worst case, SUSAN
eeds 𝑛 + ℎ samples to detect an anomaly. Therefore, it is necessary
o find a trade-off between detection and time performance. If 𝑛 is
ncreased, a more complex temporal pattern can be examined by the
L model, but the time needed to detect the anomaly will also increase.

The fine-tuned process trains the model using the training dataset
ith a range of hyper-parameters values to determine the optimal
alues. SUSAN uses grid search to perform an exhaustive search trying

ll the possible values for the hyper-parameters defined. Besides, if the
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number of hyper-parameters and the range of their values is highly
vast, this component can reduce the fine-tune process using the random
earch strategy that tries random values among a list of predefined
alues for the hyper-parameters defined. However, this approach could
ot find the optimal solution. Eventually, the Model Fine-tune compo-
ent will select those hyper-parameters values that achieve the lowest
econstruction error over the validation dataset.

Finally, the Model Trainer Engine and Validation component trains
he selected model and validates it. The training is composed of two
hases. The first one finds the proper threshold to detect anomalies.
or this purpose, the model is trained with the training dataset, and
he threshold is found with the validation one. The threshold is the
aximum of the normalized error between the ground truth and the

alues predicted by the model. The second phase trains the model using
new dataset composed of the training and validation dataset union.
nce the model is trained, the validation phase evaluates the results
chieved by the model using the test dataset. To properly validate the
odel, SUSAN considers the precision, recall, and F1-score metrics.
hese metrics are detailed in Section 6. The use of other metrics such
s accuracy or the Receiver Operating Characteristic (ROC) curve is
iscouraged because they present critical drawbacks. On the one hand,
he ROC curve needs a continuous score assigned to the samples by
he classifier, whereas in our case, the model trained is a DL-based
egressor that outputs not a probability but the feature values in the
ext timestep. Therefore, the use of ROC curve is impractical in our
ystem. On the other hand, AD problems are usually highly imbalanced,
nd accuracy does not objectively show the performance of the AD
ystem.

.4. Sustainability anomaly detector

The Sustainability Anomaly Detector module monitors the unseen
ensor data and determines if they come from a normal system behavior
r a cyberattack. Once the anomaly is detected, this component classi-
ies it depending on the cyberattack point and the affected resource.
his module has two components to accomplish the previous tasks:
hreshold Monitor and Anomaly Classifier.

The Threshold Monitor component receives the model generated
n the previous module and uses it to test unseen samples. In par-
icular, this module computes the error between the predicted values
f the model and the new unseen values as shown by Eq. (9). Once
he error is computed, it is normalized using the mean and standard
eviation computed from the error prediction from the training dataset
n the Model Generation module, as can be seen in Eq. (10). If the
ormalized error exceeds the threshold defined by the Model Trainer
ngine and Validation, an anomaly is detected and passed on to the
ext component. One of the limitations of this module is the number
f false positives that it can report. This phenomenon is common in any
emi-supervised AD solution. Instead of raising the alarm each time an
nomaly is detected, we suggest to overcome this limitation by raising
he alarm when the number of consecutive anomalies detected by this
odule is higher than a specific number determined by the experts.

𝑢𝑛𝑠𝑒𝑒𝑛 = |𝑦𝑢𝑛𝑠𝑒𝑒𝑛 − 𝑦̂𝑢𝑛𝑠𝑒𝑒𝑛| (9)

𝑛 =
𝑒𝑢𝑛𝑠𝑒𝑒𝑛 − 𝜇𝑒𝑡

𝜎𝑒𝑡
(10)

The Anomaly Classifier component classifies the anomaly depending
n the sensor/actuator where it impacts. Besides, this component also
lassifies the anomaly, depending on the resource that is affected by
he cyberattack. This type of classification helps operators and the
dministrator prioritize certain anomalies over others. For example, in
water treatment scenario, anomalies affecting the excess or defect of

hemicals product must be prioritized over other types of sustainability
nomalies (e.g., energy consumption) because it can cause poor quality
ater that ultimately can be distributed in the market and, therefore,
ffect the customers’ health.
8

.5. Anomaly detection ensembler

The Anomaly Detection Ensembler component combines the outputs
f different anomaly detectors to compute a global value. This value de-
ermines with better precision a particular anomaly, or several of them,
ffecting different aspects of the industrial plant. In this work, we focus
n sustainability; however, this module can consider different anomaly
etectors. We highlight three of them: Production, Intrusion, and Fault.
he production anomaly detector is focused on detecting cyberattacks
hat decrease the quality of the goods produced. The intrusion anomaly
etection is centered on detecting general cyberattacks that impact
he system behavior. Finally, the fault anomaly detector is focused
n detecting cyberattacks that break specific devices in the industrial
ystem. The only requirement of the Anomaly Detection Ensembler is
hat the output of the anomaly detectors must a fixed pattern.

In general, the Anomaly Detection Ensembler must receive an
nput vector 𝐴𝐷 of the form of [𝑡𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝑠𝑜𝑢𝑟𝑐𝑒] from each anomaly
etector, where 𝑡𝑠 is the timestamp when the anomaly is detected,
𝑒𝑠𝑢𝑙𝑡 is the computed output of a specific anomaly detector, and
𝑜𝑢𝑟𝑐𝑒 is the system component where the anomaly is produced. Then,
he Anomaly Detection Ensembler can gather all available vectors
[𝐴𝐷1, 𝐴𝐷2,… , 𝐴𝐷𝑛𝑎]), where 𝐴𝐷𝑖 is the value generated by the 𝑖th
nomaly detector deployed in the scenario and outputs a vector
[𝑡𝑠, 𝑎𝑛𝑜𝑚𝑎𝑙𝑦, 𝑠𝑜𝑢𝑟𝑐𝑒]) where 𝑡𝑠 indicates when the anomaly was pro-
uced, 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 indicates the type of anomaly (e.g., sustainability) and
𝑜𝑢𝑟𝑐𝑒 is the element (e.g., a sensor or actuator) where the anomaly
as produced. In addition, the Anomaly Detection Ensembler can
e configured to weigh each input vector in a particular way. The
dministrator defines the weights, and he/she can give more or less
mportance to some specific detectors.

In addition, the Anomaly Detection Ensembler can be configured to
eigh each input vector in a particular way. The administrator defines

he weights, and he or she can give greater or lesser emphasis to some
pecific detectors. Such importances will be defined depending on the
mpact of each anomaly in the industrial scenario. For example, an
nomaly produced in water treatment plant that increases or decreases
he chemical consumption can negatively affect the health of humans
nd can even poison them.

Besides, since the output of the Anomaly Detection Ensembler con-
ains the source sensor or actuator where the anomaly is produced, the
dministrators unequivocally identify the affected point and they can
ocus their efforts on that point to mitigate the impact. This property
eads to cost reduction and the design of more effective and cus-
omized mitigation strategies. These mitigation strategies will depend
n the specific anomaly detected, and they need to be configured
reviously by the administrators. These strategies can be automatic, or
emi-automatic carried out by an operator. The automatic mitigation
trategies comprise all of the cases where the system can handle all the
ituations without human intervention. However, the semi-automatic
itigation strategy is adopted when a particular decision needs to

e taken. In automatic and semi-automatic strategies, the anomaly
etected is shown in the Human–Machine Interface, together with the
itigation strategies configured for this kind of anomaly. Furthermore,

n semi-automatic strategies, all the required steps are shown in the
uman–Machine Interface.

. Sustainability-based features for industrial environments

As previously mentioned, SUSAN uses basic features extracted from
ensors and actuators related to sustainability. Moreover, the frame-
ork generates higher-order features from the basic ones. On the
ne hand, sensors return a resource consumption measure, which can
ake continuous (i.e., watts consumed or pH level) or discrete values
i.e., the lack of particular resources). On the other hand, actuators
ndicate the status of the device that controls resource consumption.
n this case, the actuator mainly returns a discrete value, for example,
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if a pump is open or closed. However, they can also return a continuous
value in some situations, such as the opening percentage of a valve.

Firstly, specific features will be selected from sensors and actuators
that directly impact industrial sustainability, and they will depend on
the scenario where the industrial system is deployed. For example, in
a water treatment plants, the features related to resource consump-
tion measure or dose the consumption of products (i.e., energy and
chemicals) used to treat water. Secondly, given the repetitive nature of
industrial systems, two features are computed to encode the time. To
provide information about the time, the timestamp feature is encoded
in the form of a unit circle extracting two new features representing the
sine and cosine. This time representation eases the learning of repetitive
patterns. Next, SUSAN considers three techniques to extract a set of
statistical and time-series features. All the techniques presented in this
section are applied over a time window, 𝑤𝑖, defined as all the samples
between 𝑥𝑖−𝑙+1 and 𝑥𝑖 where 𝑙 is the length of the window. The value
of 𝑙 depends on the specific scenario, and different values of 𝑙 must be
tested to select the optimal one. As in the Model Generation module, 𝑙
must be chosen carefully due to its impact on time detection. The larger
the 𝑙 selected, the longer it is required to detect an anomaly.

The first technique consists in extracting features from the resource
consumption habits. These new features allow us to discriminate be-
tween normal and abnormal behavior in resource consumption. To
summarize these habits, we use several statistical functions over a time
window. The formal definition can be seen in Eq. (11). These new
features will be computed from the features without OHE applied, and
they will be added to a new database called 𝐷𝐵′ together with the
OHE features. Each set 𝐻𝑎𝑏𝑖𝑡𝑠(𝑖) adds ten new features to each sample
vector 𝑥𝑖.

𝐻𝑎𝑏𝑖𝑡𝑠(𝑖) = {𝑓 (𝑤𝑖) ∣ 𝑤𝑖 ∈ 𝑊 ,𝑓 ∈ 𝐹 } (11)

The second technique is the autocorrelation that is applied over
𝐷𝐵′. The autocorrelation function [34] is useful to find repetitive pat-
terns in time-series data. Autocorrelation is defined as the correlation of
a signal with a delayed copy of itself as a function of the delay 𝑘 (lag).
Eq. (12) shows the formal definition of the autocorrelation function
applied to a window . Once autocorrelation is applied to each window,
we propose to compute statistical measures over the autocorrelation
values for every 𝑘 to summarize the result. In particular, from each
feature in the window, the new features computed will be: mean,
standard deviation, minimum, maximum, sum, and range.

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑤,𝑘 =

∑𝑙
𝑗=𝑘+1(𝑤𝑗 − 𝜇𝑤)(𝑤𝑗−𝑘 − 𝜇𝑤)

∑𝑙
𝑗=1(𝑤𝑗 − 𝜇𝑤)2

(12)

Finally, the last technique is DFT [35] and is also applied over
𝐷𝐵′. DFT is useful to convert each signal from the time domain to
the frequency domain allowing us to incorporate frequency information
into our model. DFT is a mathematical tool that decomposes a discrete
signal into its frequencies. Eq. (13) shows the formal definition of
DFT. Like autocorrelation, once DFT is computed for every feature in
the window, we summarize the result using statistical functions over
the entire DFT vector: mean, standard deviation, minimum, maximum,
sum, and range.

𝐷𝐹𝑇 𝑘 =
𝑙−1
∑

𝑗=0
𝑤𝑗𝑒

− 2𝜋𝑖
𝑙 𝑘𝑗 (13)

We propose these two techniques to capture the repetitive patterns
created by the repetitive nature of ICS. Table 3 summarizes the number
of new features engineered from one basic feature of the original
dataset.
9

Table 3
New engineered features from each single basic feature.

Technique New features

Resource consumption habits 10
Autocorrelation 6
DFT 6

6. Experiments

In contrast to Section 4 where we detailed the high-level design
of our framework, this section describes how SUSAN modules work
in the SWaT scenario. In particular, we focus on the Data Cleaning,
Sustainability-based Features Generation, and Model Generation mod-
ules. After explaining how these modules process the SWaT dataset,
we detail the performance obtained by SUSAN and compare the results
with the approaches presented in Section 2.

6.1. Dataset

The SWaT database contains data from 11 days of operation. Seven
days were under normal operation of the industrial plant, while four
days were under attack conditions. The data stored in the database
contains a snap snapshot of 26 sensors and 25 actuators of the industrial
plant every second. The SWaT database is provided as two Comma-
Separated Values (CSV) files. The first file contains the data for the
normal behavior of the first seven days, while the second file contains
normal and abnormal behavior corresponding with the four days under
attacks. The attacks presented in this file can be classified as follow:

• Single-stage single-point: cyberattacks that target only one sensor
or actuator in exactly one process.

• Single-stage multi-point: cyberattacks that target multiple sensors
and/or actuators in one process.

• Multi-stage single-point: cyberattacks that target one sensor or
actuator in more than one process.

• Multi-stage multi-point: cyberattacks that target multiple sensors
and/or actuators in two or more processes.

6.2. Data preprocessing

The Data Cleaning component cleaned the SWaT database and
selected proper features to be used in the subsequent SUSAN modules.
The features selected and their descriptions are listed in Table 4.

We are interested only in those processes containing sensors or
actuators related to resource consumption; therefore, we discarded P1,
P3, and P6 and focused, instead, on P2, P4, and P5. Specifically, the
P2 features selected were those related to the sensors and actuators
in charge of maintaining the water quality. The quality is guaranteed
by measuring and dosing the following chemical resources, listed with
the features associated with each one: HCL (AIT201, P201, and P202),
NaOCl (AIT202, P203, and P204), and NaCl (AIT203, P205, and P206).
The features named AITXXX are related to sensors, whereas the PXXX
features refer to actuators that open/close pumps to adjust the water
quality. Regarding P4, the features selected were related to the quality
of the Reverse Osmosis (RO) process. We chose the following features
from different sensors and actuators: AIT402 (measures HCl and NaOCl
level), AIT401 (water hardness), P403, and P404 (pumps actuators that
control the sodium bi-sulfate), and UV-401 (monitors the dechlorina-
tion process). Similarly, we selected from P5 the features related to
the measurement of water quality, namely, AIT501 (HCl level in RO),
AIT502 (NaOCl level in RO), AIT503 (NaCl level in RO), and AIT504
(NaCl level in permeate tank).

Regarding the selection of the appropriate samples from the dataset,
some of the cyberattacks included in the dataset do not compromise the

system’s sustainability because they do not affect the selected features,
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Table 4
Features selected concerning resource consumption.

Feature Objective Feature Objective

AIT201 Measure NaCl level AIT401 Measure water hardness in RO
AIT202 Measure HCl level AIT402 Measure HCl and NaOCl levels
AIT203 Measure NaOCl level UV401 Remove chlorine from water
P201 NaCl dosing pump P403 Sodium bi-sulfate pump
P202 NaCl dosing pump (Backup) P404 Sodium bi-sulfate pump (Backup)
P203 HCl dosing pump AIT501 Measure HCl level in RO
P204 HCl dosing pump (Backup) AIT502 Measure NaOCl level in RO
P205 NaOCl dosing pump AIT503 Measure NaCl in RO
P206 NaOCl dosing pump (Backup) AIT504 Measure NaCl in permeate tank
Fig. 3. The impact of the warm-up process on the values of two different features.
Table 5
Cyberattacks that impact the resource consumption.

Cyberattack # Features affected Effect

6 AIT202 Change in water quality
11 FIT401 UV process shutdown
19 AIT504 Set AIT504 value to 16
20 AIT504 Set AIT504 value to 255
22 UV401, AIT502, P501 Damage RO process
24 P203, P205 Change in water quality

28 P302 Stop inflow in the first tank of P4
and decrease the resource
consumption

38 AIT402, AIT502 Water goes to the drain because
of overdosing

40 FIT401 Water goes to RO and UV
shutdown

thus producing abnormal behaviors in the system (in which we are not
interested). Therefore, the samples belonging to these unwanted cyber-
attacks were discarded. The remaining cyberattacks were presented in
Section 3 and are briefly described in Table 5.

Furthermore, the samples collected after a cyberattack were origi-
nally labeled as normal in the SWaT dataset. However, only after the
cyberattack, the system is in abnormal status, and it takes some time
to reach normal behavior. These incorrectly labeled samples produce
spurious false positives, so we decided to remove ten minutes (600
samples) after each cyberattack. In addition, we also observed abnor-
mal values in samples belonging to the first seconds of the dataset.
This is caused by the warm-up process of the industrial system, and
we observed that the values of some sensors and actuators were not
representative. As illustrated in Fig. 3, it took around 80 000 s to
stabilize the values for different features. For this reason, the first
100 000 s of the data were removed.

After labeling the samples as described above, the Features Encod-
ing component encoded the categorical features P201, P202, P203,
P204, P205, P206, UV401, P403, and P404 using the OHE schema,
yielding a total of 14 new features. This process was carried out using
the Pandas 1.1.5 library [36] Next, the Dataset Generation component
10
utilized the last four operational days of the SWaT database as a
test dataset to preserve its temporal coherence. Besides, the first six
operational days after removing the warm-up process were divided as
follows: the first 80% of the samples as the training dataset and the
remaining 20% as the validation dataset.

Finally, the Feature Normalization component normalized the
datasets using a Standard scaler by subtracting the mean for each
continuous feature in the training set, and the resulting values were
divided by the standard deviation. The same mean and standard
deviation computed on the training set were used to standardize both
the validation and the test dataset. This process was implemented using
the Scikit-Learn 0.23.2 library [37]

6.3. Sustainability features generation

The Feature Filtering component studies the correlation between
features using the Pandas library. Fig. 5 depicts the correlation between
features, including the label. As can be seen, the most correlated
features are P205 and P203, with 99.94%. This means that when
SWaT corrects the HCl level in P2, the NaOCl levels will need to be
corrected with a high probability. Concerning the correlation between
the features and the label, we observed that UV-401 is the feature
most correlated with the vector label, with a correlation of 75.10%.
Therefore, we did not find any feature highly correlated with the
label. In conclusion, no feature was removed due to suspicion of
data leakage in the SWaT dataset. Additionally, the Feature Filtering
component executed a variance study to remove those features with
the lowest variance. This study was carried out by using the Scipy 1.5.4
library [38] Fig. 4 shows the result of the study and, in particular, the
features P202 and P404, whose variance is equal to 0, were removed.

Furthermore, the Feature Filtering component determined if the
value distribution of all features is preserved between all datasets using
the K-S test available in the Scipy library. We concluded that all the
continuous features selected in the Data Cleaning component came
from the same statistical distribution. However, we could observe that
the discrete P201 feature values did not preserve the value distribution,
as shown in Fig. 6. Therefore, we removed this feature and all the

features computed previously from it.
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Fig. 4. Features with the lowest variance.

Table 6
Number of new features extracted depending on the technique used.

# of features

Basic features 21
Time-related 2
Resource consumption habits 150
Autocorrelation 1026
DFT 1026
Total 2234

The Feature Extraction component utilized the techniques detailed
n Section 5 to extract new higher-order features. First, the timestamp
as replaced by two new features, the sine and cosine of the time seen
s an angle in degrees. This time representation eases the learning of
egular patterns; and second, we defined a time window length, 𝑙, of
20 s to be used in the remaining techniques. To set the value of 𝑙, dif-
erent values were tested (80, 100, 120, 140), with 120 as the optimal
ne. Next, the Feature Extraction component used Eq. (11) to extract
ew features related to resource consumption habits. In particular, ten
eatures were generated per each basic feature, resulting in a total of
50 new features. These new features were added to a new database,
𝐵′, together with the basic features. Then, the Feature Extraction

omponent applied Eq. (13) and Eq. (12) over 𝐷𝐵′ to extract new
eatures related to DFT and autocorrelation, respectively (6 features for
FT and 6 features for autocorrelation) for each feature in 𝐷𝐵′ except

or the time-related ones, resulting in a total of 2 052 new features. Both
FT and autocorrelation were implemented by means of Numpy 1.19.5

ibrary [39]. After the feature engineering process, the total number of
eatures was 2 234. Table 6 summarizes the new features extracted at
his stage.

Finally, a new variance study was conducted to determine if any
f the values of the higher-order features did not change. The study
eported a total of 610 features to be remove because they remained
nchanged in the dataset. These features were the min, max, and range
f certain features computed from autocorrelation and DFT. Finally, the
ataset is composed of a total of 1624 features.

.4. Model generation

To accurately model the SWaT normal behavior and its temporal
attern, an LSTM model was selected in the Anomaly Detection Model
election component. An LSTM network allows learning the temporal
attern presented in the dataset and making predictions in the future.
he input of the LSTM network was a batch of sequences. Each se-
uence of length 𝑙 represents the evolution of the feature values during
he last 𝑙 timesteps. The LSTM network output is the value predicted
or each feature, ℎ timesteps after the end of the input sequence.

Next, the Model Fine-tune component was in charge of selecting
he optimal hyper-parameters values, and therefore, to improve the
esult of the AD model. In terms of input data hyper-parameters, the
indow length (𝑙) was set to 120 seconds, and it indicates the number
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f samples in the window. This value was selected from a list of
Table 7
Set of hyper-parameters tested. The optimal ones used in the DL model are shown in
bold.

Hyper-parameter Values

Window length (𝑙) [80, 100, 120, 140]
LSTM layers [2,3]
Neurons per LSTM layer [[512, 256, 128],[512, 128], [256, 128]]
Dense Layers [1,2]
Neurons per Dense layer [[100,1624],[1624]]
Activation function [Relu, Sigmoid]

different values ([80, 100, 120, and 140]). The horizon, ℎ, was set to
10 to prevent the model from copying the last input value, and it
indicates the timestep in the future from which the model will start
to predict. Finally, the number of timesteps predicted by the model,
𝑚, was set to 1 because we are only interested in predicting the next
value. In terms of hyper-parameters that depend on the model, a
random-search strategy tried hyper-parameters values randomly and
selected the optimal combination. The fine-tuning process was achieved
by using the training dataset. We monitored the reconstruction error
over the validation dataset to decide the optimal values of the hyper-
parameters. Table 7 shows the hyper-parameters values tested and the
values finally selected to train the DL model.

Finally, the Model Trainer Engine and Validation performed two
training processes. The first training was in charge of finding the proper
threshold. In this case, the LSTM was trained using the training dataset,
and the threshold was computed using the validation dataset. Once
the threshold was computed, the second training was intended to train
the final LSTM model using a new dataset composed of the training
and validation datasets. In particular, this component was ran on a
workstation with 94 GB of RAM, a six-core Intel i7-5930K at 3.5 GHz
with hyper-threading running Linux, and one NVIDIA GeForce GTX
1080 with 8 GB of RAM. The software used to train the model was
TensorFlow 1.12.0 [40] and the Keras library 2.2.4 [41].

6.5. Model validation

The validation process was executed by the Model Trainer Engine
and Validation component using the test dataset to provide new unseen
samples to the model. The validation aims to determine the precision,
recall, and F1-score achieved by our implementation. These metrics are
defined as a function of the values TP, TN, FP, and FN.

In particular, precision, recall and F1-score are defined as follows:

• Precision: Indicates what fraction of the detected anomalies is real
anomalies.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

• Recall: Indicates what fraction of the real anomalies is detected.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

• F1-score: Is the harmonic mean between recall and precision and
is a trade-off between precision and recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Table 8 summarizes the recall rates achieved by the different ap-
proaches focused on the SWaT dataset reviewed in Section 2. We
restricted our study to those solutions that show the detection rate
per cyberattack. As our implementation is focused on the sustainabil-
ity cyberattacks described in Section 6.2 above, we only depict the
recall achieved for those cyberattacks. In general terms, our solution
achieved the most balanced results for all cyberattacks that produce
sustainability issues. In particular, the best recall achieved was 1 for
cyberattack 20, and the worst recall was 0.64 for cyberattack 19.



Sustainable Computing: Informatics and Systems 37 (2023) 100842A.L. Perales Gómez et al.
Fig. 5. Correlation between each pair of features.
Fig. 6. Values of P201 feature measures over the time after removing the first 100 000
samples because of the warm-up process.

However, regarding cyberattack 19, our implementation achieved the
second-best results. By way of comparison, other approaches failed
to detect at least one of the cyberattacks. For example, RNN [19],
OCSVM [26], 1D-CNN [18], and DIF [29] detected cyberattack 24 with
a recall below 0.34. However, our work detected this cyberattack with
a recall of 0.78. Regarding DNN [26], it detected cyberattack 28 with
a recall of 0.03. In contrast, our solution detected this cyberattack with
a recall of 0.93. In addition to sustainability cyberattacks, our anomaly
detector also was able to detect cyberattack 28 with a recall of 0.93.
This cyberattack targeted P302, trying to close it to stop the inflow of
tank T401. Although we focused on sustainability anomalies, all sensors
and actuators are interlinked in an industrial system. In particular,
when the P302 is closed, a decrease in the amount of the chemical
resources is produced, detecting it as an anomaly.

Table 9 shows the precision, recall, and F1-score results achieved
by our solution. Besides, they are compared with some of the existing
solutions. It is worth mentioning that, because of the nonexistence
12
Table 8
Recall comparison between different approaches on SWaT dataset. DNN and OCSVM
are proposed by Inoue et al. [26], RNN is proposed by Shalyga et al. [19], 1D-CNN is
proposed by Kravchik and Shabtai [18], and DIF is proposed by Elnour et al. [29].

Cyberattack # DNN RNN OCSVM 1D-CNN DIF Ours

6 0.95 0.72 0.72 0.90 1 0.92
11 0.99 0.98 1 1 1 0.96
19 0.97 0.12 0.13 0 0.45 0.64
20 0 0.85 0.85 1 0.45 1
22 0.98 0.99 1 1 1 0.97
24 0.92 0 0 0.17 0.34 0.78
28 0.03 0.94 0.94 1 1 0.93
38 0.77 0.92 0.93 0.86 1 0.69
40 0.78 0.93 0.93 1 1 0.74

of sustainability solutions focused on the SWaT testbed, the results
of other approaches show the score achieved for all the anomalies
presented in the SWaT testbed. In our case, to compute the precision,
recall, and F1-score, we only considered the normal system behavior
and the cyberattacks shown in Table 8. Furthermore, we only con-
sidered the results achieved by the Sustainability Anomaly Detector
module. These results will be better if we use the Anomaly Detection
Ensembler, which aggregates different anomaly detectors. In terms of
recall, our work achieved the best result, with a score of 0.910. Re-
garding the precision (0.633) and F1-score (0.747), the results showed
that our solution is suitable to detect cyberattacks that impact the
sustainability of industrial systems.

The scores described above mean that our proposal will alert the
anomalies as soon as possible to reduce the impact, as we established in
Section 5. However, we observed that the false positive rate (FPR) was
particularly low if we considered the fact that anomaly detection occurs
in bursts due to the time dependence present in industrial systems.
To calculate the FPR, we extracted all normal traffic from the test
dataset and found that false positives also happened in bursts. Each
of these bursts can be considered as a single alarm since the behavior
of the system from one instant to the next does not vary significantly.
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Table 9
Result comparison of different solutions using SWaT Dataset.

Solution Precision Recall F1-score

1D CNN [18] 0.968 0.791 0.871
MLP [19] 0.967 0.696 0.812
CNN [19] 0.952 0.702 0.808
RNN [19] 0.936 0.692 0.796
LSTM [20] – – 0.817
DNN [26] 0.982 0.678 0.802
OCSVM [26] 0.925 0.699 0.796
AE Frequency [28] 0.924 0.827 0.873
DIF [29] 0.935 0.835 0.882
Ours 0.633 0.910 0.747

Therefore, if we consider the false-positive bursts as a single alarm,
SUSAN detected 144 false-positive bursts during the 103 h of normal
traffic in the test dataset. This resulted in an FPR of 0.000388, which
makes SUSAN suitable to be deployed in real scenarios.

7. Discussion

The SUSAN framework is aimed at building detectors of anomalies
caused by cyberattacks targeting the sustainability of industrial pro-
cesses. To deal with such anomalies, SUSAN is composed of different
modules and components to help preprocess the data and generate the
proper model used later to make predictions about new unseen data.
We evaluated the framework utility using a dataset collected from the
SWaT testbed, a fully operational scaled-down water treatment plant.

Section 6 showed how the different modules and components of
SUSAN were implemented to work together to detect anomalies related
to sustainability. In general, our implementation achieved the most
balanced results, detecting all the cyberattacks targeting sustainability
with a high recall rate. The solutions in the literature achieved better
recall than our solution, but they always failed to detect almost one
cyberattack. For example, RNN [19], OCSVM [26], 1D-CNN [18] and
DIF [29] failed to detect cyberattack 24. While our solution achieved a
recall of 0.78. Regarding DNN [26], it failed to detect cyberattack 28
while our solution achieved a recall of 0.93. The results obtained allow
our SUSAN implementation to be used in real industrial environments
to detect cyberattacks that target the sustainability of the industrial
systems.

In Section 2, we reviewed the most relevant contributions focused
on anomaly detection, which has mainly focused on general behavior
anomalies caused by cyberattacks. However, SUSAN was designed with
a specific goal: to build sustainability anomaly detectors with the
highest recall. The goal of the SUSAN implementation is to detect
as many cyberattacks as possible despite sacrificing a low degree of
precision.

One of the most exciting characteristics of SUSAN is its generic,
modular, and extensible design. In this work, we integrated our SUSAN
implementation into a water treatment testbed. However, SUSAN is
generic enough to be implemented in any industrial system. Further-
more, SUSAN can be expanded with new modules without affecting the
existing ones. This is especially useful when working with databases
requiring extra preprocessing steps (i.e., a new module that performs
conversion between different units previous to the feature extraction).
Besides, our solution can be used in the Anomaly Detection Ensem-
bler in conjunction with other types of anomaly detectors to increase
detection rates.

Another important characteristic of SUSAN is that, due to the rela-
tionship between all the sensors and actuators in an industrial system,
it can detect anomalies that slightly affect the sustainability of the
industrial system. For example, when the water treated in a water
treatment plant decreases by an anomaly, not only is the industrial
production process strongly impacted, but also the number of resources
(chemical and electricity) decreases. This relationship allows SUSAN
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implementations to detect anomalies that greatly impact other aspects
such as production. For example, cyberattack 28 was intended to cause
an underflow in Tank 101 and an overflow in Tank 301. However, our
implementation was able to detect this cyberattack with a recall of 0.93
due to the resource consumption reduction. However, this connection
is not frequent, and certain anomalies generated in production may
not impact the sustainability of the system. To overcome this issue,
the Anomaly Detection Ensembler can aggregate additional anomaly
detectors to perform a more precise detection.

8. Conclusions and future work

This paper presents SUSAN, an extensible framework to build sus-
tainability anomaly detectors in industrial processes. SUSAN is com-
posed of three different modules that work together to detect cyber-
attacks affecting sustainability. These modules are Data Preprocess-
ing, Sustainability-based Features Generation, Model Generation, and
Sustainability Anomaly Detector. Furthermore, the SUSAN framework
proposes a set of techniques to extract new features related to resource-
consumption habits to help the model discriminate between normal
and abnormal system behaviors. In addition, some experiments were
carried out to demonstrate the feasibility of the SUSAN framework. In
particular, we showed the implementation of the different modules and
components to detect sustainability anomalies caused by cyberattacks
in a water treatment testbed. Our implementation achieved the most
balanced results and detected all the considered cyberattacks causing
sustainability anomalies. Regarding the recall rate, our implementation
achieved a score of 1 as the best recall for the cyberattack 20 and a
score of 0.64 as the worst recall for the cyberattack 19. Taking into
account the general results, our implementation achieved the best recall
with a score of 0.910, an acceptable precision rate of 0.633, and an F1-
score of 0.747. Finally, we figured out that false positives were grouped
on bursts and computed the FPR to check the feasibility of SUSAN
in real scenarios. In particular, SUSAN obtained an FPR of 0.000388
which makes our solution feasible.

In future work, we plan to dedicate efforts in order to improve
the precision rate. Although the precision rate achieved by our im-
plementation is acceptable, a higher precision would help to reduce
the false positives. In addition, to overcome the lack of industrial
datasets focused on sustainability cyberattacks, we plan to generate
such datasets. Finally, another line of work is to extend the variety of
anomaly detectors that can be aggregated by the Anomaly Detection
Ensembler, e.g., the Production Anomaly Detector.
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