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ABSTRACT In recent decades, Industrial Control Systems (ICS) have been affected by heterogeneous
cyberattacks that have a huge impact on the physical world and the people’s safety. Nowadays, the techniques
achieving the best performance in the detection of cyber anomalies are based on Machine Learning and,
more recently, Deep Learning. Due to the incipient stage of cybersecurity research in ICS, the availability
of datasets enabling the evaluation of anomaly detection techniques is insufficient. In this paper, we propose
a methodology to generate reliable anomaly detection datasets in ICS that consists of four steps: attacks
selection, attacks deployment, traffic capture and features computation. The proposed methodology has
been used to generate the Electra Dataset, whose main goal is the evaluation of cybersecurity techniques
in an electric traction substation used in the railway industry. Using the Electra dataset, we train several
Machine Learning and Deep Learning models to detect anomalies in ICS and the performed experiments
show that the models have high precision and, therefore, demonstrate the suitability of our dataset for use in
production systems.

INDEX TERMS Anomaly detection, critical infrastructures, industrial control, industrial control systems,
industry applications, machine learning.

I. INTRODUCTION
Industrial Control Systems (ICS) are in charge of carrying
out the management and supervision of industrial processes
performed by critical infrastructures in industries such as
electric, water, natural gas or chemical [1]. In the last years,
the adoption of IP technologies in industrial devices and
the connection of ICS to the Internet have influenced the
increment of cyberattacks [2]. The most famous cyberattack
affecting an ICS was in June 2010, when the Stuxnet worm
was discovered [3]. Stuxnet spied and reprogrammed indus-
trial systems controlling centrifuges of the Iran nuclear power
plant. Another relevant malware discovered in 2016 was
Irongate, a Stuxnet type malware that was used to hack the
Siemens ICS [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Yu .

The increment of attacks affecting ICS, as well as their
consequences, are influencing the use of Intrusion Detec-
tion Systems (IDS) in the field of ICS. IDS are responsible
for both monitoring the environment in which they act and
triggering alerts in case of detecting suspicious activity or
anomalies in the network traffic. An extensive number of
intrusion detection techniques have been proposed in the
literature to tackle security threats. Nowadays, the techniques
achieving the best performance are based on Machine Learn-
ing (ML) [5] and, more recently, Deep Learning (DL) [6], [7].

The performance of the previous techniques is measured
using datasets that contain relevant data (network traffic,
sensor and actuators logs, or features from previous sources)
of an ICS scenario where several attacks are running. In this
context, the quality of the datasets is key to evaluate the
different detection techniques. However, due to the incipient
stage of the cybersecurity research in ICS, there are several
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open challenges in the creation of such datasets. Among
them, we highlight the following ones:
• The need for a methodology to generate reliable datasets
in ICS. The reduced number of dataset-oriented method-
ologies results in limited availability of ICS datasets.

• The lack of datasets for anomaly detection in ICS con-
taining realistic industrial traffic. The limited number of
realistic datasets hinders research in IDS for ICS since
many of the existing datasets are based on either simu-
lations or laboratories that try to reproduce the reality.

• The reduced number of reliable datasets in specific ICS
scenarios. The high specialization of ICS makes impos-
sible the datasets exchange between different scenarios.
As a result, a dataset obtained from a water management
ICS is not appropriate for smartgrids.

With the goal of improving the previous challenges,
the main contribution of this paper is a methodology to gen-
erate reliable anomaly detection datasets in heterogeneous
ICS scenarios. The proposed methodology is composed of
four steps: selecting attacks, deploying attacks, capturing
network traffic and computing features. As a result of our
methodology, we created a new publicly available ICS dataset
called Electra [8], which has been generated from the net-
work traffic of an electric traction substation running in both
normal and under attack ways. The Electra dataset has been
created in a realistic scenario with industrial devices such
as Programmable-Logic Controllers (PLCs) and a SCADA
system communicated by means of well-known industrial
protocols such as S7Comm and Modbus. Finally, the paper
presents several anomaly detection models based on ML
and DL techniques that are applied on the Electra dataset to
demonstrate its suitability in production systems.

The rest of the paper is structured as follows. Section II
presents the state of the art in relation to existing datasets
as well as ML and DL anomaly detection techniques for
ICS. In Section III we present our methodology to obtain
anomaly detection datasets in ICS. In Section IV, the process
of dataset generation is explained. This section is divided into
the following subsections: subsection IV-A details the testbed
used in the dataset generation and subsection IV-B presents
the implementation details regarding attacks deployment and
traffic capture. In Section V a study of the feature distri-
bution in the dataset generated is presented. In Section VI
the results in anomaly detection performance are depicted.
Finally, the conclusions and future work are presented in
Section VII.

II. RELATED WORK
This section reviews the most relevant works existing in
the literature in the field of datasets and artificial intelligent
techniques for anomaly detection in ICS. A summary of these
works is shown in TABLE 1.

A. DATASETS
KDDCup99 [9] is a widely used dataset to evaluate
anomaly detection techniques. It is an evolution of the

DARPA98 dataset [10] and includes a variety of intru-
sions simulated in a military network environment. Although
KDDCup99 presents important deficiencies (specifically the
duplicity of records in train and test sets [11]) it is still
widely popular when evaluating intrusion detection tech-
niques. The NSL-KDD [12] dataset was created to solve the
KDDCup99 deficiencies in terms of duplicated records in
both train and test sets. These datasets share the same attacks
classified in four categories: DoS (Denial of Service), R2L
(Root to Local), U2R (User to Root) and probing.

CTU-13 Dataset [13] is another dataset oriented to botnet
detection. It contains real traffic captured from the Czech
Technical University and includes malicious traffic from
different bots, merged with normal and background traffic.
Conversely, CICIDS 2017 Dataset [14] is collected from a
simulated scenario with two separate networks: the outside
and inside networks, made up of 4 attacking computers and
14 victim computers respectively.

Unlike traditional networks, in ICS the number of datasets
is limited. In the following, we summarize the most relevant
works found in the literature concerning industrial datasets.

In [15], three datasets for different ICS are provided,
namely Power SystemDataset [16], Gas Pipeline Dataset [17]
andWater Storage Dataset [18]. The first is oriented to power
systems and includes logs from Snort and measurements
from the Synchrophasor. The second focuses on gas pipelines
and includes features from Remote Terminal Units (RTU)
streams. The last focuses in water tank on which three differ-
ent attacks were launched: reconnaissance, false data injec-
tion and Denial-of-Service (DoS) attacks [19].

The Center for Cybersecurity Research, iTrust [20], also
developed several datasets for different ICS. The most impor-
tant datasets they developed are: Secure Water Treatment
(SwaT) [21], Water Distribution (WADI) [22] and Electric
Power and Intelligent Control (EPIC) [23]. The three datasets
contain normal and malicious samples from false injection
attacks. All of them are available upon prior request.

It is also worth mentioning the BATADAL [24] (BATtle
of the Attack Detection ALgorithms) competition, which
is carried out to propose algorithms for the detection of
cyber-attacks affecting industrial environments. This compe-
tition provides participants with a dataset consisting of two
training subsets. The first of them does not contain attacks
and was generated from a simulation running for one year.
The second training subset was collected for 6 months and
contains data captured during the operation of the plant under
several attacks.

In summary, the majority of the ICS-oriented datasets
focus on false data injection attacks, neglecting other harm-
ful attacks like replay attacks that inject legitimate packets
previously seen on the network. This packet injection can
cause serious damage if the packet inter-arrival time is critical
for the system. In our proposed Electra dataset, we have
included three types of attacks: false data injection, replay,
and reconnaissance. As can be seen in TABLE 1, Electra is the
only available dataset that includes replay attacks and the only
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TABLE 1. Comparison of datasets.

based on S7Commprotocol, which is widespread in industrial
applications. In addition, Electra dataset was obtained from a
real scenario, specifically an electric traction station used in
the railway industry.

B. ANOMALY DETECTION
In the literature, several ML and DL solutions have been
proposed to detect anomalies in traditional networks. In this
context, the authors of [26] propose a stacked non-symmetric
deep auto-encoder for feature extraction followed by a Ran-
dom Forest in the classification stage, using KDDCup99 and
NSL-KDD to evaluate it. Regarding botnet detection, authors
of [6] present a novel 5G-oriented self-adaptive cyberdefense
architecture. CTU-13 dataset was used in the experiments
demonstrating that the proposed architecture obtains suffi-
cient classification accuracy in anomaly detection. Another
relevant work using CTU-13 dataset is [27], where authors
present a Mobile Edge Computing (MEC) oriented solution
for 5G mobile networks to detect network anomalies in real-
time. Another work focused on anomaly detection is [28],

where the authors use Fisher Score to select relevant features
from CICIDS 2017 dataset. A novel approach called Hier-
archical Spatial-Temporal features-based Intrusion Detection
System (HAST-IDS) is proposed in [25]. HAST-IDS first
learns the low-level spatial features using a Convolutional
Neural Network (CNN), and then learns high-level temporal
features using Long Short-Term Memory neural networks
(LSTM). DARPA98 is used in HAST-IDS to evaluate the
models. Additionally, a detailed survey of ML and DL meth-
ods applied to intrusion detection in traditional networks can
be found in [36].

Regarding the ICS anomaly detection, an unsupervised
machine learning approach to anomaly detection is proposed
in [29]. They use SWaT dataset to compare two different
methods: Deep Neural Network (DNN) and Support Vec-
tor Machine (SVM). In [30] and [31], the authors present
an approach based on 1D Convolutional Neural Networks
(1D-CNN) and auto-encoders. They apply both methods in
time and frequency domains using BATADAL, SWaT and
WADI datasets. Another unsupervised approach is presented
in [32]. Specifically, the authors propose an unsupervised
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multivariate anomaly detection method based on Generative
Adversarial Networks (MAD-GANs). They use LSTM to
capture temporal correlations of time series distributions and
evaluate the system using SWaT andWADI datasets. Another
study of several ML models in ICS anomaly detection is car-
ried out in [16]. The authors evaluate seven different models
(OneRule, Nearest Neighbor, Random Forests, Naive Bayes,
SVM, JRip and Adaboost+JRip) using the Power System
Dataset. Other relevant works are [33] and [34]. In the for-
mer, the authors propose two approaches based on one-class
classification algorithms: the Support Vector Data Descrip-
tion (SVDD) and the Kernel Principal Component Analysis
(KPCA). In the latter, the authors apply a Bloom filter to
store the signature database used for packet-based anomaly
detection and use an LSTM network to time series anomaly
detection. In both works, the authors use the Gas Pipeline
Dataset to train and evaluate their solutions. Finally, we high-
light [35] where authors present a neural network trained to
detect false data injection and denial of service attacks, using
the Water Tank dataset to evaluate the neural network.

In conclusion, the majority of ML and DL models applied
to industrial environments consider the states of sensors and
actuators or the logs generated by monitoring tools, instead
of network traffic. In this work, we evaluate different ML
and DL models, both supervised and semi-supervised, in the
context of anomaly detection in industrial environments using
features extracted only from network traffic. The models
selected to carry out our evaluation are One-Class SVM,
Isolation Forest, SVM, Random Forest and Neural Network.
To evaluate these models we have used our Electra Dataset .

III. METHODOLOGY PROPOSED
To overcome the lack of ICS anomaly detection datasets,
we propose a methodology to obtain an anomaly detection
dataset consisting of a 4-step process which is detailed in
FIGURE 1. The first step is the selection of the attacks to
be launched on the testbed. In the second step, it is decided
how to launch the attacks and which devices will be affected
by them. The third step is to capture the network traffic
generated by all devices. Finally, the fourth step consists in
computing the features from the network capture and generate
the dataset. The following subsections detail each of these
steps.

A. ATTACKS SELECTION
The main vulnerabilities of control protocols are the lack of
authentication mechanism, data encryption and data integrity
checking. These vulnerabilities allow us to select attacks
based on packet content modification and attacks that can
be launched from unauthenticated nodes. In order to simplify
the selection of attacks, we classify them into the following
categories [37]:
• Reconnaissance attacks: They are aimed at identifying
potential victims within a network. After gaining access
to an industrial network, an attacker needs to perform
a reconnaissance attack to get information about the

FIGURE 1. Methodology flow diagram.

different devices that are in the network and their associ-
ated services. From this information, the attacker usually
plans the next move.

• False data injection attacks: They are aimed at con-
trolling the control devices of an ICS. To achieve this
goal, these attacks are based on sending altered data
through control protocols. False data injection attacks
can be classified depending on the data they alter into:
Command Injection, Response Injection and Parameter
Injection, just to name a few.

• Replay attacks: They are based on retransmitting valid
packets that have been previously seen in the network.
This action can alter the normal reception rate of that
packet in a device or can mislead a device by sending
an unexpected but apparently valid packet to it. In ICS,
these attacks can have as much impact as the false data
injection attacks, but they are harder to detect because
the packet payload is valid.

In particular, we define a specific set of attacks for each
category that is summarized in TABLE 2. For recognition
attacks, we propose to generate malicious packets to scan all
possible function codes in the PLC under attack. In the case
of false data injection attacks, we propose two different set

TABLE 2. Attacks designed.
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of attacks: 1) those that create packets to perform spurious
writes or reads in valid memory addresses of a PLC; 2) those
that maliciously modify existing packets with the goal of
altering the data returned by the slave, forcing an error in the
response returned by the slave, or changing the command
message sent by the master. For replay attacks, we propose to
retransmit packets previously generated by the master or the
slaves.

B. ATTACKS DEPLOYMENT
The attacks must be deployed by introducing a new node into
the control network. This node is in charge of developing the
set of attacks on control protocols and, therefore, it must be
able to create new packets and modify the existing ones. The
deployment period must be long enough to have a represen-
tative amount of traffic from attacks.

C. TRAFFIC CAPTURE
Once the attacks are launched in the testbed and malicious
traffic begin to be generated, the traffic capture is activated.
The capture process comprises the traffic from all devices that
are part of the testbed, and includes both normal and mali-
cious traffic. The traffic capture duration must be sufficient to
deploy all the selected attacks several times over the devices.
The goal of the capture process is to generate rich and varied
network traffic.

D. FEATURES COMPUTATION
The last step is to compute the set of the most discriminating
features for anomaly detection from the traffic capture. In this
step, we have to decide whether to use packet-level features
or flow-level features. Packet-level features are suitable in
industrial scenarios using protocols without security mecha-
nisms such as authentication, encryption and integrity check.
However, when secure protocols are used, an approach based
on flow-level features, computed as aggregations of mea-
surements extracted from a group of network flows, is more
appropriate.

IV. ELECTRA DATASET GENERATION
This section illustrates the configuration of the industrial
testbed and the most relevant implementation details to gen-
erate Electra dataset.

A. INDUSTRIAL TESTBED
An electric traction substation employed in a real high-speed
railway industry is used as our testbed. The main purpose
of this testbed is to allow converting the electric power
of the general network to voltage, current, and frequency
conditions to supply railways or trams. This system can be
used to convert the three-phase alternating current into single
phase with the lower frequency needed for railway electri-
fication systems. To accomplish its task, the Electric Trac-
tion Substation shown in FIGURE 2 has 5 PLCs (1 master
PLC and 4 slave PLCs) and a SCADA system. Addition-
ally, the testbed has a switch (D5) for the interconnection

TABLE 3. Configuration of the devices in the testbed.

of the different devices and a firewall (D4) to protect the
substation from attacks coming from outside. The testbed
devices communicate through control protocols following a
master-slave architecture, where the master initiates the com-
munication requesting some data and a slave replies with the
requested information. The network communication is car-
ried out through the following protocols: Modbus TCP [38],
OPC [39] and S7Comm [40]. The SCADA system consists of
a Nanobox (A1) and an HMI (A4) that communicate through
the OPC protocol. The SCADA acts as a master of both
Modbus slaves A2 and A3. Similarly, regarding the S7Comm
protocol, D1 PLC acts as the master of A1, D2 and D3 PLCs.
TABLE 3 details the IP, MAC and protocol used for each
device.

FIGURE 2. Industrial testbed used to launch attacks and collect network
traffic.

In this work, we focused on the control network protocols,
i.e. Modbus and S7comm, to generate our dataset. It is worth
mentioning that they are the most widespread in industrial
applications. BothModbus and S7Comm have a master-slave
model and work over TCP/IP.

B. IMPLEMENTATION DETAILS
This section describes the implementation details of the set
of attacks, as well as the monitoring and capture of the traffic
generated by them in order to develop the Electra dataset.

1) ATTACKS IMPLEMENTATION
To carry out the attacks, a new device was attached to the
network with a man-in-the-middle (MitM) configuration.
Specifically, this MitM node was configured to implement
the false data injection attacks by poisoning the Address
Resolution Protocol (ARP) table of network devices. In this
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way, theMitM node has access to all the messages exchanged
by master and slave nodes. In particular, in our testbed,
the attacked nodes for the Modbus protocol were A1 and
A3, while the attacked nodes for the S7Comm protocol were
D1 and D2. Note that the attack consisted of intercepting the
communications of legitimate nodes to modify the exchanged
messages, rather than infecting the nodes.

The replay and reconnaissance attacks were implemented
in Python, requiring no additional libraries. In these attacks,
the communication with the other legitimate nodes of the
network was made with the socket class provided by the
Python standard library. However, to carry out the MitM
attacks, two additional libraries were needed:
• Scapy [41]. This library is used to modify the network
traffic that passes through the node that is executing the
MitM attack.

• Netfilterqueue [42]. Allows us to define iptables rules to
redirect all the traffic that matches the rules to a memory
area in user space that can be accessed using scapy.

2) TRAFFIC CAPTURE
As a first step, a port-mirroring configuration was imple-
mented to capture all the packets in the network. To avoid that
packets were dropped during traffic capture, Wireshark was
configured to use a 200MB buffer. After that size, Wireshark
saved the traffic capture in a file on disk. Multiple pcaps files
with a maximum size of 200 MB were generated, being the
whole capture size around 20GB. The traffic capture took
slightly more than 12 hours. During this time, variants of
every attack were repeated several times generating a rich
attack traffic patterns. Once the traffic capture finished, it was
processed to create two independent subsets: one containing
the traffic flowing through the port 102 (S7comm) and the
other containing the traffic flowing through the port 502
(Modbus).

3) FEATURES COMPUTATION
In this work, we propose the set of features listed in TABLE 4.
These features are obtained by considering only the control
protocol and MAC/IP addresses; consequently other header
fields of Ethernet, TCP and IP protocols are discarded.
We propose to include packet-level features, due to its highly
valuable information to detect the majority of the attacks
mentioned in the previous section, including those based on
modifying or injecting data into the industrial network.

4) PROCESSING AND LABELLING
Each subset traffic capture was processed using the Python
scapy library. The script examines all the packets contained
in each traffic capture subset and extracts relevant features
producing as output two Comma-Separated Values (CSV)
files: one for Electra Modbus subset and another for Electra
S7Comm subset. The list of features computed was detailed
in Section IV-B3.
In the traffic capture, each packet may contain several

reads or writes. In order to simplify the dataset, each multiple

TABLE 4. Selected features.

operation message was split into single operation messages.
That is, each entry in the dataset contains only a single
operation. For example, a packet carrying a 100-integer write
operation in the processing phase was split into 100 different
instances, one for each integer write operation.

Finally, to label each sample, designed attacks were config-
ured to establish different marks in unused fields of S7Comm
andModbus protocols. After that, the Python script processes
each traffic capture subset by looking at the field and labeling
the sample according to its mark.

V. ELECTRA DATASET DESCRIPTION
This section examines the feature distribution of each subset
making up the Electra dataset: Electra Modbus and Electra
S7Comm.

A. ELECTRA MODBUS SUBSET
In this section, we explore the distribution of each feature
in the Electra Modbus subset. FIGURE 3 plots the total
number of samples and the number of anomalous samples
(shown by the pattern) for seven features listed in TABLE 4.
The anomalous samples are classified in six anomaly classes
that correspond to the attacks that MitM node deploy in the
testbed. The proportion of each class, included the normal
samples, can be seen in TABLE 5.

TABLE 5. Proportion of each class in Electra Modbus.

As expected and shown in FIGURE 3a and in FIGURE 3b,
the source IP (sip) distribution is different from the source
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FIGURE 3. Modbus features distribution in log scale (total number of samples in plain color and number of anomalous samples shown in squared
pattern). (a) and (c) represent the source IPs and MACs from which the messages have been sent. (b) and (d) detail the source IPs and MACs to which the
messages are sent. (e) details the ten most frequent function codes in the traffic capture. (f) shows the ten most frequent memory addresses in the traffic
capture. (g) details the ten most frequent data in the traffic capture.

MAC (smac) distribution. Similarly, the distributions are
slight different for destination IP (dip) and destination MAC
(dmac), as we can observe in FIGURE 3c and FIGURE 3d.
This is due to the introduction of MitM-based attacks that
hijack a valid IP, while the MAC remains unchanged. This
fact highlights the need of both IP-related and MAC-related
features in our dataset.

Additionally, FIGURE 3a shows that A2 is the node that
sends the greatest number of messages (more than 13million)
followed by A3 (over 2 million), whereas A1 (over 200 000)
is the least active node emitting packets. However, as it is
shown in FIGURE 3c and FIGURE 3d, the main network
destination is A1 (more than 15 million messages). These
distributions of messages for each node are the expected in
a master/slave configuration when the most used operation is
to read register values, as shown in FIGURE 3e.

Another important aspect shown in the four first graphs
of FIGURE 3 is that A1 and A3 are the nodes attacked and,
therefore, only those include anomalousmessages.Moreover,
the MitM node injects a significant amount of messages,
that is over 41 000 messages transmitted considering its IP
address and more than 900 000 considering its MAC address,
and even it receives a higher amount of messages, that is
more than 700 000 considering its IP address and more than

1.4 million considering it MAC address. The large difference
between messages transmitted and received by its MAC and
IP addresses is due to the MitM attack.

In FIGURE 3e, we can observe that read function
codes (fc) are the most repeated, specifically, Read Holding
Register (code 3), Read Discrete Input (code 2) and Read
Input Register (code 4). It can be noted that only the Read
Holding Register function is considered normal, whereas
the other function codes belong to anomalous samples. The
reason is essentially due to two factors. On the one hand,
A2 and A3 are electrical meters that continuously perform
electrical measurements stored in holding registers. From
time to time, these measurements are required by A1, which
uses the Read Holding Register function code to read them.
On the other hand, the attacks design was performed con-
sidering a large number of attacks that can be carried out
in complex scenarios, including read and write attacks over
different types of register and memory addresses, resulting,
in this particular subset, in the presence of a large number of
function codes that are not present in normal traffic. TABLE 6
shows the well-known function name associated with the
most frequent function codes in the dataset.

The distribution of memory addresses (madd) in
FIGURE 3f shows that the most frequent value is 1 followed
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FIGURE 4. S7Comm features distribution in log scale (total number of samples in plain color and number of anomalous samples shown in squared
pattern). (a) and (c) represent the source IPs and MACs from which the messages have been sent. (b) and (d) detail the source IPs and MACs to which the
messages are sent. (e) details the ten most frequent function codes in the traffic capture. (f) shows the ten most frequent memory addresses in the traffic
capture. (g) details the ten most frequent data in the traffic capture.

TABLE 6. Function names of the function codes shown in FIGURE 3e.

by the other memory addresses. These addresses are used by
the PLC to store the electrical measurement until the master
requests them. Additionally, FIGURE 3g shows that among
the most frequent message data, four of them are entirely gen-
erated by attacks (17095, 16256, 17921 and 21620) whereas
two are generated completely by normal traffic in the testbed
(18126 and 65280). The remaining messages data contain
both normal and anomalous samples.

Finally, related to the distribution between normal and
anomalous samples of Electra Modbus, we can observe that
there are about 15 million normal samples and less than
1 million anomalous samples. Such imbalance is character-
istic of anomaly detection datasets.

As a summary, Electra Modbus stands out for having been
obtained from a testbed used in real industry applications,

resulting in the availability of real and not simulated traffic.
In spite of these desirable characteristics in a dataset oriented
to anomaly detection, throughout this section we have seen
how the variety of function codes is rather limited. However,
the anomalous samples contained in this subset have been
obtained from a variety of attacks carried out in real ICS.
The result is that these attacks have generated a wide variety
of traffic with function codes that are not present in normal
traffic.

B. ELECTRA S7COMM SUBSET
In this section, we explore the distribution of each feature
in the Electra S7Comm subset. Similarly to the previous
section, FIGURE 4 plots the total number of samples and the
number of samples belonging to the anomaly class for the
seven features listed in TABLE 4. The network traffic pattern
in this subset has several similarities to the Electra Modbus
subset, mainly because the set of attacks is the same and
both protocols have a master-slave architecture. The anomaly
classes and their proportion can be seen in TABLE 7.
As expected and shown in FIGURE 4a and FIGURE 4b,

the source IP (sip) and source MAC (smac) distributions are
different. In the same way, the destination IP (dip) and des-
tination MAC (dmac) distributions are also slight different,
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TABLE 7. Proportion of each class in Electra S7Comm.

as shown in FIGURE 4c and FIGURE 4d. This behavior,
as it happened in Modbus, is due to the deployment of
MitM-baseed attacks, where the victim IP is hijacked and the
MAC remains unchanged.

Additionally, according to IP distributions, FIGURE 4a
and FIGURE 4b show that D3 and D1 are the most active
nodes sending messages (150 and 145 million messages,
respectively), whereas D2 and A1 are the most passive
(80 million and 5 million, respectively). However, D1 is the
main receiver (over 200 million), while A1, D3 and D2 have
less activity (60 million, 50 million and 35 million, respec-
tively) as shown in FIGURE 4c and FIGURE 4d. These
distributions of messages for each node are the expected in
a master-slave configuration, where the master (D1) controls
the system operation sending write/read messages.

Focusing on the anomalous messages shown in the four
first graphs of FIGURE 4, only D1 and D2 include them
because they are the only attacked nodes. In the case of
the MitM node, it transmits over 2.2 million messages and
receives about 1 million messages. It can be observed in sip
and dip distribution. These attacks are related to the packet
creation (read data, write data and replay valid packets).
However, taking into account the MitM attack, the MitM
node transmits 62 million messages and receives 60 million
messages, as shown in smac and dmac distributions.

In FIGURE 4e, we observe two different types of function
codes (fc): read (150 million operations) and write (230 mil-
lion operations). According the number of anomalies, write
operations account for 3 million, whereas read operations
account for 2.5 million. These anomalies are caused by both
packet creation and packet modification launched by the
MitM node.

Electra S7Comm involves a wide variety of memory
addresses (madd) used in normal write/read operations that
can be observed in FIGURE 4f. The five most common
addresses in the normal traffic of our subset are 4 240, 4 000,
10 560, 8 400, and 800, with 2.7, 2.4, 1.6, 1.6 and 1.6 mil-
lion messages respectively. For these memory addresses,
the number of anomalies are: 121, 71 000, 1 900, 1 400 and
1 400 respectively.

FIGURE 4g shows the most frequent data content in
S7Comm subset. As it can be seen, it offers a greater variety
of normal data than the Electra Modbus. In this case, the most
frequent data content is 0 (166 million and 2 million for
normal and anomalous messages, respectively) followed by 1

(34 million and 100 000 million for normal and anomalous
messages, respectively) and 2 (14 million and 40 000 for
normal and anomalous messages, respectively). Both packets
creation and modification attacks are the responsible of gen-
erating those data contents. The anomalous data is generated
randomly for both attack type, but data in modified packets
deviates slightly from the original packet, whereas data in
created packets is entirely random.

Finally, in relation to the distribution between normal and
anomalous samples of Electra S7comm, we can observe
that there are about 381 million normal samples and about
55 million anomalous samples. Again, such imbalance is
typical in anomaly detection dataset.

As a summary, Electra S7Comm has been captured from a
testbed containing real and non-simulated traffic, including
normal and infected traffic. The Electra S7Comm features
discussed in this section make this subset suitable for use in
anomaly detection using supervised techniques. In addition,
Electra S7Comm includes a great variety of attacks that can
be found in real ICS scenarios and presents a great variety in
the distribution of its features.

C. DIMENSIONALITY REDUCTION
To conclude the description of the generated dataset,
we applied Principal Component Analysis (PCA) [43] and
t-Distributed Stochastic Neighbor Embedding (t-SNE) [44] in
order to visualize the Electra subsets. Bothmethods are useful
for visualization purposes, but PCA also provides dimen-
sionality reduction of the dataset. In this work we applied
both algorithms over all the features included in the Electra
dataset, except the Time feature.

Due to the dataset size and its imbalance, it was required
to extract a balanced subsample suitable for both algorithms.
First, a balanced version of the dataset was created containing
all the original anomalous samples as well as the same num-
ber of randomly selected normal samples. Then, the balanced
dataset was subsampled, extracting a new dataset with a
fraction of the samples (10% for Electra Modbus and 5% for
Electra S7Comm). A preprocessing step was carried out by
applying One-Hot Encoding (OHE) to the categorical data
(MAC and IP addresses), yielding a binary feature for each
different categorical value.

Hyper-parameter tuning is a crucial procedure to achieve a
significant performance. Specifically, in t-SNEwe performed
a grid search over the following perplexity values [20, 30,
60, 100, 130, 160, 200, 300, 400, 600, 700, 900, 1200, 1500,
1700, 2000, 2300]. The selected perplexity was 2300 for
Electra Modbus subset and 600 for Electra S7Comm subset.
With regard to PCA, it does not require hyper-parameter
tuning. In this case we just selected the two most meaningful
dimensions.

The result of applying these algorithms to the Electra
dataset is plotted in FIGURE 5 for Modbus subset and in
FIGURE 6 for S7Comm subset. Regarding PCA in Electra
Modbus, we can see that the normal clusters are focused
on specific locations. In general, the anomalous clusters are
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FIGURE 5. Dimensionality reduction for Modbus subset. Left: PCA algorithm applied over Modbus subset. Right: t-SNE algorithm
applied over Modbus subset. Horizontal and vertical histograms show the distribution along each axis (N = Normal,
F.C.R.A = Function Code Recognition Attack, R.M.A = Response Modification Attack, F.E.A = Force Error Attack, R.A = Read Attack,
W.A = Write Attack, R.P.A = Replay Attack).

FIGURE 6. Dimensionality reduction for S7Comm subset. Left: PCA algorithm applied over S7Comm subset. Right: t-SNE algorithm
applied over S7Comm subset. Horizontal and vertical histograms show the distribution along each axis (N = Normal,
R.M.A = Response Modification Attack, F.E.A = Force Error Attack, C.M.A = Command Modification Attack, R.A = Read Attack,
W.A = Write Attack, R.P.A = Replay Attack).

sufficiently isolated from the normal samples, with the excep-
tion of the top cluster where the attacks of function code
recognition, write, read and replay are mixed with normal
samples. The attacks of response modification and force error
are located in the central cluster, whereas the right cluster
is composed of anomalous samples generated from replay,

write, read and function code recognition attacks. Regard-
ing t-SNE, we can observe the same pattern as in PCA,
i.e. normal samples are located in several clusters isolated
from other clusters. Regarding attacks affecting the response,
there is a cluster in the bottom right corner where force error
and response modification attacks are located. Similarly, the
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replay attacks are located close to the read attacks. This is
because all replay attacks were read messages and, more-
over, they were launched from the MitM node. Regarding
write attacks, they are distributed along the plot in their own
clusters. Finally, in the center right, we can see a cluster
where several types of attacks along with normal samples are
located.

Likewise, the results offered by Electra S7Comm are quite
similar. Regarding PCA in S7Comm subset we can observe
several clusters composed of normal samples. As can be seen,
the anomalous clusters are close to the normal ones. For
example, attacks related to both force error in the response
and response modification are located in the top right cluster,
whereas replay, read and command modification attacks are
located in the left cluster. It is worth mentioning that read
attacks are also located in another cluster in the bottom right
corner. Finally, write attacks are located in the same cluster
that replay attacks. This is due to all replay attacks launched
against the testbed were write messages from MitM node.
On the other hand, in t-SNE plot, we can observe several
normal clusters isolated from the anomalous clusters. As in
PCA, the replay attacks are close to the write attacks due to
the fact that the majority of the replay attacks carried out on
S7Commwas related to writes. In contrast to Modbus subset,
the attacks related to the response, that is, force error and
response modification attacks, are mutually isolated. The for-
mer are located at the top center whereas the latter are located
on the left. Regarding the command modification attacks,
there are two different clusters, the first is located on the left,
close to response modification samples, whereas the second
is located at the top. Finally, the read attack samples have their
own cluster located in the bottom right corner.

In this section we have relied on visualization techniques
such as PCA and t-SNE to explain the separability between
dataset classes. In general, bothmethods show that the normal
and attack samples can potentially be separated in this context
by a suitable classification/anomaly detection algorithm.

VI. EXPERIMENTS
This section describes the anomaly detection experiments
applied on the Electra dataset. These experiments are
intended to show that anomaly detection machine learning
models are suitable for use in real industrial environments.

To address the anomaly detection problem, we studied
two different approaches: supervised and semi-supervised.
In supervised models it is necessary to have a fully labeled
dataset like Electra. On the other hand, semi-supervised mod-
els require only a dataset containing normal samples. There-
fore, to train our semi-supervised models we just need to
remove all the samples belonging to the anomalous class from
the dataset. We have studied fourMLmodels: Random Forest
(RF), Support Vector Machine (SVM), One-Class Support
Vector Machine (OCSVM) and Isolation Forest (IF); and one
DL model, Dense Neural Networks (DNN).

As a previous step to perform the experiments, the dupli-
cated records of the Electra dataset must be removed.

TABLE 8. Samples of normal and anomalous classes in each subset after
removing duplicates.

This initial step is required because control processes fre-
quently repeat the same actions over time and, therefore,
their repetitive nature is also observed in the network traffic,
resulting in a large number of duplicated packets. The number
of records contained in the dataset after removing duplicates
is shown in TABLE 8. It can be observed that the number
of anomalous samples is greater than the number of normal
samples. There are mainly two causes: 1) the large amount
of duplicated records removed and 2) the data content in the
anomalous samples was randomly generated resulting in a
low amount of duplicate records. Due to the large amount of
data contained in the S7Comm subset, a distinction was made
between ML and DL models in the training phase. To train
ML models using the S7Comm subset, only a 10% of the
dataset was used. However, the ML models for the Modbus
subset were trained with all the data available. Similarly,
in the case of DL models all the available data from each
subset (Modbus and S7Comm) was used.

For a correct evaluation of the models, the Electra subsets
were split into train and test sets. The train set was used
exclusively to train the models, while the test set was used
to evaluate them. The partition of the dataset subsets into
train (80%) and test (20%) was made by means of a uniform
random sampling.

A key aspect in the training of ML and DL models
is the tuning of their hyper-parameters. This phase is fre-
quently time consuming because a training process has
to be carried out for a great number of combinations of
hyper-parameters in order to find out the configuration
with the best performance. In this work, we performed a
grid-search in the hyper-parameter space. A description of the
tested hyper-parameters is in the TABLE 9.

TABLE 9. Hyper-parameters tunned in Electra dataset anomaly detection.

In order to evaluate which of the studied models had the
best performance, we defined some metrics. In particular,
anomaly detection problems usually show a great imbal-
ance between the number of normal and anomalous samples;
therefore, precision and recall metrics are usually preferred
to accuracy. In our case, as shown in TABLE 8, due to the
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TABLE 10. Performance obtained by the models trained.

TABLE 11. Performance obtained on Electra Modbus after selecting all samples with function code 3.

elimination of duplicate records, we find more anomalous
than normal samples. Even so, and because they are more
informative in this context, we decided to use Precision,
Recall and F1-score metrics. These metrics can be calculated
based on the following four parameters:
• True Positive (TP): Number of anomalies correctly
detected.

• True Negative (TN): Number of normal samples cor-
rectly classified as normal

• False Positive (FP): Number of normal samples incor-
rectly classified as anomalies

• False Negative (FN): Number of anomalous samples
incorrectly classified as normal samples.

The metrics used to evaluate the performance of the clas-
sifiers are defined as follows:
• Precision: Indicates what fraction of the detected anoma-
lies are real anomalies.

Precision =
TP

TP+ FP
• Recall: Indicates what fraction of the real anomalies are
detected.

Recall =
TP

TP+ FN
• F1-score: Is the harmonic mean between recall and pre-
cision and shows the trade-off between the precision and
recall.

F1-score = 2×
Precision× Recall
Precision+ Recall

As shown in TABLE 10, in general, all the models studied,
with the exception of Isolation forest, show good results in
terms of precision and recall. Related to the supervised mod-
els and taking into account F1-score, SVM is the model that
obtains the best results (97.56% precision and 100% recall),
followed closely by Random Forest (98.77% precision and
98.71% recall). Dense Neural Network is the supervised
model that obtains the worst results (96.92% precision and
100% recall). Regarding semi-supervised models, OCSVM
is the model that offers the best results (98.62% precision and
98.56% recall), whereas Isolation Forest shows a good recall
(100%) but a slightly lower precision than the other studied
models (87.39%).

As discussed in Section V, Electra Modbus has little diver-
sity of normal traffic and a wide variety of attacks. In order to
evaluate how classifiers perform on a dataset with anomalous
traffic more similar to normal traffic, a new experiment was
carried out by selecting all samples with function code (fc) 3.
The result of this experiment can be seen in TABLE 11,
where outputs very similar to those shown in the previous
experiment were obtained.

In the case of Electra S7Comm, the classifiers perform
similar as in ElectraModbus. In general, all classifiers present
good results in precision score. Regarding supervised models
and attending to f1-socre, the best result is offered by Random
Forest (96.56% precision an 100% recall) followed by SVM
(99.49% precision and 100% recall) and DNN (99.99% preci-
sion and 99.19% recall). Regarding semi-supervised models,
OCSVM is the model that obtains the best result (99.61%
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precision and 99.81% recall) whereas Isolation Forest shows
a similar behaviour as in Electra Modbus, being the model
with lowest precision (98.86%) but higher recall (100%).

As a summary, supervised anomaly detection models
are suitable for both scenarios, those are common Mod-
bus scenarios with a limited variety of network traffic and
complex S7Comm scenarios with wide variety of network
traffic. On the other hand, among the studied semi-supervised
anomaly detection models, the most suitable is OCSVM,
obtaining a better result than Isolation Forest.

VII. CONCLUSION
In this work, we present a methodology to generate anomaly
detection datasets in ICS. The methodology is composed of
four steps: attack selection, attack deployment, traffic capture
and feature selection. The first two steps indicate which
and how to launch the attacks in the testbed, whereas the
third and four steps face with the capture of network traffic
from the testbed and the extraction of relevant features. The
proposed features in the methodology were selected applying
the knowledge acquired during the study of a wide variety
of attacks based on control protocol tampering. Following
the proposed methodology, we generated the Electra dataset,
which is composed of two subsets: Electra S7Comm and
Electra Modbus. The subsets have been generated from a
realistic Electric Traction Substation presenting a novel sce-
nario focused on anomaly detection in ICS. Both subsets are
labelled in a multi-class fashion and features of both subsets
model the normal behaviour of the system. Both subsets
share the same features and they only differ in the network
traffic protocol from which each was generated: Modbus and
S7Comm. It makes Electra a good dataset to study different
anomaly detection techniques in ICS context. Additionally,
Electra dataset is a useful mechanism for studying the normal
traffic of an Electric Traction Substation and the attacks that
can be launched against it. Finally, a pool of experiments has
been carried out to quantify the classification performance
of different ML and DL classifiers. The experiments have
shown that supervised classifiers such as Random Forest,
or SVM and Neural Networks offer enough precision and
recall metrics in both subsets.

As a future work we plan to improve the performance
results of the presented ML and DL techniques. Advanced
models of Deep Learning such as Long short-Term Memory
networks (LSTM) or Convolutional Neural Networks (CNN)
will be evaluated to improve the performance in S7Comm
classification especially. Furthermore, we plan to generate
new datasets with other protocols widely used in the industrial
sector such as OPC and DNP3. Finally, with the goal of
refining the Electra Modbus subset, we plan to regenerate it
by using more appropriate attacks, i.e attacks that have less
variety in the function code.

REFERENCES
[1] K. Stouffer, J. Falco, and K. Scarfone, ‘‘Guide to industrial control sys-

tems (ICS) security,’’ NIST Special Publication, vol. 800, no. 82, p. 16,
2011.

[2] A. Nicholson, S. Webber, S. Dyer, T. Patel, and H. Janicke, ‘‘SCADA
security in the light of cyber-warfare,’’ Comput. Secur., vol. 31, no. 4,
pp. 418–436, 2012.

[3] S. Karnouskos, ‘‘Stuxnet worm impact on industrial cyber-physical system
security,’’ in Proc. IEEE 37th Annu. Conf. Ind. Electron. Soc. (IECON),
Nov. 2011, pp. 4490–4494.

[4] M. Kumar, ‘‘Irongate new stuxnet-like malware targets industrial control
systems,’’ Hacker News, Jun. 2016.

[5] L. F. Maimo, A. H. Celdran, A. L. P. Gomez, F. J. G. Clemente, J. Weimer,
and I. Lee, ‘‘Intelligent and dynamic ransomware spread detection and
mitigation in integrated clinical environments,’’ Sensors, vol. 19, no. 5,
p. 1114, 2019.

[6] L. F. Maimó, Á. L. P. Gómez, F. J. G. Clemente, M. G. Pérez, and
G. M. Pérez, ‘‘A self-adaptive deep learning-based system for anomaly
detection in 5G networks,’’ IEEE Access, vol. 6, pp. 7700–7712, 2018.

[7] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. C. Atkinson,
and X. J. A. Bellekens, ‘‘A taxonomy and survey of intrusion detection
system design techniques, network threats and datasets,’’ CoRR, 2018.

[8] Dataset for Cybersecurity Research in Industrial Control Systems.
Accessed: Oct. 31, 2019. [Online]. Available: http://perception.
inf.um.es/ICS-datasets/

[9] KDD Cup 99 Dataset. Accessed: Oct. 31, 2019. [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[10] Darpa 98 Dataset. Accessed: Oct. 31, 2019. [Online]. Available:
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-
evaluation-dataset

[11] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. 2nd IEEE Symp. Comput. Intell.
Secur. Defence Appl., Jul. 2009, pp. 1–6.

[12] Nsl-KDD Dataset. Accessed: Oct. 31, 2019. [Online]. Available:
https://www.unb.ca/cic/datasets/nsl.html

[13] S. García, M. Grill, J. Stiborek, and A. Zunino, ‘‘An empirical compari-
son of botnet detection methods,’’ Comput. Secur., vol. 45, pp. 100–123,
Sep. 2014.

[14] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. ICISSP, 2018, pp. 108–116.

[15] Industrial Control System (ics) Cyber Attack Datasets. Accessed:
Oct. 31, 2019. [Online]. Available: https://sites.google.com/a/uah.edu/
tommy-morris-uah/ics-data-sets

[16] S. Pan, T. Morris, and U. Adhikari, ‘‘Developing a hybrid intrusion detec-
tion system using data mining for power systems,’’ IEEE Trans. Smart
Grid, vol. 6, no. 6, pp. 3104–3113, Nov. 2015.

[17] J. M. Beaver, R. C. Borges-Hink, and M. A. Buckner, ‘‘An evaluation of
machine learning methods to detect malicious SCADA communications,’’
in Proc. 12th Int. Conf. Mach. Learn. Appl. (ICMLA), vol. 2, Dec. 2013,
pp. 54–59, Dec. 2013.

[18] T. Morris, A. Srivastava, B. Reaves, W. Gao, K. Pavurapu, and R. Reddi,
‘‘A control system testbed to validate critical infrastructure protection
concepts,’’ Int. J. Crit. Infrastruct. Protection, vol. 4, no. 2, pp. 88–103,
2011.

[19] T. Morris and W. Gao, ‘‘Industrial control system network traffic data
sets to facilitate intrusion detection system research,’’ Crit. Infrastruct.
Protection VIII-8th IFIP WG, vol. 11, pp. 65–78, Mar. 2014.

[20] Centre for Research In Cyber Security, Itrust. Accessed: Oct. 31, 2019.
[Online]. Available: https://itrust.sutd.edu.sg/

[21] A. P. Mathur and N. O. Tippenhauer, ‘‘Swat: A water treatment testbed for
research and training on ics security,’’ in Proc. Int. Workshop Cyber-Phys.
Syst. Smart Water Netw. (CySWater), Apr. 2016, pp. 31–36.

[22] Water Distribution (Wadi) Dataset. Accessed: Oct. 31, 2019. [Online].
Available: https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/

[23] S. Adepu, N. K. Kandasamy, and A. Mathur, ‘‘Epic: An electric power
testbed for research and training in cyber physical systems security,’’ in
Computers Security. Cham, Switzerland: Springer, 2019, pp. 37–52.

[24] R. Taormina, S. Galelli, N. O. Tippenhauer, and E. Salomons, ‘‘Battle of the
attack detection algorithms: Disclosing cyber attacks on water distribution
networks,’’ J. Water Resour. Planning Manage., vol. 144, no. 8, 2018,
Art. no. 04018048.

[25] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
‘‘HAST-IDS: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,’’ IEEE Access, vol. 6,
pp. 1792–1806, 2018.

177472 VOLUME 7, 2019



Á. L. P. Gómez et al.: On the Generation of Anomaly Detection Datasets in ICS

[26] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to
network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018.

[27] L. Fernández Maimó, A. Huertas Celdrán, M. Gil Pérez, F. J. G. Clemente,
and G. Martínez Pérez, ‘‘Dynamic management of a deep learning-based
anomaly detection system for 5g networks,’’ J. Ambient Intell. Humanized
Comput., vol. 10, no. 8, pp. 3083–3097, Aug. 2019.

[28] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca, ‘‘Intrusion detection
with comparative analysis of supervised learning techniques and Fisher
score feature selection algorithm,’’ in Computer and Information Sci-
ences, T. Czachórski, E. Gelenbe, K. Grochla, and R. Lent, Eds. Cham,
Switzerland: Springer, 2018, pp. 141–149.

[29] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, ‘‘Anomaly detection in cyber
physical systems using recurrent neural networks,’’ in Proc. IEEE 18th Int.
Symp. High Assurance Syst. Eng. (HASE), Jan. 2017, pp. 140–145.

[30] M. Kravchik and A. Shabtai, ‘‘Efficient cyber attacks detection in
industrial control systems using lightweight neural networks,’’ 2019,
arXiv:1907.01216.

[31] M. Kravchik and A. Shabtai, ‘‘Detecting cyber attacks in industrial con-
trol systems using convolutional neural networks,’’ in Proc. Workshop
Cyber-Phys. Syst. Secur. PrivaCy (CPS-SPC). New York, NY, USA, 2018,
pp. 72–83.

[32] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, ‘‘MAD-GAN: Multi-
variate anomaly detection for time series data with generative adversarial
networks,’’ in Artificial Neural Networks andMachine Learning—ICANN:
Text and Time Series. Cham, Switzerland: Springer, 2019, pp. 703–716.

[33] P. Nader, P. Honeine, and P. Beauseroy, ‘‘lp-norms in one-class classi-
fication for intrusion detection in SCADA systems,’’ IEEE Trans. Ind.
Informat., vol. 10, no. 4, pp. 2308–2317, Nov. 2014.

[34] C. Feng, T. Li, and D. Chana, ‘‘Multi-level anomaly detection in industrial
control systems via package signatures and LSTM networks,’’ in Proc.
47th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2017,
pp. 261–272.

[35] W. Gao, T. Morris, B. Reaves, and D. Richey, ‘‘On SCADA control system
command and response injection and intrusion detection,’’ in Proc. eCrime
Res. Summit, Dallas, TX, USA, Oct. 2010, pp. 1–9.

[36] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, ‘‘A survey
of deep learning-based network anomaly detection,’’ Cluster Comput.,
vol. 22, pp. 949–961, Jan. 2019.

[37] T. H. Morris and W. Gao, ‘‘Industrial control system cyber attacks,’’ in
Proc. 1st Int. Symp. ICS SCADA Cyber Secur. Res., 2013, pp. 22–29.

[38] Open Modbus Tcp Standard. Accessed: Oct. 31, 2019. [Online].
Available: http://www.dankohn.info/projects/Fieldpoint_module/Open_
ModbusTCP_Standard.pdf.

[39] L. Zheng and H. Nakagawa, ‘‘Opc (ole for process control) specification
and its developments,’’ in Proc. 41st SICE Annu. Conf. (SICE), vol. 2,
Aug. 2002, pp. 917–920.

[40] A. Kleinmann and A. Wool, ‘‘Accurate modeling of the siemens s7 scada
protocol for intrusion detection and digital forensics,’’ J. Digit. Forensics,
Secur. Law, vol. 9, no. 2, p. 4, 2014.

[41] Scapy: Packet Crafting for Python2 and Python3. Accessed: Oct. 31, 2019.
[Online]. Available: https://scapy.net/

[42] Netfilter: Firewalling, Nat, and Packet Mangling for Linux. Accessed:
Oct. 31, 2019. [Online]. Available: https://netfilter.org/projects/libnetfilter_
queue/

[43] S. Wold, K. Esbensen, and P. Geladi, ‘‘Principal component analysis,’’
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, 1987.

[44] L. Van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

ÁNGEL LUIS PERALES GÓMEZ received the
M.Sc. degree in computer science from the Uni-
versity of Murcia, where he is currently pursuing
the Ph.D. degree with the Department of Computer
Engineering. His research interests include deep
learning, cybersecurity of industrial control sys-
tems, and the security of distributed communica-
tion networks.

LORENZO FERNÁNDEZ MAIMÓ received the
M.Sc. and Ph.D. degrees in computer science from
the University of Murcia. He is currently an Asso-
ciate Professor with the Department of Computer
Engineering, University of Murcia. His research
interests primarily focus on machine learning and
deep learning applied to cybersecurity, and com-
puter vision.

ALBERTO HUERTAS CELDRÁN received the
M.Sc. and Ph.D. degrees in computer science
from the University of Murcia, Spain. He is
currently an Irish Research Council Government
of Ireland Postdoctoral Research Fellow associ-
ated with TSSG, WIT. His scientific interests
include medical cyber-physical systems (MCPS),
brain–computer interfaces (BCI), cybersecurity,
data privacy, continuous authentication, semantic
technology, context-aware systems, and computer
networks.

FÉLIX J. GARCÍA CLEMENTE received the Ph.D.
degree in computer science from the University
of Murcia, in 2006. He is currently an Asso-
ciate Professor with the Department of Computer
Engineering, University of Murcia. His research
interests include cybersecurity and management
of distributed communication networks. He is the
coauthor of over 100 scientific publications and an
active member on different national and interna-
tional research projects.

CRISTIAN CADENAS SARMIENTO received
the B.Sc. degree in computer engineering and
the M.Sc. degree in cybersecurity research from
the University of León (ULE). He is currently
working in the areas of industrial control sys-
tems of the Spanish National Cybersecurity Insti-
tute (INCIBE), participating in various projects,
both nationally and internationally, focused on
raising the level of cybersecurity of critical
infrastructures.

CARLOS JAVIER DEL CANTO MASA is
currently a Technical Consultant with the Tech-
nology Department, Spanish National Cyberse-
curity Institute (INCIBE), for the improvement
of the cybersecurity in the industrial monitoring
and control systems, where he carries out several
technological projects related to this discipline.
He is responsible for the management and mainte-
nance of the Industrial Cybersecurity Laboratory,
INCIBE.

RUBÉN MÉNDEZ NISTAL received the B.Sc.
degree in industrial engineering from the Univer-
sity of León (ULE), Spain. He is currently working
as a ULE Researcher with the Spanish National
Cybersecurity Institute (INCIBE), for the cyberse-
curity improvement of industrial control systems
and smart grids.

VOLUME 7, 2019 177473


