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Abstract

Resumen

La Organización Mundial de la Salud (OMS) ha reportado en sus últimos informes relativos a la
calidad del aire que la contaminación atmosférica seguirá siendo uno de los principales problemas
ambientales cruciales en los próximos años y a resolver durante el transcurso del siglo debido al efecto
que está provocando en la salud de los ciudadanos. La contaminación del aire, según la OMS, no
solo representa un desaf́ıo ambiental significativo, sino que también tiene profundas implicaciones
para la salud pública global. Por tanto, este pronóstico requiere un enfoque más exhaustivo en la
implementación de acciones dirigidas a reducir los niveles de contaminantes atmosféricos. Entre
los diversos contaminantes del aire, la materia particulada y los aerosoles (PM) destacan como
los contaminantes más perjudiciales para la salud humana debido a sus efectos cardiovasculares y
respiratorios. Las part́ıculas más pequeñas, conocidas como PM2.5, son especialmente peligrosas
porque pueden atravesar la barrera alveolar en los pulmones y acceder al flujo sangúıneo, causando
una serie de problemas de salud que incluyen enfermedades respiratorias y card́ıacas. Estas part́ıculas
finas se generan a partir de diversas fuentes, incluyendo la combustión de combustibles fósiles en
veh́ıculos, industrias, y plantas de enerǵıa, aśı como de fuentes naturales como incendios forestales y
erupciones volcánicas. En este contexto, una parte significativa de la población mundial se encuentra
expuesta a concentraciones de PM que superan los estándares recomendados por la OMS. Las grandes
ciudades, en particular, son las áreas donde este efecto se generaliza más, debido a la alta densidad
de tráfico vehicular, la actividad industrial, y población que se encuentra expuesta a estos niveles.
En este contexto, la monitorización y estudio de la calidad del aire se presentan como actividades
esenciales que deben ser realizadas de manera continua para evaluar los niveles de polución ya que
esta información es crucial para los gobiernos y autoridades públicas, ya que les permite aplicar las
restricciones adecuadas para mitigar los efectos adversos de la contaminación.

A pesar de la importancia que tiene la medición de la calidad del aire y los diferentes contaminantes
atmosféricos, el uso de equipos de medición tradicionales presenta ciertos desaf́ıos. El primero de ellos
es que estos equipos suelen ser costosos y su implementación y operación pueden ser complejas. Por
otro lado, además de no ser fácilmente automatizables presentan sistemas analógicos que dificultan
la extracción y almacenamiento de datos. Esto hace necesario explorar nuevos enfoques y tecnoloǵıas
que permitan una monitorización más eficiente y accesible. Aqúı es donde el Internet de las Cosas
(IoT) entra en juego, ofreciendo una alternativa más económica y con potencial para ser ampliamente
distribuida, permitiendo el desarrollo de ciudades inteligentes, donde los diferentes componentes
sensoriales de la ciudad reportan a una arquitectura centralizada - en mayor o menor grado -
que permite el procesamiento de los datos. Por tanto, los dispositivos IoT pueden proporcionar
mediciones en tiempo real y a un costo reducido, lo cual es fundamental para una monitorización del
aire que sea continua en el tiempo. No obstante, los dispositivos IoT también tienen sus limitaciones,
especialmente en la precisión de las mediciones de part́ıculas y la calidad del dato. Estos dispositivos
pueden estar sujetos a sesgos significativos debido a la influencia de factores externos como la
humedad, la forma de las part́ıculas o la composición qúımica, lo cual puede afectar la fiabilidad
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de los datos recogidos. Para abordar este problema, es necesario desarrollar soluciones que mejoren
la fiabilidad de estos dispositivos. Desde el punto de vista de la transición digital, la emergencia de
los algoritmos de inteligencia artificial y las arquitecturas desarrolladas para ciudades inteligentes
permiten ejecutar y entrenar diferentes modelos basados en técnicas computacionales clásicas o en
deep learning.

Por ello, en esta tesis se exploran diversas soluciones para mejorar la señal en sensores de part́ıculas
mediante una metodoloǵıa bottom-up. En primer lugar, se ha desarrollado un sistema de hardware
corrector de humedad basado en columnas de silicona. Este sistema ha sido evaluado en comparación
con métodos de referencia para asegurar su efectividad. La corrección de la humedad es esencial ya
que esta puede afectar considerablemente las mediciones de part́ıculas, llevando a resultados inexactos
que pueden distorsionar la evaluación de la calidad del aire. Además del desarrollo de hardware, se
ha implementado una capa edge que permite el procesamiento de datos mediante modelos de machine
learning. Esta capa es capaz de realizar predicciones de concentración de part́ıculas a corto plazo,
lo que es fundamental para una respuesta rápida ante episodios de alta contaminación. El uso de
machine learning en este contexto permite analizar grandes volúmenes de datos de manera eficiente y
obtener insights valiosos para la toma de decisiones. Posteriormente, los datos hiperlocales recogidos
por estos dispositivos IoT se utilizan para calibrar el modelo de transporte qúımico CHIMERE-WRF.
La calibración de este modelo con datos locales mejora significativamente su precisión y fiabilidad. Los
modelos de transporte qúımico son herramientas esenciales para predecir la dispersión y concentración
de contaminantes en el aire, y su calibración con datos precisos es crucial para obtener resultados
confiables. Este enfoque mejora la interoperabilidad de los datos, permitiendo que diferentes sistemas
y aplicaciones puedan acceder y utilizar estos datos de manera eficiente. La interoperabilidad es
fundamental en el contexto de las Ciudades Inteligentes, donde múltiples sistemas necesitan trabajar
juntos para proporcionar servicios eficientes y mejorar la calidad de vida de los ciudadanos.

El primero de los art́ıculos describe y evalúa un sistema de medición de nanopart́ıculas basado en
dos columnas de silicio, demostrando que el secado de las muestras de aire mejora sustancialmente
las mediciones realizadas en comparación con el sensor OPC-N3. Además, los resultados obtenidos
con respecto a las mediciones de referencia son bastante buenos, con valores de R2 = 0.83 para
PM2.5 en el mejor escenario para promedios horarios y un coeficiente de Pearson por encima de 0.80
para promedios y máximos diarios. Adicionalmente, se ha validado que estos dispositivos pueden
integrarse en una arquitectura de IoT e interactuar con un servicio de calibración en tiempo real para
mejorar la calidad de los datos. Los resultados de esta investigación demuestran que el sistema de
secado desarrollado mejora significativamente la precisión de las mediciones de PM2.5 en comparación
con los sensores existentes.

El segundo de los trabajos escala una capa en la arquitectura proponiendo una plataforma IoT-
Edge-Cloud basada en el dispositivo Smart Spot para el monitoreo de part́ıculas en interiores en
entornos industriales y la predicción de riesgos para promover la detección temprana de superaciones.
Los resultados obtenidos en relación con los operadores de predicción muestran una precisión del 87
% y un AUC de 0.81. Además, hemos demostrado que esta solución es disruptiva en los siguientes
puntos con respecto al estado del arte: (i) es la primera plataforma para el monitoreo de la calidad
del aire en interiores basada en una arquitectura IoT-Edge-Cloud, mejorando la escalabilidad en
comparación con las arquitecturas tradicionales de la nube; (ii) está basada en FogFlow y FIWARE,
lo que facilita su reutilización en otros entornos; (iii) mejora el rendimiento en términos de ancho
de banda y tiempo de procesamiento, reduciendo la latencia en un 26 %; y (iv) está basada en un
sistema de calidad del aire hiperloco y de alta calidad con un R2 de 0.91 para PM10 y un R2 de 0.74
para PM2.5 en comparación con las mediciones de referencia.



Por otro lado, el tercer art́ıculo se centra en los modelos de transporte qúımico que se ejecutan en
la nube, y requieren la mayor parte de recursos computacionales. Se ha propuesto una calibración del
modelo CHIMERE-WRF que ha permitido mejorar la correlación del sistema en un 63 % para NO2
y un 25% para O3. Estos contaminantes son de particular interés debido a sus efectos adversos en la
salud humana y el medio ambiente. Mejorar la precisión de las predicciones de estos contaminantes
permite implementar poĺıticas más efectivas para su reducción y control. Una propuesta innovadora
de esta investigación es la nueva metodoloǵıa automatizada para la zonificación de la calidad del
aire en la Región de Murcia. Esta metodoloǵıa permite identificar nuevos puntos de monitorización
de manera eficiente, lo cual es crucial para una evaluación exhaustiva de la calidad del aire en
diferentes zonas. Gracias a ello, se ha propuesto una nueva zonificación para la Región de Murcia
y la instalación de un nuevo punto de medición en la zona norte, aunque esta propuesta debe ser
validada por los expertos en la materia, y tener en cuenta factores socioeconómicos. Sin embargo, los
resultados obtenidos abren nuevas posibilidades de investigación y destacan diferentes limitaciones
que debeŕıan abordarse en distintos estudios: i) expandir el área de estudio para recopilar datos más
representativos geográficamente; ii) comprender la replicación de los modelos de redes neuronales
en otras ubicaciones, ya que se han entrenado con datos de Murcia y iii) mejorar la calidad de los
conjuntos de datos de referencia proporcionados por las autoridades públicas, especialmente en lo que
respecta al número de valores faltantes para algunos contaminantes. Por otro lado, se necesita más
investigación en el campo de la zonificación automática de la calidad del aire para entender el papel
de las redes neuronales en la reducción de dimensionalidad y proporcionar diferentes arquitecturas
para la calibración y el preprocesamiento.

Finalmente, el último art́ıculo ha desarrollado una metodoloǵıa basada en la Mineŕıa de Procesos
Interactiva para realizar un análisis sensible orientado a secuencias, demostrando que el uso de
interactive process mining mejora sustancialmente la identificación de actividades objetivo relacionadas
con la alta exposición y permite a los expertos tomar las mejores poĺıticas urbanas. Además, los
resultados obtenidos en relación con los KPIs mostraron una reducción del 26 % en la exposición a
PM2.5 y una disminución del 16 % en el riesgo relativo de mortalidad en el mejor escenario. Por
lo tanto, los resultados sugieren que nuestra hipótesis inicial es correcta y que el análisis sensible
orientado a secuencias podŕıa ser una herramienta poderosa para mejorar el medio ambiente en las
ciudades. El uso de esta metodoloǵıa propuesta permite avanzar en las siguientes ĺıneas que hasta
ahora han sido limitadas en el estado del arte: i) la evaluación de poĺıticas de salud pública para
reducir la exposición de la población; ii) la mejora del conocimiento en la relación entre exposición
y riesgo, permitiendo a los investigadores definir modelos precisos de respuesta a la exposición y iii)
las aplicaciones de la interactive process mining en la modelización ambiental y la mitigación de la
contaminación del aire.

En conclusión, la combinación de mediciones hiperlocales de calidad del aire con simulaciones
basadas en modelos de transporte qúımico ofrece una mejora significativa en la precisión de las
mediciones de part́ıculas y otros contaminantes. Esto permite generar productos valiosos para
evaluar el impacto de diferentes poĺıticas en la sostenibilidad, en lo que se conoce como sustainability
impact assessment. Estos conocimientos son cruciales en el sector de las ciudades inteligentes, donde
la gestión eficiente de recursos y la mejora de la calidad de vida de los ciudadanos son objetivos
primordiales. El desaf́ıo futuro radica en la aplicación de las grandes cantidades de datos generados
por los dispositivos IoT en escenarios más complejos y en el desarrollo de soluciones digitales para
ciudades. La integración de estos datos en sistemas de gestión urbanos permitirá tomar decisiones
más informadas y efectivas, mejorando aśı la sostenibilidad y la resiliencia de las ciudades frente a
los desaf́ıos ambientales. Además, la interoperabilidad y el uso de estándares abiertos serán clave
para facilitar la colaboración entre diferentes sistemas y plataformas, maximizando el potencial de las



tecnoloǵıas IoT en la monitorización y gestión de la calidad del aire. Por ello, esta tesis presenta un
enfoque integral para mejorar la monitorización y gestión de la calidad del aire utilizando tecnoloǵıas
IoT y modelos de machine learning. Los resultados obtenidos no solo demuestran la viabilidad de
estas tecnoloǵıas, sino también su potencial para transformar la manera en que se gestiona la calidad
del aire en nuestras ciudades. Con un enfoque basado en la precisión, la interoperabilidad y la
sostenibilidad, este trabajo sienta las bases para futuras investigaciones y desarrollos en el campo de
la monitorización ambiental y el desarrollo de ciudades inteligentes.

Summary

The World Health Organization (WHO) claims that air pollution will be a significant environmental
concern in the coming years, leading to increased emphasis on actions focused on reducing pollutant
levels in the air, from which particulate matter (PM) is the most harmful to health, with a large
percentage of the population exposed to levels exceeding WHO standards. In this sense, air quality
monitoring is essential to know pollutant levels in the air. However, traditional measuring devices
are expensive and not automatic, making necessary to develop solutions based on new paradigms
such as the Internet of Things (IoT) that are able to reduce costs.

However, IoT devices present significant biases in measurement processes, especially concerning
particles, due to the influence of external factors such as humidity. Therefore, this thesis explores
solutions to improve signal in particle sensors using a bottom-up methodology. Firstly, a dryer system
based on silicone columns has been developed, which has been evaluated with respect to reference
methods. Next, an edge computing layer has been deployed allowing data processing using machine
learning models to make short-term particle concentration predictions. Later, hyperlocal data from
devices is used to calibrate the CHIMERE-WRF chemical transport model.

The results demonstrate that the developed drying system improves PM2.5 accuracy compared to
existing sensors, with a coefficient of determination (R2) equal to 0.83. Additionally, these devices can
be easily integrated into an IoT-Edge-Cloud architecture for risk assessment in work environments,
using machine learning to predict exceedances with 80 % accuracy. On the other hand, calibration
of the CHIMERE-WRF model allows for a 63 % improvement in system correlation for NO2 and a
25 % improvement for O3. Lastly, a new proposal for air quality zoning for the Murcia Region, using
an automated methodology, allows for the identification of new monitoring points.

In conclusion, the combination of hyperlocal air quality measurements and simulations with
chemical transport models allows for improved particle measurement and the generation of products
to assess the impact on sustainability of different policies, known as sustainability impact assessment.
This knowledge is crucial in the Smart Cities sector. The future challenge lies in applying large
amounts of data generated by IoT in more complex scenarios and digital solutions for cities.
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Chapter 1
Introduction and State of the Art

1.1—Context

Sustainability Impact Assessment (SIA) is a central instrument for evidence-based policy-making in

EU trade policy, which seeks to understand and optimize the effect of social and political actions

in different environmental domains [1]. One of the most important targets in sustainability impact

assessment is atmospheric pollution. Poor air quality in a major urban city is considered a critical

environmental issue because air quality and air pollution are some of the consequences and disadvantages

of large human agglomerations. Thus, real-time air pollution data collection and analysis in a smart

city is essential for urban sustainability. It is necessary to provide cities with the infrastructure to

measure this pollutant in the air. Hence, cost-effective means are needed to measure air pollution [2].

These infrastructures and resources have traditionally been built on expensive regulatory monitoring,

enhanced with low-resolution satellite data and mathematical forecasting models. This solution does

not cover the requirements of a dynamic Smart City. They can harness ubiquitous technologies -

Internet of Things (IoT), big data, artificial intelligence, smartphones, edge computing, and high-

performance architectures - in concert with traditional methods for a better understanding of air

quality and propose sustainability policies to improve quality of life [3].

However, before discussing the different infrastructures, services, and architectures that can

enhance air quality, it is necessary to clarify what a Smart City is. A first definition highlights the

role of digital transformation, defining a Smart City as ”An innovative city that uses information and

communication technologies and other means to improve the quality of life, the efficiency of urban

operation and services, and competitiveness, ensuring that it meets the needs of present and future

generations concerning economic, social, and environmental aspects” [4]. However, it could be wrong

to define an Smart City only from a technological point of view because the creation of a Smart City

requires the understanding of the evolution and experiences of urban development and have a clear

grasp of the concept, emphasis, and developmental trajectory of the city [5]. Just like a traditional

city, this process is based on six social axes: smart economy, smart mobility, smart environment,

smart population, smart lifestyle, and smart government. In short, in an ideal Smart Cities, all the

elements that make up the city can communicate with each other [6].

1
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During the last years, many cities in the world have tried to implement a Smart City architecture

to solve the issues of urban planning and governance using the capacity of modern information and

communication technologies. Past experiences in this regard indicate one of the biggest challenges

for the implementation of smart cities, which is generally not related to the technology itself, but

to the problems that occur during the implementation of the idea, which is mainly due to the lack

of a common and clear strategy between the stakeholders [7]. However, many success stories in the

scientific literature demonstrate that Smart Cities are feasible and can improve urban quality of

life. To measure the effectiveness of a Smart City, the motion index indicator (CIMI) was defined

to compare 77 city indicators among ten dominant categories in urban life - economy, technology,

human capital, social cohesion, international outreach, environment, mobility and transportation,

urban planning, public management, and governance [8]. The results obtained draw a map with the

following cities in the Top Ten of Smartness : New York (USA), London (UK), Paris (France), San

Francisco (USA), Boston (USA), Amsterdam (Netherlands), Chicago (USA), Seoul (South Korea),

Geneva (Switzerland), and Sydney (Australia). [9].

The concept of Smart City is evolving to a new approach based on Smart and Connected

Communities, that describes better how the technologies and communications can connect and

put together all the elements in a city, to address synergistically the needs of remembering what

happened in the past, the present needs, and the future needs of planning [10]. This dynamic

context points out the role of technology and the need for robust architectures in Smart Cities. In

general terms, Smart Cities follows a bottom-up architecture which is composed of four layers: i)

sensing layer, in charge of data collection from IoT physical devices; ii) transmission layer, which

integrates various communication protocols available in the IoT paradigm, that allows to send sensor

data to the cloud/edge; iii) data management layer, whose responsibility is to processes data analytics

workflows and to store valuable information; and iv) application layer, that are useful for the end

user interface provision offered by various applications at the top layer for end user [11]. In Figure

1.1 an specific Smart City architecture is provided as example. Thus, it should be noted that some

of the components can change to others with similar applications.

In this context, monitoring and communicating air quality data is a key element of a Smart City,

as it encompasses multi-sectorial functions, data, and information exchanges on pollution sources,

mitigation, health burden, socioeconomic impacts, and policy formulation. For its effectiveness, real-

time and near-real-time data communication is required. However, these data are often created

in silos or not available in cross-sectorial usable form, necessitating integrated data governance

translating data into knowledgeable information [12]. In addition, the emergence of climate change

mitigation put pollution management in the center of the Smart Cities services. It highlighted the

need for interaction with citizens through urban living labs and citizen sciences initiatives and public

authorities, companies, and research centers as critical stakeholders, which should be synchronized

in the urban environment [13].
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Figure 1.1: Example of a Smart City architecture, composed by a sensing layer, a transmision layer, a data
management layer and an application layer.

However, as suggested from the previous description, there is a gap between the need for

sustainability impact assessment services in a Smart City and air quality monitoring strategies

claimed by cities. These challenges are not only in the sensing layer - where the expensive reference

measurements are a clear limitation - but also in the data management layer, which has to deal with

complex data that requires scientific expertise higher than other domains, and in the application

layer that should provide this complexity in an understandable way to the end user, to create engage

in citizens and allow public authorities to make decisions in climate change mitigation policies.

Thus, this thesis will explore these gaps and provide solutions, especially based on artificial

intelligence methods, but also in improving the actual hardware or the mathematical models used to

gather air quality predictions.

1.2—Motivation

According to the World Health Organisation, air pollution causes more than seven million deaths

per year, making it one of the major public health problems of recent times. Regarding Chemical
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Pollution, it represents a paradigm of risk factors associated with relatively modest increases in

individual risk but substantial disease burden at the population level, especially with the mortality

and morbidity of different diseases [14]. In addition, exposure to these particles is associated with

various cardiovascular and respiratory diseases [15, 16]. Furthermore, certain gases such as O3, NO2

or SO2 are associated with chronic obstructive pulmonary syndromes. In particular, ozone - a highly

oxidising agent - is correlated with lung inflammation, the alveolar epithelium’s destruction and

the pleura’s chemical composition [17]. Thus, one of the key aspects of digital transformation and

the challenges facing society today related to climate change is air quality monitoring, evaluation,

prediction and mitigation plans for cleaner air. This problem is higher in cities, perceived by citizens

as unhealthy places. For this reason, air quality and its management are among the most important

services in Smart Cities [18].

For this reason, this work is motivated to provide a Smart City architecture and platform for

Sustainable Impact Assessment in Smart Cities. For this purpose, it is necessary to define this term

coherently with the context described in the previous section. The interpretation followed in this work

can be summarized in Figure 1.2. If we start from the top, the atmosphere of an urban environment

presents a certain amount of pollutants, whose concentration is measured by monitoring devices. The

concentration observed in the atmosphere is produced by pollutants emissions from different sources.

These emissions are quantified in inventories that collect the emission flux of a certain chemical

species [19]. On the other hand, the concentration observed in the atmosphere impacts citizens

living in the city. This impact can be measured according to different Key Performance Indicators

(KPIs) related to health outcomes, climate change effect or environmental issues [20]. To mitigate

these impacts, public authorities and policymakers should take decisions to reduce the emissions and,

therefore, pollutant concentrations and impacts. However, policymakers need a comprehensive tool

that simulates the effect in the whole loop of emissions reduction. The set of tools, methodologies

and models that allows for assessing the effectiveness of policies and scenarios in concentration and

impacts to help authorities make decisions based on data is called Sustainability Impact Assessment.

This approach brings together multiple variables and components operating across three

interconnected scales: micro (individual and interpersonal factors including disciplinary background

and risk perceptions); meso (network, organizational and institutional ); and macro (environmental,

social, cultural, political, and economic factors)[21]. All these scales are present in a Smart City. The

problem that arises is that current urban digitalization does not reflect the whole real-life context

and dynamics of a living city, and cross-sectoral platforms are required to be composed of multiple

components [22].

To be able to represent this dynamics, there is a need of integrating and connecting all the

components specified in Figure 1.2 into a smart cities architecture proposed in Figure 1.1. These

architectures should have the following components: i) an extensive network of accurate IoT devices;

ii) a contextual intelligence component that normalize and standardize all the data from different
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Figure 1.2: Definition of Sustainability Impact Assessment loop for emissions reductions through hyperlocal
measurements and simulations.

sources and standardise to guarantee the compliance with FAIR guidelines [23]; iii) an analytic layer

with statistical models; and iv) a modelling component that integrates dispersion and forecasting

models; and v) a knowledge layer in charge .

However, the IoT devices which are building blocks of the first layer present important errors

in measurement processes, especially concerning particles, due to the influence of external factors

such as humidity. Therefore, this thesis aims to develop solutions to correct the signal in hyperlocal

particulate sensors. In addition, the need of real-time data could be limited by traditional cloud

approaches making necessary to explore other paradigm such edge computing or federated learning.

The next section will explore the state of the art of the different layers proposed in Figure

1.1. The goal of this review is to understand the different solutions available in the literature and

in the market to identify research gaps and how to connect the different components. The review

methodology has followed a divide and conquer approach, first exploring each layer separately and

then discussing the different platforms available on the market and the comparison with the proposed

architecture.



6 Chapter 1. Introduction and State of the Art

1.3— State of The Art

The starting point of this thesis are two new concepts that have emerged recently in the state of the

art, named hyperlocal air quality measurements, which are taken by hyperlocal IoT devices, which

are IoT devices that integrate a set of low-medium cost sensors, allowing to design dense air quality

networks, going beyond the traditional reference stations. This new approach could improve the

quality and the resolution of the sensing layer in a Smart City architecture. In addition, using these

devices can improve the services offered by smart cities, improving the quality of the collected data,

allowing the data management models to obtain valuable knowledge from the data, and enhancing

the user experience in the application layer. In the context of air quality, these services are based on

physical and chemical models that predict the concentrations in pollutants. Last, some approaches

used the edge computing approach to improve the performance in the transmission layer and the

data management layer.

In this sense, this section will describe all the developments found in the state of the art,

providing the main insights and discussing their impact on implementing sustainability impact

assessment services. In concrete, in the sensing layer this section explore the different methodologies

for measuring pollutants in the air. Then, regarding the transmission layer an exhaustive description

of all the FIWARE components, followed by a review of the cutting edge data analysis frameworks.

Regarding this, a full subsection is dedicated to air quality modelling strategies because of its

relevance in sustainability impact assessment. Last, the use of semantic technologies in the air

quality domain is explored.

1.3.1. Air Quality Devices

With the development of new technologies, particularly Internet of Things (IoT), there has been an

increase in the deployment of low-cost air quality monitoring systems. These systems use inexpensive

and hyperlocal IoT sensors with lower accuracy as compared to robust systems. This fact has raised

some concern regarding the quality of the data gathered by the IoT systems, which may compromise

the performance of the environmental models [24]. In this context, we define an air quality device

as a system that integrates one or more pollutant sensors with a centralised electronic intelligence.

Table 1.1 compares reference stations with hyperlocal IoT systems based on several key factors. The

left-hand column presents attributes of reference stations, while the right-hand column represents

corresponding characteristics of hyperlocal IoT systems. In terms of accuracy, reference stations are

rated positively for high accuracy but are associated with higher cost. On the other hand, hyperlocal

IoT systems are acknowledged for providing low sampling times [25], but their quality assessment

can be challenging [26]. Reference stations are considered official data sources but may have lower

resolution capabilities, while hyperlocal IoT systems offer high-resolution data but are not officially
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recognized [27]. Additionally, reference stations have a longer operational lifetime. Still, they may

not be as compatible with IoT technology. Hyperlocal IoT systems are designed to be IoT-friendly,

but have a shorter operational lifespan [28]. Table 1.1 concisely compares these two air quality

monitoring systems, highlighting their strengths and limitations.

Table 1.1: Comparison between hyperlocal IoT systems and reference air quality devices

Reference Stations Hyperlocal IoT Systems

Pros Cons Pros Cons

High Accuracy Expensive Low Sampling Times Difficult to Assess Quality
Official Low Resolution High Resolution Not Official

Long Lifetime Not IoT-friendly IoT-friendly Short Lifetime

Reference Technology

According to Directive 2008/50/EC, a reference methodology is accredited according to EN/ISO

17025 and should be applied by establishing quality assurance and quality control system which

provides for regular maintenance to assure the accuracy of measuring devices. Furthermore, this

regulation define an analytic method for each pollutant, which should be used in the reference

laboratories. Thus, it is easy to define reference technology as the devices that are based on the

methodologies validated by Directive 2008/50/EC

• Carbon Monoxide (CO). The reference method established in the European Legislation

for this pollutant is the defined in the EN 14626:2012 standard Ambient air. The standard

method for the measurement of the concentration of carbon monoxide by non-dispersive infrared

spectroscopy . The technology is based on an infra-red beam that passes through the sample

and each gas component in the sample absorbs at a concrete frequency in the infrared region. If

we know this frequency, it is possible to quantify the concentration of CO as it is proportional

to the absorbed radiation. The main advantage of this approach is that it is selective, achieving

an accuracy < 1 %, a limit of detection < 0.04 ppmv and a range between 0-1000 ppmv [29].

Another technology found in the state of the art is Cavity Ring-Down Spectroscopy. The beam

from a single-frequency laser diode enters a cavity defined by two or more high-reflectivity

mirrors. The cavity quickly fills with circulating laser light when the laser is on. A fast

photodetector senses the small amount of light leaking through one of the mirrors to produce

a signal directly proportional to the intensity in the cavity. This technology is more used for

greenhouse gases [30], but it has been tested with a precision of 1.5 ppbv, a limit of detection

< 2 ppbv, and an operation range covering 0-5 ppmv [31]. Last, electrochemical methods have

also been used for portable CO analyzers with a precision of 3 ppmv and a range of 0-500 ppmv

as well as diffusive sampler based on Focaltin Reaction o photometric processes [32].
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• Ozone (O3). This gas is one of the oxygen allotrope and plays an essential role in atmospheric

chemistry. Thus, there are a lot of strategies in the state of the art in quantifying the

concentration of O3 in the atmosphere. The most important is the automatic method defined in

the European Legislation and the standards EN 14625:2012 Standard method for the measurement

of the concentration of ozone by ultraviolet photometry and ISO 13964. According to the O3

absorbing spectrum, a 254 nm light absorbed by O3 is proportional to the concentration in air,

according to the Lambert-Bee formulation. This means a precision of 0.5 %, a detection limit

between 0.2-0.4 ppbv and an operation range between 0-10 ppmv [33]. In addition, nitric-oxide

chemiluminescence exhibits similar performance in terms of accuracy and detection limit but a

narrow operation range (0-2 ppmv) [32]. However, this pollutant presents different standards

for indoor concentrations, in concrete EN 14412:2004 Indoor air quality - Diffusive samplers

for the determination of concentrations of gases and vapours - Guide for selection, use and

maintenance that proposes the use of ion chromatography combined with a conductivity/absorbance

[34] or a UV-Vis spectrophotometer [35].

• Nitrogen Oxides (NOx). From a chemical point of view, nitrogen oxides comprises a set of

chemical compounds containing nitrogen and oxygen. However, in the context of air quality it

is important to measure two of them: nitrogen monoxide (NO) and nitrogen dioxide (NO2).

The reason to group both pollutants is that their quantification methods are quite similar. An

example is the reference method proposed in the legislation and described in the EN 14211:2012

Standard method for measuring the concentration of nitrogen dioxide and nitrogen monoxide by

chemiluminescence. This approach is based on the following photochemical chemical reaction

principle, which produces photons: NO+O3 → NO2+O2+hν. By measuring the luminescence

produced by the reaction, it is possible to quantify NO2 and NO. This method presents the

same accuracy for both gases (0.4 ppbv) and a detection limit of 50 pptv and 40 pptv for

NO2 and NO, respectively, and operation range between 50 pptv-1 ppmv for NO2 and 50

pptv-100 ppmv for NO [36, 37]. In addition, Cavity Attenuated Phase Shift Spectroscopy is

used to measure both pollutants with a precision of 0.5 % and detection limit of < 10 pptv and

0-1000 ppbv for both gases [38]. For NO2 there are other strategies in state of the art as the

chemoluminescence determination with luminol [39], laser-induced fluorescence spectroscopy

[40] and Griess-Saltzman method [41], but these methods are less used in practice due to the

difficulty to couple with NO measurements.

• Sulphur Dioxide (SO2). This pollutant presents some challenges in the measurements

compared to the compounds exposed before. The most important is the concentration range

which is present in the atmosphere. The SO2 concentration is generally below that of other

inorganic species. For this reason, European legislation promotes using highly sensitive methods

such as ultraviolet fluorescence as a reference. This approach presents a precision of 0.5 %,

a detection limit of 0.4 ppbv and a range between 0-2000 ppbv. This method is defined

in the standard EN 14212:2012 Ambient air - Standard method for the measurement of the
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concentration of sulphur dioxide by ultraviolet fluorescence [31]. In addition, ion chromatography

using triethanolamine can determine SO2 in a range between 0.1-200 µg/m3 [42].

• Particle Matter (PM10, PM2.5 and PM1). According to the related 2008/50/EC and

the standard EN 12341:2015 Ambient air - Standard gravimetric measurement method for

the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter,

particulate matter measurements are performed by taking a sample onto the filter and then

weighing it on a balance equipped with a scale. The sampling uses the so-called PM collectors

(or sequential PM collectors), with a nominal flow rate of 2.3 m3/h. Measurement results are

expressed in µg/m3, where the air volume corresponds to the volume at ambient conditions,

near the inlet, at sampling time. However, applying such a solution requires proper conditioning

of the filters, which after 24 hours of exposure to the sample, is waiting for further analysis

by the operator [43]. Other approaches are based on optical methods, which measure the

optical diameter of particles and infer the particle mass by assuming a density and refractive

index of the particles being measured to calculate particle mass [44]. However, tapered element

oscillating microbalance, beta attenuators and optical PM sensors all measure different particle

diameters/masses and do not align exactly with the gravimetric method [45].

Hyperlocal IoT Sensors

In recent years, a new generation of IoT-enabled devices for air pollution monitoring has emerged

to resolve traditional monitoring systems’ limitations and reduce the overall cost [46]. Due to

developments in instrumentation and communications, deploying networks of sensors at high spatial

density is now feasible. The term ‘sensor’ refers to the assembly of the detection element, measurement

electronics, air-inlet, air-sampling and communications systems, and housing and mounting that

deliver the measurement result together [27]. This thesis proposes the term hyperlocal, which

concerns the ability to generate high-resolution data compared to regulatory stations with certified

instruments. The technology underlying these sensors depends on the pollutant to be measured and

the specific application. In contrast to the methods discussed above, approximations are required to

be capable of being compressed into an IoT device, which implies a loss of accuracy. This section will

review the main analytical methodologies and the performance of the main devices on the market

against reference stations.

Regarding inorganic gas sensors to measure gaseous air pollutants, there are currently two

types of low-cost sensors available in the market: (i) metal-oxide-semiconductor (MOS) sensors and

(ii) electrochemical (EC) sensors [28]. The most important are the amperometric sensors inside

the electrochemical methods. Amperometry is a conventional electroanalytical technique widely

used to identify and quantify electroactive species in the gas phase. Applying amperometry to gas-

phase analytes involves a unique gas/liquid/solid boundary (analyte-electrolyte-electrode) and an

interfacial transport process that frequently controls the AGS’s response characteristics and analytical
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performance. A simple amperometric cell with a two-electrode configuration is illustrated in Figure

1.3 wherein the electro-chemical system consists of two electrodes, i.e., a working electrode and a

counter electrode, and the electrolyte solution in which the two electrodes are immersed. When

applying a proper potential between the two electrodes, electroactive species in the electrolyte

solution will participate in electrochemical reactions on the surfaces of each of the electrodes. A

reduction reaction occurs at the cathode, takes electrons from it, and combines them with an oxidized

species. According to Faraday’s Law, each analyte molecule generates or uses an exact number of

electrons. So the charge (the number of electrons or Coulombs of charge) is exactly related to the

number of analyte molecules reacting in the system and the current (electron flow) at the electrode

is exactly related to the rate of the electrochemical reactions (current is Coulombs/s) [47].

A

Electrolite

Figure 1.3: Principle of working of amperometric gas sensors with two-electrode configuration for liquids.
Adapted from [47].

On the other hand, the light scattering method is used in hyperlocal PM sensors since the

sensors based on this principle are cheap to manufacture, have low power requirements, and quick

response times [48]. Commercially available hyperlocal particle sensors are based on optical scattering

(Figure 1.4). In these devices, a flow of air is generated by employing a fan or convection due to

a heating element. Particles in the airflow travel through a beam of light, propagating in the z-

direction, and scatter light in all directions. The amount of scattered light detected in a particular

direction Φ depends on the particle properties (size, shape, absorption, refractive index), wavelength,

and polarisation. In general terms, high intensity means a large particle and vice versa. The particle

size is determined based on the measured intensity. Thus, these devices are known as optical particle

counters because they calculate the diameter of the particle and classify it into one bin, a size range

in which all particles with a diameter within this size range are contained [49]. Then, the mass

concentration is computed by assuming that the particle is spherical, so the mass of a single particle

is defined by m = 4
3
πr2ρ [50].

In this context, and because of the technological limitations of the methods described above, it

is critical to assess the quality of reference methods against reference stations. Figure 1.5 summarises

the results found in the literature regarding the performance against official devices, using the R2
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Diffraction
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Figure 1.4: Phenomena and physic processes induced by the interaction of a single particle with a light beam.
Adapted from [49]

metric. It is important to note that the particle matter subplot summarizes the results for the

fractions PM10, PM2.5 and PM1. The first conclusion that could be extracted from this figure is

that for gas sensors, there is a high difference between laboratory studies and field experiments -

this last kind of tests are conducted in real environments. For gases, the results are quite good in

laboratory condition whereas there is wide range of accuracies for field tests. This highlights two

insights: i) the laboratory results are not extrapolable to field conditions and ii) the replicability of

the field tests is low because there is a wide range of results in function of several factors. The trend

for aerosols is similar, but it is true that the range of results in laboratory test is wider, because

of the difficulty to replicate the experiments due to the fact that aerosols are a mixture of particles

with different size and chemical composition.

Looking into detail the performances of the particle optical sensors, the following results are

collected from the state of the art in Table 1.2, which separates the results in function of the sensor

brand and the methodology used. Laboratory test refers to experiments done in controlled conditions

while field test are done with sensors working in a real environment. In both case, a reference device

is required to compute accuracy as R2.

Regarding O3 sensors, Aeroequal SM50 presents R2 values ranging from 0.77 to 0.94 in field tests

[57, 65], whereas the sensor UnitecSens 3000 was only tested in laboratory conditions with Res < 2.0

ppb [66]. The SGS MICS series present R2 values in the laboratory between 0.88-0.95 [67]. Regarding

electrochemical O3 sensors, the reported R2 values range from 0.13 to 0.70 during field testing of the

Alphasense O3B4 sensor [67], but a R2 > 0.99 is obtained in laboratory conditions [68]. The linear

models tested showed R2 greater than 0.99 during laboratory testing of the O3 3E1F sensor [68].

However, during field deployment, multiple linear regression models improve the results, and the

R2 values ranged from 0.85 to 0.94 with the calibration. After 4.5 months, the sensor performance
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Figure 1.5: Performance of Hyperlocal Air Quality Sensors against reference measurements found in the state
of the art.

Table 1.2: Performance of different machine learning models used for sensor calibration

Sensor Environment R2 Test References

Alphasense OPC-N2 Laboratory 0.94-0.99 [51]
Alphasense OPC-N3 Field 0.45-0.94 [52]

Dylos 1100 Pro and 1700 Laboratory 0.97-0.99 [53, 54, 55]
Dylos 1100 Pro and 1700 Field 0.48-0.99 [56, 57]

Plantower PMS 1003 Laboratory 0.69-0.99 [58]
Plantower PMS 1003 Field 0.82-0.93 [58]
Plantower PMS 3003 Laboratory 0.73-0.97 [58]
Samyoung DSM501A Laboratory 0.88-0.90 [48, 59, 54]
Samyoung DSM501A Field 0.07-0.97 [60]

Sharp DN7C3CA006-GP2Y1010AU0F Laboratory 0.42-0.99 [54, 55, 48, 59, 61, 62]
Sharp DN7C3CA006-GP2Y1010AU0F Field 0.72-0.99 [54, 55, 48, 59, 61, 62]

Shinyei PPD42NS Laboratory 0.66-0.99 [63, 64, 58, 48]

deteriorated, and the R2 values dropped from 0.67 to 0.82 with the simple linear regression model and

0.58 to 0.82 with the multiple linear regression model [69]. These results indicate that the response

curves of the sensors were time-variable, possibly due to sensor ageing and/or dust accumulation.
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The hyperlocal NO2 sensors exhibit excellent performance in controlled laboratory conditions.

However, their performance degrades significantly in real-world settings for reasons similar to those

discussed for O3 sensors. Moreover, field investigations report considerable variation in R2 values. For

instance, two studies employing metal oxide NO2 sensors yield contradictory results. For the MICS-

2710 sensor, part of the Air Quality Egg platform, there were observed R2 values under 0.1 between

sensor outputs and reference measurements, showing a poor performance [57]. In contrast, the RMSE

values reported with the same sensor presented reasonable values ranging from 6.9–9.5 ppb, using a

multiple linear regression model for calibration, considering temperature and humidity effects on the

sensor’s response [70]. Regarding electrochemical sensors, some studies have reported R2 close to 0.90

between the sensor response and the reference measurements after applying correction algorithms for

interference by O3 or humidity [71, 72, 73]. A more exhaustive study tested 24 electrochemical NO2

hyperlocal sensors and reported R2 = 0.04–0.52 during field tests at a reference station [26]. These

results highlight that even for identical sensors and platforms, different results can be obtained,

remarking the need of strong quality control in the manufacturing process for both sensors and

platforms, and the corresponding calibration [28].

The use of electrochemical CO sensors in literature is lower than in NO2 and O3 sensors.

In chamber conditions, there is an excellent agreement between the sensor output and reference

measurements with R2 = 0.99 [26, 72, 73]. However, the field research shows different insights and

variations in sensor performances, according to Figure 1.5. Two field studies reported moderate

to excellent R2 values (0.53–0.97) for the CO-B4 sensor [67, 73]. However, two other field studies

have reported poor R2 values (0.17–0.45) for the CO-B4 and TGS-5042 sensors when calibrating

them with reference measurements [26, 74]. Regarding metal oxide sensors, MICS-5525 sensor’s

response decreased linearly when the temperature was increased from 19 °C to 40 °C during chamber

testing. The MICS-5525 sensor’s reproducibility was moderate with R2 between 0.38 and 0.60 [70]. A

similar device MICS-4514 was tested under field conditions, reporting R2 ranging between 0.76–0.78

compared to reference measurements when calibrated using simple or multiple linear regression

models. However, the same models and device performed poorly after 4-5 months (R2 < 0.1),

pointing out the effect of ageing in sensor response [74].

Last, electrochemical Alphasense SO2 sensors from the B series were tested in field conditions,

obtaining R2 values between 0.00 and 0.05. Authors argue that this result is logical since normal

environments had very low SO2 concentration [75]. However, these results change when the same

sensor is tested after neural network calibration in an environment with SO2 values ranging from

0-400 ppb. In this case, high R2 values were obtained, ranging from 0.68 to 0.99, but a slight decrease

in the sensor’s sensitivity was observed after 18 weeks of validation [76]. From these results, it could

be concluded that SO2 sensors are more challenging in calibration and data improvement because of

the low concentration ranges in normal conditions, and it is necessary to perform the validation in

extreme environments.
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Calibration Methodologies

The calibration of a sensor is a key step in data quality assessment. However, there is a wide range

of methodologies for this purpose. The method used to calibrate hyperlocal air quality sensors is

generally considered confidential information by most manufacturers. Thus, little information can be

extracted about the calibration of devices that fall under the “black box” category compared to those

that fall under the open source category. In contrast, several studies can be found on calibrating

open source hyperlocal air quality sensors, both with laboratory and field tests. Calibration consists

of setting a mathematical model describing the relationship between sensor data and reference

measurements. The methods used to infer these relationships belong to the field of machine learning,

in concrete supervised models for regression analysis. However, most of the calibrations were carried

out during field tests, while only a limited number of laboratory-based calibration experiments were

found. In this section, we summarize the results of a literature review in calibration methodologies

for air quality sensors, as shown in Table 1.3, adapted from this work [77]. In addition, more inputs

have been added to the original table to cover the most recent developments in the state of the art.

Next, the different models proposed in Table 1.3 are described.

• Algebraic Regression Models. This set of models includes algebraic functions that explains

the relationship between the real values and the measure ones. In Table 1.3, simple linear

regression (linear), multiple linear regression (MLR), logarithmic regression (log), quadratic

regression (quad) and exponential regression (exp). The simplest model is the simple linear

regression using the least squares method, in which one target value is modelled as a linear

function of a single predictor. An extension of this model is the multiple linear regression,

whose goal is, given an input vector XT = (X1, X2, X3, ..., Xp), to predict the real value of the

output vector Y, as defined in the following equation, where p is the number of features and β

is the coefficient associated with each Xj. The quadratic, exponential or logarithmic extension

are based on generate predictor by applying the quadratic, exponential or logarithmic functions

to one or more of the original predictors. At the end, this is a multiple linear regression model

in whihch some predictors are functions of other [99].

f(X) = β0 +

p∑
j=1

Xjβj

• Support Vector Regressors. This kind of regressors are based on the support vector machine

algorithm formulated at the end of 20th century and marked in 1.3 as SVR. Mathematically,

let us define a training vector (x1, y1), ..., (xl, yl) ⊂ χR, and the objective of the problem is to

find a predictor function f(x) that has at maximum deviation of varepsilon compared to the

target value. Thus, it is possible to define a linear problem f(x) =< w, x > +b, where we seek

to minimise the scalar product < w,w >, so the following optimisation problem can be posed,
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Table 1.3: Performance of different machine learning models used for sensor calibration

Pollutant Calibration
Model

Records References R2

Model
R2

Comparison

CO ANN 2 [74] - 0.58
CO linear 12 [73], [26], [78], [79], [74] , [80] 0.85 0.15
CO MLR 21 [57], [77], [81], [70], [74] , [80] 0.89 0.83
CO RF 1 [80] 0.91 -
NO ANN 2 [74] - 0.57
NO linear 8 [26], [78], [74] , [77] 0.96 0.032
NO MLR 20 [57], [82], [77], [74] , [81] 0.92 0.91
NO RF 2 [82] - 0.9
NO SVR 2 [82] - 0.90
NO2 ANN 7 [83], [69] 0.87 0.94
NO2 linear 25 [73], [69], [26], [78], [77], [80],

[71]
0.25 0.17

NO2 log 1 [84] 0.89 -
NO2 MLR 48 [57], [85], [86], [69], [87], [82],

[83], [77], [70], [81], [80]
0.81 0.81

NO2 RF 7 [82], [83], [80] 0.86 0.91
NO2 SVR 4 [83] 0.85 0.94
NO2 SVR 2 [82] - 0.78
O3 ANN 2 [69] - 0.89
O3 linear 13 [73], [69], [26], [78], [77] 0.84 0.53
O3 log 1 [84] 0.88 -
O3 MLR 20 [57], [69], [77], [68], [81] 0.91 0.88
PM1 Kholer 2 [49] - 0.74
PM10 linear 3 [88], [89] 0.77 0.73
PM10 quad 1 [59] 0.65 -
PM10-2.5 linear 4 [90], [91], [89] 0.63 0.98
PM2.5 exp 3 [92], [58], [63] 0.91 0.97
PM2.5 Kholer 2 [93], [49] - 0.78
PM2.5 linear 37 [94], [48], [59], [88], [89], [61],

[58], [95], [56]
0.84 0.64

PM2.5 MLR 17 [57], [85], [95], [56], [96] 0.81 0.65
PM2.5 quad 8 [97], [59], [95] [64] 0.87 0.88
PM2.5 RF 3 [96] - 0.79
PM2.5–0.5 linear 9 [53], [98], [91], [89] 0.84 0.98
PM2.5–0.5 MLR 1 [57] 0.6 0.45
PM2.5–0.5 quad 6 [54] 0.82 -

which can be solved using quadratic programming [100].

1

2
||w||2

yi− < w, x > −b ≥ ε

< w, x > +b− yi ≥ ε

• Random Forest Regressors. This regression methods - RF in Table 1.3 - are based on
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random forest models, belonging to the boostrap aggregation methods, which seek to reduce

the variance of the prediction function. It is a collection of several decision trees - Boolean

structures that return an output value from an input value. Therefore, for a dataset of B

variables 1, 2, ..., b a prediction function can be defined, which is represented in the following

equation where X is the observation to be calibrated [99]. Random Forest has advantages over

other regression methods because it is faster; it is robust to outliers and noise; it has good

accuracy; and it is easy to parallelise computationally. However, its main drawback is that it

is highly dependent on the training dataset (overfitting) [101].

f b
rf (x) =

1

B

B∑
b=1

Tb(x)

• Artificial Neural Networks. Marked in Table 1.3 as ANN, artificial neural networks are

models based on the combination of different neurons in complex architectures. A neuron is a

linear function that receives a set for input predictors X pondered by a vector of weights W .

To avoid linearinity, the output of the neuron is tranoformed by a non-linear function (g) called

activation function. Thus, the output of the neuron can be defined by the following equation

[102].

a = g(
D∑
i=1

wixi + w0) = g(
D∑
i=0

wixi)

The training of a neural network consists on calculate the weights that minimizes the error

compared to a target value. The backpropagation algorithm is based on calculating the weights

recursively, starting at the output layer from the observed error and backpropagating the error

to the previous layers. The method of updating the weights is the gradient descent method

[103].

• Kölher Correction. Unlike machine learning methods, this strategy is based on the physical

theory proposed by Köhler [104], that describes the relationship between the dry diameter of

a particle and the wet diameter. Thus, it is an humidity correction approach. This algorithm

is based in a parameter κ that is dependent on the aerosol chemical composition, so a priori

in this aspect is needed. This method is only applicable for particles [105].

DDry = DWet
RH

1 + κDWet
RH
DDry
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Edge Computing in IoT Networks

The use of extensive hyperlocal air quality networks allows to apply complex architectures that

divides the processing work in different nodes, that we will call as IoT-Edge-Cloud architectures.

Several studies have demonstrated that machine learning models can improve the real-time data

reported by IoT devices by increasing the accuracy of the raw data and generating more reliable

datasets [80, 106]. In addition, this strategy could be used to forecast air quality data using sensor

data, especially with deep learning approaches based on neural networks. The main problem that

presents this machine learning approach is its integration into an edge computing architecture. Some

studies overcame this limitation in other fields, such as intrusion detection in IoT systems [107]. In

the smart cities domain, distributed machine learning has been applied to energy management [41]

but not - to our knowledge - in air quality monitoring. One of the main functionalities that provides

machine learning is the ability to perform pollutant predictions in time [108]. There are several

techniques and strategies to apply machine learning in edge nodes.

• Federated Learning. This approach is based on the Distributed Selective Stochastic Gradient

Descent (DSSGD), initially oreinted to preserve privacy in deep learning [109]. Federated

learning allows each part of the system to keep its local model private while iteratively updating

it by integrating gradients of others through a parameter server [110]. The main advantage of

FL is that edge nodes exchange and aggregate local models, avoiding extra computation, and

reducing communication overhead when ML model sizes are sufficiently smaller than data sizes

[111].

• Model Partitioning. This paradigm consists in segmenting a deep learning model into

different packages that are located into different nodes in the edge layer [110]. This strategy

is linked to Kubernetes approaches that orchestrates from the cloud the partitioning and

synchronization between models [112].

• Right-Sizing. Although the initial layers of the DNN reduce the size of the data, sometimes

the intermediate result generated is still large, or the whole process is too slow. Therefore, a

method for rapid inference is necessary. Thus, the network must be trained in a different way

to generate good results before reaching the end of the network (early-exit), being able to give

a result in real-time, without the need to send it to the cloud, thereby reducing the traffic. This

method is known as model right-sizing [113], where the DNN model has different exit points

and a shorter branch implies a smaller size and thus a shorter runtime. This mechanism focuses

on adjusting its size to the limitation of the existing environment. Despite of the number of

devices employed, the right-sizing methodology is oriented towards optimizing the utilization of

external resources to expedite computational processes. In the context of Deep Neural Network

(DNN) right-sizing, the primary focus lies in customizing the model dimensions to align with

the limitations of the prevailing computational infrastructure. This necessitates the application
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of advanced training techniques to iteratively create a newly adapted model derived from the

initial one [112].

• Edge Only. This approach is the most extreme in distributed learning, and the computations

are all performed in edge devices or nodes, with the cloud server, when used, acting only as

host for data storage [113]. Inside this paradigm, several framework has been developed, as the

recent OpenEI, that offers a lightweight deep learning Package Manager similar to TensorFlow

Lite, optimized to run AI algorithms at the edge, which guarantees low power consumption

and low memory footprint. In adition, the model selection algorithm tool provided by OpenEI

looks for the most suitable one for a specific edge platform based on users’ requirements and

the capabilities of the edge platform [114].

• Model Compression. Model compression is an efficient technique for encapsulating models

on edge nodes with limited resources by altering the network architecture itself in an attempt

to reduce its parameters, and therefore its size [113]. In this context, several frameworks using

reinforcement learning has been developed for achieving model compression in a fully automated

way, as AutoML [115] or TinyML [116]. The extreme use of compression leads to Binary NNs

(BNNs), where the activations and weights are reduced to binary representations, with massive

reductions in resource usage and costs for edge computing. Nonetheless, binarization must

be applied very carefully to not prompt drastic performance and scalability issues in complex

tasks [113].

To implement these functionalities in an edge ecosystem, tools like Foglets have been developed

to optimise task deployment over distributed edges to save bandwidth and reduce latency [117].

However, more research on exploring the programming model for existing frameworks (e.g., Apache

Storm and Spark) or developing new programming models with non-standardized interfaces is needed.

FogFlow’s programming has emerged in this context, allowing IoT service developers to program

elastic IoT services easily over the cloud and edges. In addition, it supports standard interfaces

to share and use contextual data across services, obtaining good benchmarking results for latency,

throughput, and scalability [118].

1.3.2. FIWARE: Contextual Intelligence in Smarts Cities

Contextual intelligence has become more crucial for achieving IoT intelligence, efficiency, effectiveness,

performance, and sustainability by enabling interactions between IoT devices such as sensors/actuators,

smartphones and connected vehicles, to name but a few. Context management platforms (CMP) are

emerging as a promising solution to deliver contextual intelligence for IoT [119]. Belonging to CMP,

FIWARE platform is an open-source framework designed to enable the development of innovative

and scalable smart solutions for various domains, such as smart cities, Industry 4.0, agriculture,
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and healthcare. It provides a set of core technologies and standards that facilitate the creation of

interoperable and customizable applications [120]. Figure 1.6 summarizes the different components

that can be found in a FIWARE architecture.

Figure 1.6: Catalogue of smart cities technological components (©2021, FIWARE).

The FIWARE architecture is based on generic enablers (GE), reusable software modules that

extend the platform’s functionality and facilitate the development of smart applications. FIWARE

GEs cover various areas, including data processing, security, and visualization. The principal GEs

that are part of the FIWARE platform can be broadly categorized as follows:

• FIWARE Context Broker: The Context Broker is at the heart of the FIWARE platform,

managing and handling context information in real-time, using a publish-subscribe pattern

providing an NGSI interface. Clients can create context elements, query and update them, and

subscribe to changes in context information to receive notifications. Other elements interact

with Orion through HTTP/HTTPs requests. Orion only saves the latest information state.

It allows applications to access and update context data related to entities, such as devices,
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sensors, and users. The Context Broker uses the NGSI (Next Generation Service Interface)

API, which supports simple query-based interactions and subscription-based mechanisms for

real-time updates [121]. There are three main open source components used for FIWARE

publish-subscribe systems: Orion-LD, Stellio and Scorpio [122].

• FIWARE NGSI-LD: The ETSI Industry Specification Group for cross-cutting Context Information

Management (ISG CIM) named its API using the text string ”NGSI-LD” with the formal

agreement of OMA which originally defined NGSI. This greatly helps to avoid confusion with

the IEC CIM/Common Information Model specifications. The rationale is to reinforce the fact

that it leverages on the former OMA NGSI 9 and 10 interfaces 1 and FIWARE NGSIv2 2 to

incorporate the latest advances from Linked Data. NGSI-LD is an evolution of the NGSI API,

aiming to align FIWARE with the Linked Data standards and Semantic Web technologies.

NGSI-LD is designed to offer more flexibility, extensibility, and data interoperability, making

it easier to integrate and exchange data with other systems [123].

• FIWARE IoT Agent: IoT Agents are a set of software modules handling South IoT Specific

protocols and North OMA NGSI interaction. These agents allow to work with the IoT

devices that use communication protocols like LWM2M over CoaP, JSON or UltraLight over

HTTP/MQTT, OPC-UA, Sigfox, or LoRaWAN. This component will represent the IoT devices

in a FIWARE platform as NGSI entities in a Context Broker [121]. Thus, they are crucial for

integrating IoT devices and sensors with the FIWARE platform. They act as translators

between the IoT protocols used by devices and NGSI data formats required by the Context

Broker. These IoT agents could be connected to the context broker through a MQTT broker,

as Mosquitto [124].

• FIWARE DRACO: Draco is a data management system3, which builds on Apache NiFi4. It

empowers users to create sophisticated and scalable directed graphs for data routing, transformation,

and system mediation. The system utilizes an array of processors and controllers, enabling the

conversion of incoming data into NGSI entities and attributes essential for publishing in the

Context Broker. Additionally, the Draco system serves a dual purpose, functioning not only

in the data acquisition block of the DT architecture but also in the persistence aspect [121].

Within Draco, specialised processors are responsible for persisting NGSI context data into

external storage systems, enabling the creation of a historical data view within the Context

Broker [125].

• FIWARE Keyrok: In the FIWARE Ecosystem, several GEs manage the authorization and

authentication of users and devices. Generally, every request sent to a FIWARE GE must be

1Open Mobile Alliance, Next Generation Service Interfaces Architecture Approved Version 1.0 Published 29 May
2012

2Fiware, FIWARE-NGSI v2 Specification. See e.g. http://fiware.github.io/specifications/ngsiv2/stable/
3https://fiware-draco.readthedocs.io/
4https://nifi.apache.org/
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authenticated using a token [121]. The Keyrok GE 5 is an Identity Management component

based on OAuth 2.0. It is responsible for issuing the tokens for previously registered and

authenticated subjects (users and devices). Keyrock relies on the OpenStack IdM implementation

called Keystone 6, extending Keystone by implementing the SCIM standard. SCIM is intended

to reduce the cost and complexity of user management operations through a common user

schema, extension model, and REST API with a rich but simple set of operations [126].

In summary, the FIWARE platform offers a comprehensive and versatile ecosystem of tools and

components that empower developers to build smart applications with a focus on interoperability,

scalability, and openness. By adhering to open standards and facilitating data sharing, FIWARE

encourages collaboration and accelerates the adoption of smart solutions across various industries.

1.3.3. Data Analytics Tools and Environments

In general, in our proposed smart city architectures, time-series analysis has been performed using

relational databases, especially time-series databases. However, non-SQL databases have been used

that incorporate a spacious range of distinct database technologies [127]. These are developed for

designing modern applications. A non-relational or non-SQL database that delivers a process for

procuring and retrieving data has been depicted, using data mining to address the tasks of gathering

and processing sensor data [128]. Different technologies for different purposes in big data platforms

are used in our reviewed papers, such as API, Navitia.io, CitySDK, SPARQL Query, R Programming,

Predictive Analytics or Blockchain [129].

Relational Databases

A relational database is a set of data linked together following a logic, which is represented in tables

with rows and columns to store information in these objects. The data is defined in the first column,

the header column, and each row is associated with primary key, and each column has a datatype. In

this model, each row corresponds to an observation or measurement that is collected in the database.

SQL query language is the most used in relational schemas, so these databases are also known as

SQL databases. In fact, some of them as Apache, PostgreSQL, CrateDB or BigQuery implement

SQL dialects that come from the SQL standard [130]. In the context of Smart Cities, the following

SQL databases are used in the state of the art.

5https://fiware-idm.readthedocs.io/
6https://docs.openstack.org/developer/keystone/
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• CrateDB7. CrateDB is a distributed SQL database built on top of a cloud-native architecture.

It combines the familiarity of SQL with NoSQL’s scalability and data flexibility, enabling

developers to: i) use SQL to process any data, structured or unstructured; ii) perform SQL

queries at real-time speed; and iii) scale simply. It is widely used in the context of Smart Cities

because it is FIWARE friendly and could be easily connected to the Context Broker through

the QuantumLeap interface [131]. CrateDB has also been used in digital twin applications to

manage cities or building resources [132]. CrateDB is available in the cloud, at the edge, and

on premise to fit everyone’s needs. Customers often use CrateDB to store and query real-time

data. This is because CrateDB makes handling the velocity, volume, and diversity of machine

and log data easy and economical [133].

• PostgreSQL8. This database system plays a crucial role in the development and implementation

of Smart Cities around the world. PostgreSQL is a powerful, open-source object-relational

database system based on the SQL language with over 35 years of active development. It

has earned a strong reputation for reliability, feature robustness, and performance. It serves

as a reliable platform for storing and retrieving data related to traffic management, energy

consumption, waste management, public safety, environmental monitoring, and more. With its

support for spatial data and advanced querying capabilities, PostgreSQL enables the integration

of geospatial information, enabling smart city applications such as real-time traffic optimization,

urban planning, and location-based services [134, 18]. Additionally, PostgreSQL allows for

integrating various sensors and devices, facilitating data-driven decision-making and fostering

innovation in smart city projects [135].

• MariaDB9. MariaDB Server is one of the most popular open-source relational databases. It

was made by the original developers of MySQL and guaranteed to stay open source. It is part

of most cloud offerings and the default in most Linux distributions. MariaDB has been used in

some smart city applications, such as crowd monitoring, to manage the information connected

to the user’s system credentials, built throughout the development process, using the RESTful

methodology [136].

• MySQL10. MySQL Database is a fully-managed database service powered by the integrated

HeatWave in-memory query accelerator. It is the only cloud-native database service that

combines transactions, analytics, and machine learning services into MySQL Database, delivering

real-time, secure analytics without the complexity, latency, and cost of ETL duplication. It has

been used in platforms to monitor radon in indoor environments, such as homes and workplaces

[137].

7https://crate.io/
8https://www.postgresql.org/
9https://mariadb.org/

10https://www.mysql.com/
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Non-Relational Databases

Non-relational databases comprise a high number of database systems that are not based on the

relational model and data is queried using a non-SQL language, usually specific to each database.

Some notable open-source NoSQL databases are Apache Cassandra, Apache HBase, and Apache

CouchDB. Others are more focused on time series It is worth noting that the two largely popular

databases Elasticsearch [88] and MongoDB [89] were open-source projects up to 2018 and 2021,

respectively, when they switched their licenses to the Server Side Public License (SSPL), a source-

available but not open-source license [135]. A special group inside non-relational databases is focused

on time series management, as InfluxDB, TimescaleDB, and OpenTSDB [138]. Graph databases are

another important group in non-relational databases, a scalable option for dealing with complex,

semi-structured, and densely connected data. It is very fast in terms of queries and gives a response in

milliseconds. Graph databases are highly useful in communication, healthcare, retail, financial, social

networks, online business solutions and smart cities [139]. Graph database system follows CRUD

(create, read, update, delete) methods used in a graph data model and uses index-free adjacency

[140].

• InfluxDB11. InfluxDB is a NoSQL database designed specifically for efficiently managing time

series data, whereas relational databases are more suitable for applications requiring complex

relationships between datasets. InfluxDB has increased its presence in IoT architectures because

it is compatible with dynamics visualization tools such as Graphana [141] and FIWARE

friendly [142]. In addition, because of its target in time series, it is strongly recommended

for architectures that will feed artificial intelligence services [143]. In the context of Smart

Cities, recent studies demonstrate that time series databases could be used to improve the city

system’s performance and reduce storage requirements, as well as reducing the costs of smart

city platforms [144].

• Neo4j12. This is a disk-based transactional graph database. Neo4j also supports another

language like Python except for Java for graph operations. Neo4j is an open-source project in

a GPLv3 Community edition, with Advanced and Enterprise editions available under both the

AGPLv3 and a commercial license. Neo4j is the best graph database for enterprise deployment.

It scales to billions of nodes and relationships in a network [145]. Regarding its feasibility in

Smart Cities, recent studies demonstrate that Neo4j can be used in FIWARE platforms for

different IoT solutions [146].

• GraphDB13. The model permits an explicit representation of graphs by defining object classes

whose objects can be viewed as nodes, edges, and explicitly stored paths of a graph (which

11https://www.influxdata.com/
12https://neo4j.com/
13https://graphdb.ontotext.com
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is the whole database instance). A database in GraphDB is a collection of object classes

partitioned into three kinds of classes: simple, link, and path classes. There are also data

types, object types, and tuple types [147, 148]. This database is a specialized in-store for RDF

triples, which has been used in different initiatives in the state of the art as the validation

of the proposed Smart City RDF Benchmark (http://www.disit.org/smartcityrdfbenchmark)

based on Florence Smart City accessible as Km4City [149].

Analytic Environments

In the rapidly evolving data analysis landscape, the availability of robust and versatile tools has

become paramount for efficiently extracting insights from complex datasets. Among the forefront

contenders, JupyterLab, Apache Spark, and Airflow are indispensable pillars of modern data analysis

workflows. JupyterLab, an evolution of Jupyter Notebooks, provides an interactive and user-friendly

environment for data exploration and visualization. On the other hand, Apache Spark empowers

data professionals with lightning-fast distributed processing capabilities, enabling them to tackle big

data challenges easily. Apache Airflow orchestrates data pipelines by complementing these tools,

offering automation and scheduling capabilities that streamline the end-to-end analytical process.

This section provides a quick overview to the tools that will be used in this thesis as main work

environments.

• JupyterLab14. It is the latest web-based interactive development environment for notebooks,

code, and data. Its flexible interface allows users to configure and arrange workflows in data

science, scientific computing, computational journalism, and machine learning. A modular

design invites extensions to expand and enrich functionality. It is based on the concept of

notebook, a shareable document based on the JSON formats, combining code, plain language

descriptions and data.

• Apache Spark15. It is a multi-language engine for executing complex processes and performing

data engineering, data science, and machine learning tasks on single-node machines or clusters.

Apache Spark is a key environment in scaling machine learning applications and optimizing

cost-consuming algorithms and big data processing queries.

• AirFlow16. It is an open source platform created by the community to programmatically

author, schedule, and monitor workflows. It allows users to implement standard Python features

to create their workflows, including date-time formats for scheduling and loops to generate tasks

dynamically. This allows you to maintain full flexibility when building your workflows. For

this reason, the combintion of AirFlow with Apache Spark is quite common in current big data

applications.
14https://jupyter.org/
15https://spark.apache.org/
16https://airflow.apache.org/
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1.3.4. Air Quality Modelling and Forecasting

An air quality model is a mathematical representation that combines and synthesises all the factors

involved in air quality. The output of all these elements results in pollutant concentration’s spatial

distribution and temporal evolution. The importance of mathematical models in air quality prediction

has increased, and there are two different approaches. The first one is based on statistical and

empirical observation and is called statistical models while the second group aims to model the

physical and chemical process that occurs in the atmosphere. These last models are named deterministic

and typically solve the differential equations that represent the processes controlling the atmospheric

processes and are used for a range of tasks, including developing new scientific understanding and

environmental policies [150].

Statistical Models

This section includes a wide range of methods, some of them based on basic statistical principles and

others framed in recent artificial intelligence technologies and the emerging field of machine learning.

One of the most basic methods to predict air quality is based on decision trees, concretely in the

CART algorithm (Clasification and Regression Trees). This method develops a decision tree by

continuously splitting peak pollutant concentration data into two groups based on a single value of

a selected predictor variable [151]. The selected predictor variable and the threshold cutoff value are

determined by the CART algorithm, after being trained with reference data. The software identifies

the variables with the highest correlation with the pollutant. It seeks to split the data set into

the two most dissimilar groups. The splitting of the data set and tree development continues until

the data in each group are sufficiently uniform. Predictor variables used in CART typically include

meteorological data (i.e., temperature, wind speed, cloud cover, etc.), but may also include air quality

data or other data such as the day of week or length of day. Figure 1 shows a simple decision tree

modelled by CART to predict O3 daily maximum concentrations in Los Angeles. It is quite simple

to forecast pollutant concentrations using the decision tree created by the CART analysis.

However, CART models are so inefficient to perform an accurate prediction. For example,

slight changes in input variables may produce large changes in the output concentrations. This is an

objective tool that can only predict pollutant concentrations based on information contained within

the observed and forecasted data. Changes into weather conditions or emissions may not be reflected

in the predictor variables and may cause uncertainty in the pollutant predictions. CART may not

predict pollutant concentrations during periods of unusual emissions patterns due to holidays or

other events; however, human forecasters can account for these changes and their potential impact

on pollutant concentrations. But the main limitation is the fact that decision trees should be updated

along the time. For example, the tree shown in Figure 1 was developed in 1988, so it is not valid to

predict real concentration nowadays.
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Thus, the limitation of this model demonstrated the necessity to implement more complex

models and treat the air quality prediction as a regression model. Regression is a statistical method

for describing the relationship among variables. Regression equations are developed for air quality

forecasting to describe the relationship between pollutant concentration (the predict and what is

being predicted) and other predictor variables (e.g., temperature, wind speed, etc.) Regression

equations have been successfully used to forecast pollutant concentrations in many areas [152, 153,

154].

Chemistry Transport Models

Deterministic air quality models describe the atmospheric dispersion of trace species by modelling

different processes such as chemical transport, reactions, emissions and deposition. This methodology

attempts to mathematically represent these important processes that affect ambient air quality. Air

quality modelling actually requires a system of models that work together to simulate the emission,

transport, diffusion, transformation, and removal of air pollution. These models have three modules

or submodels: meteorology, emissions and air quality. The deterministic mathematical models

calculate the pollutant concentrations from emission inventory and meteorological variables according

to the solution of various equations representing the relevant physical processes [155].

Figure 1.7: Proceses governing chemical concentration in atmosphere. Adapted from [155].

Moreover, deterministic models can be used to define and implement suitable control strategies

for emissions and are a key tool in Sustainability Impact Assessment. Air Quality Models can be

considered integrated into atmospheric models to make the governing equations, modelling, and
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computational algorithms reliable and compatible. The most important are chemistry transport

models, which solves the mass continuity equation for each pollutant, where C represents the concentration

vector (mass/volume) or density number (molecules/volume) of the trace species and uC is mass flux

AND u is the wind velocity vector. This equation represents the mass conservation law.

∂C

∂t
+∇uC = 0

This general equation should be adapted to if ci stands for the concentration of a gas-phase

species labelled by i, the time evolution is governed by a reaction-diffusion-advection partial differential

equation, where x represents the vector with the three-dimensional coordinates, ρ is the air density,

K the eddy coefficient matrix, χi is a function that represents the chemical reactions of the specie i,

Lambdai is the scavenging function - it represents the amount of pollutant that are removed by rain

and another meteorological process, and Si is a function that represents the emissions of the specie

i.

∂ci
∂t

+ div(V ci) = div(ρK∇ci
ρ
) + χi(C, x, t)− Λi(x, t)ci + Si(x, t)

Also, initial and boundary conditions have to be defined. In differential equations, a boundary

condition expresses the behaviour of a function on the boundary (border) of its area of definition.

An initial condition is like a boundary condition, but then for the behaviour when it is derivated

against time. In chemistry transport models, it is common to use the following definition of boundary

conditions, where n is the vertical unitary vector (upward oriented), Ei the surface emissions and

vi is the velocity of dry deposition, computed as a parameterization of meteorological fields and the

land use cover.

−KΛcin = Ei(x, t)− vdepi (x, t)ci

Thus, the aim of chemistry transport model is to solve this last equation for all the chemical

species defined in the C vector. Note that more components are involved in the previous equation

for aerosol species- multiphase chemistry. Different strategies exist to solve this equation, so it is

possible to classify 3D AQM according to this criteria. The two principal approaches are lagrangian

and eulerian. A gaussian method also exists, but this does not exactly solve this equation. The

strategy selected depends on the desired application. The most important are the following: (1) risk

assessment of chemical, biological or radiological releases (operational context); (2) environmental

forecast; (3) impact studies or process studies [156]. Table 1.4 shows the principal 3D Air Quality

Models and the classification of CHIMERE into the group 3D eulerian multiphase chemistry transport

models.



28 Chapter 1. Introduction and State of the Art

Table 1.4: Clasification of different chemistry transport models in the sate of the art

Model Type Application Reference
WRF-Chem Eulerian Air Quality Forecast [157, 158]
CMAQ Eulerian Multiphase chemistry [159]
CHIMERE-WRF Eulerian Air Quality Dispersion [160, 161]
CALPUFF Lagrangian Pollutant Transport [162]
AERMOD Eulerian Local Dispersion [163]
HYSPLIT Semi-Lagrangian Trajectory Model [164]
CAMx Eulerian Photechemical Modelling [165]
GEOS-Chem Eulerian Atmospheric Composition [166]
LOTOS-EUROS Eulerian Assimilation and Forecast [167]
MATCH Eulerian Urban Modelling [168]
MOZART Eulerian Ozone Modelling [169]
TOMCAT/SLIMCAT Eulerian Aerosol Micropysics [170]
POLYPHEMUS Eulerian Air Quality Forecast [171]
TCAM Eulerian Aerosol Photochemistry [172]
CLaMS Lagrangian Reverse Domain Modelling [173]
FLEXPART Lagrangian Trajectory Model [174, 175]
MOCAGE Semi-Lagrangian Air Quality Forecasting [176]
GEM-MACH Semi-Lagrangian Aerosol and Ozone [177]

Street Canyon Models

The fundamental process of enhancing urban environments to be both healthier and sustainable

relies on effectively modeling air quality and its adjustable parameters. Consequently, investigating

the influence of urban morphology on the dispersion of pollutants within cities and their subsequent

interaction with the atmosphere emerges as a pivotal aspect of urban planning [178]. In this context,

computational fluid dynamics (CFD) offers an exhaustive description of mean flow and turbulence,

making them well-suited for dealing with complex scenarios like urban settings. Nonetheless, their

applicability decreases when extended to prolonged simulation in time and when expanding the

full spectrum of urban diversity across wide regions. These limitations come from constraints in

computational resources and potential delays in processing times [179].

1.3.5. Semantic Technologies in the Air Quality Domain

Smart cities are complex socio-technical-economical systems in which different devices, smartphones,

technological systems, services, and applications interact and exchange data through the Internet

of Things (IoT) paradigm [180]. This development requires infrastructures and applications that

manage big data generated from sensors and other sources [181]. Semantic models are still an

effective strategy to address data and system complexity. Semantic interoperability in this context

refers to the ability of various agents, services, and applications to share their large amounts of data,

knowledge, and contextual awareness to benefit the city [182, 183].



1.3. State of The Art 29

Figure 1.8: Semantic Web Architecture. On the bottom, the IRI/URI base provides an identifier for each
resource. The next layer defines the RDF language to connect the resources using triplets as well as the XML
scheme. On the top, are the languages that provide conceptualization (OWL) and logic (RIF) as well as the
interface to query semantic data.

The Semantic Web is an extension of the web that aims to automate document processing and

retrieval, providing information with a well-defined meaning that allows computers and people to

work cooperatively [184]. The meaning of web resources is established by means of formal metadata,

defined by new metadata using IRI/URI as unique identifiers, to be managed by software agents to

managed by software agents to discover and integrate information. The semantic web architecture is

a pile of language and technologies based on the IRI concept, as shown in Figure 1.8. The next layer

defines the RDF language to connect the resources using triplets and the XML scheme. On top,

there are languages that provide conceptualization (OWL) and logics (RIF) as well as the interface

to query semantic data. All these languages will be defined in this section.

To explain this new application of semantic technologies, a new concept has arisen in the

state of the art. The Semantic Web of Things (SWoT) merges Semantic Web technologies with the

Internet of Things (IoT) domain to establish knowledge-based environments that facilitate advanced

ontology-based functionalities [183]. The SWoT paradigm connects devices, objects, and phenomena

with ontology-based annotations, enabling detailed, formal, and well-structured definitions. This

approach provides unambiguous semantics, empowering automated reasoning tools to deduce new

knowledge from comprehensive and integrated data views. As we move from IoT to IoE (Internet of

Everything), the transition entails a corresponding progression from SWoT to the Semantic Web of

Everything (SWoE) [185]. It is easy to note that in this new framework, semantic technologies forge
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synergies and interconnections between individuals, objects, processes, and data via the Web.

Semantic interoperability between IoE entities goes beyond the data exchange format or the

explicit description of data models. It relates to a technique that automates this process without

needing any configuration or programming [186]. Not only must the data be shared between two or

more systems, but it must also be understood by each system. Sensors use self-defined data formats

like JSON, CSV or XML to store their data. However, the data and schemas used by different

hyperlocal IoT devices are not compatible. Also, in the air quality domain, information is also

presented in many different units of measurement (ppb, ppm, µg/m3). Hyperlocal device systems

face interoperability issues as a consequence of disparate data description formats and incompatibility

in the semantics of data representations. When data exchange is standardized and given a common

meaning, regardless of the structure and semantics of the source content, semantic interoperability

is accomplished [182].

Semantic Web Languages

One of the main goals of the semantic web is to enable computers to understand the implicit semantics

of the concepts and resources defined among the world wide web. In other words, the semantic

web seeks to extend the network of human-readable resources by adding machine-understandable

metadata about resources and their relationships with other resources. For this purpose, semantic

web languages formally describe concepts, terms, and relationships within a given knowledge domain

to be used to write the metadata. There are essentially three types of languages: i) data representation

languages (e.g., RDF), ii) knowledge representation languages (e.g., OWL) and iii) rule-based languages

(e.g., RIF) [187].

• Resource Description Framework (RDF). This language is a standard for Web metadata

that the World Wide Web Consortium (W3C) developed. It is based on expanding the

traditional notion of document metadata, being a suitable language for describing any Web

resource. As such it provides interoperability between applications that exchange machine-

understandable information on the Web. RDF is based on concatenating resources in subject-

predicate-object triplets, allowing the connection of the resources in complex knowledge graphs

[188]. RDF Schema (RDFS), which is an extension of RDF, provides additional constructs to

increase the expressivity of the language [187].

• Web Ontology Language. The OWL family of languages are “object-oriented” languages

for defining and instantiating ontologies [189, 190, 191]. This language provides specifications

on how to derive logical consequences. For example, if an individual Peter is an instance of

the class Student, and Student is a subclass of Person, then one can derive that Peter is also

an instance of Person in a similar way as it happens in RDFS [187]. However, OWL is much

more expressive than RDFS [192].
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• Rule Interchange Format. The RIF language aims to become a standard in the interchange

of logical information, especially rules. A rule is perhaps one of the simplest notions in computer

science. It is a Horn formula based on an IF-THEN construct. If some condition (the IF part)

that is checkable in some dataset holds, then the conclusion (the THEN part) is processed.

Deriving somewhat from its roots in Logics, rule systems use a notion of predicates that there

are many rules languages in existence, and what is needed is to exchange rules between them

[187].

That is, RIF focuses on exchange rather than trying to develop a single one that fits all rule

language because, in contrast to other Semantic Web standards, such as RDF, OWL, and

SPARQL, it was immediately clear that a single language would not satisfy the needs of many

popular paradigms for using rules in knowledge representation and data modelling [193]

• The Query Language SPARQL. This language is an approximation to perform queries

in RDFS datasets and knowledge graphs. From a logical perspective, it can be considered a

notion of the conjuctive/disjunctive query model [194]. For this reason, SPARQL is a query

language for databases and has much in common with SQL. This language is widely extended

in biology and chemical datasets, as most of them are based on RDF triples. This approach

makes developing a dedicated server that presents the data and supports data querying easy

[195].

Ontologies

In artificial intelligence, an ontology is an explicit model of the concrete knowledge domain. There are

several definitions of ontologies in literature and across different fields of informatics. In knowledge

representation and information modelling, an ontology is a formal and structured representation of

a conceptual framework [196]. In addition, ontologies can also be defined as collections of computer-

readable term definitions of the domain, specifying sets of instances/data (concepts/classes), their

properties, and binary relationships between them [197]. In any case, ontologies are basic pieces

in the semantic process and are the cornerstone technology for linked data, knowledge graphs and

annotation procedures.

An ontology is a formal conceptualization of a domain of interest and consists of the following

three different syntactic categories: i) entities, such as classes, properties, and individuals, are

identified by URIs and can be thought of as primitive terms or names. Entities represent basic

elements of the domain being modelled; ii) Expressions represent complex notions in the domain being

modelled. For example, a class expression describes a set of individuals in terms of the restrictions

on the individuals’ features; and iii) axioms are statements that are asserted to be true in the domain

being modelled [187].
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• Linked Data (LD). It serves as the foundational element for the semantic web, with the

aim of establishing human-machine understandable links between datasets. LD provides the

necessary methodologies to create and leverage these relationships effectively. It involves a set

of design principles that facilitate the exchange of machine-readable, interconnected data across

the Web [182]. By utilizing Semantic Web technologies, the Open Government Data (OGD)

standards of integrity, participation, and collaboration are harnessed to integrate citizens into

the smart city paradigm [198].

The combination of LD with Open Data gives rise to Linked Open Data (LOD), where data is

freely available for use and distribution [199]. Tim Berners-Lee and colleagues have highlighted

publishing and linking techniques for structured content on the World Wide Web, involving

the use of URIs as labels to identify entities. HTTP URIs enable individuals to search for these

labels, providing valuable information when a URI is queried. Additionally, standards like

RDF, NGSI-LD and SPARQL are employed, and links to other URIs are included to facilitate

further exploration of related entities [200].

• Knowledge Graphs. Ontologies are the basis of the recent knowledge graphs (KG). A general

ontology specifies the schema of a domain but does not include information about specific

domain individuals. By adding data instances to ontological terms (to semantically describe

the data with suitable metadata), a knowledge graph is generated. Thus, it is possible to define

a knowledge graph as an instance-populated ontology with data and individuals [183]. In this

process, ontology engineering is a key point in a methodological approach to the development

of knowledge graphs [201].

Knowledge graphs use a graph-based data model to capture knowledge in application scenarios

that involve integrating, managing and extracting value from diverse sources of data at large

scale [202]. Through this abstraction, the graph provide a concise representation where edges

describe complex relations between the nodes that represent the entities of the domain [147],

allowing to apply several artificial intelligence algorithm as rule mining or graph neural networks

[203, 204]. Scalable frameworks for graph analytics can be leveraged for computing centrality,

clustering, summarising, and regression, to gain insights about the domain being described

[205].

Recent studies proposes climate change mitigation solutions by proposing a climate knowledge

graph for the integration of multiple climate data and other data sources into one service,

leveraging Web technologies (e.g. HTTP) for multi-source climate data analysis. One of the

challenges in this approach is the need to integrate heterogenous data from different sources in

the knowledge graphs, that means to work with not FAIR formats as netCDF arrays, aiming

to boost the cross-domain climate related research [206].
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• Semantic Annotation. Enhancing the interoperability of dynamic environments like smart

cities can be achieved by adding semantic annotations to the descriptions of devices, objects,

and phenomena [207]. This involves annotating data resources with semantic metadata. The

process begins with entity identification, followed by entity disambiguation, and finally, the

annotation of data to the resources. These steps may vary depending on the resource type.

Within a service-oriented architecture, the functionality of real-world objects and data are

characterized by semantic services accessible through a unified interface, thereby enhancing

the capability of diverse entities to interoperate seamlessly [208]. By semantizing and creating

services over data, automation and dynamic provisioning of entity search, selection, and negotiations,

among other activities, become feasible [209].

Various semantic annotation methods primarily focus on mapping sensor information to established

ontologies using specific mapping languages like D2RQ [210] and R2RML [211]. Additionally,

mapping languages like RML (an extension of R2RML) aim to translate heterogeneous and

multimodal data into RDF, independent of the input data format [212]. SPARQL-Generate

facilitates RDF production from any RDF dataset and a collection of documents in arbitrary

formats [213]. A recent work, RDF-Gen, proposes a consistent, efficient, and scalable method

for constructing RDF knowledge graphs from diverse streaming and archived data, outperforming

RML and SPARQL-Generate in terms of speed, scalability, and usability [214].

The process of data annotation in essential in different science domains. For instance, trying

to capture all information on samples, instruments, reagents, and research objectives, for

analytical chemistry methods is hot topic in the state of the art. A simple approach consists

on capturing those key steps of the method that are either transformative or generative,

that is, materially change a sample, generate information on the sample (by an analytical

procedure such as mass spectrometry), or transform the data from one form into another

[215]. This is quite advanced in genomic science, in which the Gene Ontology effort (GO;

https://geneontology.org) is the most comprehensive and widely used knowledge concerning

the functions of genes. In GO, all functional knowledge is structured and represented in a form

amenable to computational analysis, essential to support modern biological research. The GO

knowledgebase is structured using a formal ontology by defining classes of gene functions (GO

terms) with specified relations to each other [216].

Vocabulary Standardisation

There is an increasing interest in the development of data spaces, for which the interoperability of

heterogeneous data need to be achieve.

This is a key principle observed in the design of the World Wide Web: content providers publish

web pages on web servers (endpoints), knowing that web browsers can connect to them and retrieve

web pages whose content they can render and display to end users. It means that all data-spaces
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Figure 1.9: Data exchange in a data space

participants should “speak the same language,” translating into adopting domain-agnostic common

APIs and security schemas for data exchange.

Thus, it is essential to use standardised vocabularies for all communities participating in a

data space. For instance, if all the communities define, let say, ”no2” as it is done in a web

resource identified by an IRI, it is possible to guarantee interoperability between applications and

algorithms. In the air quality domain, Table 1.5 lists several ontologies along with their corresponding

descriptions. The first ontology, CHEBI17, describes chemical entities and small molecules of biological

interest. The second, ENVO18, is centered around describing environments and pollutants. On

the other hand, FIWARE Smart Data Models19 are not an ontology, but provide standardised

vocabularies related to Smart Cities. GEO20 deals with describing geographical entities. MAMO’s21

scope is to describe mathematical models. Lastly, the SAREF ontology22 is oriented towards describing

IoT ecosystems.

From this table, it is easy to note that there is a wide range of vocabularies available in the air

quality domain. In addition there is some redundancy as some terms are defined by different IRIs.

For example, the ”no2” is defined by FIWARE and also in the CHEBI ontology. For this reason, a

process of standardisation and unification is needed in the domain. Next, the main vocabulaires are

explored in more detail.

17https://www.ebi.ac.uk/chebi/
18https://sites.google.com/site/environmentontology/
19https://smartdatamodels.org/
20http://purl.obolibrary.org/obo/geo.owl
21http://identifiers.org/mamo
22https://saref.etsi.org/
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Table 1.5: Selected ontologies for the air quality domain

Ontology Description

CHEBI Describe chemical entities and small molecules.
ENVO Describe environment and pollutants.

Smart Data Models Describe smart cities vocabularies
GEO Describe geographical entities

MAMO Describe mathematical models
SAREF Describe IoT ecosystems

• CHEBI. Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of

molecular entities focused on ”small” chemical compounds. The scope of this ontology are

molecular entities that are either natural products or synthetic products, which have an effect on

the processes of living organisms [217]. ChEBI finds extensive utility across diverse applications,

serving as a reliable reservoir of distinctive and unchanging identifiers for chemical substances in

annotations within a broad spectrum of bioinformatics databases [218]. Furthermore, it plays a

crucial role within the Semantic Web. A notable instance is the recent translation of PubChem

database content into RDF format, where ChEBI classes were effectively employed to furnish

the rdf:type classification for the chemicals contained in PubChem’s RDF representation [219].

Figure 1.10 shows the individual in the CHEBI ontology and how it is modelled.

It could seem that CHEBI is not an ontology related with air quality, but all the main pollutants

described in Directive 2008/50/EC are defined in CHEBI ontology as small molecules that has

an effect on metabolomics - this could be considered as an additional definition of pollutant, but

it does not apply to particles. In addition, in metabolomics field, a substantial improvement

has been achieved in detecting and identifying new biomarkers of environmental pollutants

through molecules identification and annotation [220]. For instance, CHEBI has been used

to identify effects on metabolism related to emissions from refineries [221]. Thus, subsequent

efforts should focus on investigating these ontologies applied to social determinants of health.

This encompasses ontologies like ENVO , CHEBI , and ECTO (Environmental conditions,

treatments, and exposures ontology) [222].

However, CHEBI is more than an ontology. It is also public web application that has undergone

a comprehensive overhaul and enhancement, focusing on aspects such as page arrangement,

adaptability to various devices, menu architecture, and an overall augmentation of the interactive

user encounter. An integral facet of this modernization was the replacement of all Java

applets with suitable JavaScript components and libraries. Historically, Java applets led to

persistent user dissatisfaction due to their inconsistent performance across diverse platforms

and their tendency to be cumbersome for downloading, particularly impeding usage under

sluggish connections. Additionally, concerns regarding the security of Java in web browsers

emerged, resulting in occasional blocking of certain applets due to browser security settings

[218]. Inside the services provided by ChEBI web application, it is worth to note BiNChE, an
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Figure 1.10: Model proposed for nitrogen dioxide in the CHeBI ontology.

enrichment analysis tool 23, which is also available as a software library. The tool offers plain or

weighted analysis options against the ChEBI role, structure or combined ontology [223]. Also,

OntoQuery is another usefull serice which allows Description Logic queries in the easy to use

Manchester syntax to be executed against the pre-loaded and pre-reasoned ChEBI ontology

[224].

• ENVO. The Environment Ontology is a community-led, open project which seeks to provide an

ontology for specifying a wide range of environments relevant to multiple life science disciplines

and, through an open participation model, to accommodate the terminological requirements of

all those needing to annotate data using ontology classes [225]. ENVO provides descriptions

of habitats, environmental processes, human-influenced surroundings, and entities pertinent to

endeavors in environmental health and the worldwide Sustainable Development Agenda for the

year 2030. Various segments of ENVO have served as platforms for fostering and initiating

novel ontologies in hitherto unaddressed areas, such as the domains of food and agronomy

[226].

23http://www.ebi.ac.uk/chebi/tools/binche/
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• FIWARE Smart Data Models. This initiative launched by the FIWARE foundation aims

to provide a library of standardised data models described in JSON-LD format and compatible

with NGSIv2/NGSI-LD APIs and other RESTful interfaces, always in compliance with the

Open API specifications24. Data Models published under the initiative are compatible with

schema.org and other standards as ontologies. Since its creation, more than 500 data models

have been published, and the number of organizations contributing data model descriptions is

constantly growing [227]. All published data models and schemas are available in the following

link25.

The strength of the NGSI-API is the fact that is domain-agnostic. In other words, many

different systems have been developed using NGSI APIs in different domains transversal to

smart cities, as smart energy, agriculture, ports or health, to mention a few. It is easy to

note that this approach facilitates data sharing, because each system participating in the

architecture will be publishing data that enriches a digital twin data representation of the city.

These systems participating in digital twins do not know what other systems may consume

their published data. Still, they will be able to assess concrete terms and conditions for

accessing/using this data in a FAIR way [227].

Data models are grouped into domain subjects, which are referred from repositories associated

with the multiple application domains being considered. It should be highlighted that subjects

are very specific to a given application domain. In contrast, others may be relevant to multiple

domains. For instance, weather that is relevant to almost every domain or sewage that is

relevant to the Smart Cities and Smart Water domains [227]. Figure 1.11 shows the publication

process of a data model as well as the twelve domains available at this moment - at the end of

2023.

24https://smartdatamodels.org/
25https://github.com/smart-data-models
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Figure 1.11: A. Workflow that should follow a smart data model to be published in the GitHub repository.
B. List of available domains at the end of 2023 (©2021, FIWARE)



Chapter 2
Challenges, Objectives and Hypothesis

2.1—Overview

The Challenges, Objectives, and Hypothesis section is a key component of this work focused on

sustainability impact assessment. This section lays the foundation for the entire research, outlining

the key problems, goals, and anticipated outcomes. The primary purpose of this section is to provide

readers with a comprehensive understanding of the research’s context and to set the stage for the

subsequent chapters. This is a key point in assessing the potential contributions of the research to

the field of sustainability impact assessment. Emphasis is placed on how the study’s findings could

advance knowledge, inform policy decisions, or provide practical insights to industry stakeholders.

However, reaching this milestone is not easy because of the complexity of sustainability assessment.

It should be noted that sustainability is a multidimensional concept, encompassing economic, social,

and environmental aspects, making its assessment inherently intricate. In addition, there is a lack

of standardized methodologies due to the innovation related to this field and the continuous changes

of the understanding of sustainability and climate change mitigation policies in the society and the

legislation, which make it difficult to run comparisons and benchmarking. Other key point is that

gathering reliable and comprehensive data on sustainability indicators can be challenging due to

the variety of data sources and the quality of available information. Last, it is essential that the

solutions proposed by this thesis are able to engage relevant stakeholders in the assessment process,

but ensuring their participation and cooperation is a challenge.

If we analyse this in a holistic point of view, the thesis goals and hypotheses should develop

a comprehensive sustainability impact assessment framework, aiming to create an integrated and

adaptable framework that considers economic, social, and environmental dimensions of sustainability.

This framework should be able to evaluate the sustainability performance of a specific action like

a project, policy, or industry taken by a stakeholder, such as a city, an industry or a policy maker

(KPIs). This framework should be able to compare different sustainability strategies or scenarios

and recommend sustainable practices to stakeholders for enhancing sustainability outcomes.

39
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From a technical point of view, the objectives and hypotheses of this thesis should be related

to: i) improving the quality of the particulate matter sensors to allow stakeholders to make decisions

based on data, ii) implementing algorithms that allow computing the impact of concrete actions,

iii) assuring the interoperability of the different components of the platform, iv) guaranteeing the

trustability and reliability of the solutions developed and v) trying to achieve replicability of the

different components in different uses cases.

Thus, this chapter provides a comprehensive overview of the research scope, purpose, and

expected outcomes. This chapter sets the initial point for the subsequent ones by addressing the

challenges found in the state of the art, outlining clear and feasible objectives, and formulating

testable hypotheses to validate the objectives proposed. It establishes the relevance of this work in

the broader context of sustainability impact assessment.

The next sections define the main challenges, formulate the hypothesis to be validated in this

thesis and detail the objectives to be achieved in this work.

2.2—Challenges

The main challenge for this thesis is connecting and integrating the different heterogeneous elements

described in state of the art into a sustainability impact assessment framework. These elements

include the connection of hyperlocal air quality devices, FIWARE general enablers (GE), persistence

databases systems and air quality models. Despite these elements being developed independently

in state of the art, this thesis is the first approach to integrating all these components in a unique

framework for sustainability impact assessment.

In concrete, the following challenges have been addressed during this work, named CHX to

guarantee traceability in the conclusions chapter.

• Low reliability, accuracy and replicability of hyperlocal air quality IoT devices in

Smart City applications (CH1).

As has been exposed in the state of the art, electrochemical (toxic gases) and optical sensors

present several problems to be solved. For particles, the main challenges are to deal with i)

the influence of particle size and size distribution in the sample, ii) the effect of the chemical

composition of the particle because organic compounds have a higher capacity to absorb light

than inorganic compounds; and iii) the effect of humidity due to an increase of the aerodynamic

radius of the particle [228, 229]. Regarding this last point, it is easy to note that particle mass

scales with particle size to the power three, so small errors in particle classification led to large

errors in calculated mass.



2.2. Challenges 41

m =
n∑

i=0

4

3
πr2ρ

This error could be quantified through a growth factor:

g(RH) = DWet
RG

DDry

Thus, the challenge here is to reduce this hygroscopic factor by implementing drying systems in

hyperlocal devices or quantifying this factor and correcting the signal obtained by the sensor.

• Integration of chemistry transport models in sustainability impact assessment

frameworks (CH2).

Chemistry transport models are powerful tools to compute air quality dispersion and forecasting

in sustainability impact assessment. However, the main limitation of this model is the computational

cost when increasing the resolution. This is due to the Courant-Friedrichs-Lewy (CFL) condition.

This condition is mandatory for convergence when partial differential equations are solved by

finite difference. The CFL for a grid box, as presented in the following equation, is a ratio

between the mean wind speed vxi, the time-step ∆t and the cell size in all three directions i

as ∆xi. The more the wind speed is high, the more the time-step has to decrease. The wind

speed varies every minute. The best way to optimize the numerical cost of a simulation is to

adapt the time step [230].

CFL = ∆t
3∑

i=1

vxi
∆xi

From this equation, it is easy to deduce that when the cell size decreases, the CFL increases,

and the computational time increases. Thus, one key challenge is developing superresolution

chemistry transport models by simplifying the model by developing metamodels based on

machine learning methodologies. However, this approach should keep a compromise between

high resolution and computational accuracy. This is also important by implementing sustainability

impact assessment applications like air quality zoning [231] or impact health computation [232],

which requires high-resolution data.
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2.3—Hypothesis

The overall hypothesis of this doctoral thesis is that by following a bottom-up methodology and

integrating the different components proposed in Figure 1.1 - the sensing layer, the transmission

layer, the data layer and the application layer - it will be possible to implement a sustainability

impact assessment platform for smart cities.

This global hypothesis can be split into the following technical hypotheses, related which each

one of the different components in the platform

• The combination of hardware improvements, artificial intelligence algorithms and

chemistry transport models will improve the accuracy of hyperlocal IoT sensors

(H1).

This hypothesis states that the convergence of three key factors - hardware improvements,

artificial intelligence algorithms, and chemistry transport models - will significantly enhance

the precision and reliability of hyperlocal Internet of Things (IoT) sensors. Firstly, hardware

improvements such as humidity correction systems will likely provide these sensors with enhanced

capabilities, allowing them to capture and process data more efficiently and accurately. Integrating

advanced artificial intelligence algorithms will enable the sensors to correct and calibrate data

in real time, helping stakeholders in decision-making. Last, incorporating chemistry transport

models will introduce the possibility of creating soft reference stations, enabling the sensors to

be calibrated in areas without reference methods. Thus, this combination has synergy with

hyperlocal IoT sensing, providing valuable and precise information for various applications,

including environmental monitoring, smart cities, and personalized health tracking.

• The use of an IoT-Edge-Cloud architecture will improve the performance of the

system by reducing latency and bandwidth usage (H4).

This hypothesis proposes that the distribution of computational work in an IoT-Edge-Cloud

platform will produce faster processing and a lower bandwidth. The use of the edge computing

paradigm will allow to integrate machine learning models in a way that the computation cost

is reduced and it is feasible to use in real environments. In this thesis, we propose a short-term

forecasting algorithm to predict particulate matter excess in indoor environments, that will be

benefited of the use of the edge paradigm. To test this hypothesis, an Smart Spot has been

installed in the center of the Libelium laboratory, to assess the level of particles and create

alerts when the recommended levels are overcome.

• It is possible to integrate chemistry transport models in IoT platforms to validate

sustainability impact assessment applications in different scenarios (H3).

This hypothesis suggests the feasibility of integrating chemistry transport models into Internet

of Things (IoT) platforms to validate sustainability impact assessment applications across
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various scenarios. Incorporating these complex models into IoT frameworks makes it possible

to simulate and analyze complex chemical interactions and transport processes within the

environment. This integration would enable the assessment of sustainability impacts in diverse

situations, such as urban environments, smart cities, air quality zoning or health impact

assessment. By leveraging real-time data from IoT sensors and chemistry transport models, it

is possible to improve the reliability of these models by comparing them with more information

sources and improving resolution.

2.4—Objectives

The main objective of this thesis is to implement a sustainability impact assessment platform that

helps stakeholders implement sustainable policies based on data. This platform comprises different

layers presented in the state of the art. For each layer, specific objectives and sub-objectives are

defined.

In concrete, the following technical objectives and sub-objectives are defined according to te

hypothesis defined before, named as OX and OX.Y for objectives and sub-objectives, respectively.

• Improve the quality and reliability of hyperlocal air quality systems (O1).

– Improve data measurement by implementing humidity correction systems (O1.1). This

objective aims to increase the performance of air quality sensors compared to reference

measurements in terms of regression metrics. This objective will be achieved if the values

of those metrics improve the values exhibited by the state of the art approaches, and if

the humidity inside the device is reduced in comparison with the humidity outside the

system.

– Implement architectures based on edge computing to implement short-term forecasting

services (O1.2). This objective aims to use edge computing to implement accurate short-

term predictions by using soft machine learning models. This objective will be achieved if

the values of the prediction accuracy improve the value presented in the state of the art,

and the edge paradigm improves the performance of the system in terms of latency and

bandwidth usage.

• Integrate chemistry transport models in IoT platforms and improve its performance

by using hyperlocal ground measurements (O2).

– Improve performance of chemistry transport models (O2.1). This objective aims to increase

the accuracy of chemistry transport models, by applying machine learning methodologies.

This objective will be achieved if the precision of simulations in terms of correlations
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with ground measurements increase compared to the state of the art, keeping a good

performance against reference measurements.

– Improve the application of chemistry transport models to air quality zoning problems

(O2.2) . This objective aims to perform air quality zoning over a certain region using

chemistry transport models, hyperlocal sensors and machine learning models. This objective

will be achieved if automatic coherent zoning is achieved, and it is similar to the European

Air Quality Portal proposed.

– Use chemistry transport models to assess personal exposure and health impacts to citizens

(O2.3). This objective aims to assess personal exposure and health impacts and identify

risky activities using air quality models. This objective will be achieved if a methodology

for exposure assessment can be defined taken as input air quality gridded data, and

sequential activity data.
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Overall Methodology

This thesis explores solutions to improve signal in particle sensors to achieve a sustainability impact

assessment framework. For this reason, the methodology followed uses a bottom-up methodology

according to the architecture presented in Figure 1.1. This methodology is summarized in Figure

3.1, based on the following steps: i) first, the laboratory calibration and quality assurance of the IoT

devices, including the design of a dryer system described in Chapter 4, corresponding to the sensing-

IoT layer; ii) then, the second step focuses on the deployment of the edge layer and as described

in Chapter 5, allowing data processing using machine learning models to make short-term particle

concentration predictions, covering this step the transmission layer and part of the data management

layer and; iii) the execution of complex air quality models to provide some services in the application

layer, as the air quality zoning presented in Chapter 6 and the sequence oriented sensitive analysis

for health assessment validated in Chapter 7.

However, this chapter will cover only the generic methodology that is transversal to this thesis.

In other words, the focus is to describe the building blocks of the sustainability impact assessment

that are present in the state of the art, and we decided to use as a starting point of our thesis.

This includes the following points: i) the IoT devices used for air quality monitoring as well as the

laboratory calibration procedure before the installation in the final location; ii) the CHIMERE-WRF

chemistry transport model used as engine for feeding the specific services used in this thesis; and

iii) the IoT-Edge-Cloud architecture used to support the framework developed. Also, this section

describe the pollutants to be measured and the kind to collected, as well as the reason to choose this

tools compared with other alternatives in the state of the art.

In contrast, the followed for the specific innovations proposed in this thesis as the development

of the dryer system, the embedded machine learning models as well as the air quality zoning service

and the sequence oriented sensitive analysis methodology are described on the respective chapters of

this thesis.

45
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Figure 3.1: Thesis methodological framework

3.1— Smart Spot Sensor System

IoT Smart Spot devices enable air quality monitoring by integrating gas sensors, categorised by the

World Health Organization (WHO) as harmful gases for humans in certain concentrations, such as

H2S, NH3, NO, NO2, SO2, CO and O3. In addition, they can measure other parameters, such

as particulate matter for PM1, PM2.5 and PM10, ambient noise, and meteorological parameters.

These devices have certified emission and inmission monitoring validity due to the wide ranges

allowed by the integrated sensor technology from the supplier Alphasense. Figure 3.2 presents the

main characteristics of the Smart Spot Air Quality System.

The Smart Spot can measure different gases with a concentration between 0 and 10.000 ppb

allowed. It will also be able to provide the information in µg/m3 autonomously and in real-time to

match the unit used in official air quality regulations. In addition to gases, the system incorporates

sensors for dust or particulate matter, temperature, humidity and atmospheric pressure. The whole

system is optimised to work between the maximum values established by the different regulations

and between the typical values of the gases present to obtain greater precision in this range. This

deployment allows real-time and accurate environmental pollution monitoring, making it an ideal

solution for Smart Cities and other applications. Table 3.1 presents the main technical features of

different pollutants regarding range, accuracy, resolution and interfering species.
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Figure 3.2: Smart Spot Air Quality System Overview

Pollutant Range Accuracy Resolution Cross Sensitivity

NO2 0-5 pmm ± 2 ppb 1 ppb Cl > H2S > NO > SO2 > CO

NO 0-5 pmm ± 10 ppb 1 ppb H2S > NO > CO > Cl

O3 0-5 pmm ± 3 ppb 1 ppb Cl > H2S > NO > SO2 > CO

SO2 0-5 pmm ± 3 ppb 1 ppb NO > Cl > H2S

CO 0-5 pmm ± 10 ppb 1 ppb H2S > NO

PM10 0-2 mg/m3 90 % 0.1 ug/m3 Humidity

PM2.5 0-2 mg/m3 90 % 0.1 ug/m3 Humidity

PM1 0-5 mg/m3 90 % 0.1 ug/m3 Humidity

The gas sensors used in this device are electrochemical and have ISO 9001:2015 certification,

which regulates the verification process of all its manufactured units. To ensure the reliability

of the measurements made with these sensors, calibration and assembly in the probe is carried

out according to the manufacturer’s technical specifications in an ENAC laboratory certified ISO

17025:2005. The final product complies with the European directive 2008/50/EC on air quality. As

one of the great differential values of the product, all the gas measurement sensors used have a high

precision calibration carried out with certified gas standards (Linde brand) in the laboratory.

Including all these sensors and capacities in a single device provides savings in installation,

maintenance and management, and communications. Regarding the connection possibilities of this

device, it is offered in multiple versions, including Wi-Fi, LoRa, GSM/GPRS and NB-IoT. On the
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other hand, they allow the use of communication protocols such as LwM2M, MQTT and Modbus

TCP (industrial environments), allowing Smart Spot to be a FIWARE-Ready device. Smart Spots

allow different types of power sources, high-capacity batteries and solar panel recharging. Thanks

to this versatility, these devices can work in remote natural environments without the need for an

electrical installation and operate in city environments where it is not possible to receive a continuous

electrical connection.

3.2— Laboratory Calibration

To guarantee the trustability and accuracy of the results, all laboratories worldwide should demonstrate

traceability of the results with the standards and methodologies considered as references. The

standards founding the prerequisites for the expertise of laboratories and additional conformity

assessment bodies (CABs) are the ones employed by accreditation bodies to assess CABs for their

accreditation [233]. Nowadays, the greatest common standard for the expertise of testing and

calibration laboratories is ISO/IEX 17025:2017. At the same time, additional documents give advice

and helpful clarifications to laboratories and accreditation bodies at the international, national, and

regional levels - as shown in Figure 3.3. Regarding ISO/IEC 17025:2017, big data is becoming a

fundamental actor as it helps manage the huge amount of data a laboratory can generate [234].

Figure 3.3: Accreditation and certification bodies at international, national (Spain) and regional (EU) levels
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Table 3.1: Data quality requeriments from CEN/TS 17660

Pollutant Range Uncertainty Standard / Procedure

SO2 25 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.041C + 0.7 x 10−9 mol/mol UNE-EN 14212

NO 25 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.041C + 0.7 x 10−9 mol/mol UNE-EN 14212

NO2 25 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.055C + 0.7 x 10−9 mol/mol UNE-EN 14212

NO2 25 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.041C + 0.7 x 10−9 mol/mol UNE-EN 14212

CO 0.4 x 10−9 mol/mol ≤ C ≤ 30 x 10−9 mol/mol 0.041C + 0.7 x 10−9 mol/mol UNE-EN 14212

O3 20 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 2.6 x 10−9 mol/mol UNE-EN 14212

O3 50 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.033C + 0.7 x 10−9 mol/mol UNE-EN 14212

O3 500 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.067C + 0.7 x 10−9 mol/mol UNE-EN 14212

SH2 25 x 10−9 mol/mol ≤ C ≤ 1500 x 10−9 mol/mol 0.041C + 0.7 x 10−9 mol/mol UNE-EN 14212

The IoT air quality systems employed in this thesis have been calibrated within the Libelium

laboratory, holding certification of ISO 17025. It is imperative to underline that ISO 17025 certification

demonstrates its validity upon a concrete and determined set of pollutant concentrations and specific

chemical species. To ensure absolute clarity and precision, we have thoughtfully documented these

specified concentration ranges, systematically organizing them in Table 3.1 for easy reference and

comprehension. This table presents the aforementioned concentration ranges and meticulously

delineates the associated uncertainties for each interval [233]. These uncertainties are characterized

by a linear function dependent on each range’s concentration (C). Furthermore, it is paramount to

recognize that these calibrations adhere to the national standards prescribed by UNE-EN 14212 and

ISO 17025, ensuring the highest level of traceability in the air quality measurements.

Regarding equipment, the analyzers used in the laboratory are provided by Teledyne, being the

concrete models T300U for CO, T265 for O3, T200U for NOx, NO−NO2 and T100Y for SO2, SH2.

however, particle matter is not included in the laboratory’s certification, but it has devices for

calibrating particulate matter, such as the GRIMM 11-D.

3.3— Field Tests

After laboratory calibration, the sensor system should be validated through field tests. We followed

the methodology described in the standard CEN/TS 17660 to do this (Figure 3.3). According to this,

the co-location tests should take place where sample air can be collected and performed according to

the Guide to demonstrating the equivalence of ambient air monitoring methods. The sensor systems

shall be installed in a control station by the manufacturer’s requirements, with a minimum of 192h

of concentrations higher than 50 % of the average of 98th of percentiles of hourly values in the last

5 years (or in all years available, for recent stations) required.
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Figure 3.4: Field test steps according to the methodology defined in the standard CEN/TS 17660

• Pearson Coefficient: real coefficient, which can take values between -1 and 1, defined as the

quotient of the covariance and the standard deviations. Values close to one mean a positive

correlation, and close to -1 mean a negative correlation. Values close to 0 mean no dependencies

between variables.

r =

∑n
i=1(yi −my)(ŷi −mŷ)√∑n

i=1(yi −my)2
√∑n

i=1(ŷi −mŷ)2
(3.1)

• Mean Absolute Error: average value of the difference in absolute value between predictions

and observations, where ŷi is the prediction of the parameter under study, and yi is the real

value.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.2)

• Determination Coefficient: the coefficient of determination measures how well a statistical

model predicts an outcome. The lowest possible value is 0, and the highest is 1. The better a

model makes predictions, the closer the value will be to 1.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi −my)2
(3.3)

• Uncertainty: this parameter models the uncertainty between the sensor system and the

reference station.

u(bs, s) =

√∑n
i=1

∑ns

j=1(yi,j − ȳi)2

n(ns − 1)
(3.4)
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3.4— IoT-Edge-Cloud Architecture

3.4.1. Cloud Layer

The cloud architecture is one of the main components of our solution, orchestrating and balancing the

workload and processes between the different edge nodes. This component optimises the workload

distribution, ensuring that each edge node is utilised effectively. In addition, by balancing the

workload, the cloud node can prevent any single-edge node from becoming overloaded and potentially

causing system instability. Last, the containers in the cloud are responsible for providing the graphical

interface that allows users to configure and manage the workloads and resources of the network and

for monitoring and troubleshooting issues that may arise.

The cloud architecture developed for this work is composed of the following services: i) a

designer module that provides an easy-to-use web-based graphical user interface for designing and

defining the tasks that will be executed on the platform; ii) a discovery container, which provides

an API for resource discovery, allowing other components to discover and interact with available

resources; iii) a master of the FogFlow platform, responsible for managing the distributed execution

of tasks and services across multiple nodes, receiving task and service requests from various sources

and ensuring that they are executed on the appropriate edge nodes or cloud resources; iv) an Orion

LD context broker, which is an intermediary between cloud and edge services, routing requests from

cloud services to the corresponding services in the edge; v) persistence components as CrateDB or

Timestamp connected to the Context Broker through QuantumLeap; vi) a cloud worker responsible

for executing tasks on the cloud, managing containerised services, and facilitating communication

between cloud nodes and edge nodes; and vii) the RabbitMQ software [31], enabling communication

between the edge nodes and edge cloud by acting as a middleman for exchanging messages between

the different components of the platform.

3.4.2. Edge Layer

The edge node is responsible for receiving raw data from the Smart Spot, processing the data, and

publishing the result without going to the cloud. This decentralises the data processing, increasing

efficiency and allowing for data processing to be done as close to the source as possible, reducing

the latency associated with sending data to the cloud. By processing the data locally, the edge node

reduces the amount of data that must be sent to the cloud, resulting in faster processing and lower

bandwidth usage. This approach benefits applications with critical low latency, such as real-time

control systems.
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The edge node is a complex system that typically consists of three services working together

to process and manage data locally: i ) The Eclipse MQTT broker acts as a mediator between the

devices and the edge node, managing the topics and subscriptions, ensuring that messages are sent to

the correct destinations with a high reliability and scalability [32]; ii) the FogFlow IoT worker, which

receives data from the Eclipse MQTT broker, and then it sends this data to the Edge Worker for

processing; iii) the edge worker, which acts as a data processing unit that takes the MQTT format

and transforms it to NGSI-LD; iv) the FogFLow Operator that performs the embedded machine

learning tasks; and v) connector with the cloud.

As the edge node, we used SECO solutions for edge computing 1, equipped with powerful

processors, sufficient memory, and various connectivity options to communicate with other devices

and the central data center. The operating system and platform was provided by Red Hat Enterprise

Linux 2, offering offer features like containerization, orchestration, and management tools necessary

for deploying and managing applications at the edge efficiently.

3.4.3. Sensing Layer

Data processing is a key step in our solution, covering IoT data collection to knowledge generation

through machine learning. The data exchange between IoT devices, processing routines in nodes

and the Orion-LD context broker in the cloud layer is done through the NGSI-LD communication

protocol, as it is the ideal method for facilitating data exchange between the different components of

the architecture defined before [35], as it is shown in Figure 3. This choice was made because NGSI-

LD provides a standardised data model for the Internet of Things (IoT) that enables the description

and exchange of data in a structured and semantically rich format, being structured using a set of

metadata that includes information about the data’s source, quality, and context. This metadata is

linked using a context IRI that points to a JSON-LD file with the corresponding vocabulary. This

allows for more precise and accurate data analysis, which is critical for successful AI applications.

Additionally, the NGSI-LD standard is highly scalable, accommodating large and complex datasets

without sacrificing performance.

3.5—Air Quality Modelling

The engine of the sustainability impact assessment platform is the CHIMERE-WRF, an open-source

multi-scale chemistry-transport model over a range of spatial scales, from the hemispheric to the

urban scale, with resolutions from 1km to several degrees. The model comprises several modules: i)

the most important is the CHIMERE itself, which computes the chemistry concentrations using as

1https://edge.seco.com/
2https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/edge-computing
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input the ii) emissions models and iii) the meteorological model. Lastly, iv) IoT sensors and satellite

observations could be used to calibrate the model. We have selected this model for the thesis as

it can cover a wide range of resolutions, until 1 km x 1 km, and it is widely used in the scientific

literature. The key processes affecting the chemical concentrations in the atmosphere are represented

in Figure 3.5, being emissions, transport (advection and mixing), chemistry and deposition [235].

Figure 3.5: Different modules and connection of the CHIMERE-WRF chemistry transport model. Adapted
from [237]

CHIMERE is an Eulerian chemistry transport model, meaning that the simulation domain is

split into fixed bins called bins [156]. The numerical method used to estimate the temporal solution

of the stiff system of partial differential equations is adapted from the second-order TWOSTEP

algorithm for gas-phase chemistry only [236]. It is based on applying a Gauss–Seidel iteration scheme

to the 2-step implicit backward differentiation (BDF2) formula,

cn+1 =
4

3
cn − 1

3
cn−1 +

2

3
∆tR(cn+1) (3.5)

where cn is the vector of chemical concentrations at time tn, R(c) = P (c) − L(c) being the

difference between the production of c (R(c)) and the destruction of c (L(c)) and ∆t being the time

step between tn and tn+1. As seen in Figure 3.5, the production and destruction of a pollutant is

governed by emissions, transport, chemical reactions and deposition. CHIMERE models the loss

and production for each term and computes the total loss and production. Then, these last values

are used in Equation 3.5, and the proposed system equations are solved. Thus, it is easy to note

that the main strategy in CHIMERE is to model all the factors that affect concentrations as kinetic

processes.
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Table 3.2: CHIMERE-WRF performance in the literature

Simulation Model Obs RMSE Bias r
O3 daily mean, all stations

v2017r5 66.34 58.12 18.64 8.22 0.75
v2020-offline 62.28 58.12 17.23 4.16 0.75

O3 daily max, all stations
v2017r5 86.56 81.53 18.88 5.03 0.76

v2020-offline 80.74 81.53 18.38 −0.79 0.76
NO2 daily mean, all stations

v2017r5 8.45 10.14 6.43 −1.69 0.51
v2020-offline 6.58 10.14 6.67 −3.56 0.51

NO2 daily max, all stations
v2017r5 14.88 19.62 13.34 −4.74 0.38

v2020-offline 11.84 19.62 14.15 −7.78 0.34
PM10 daily mean, all stations

v2017r5 13.66 17.16 11.12 −3.50 0.41
v2020-offline 11.1 17.16 11.23 −6.06 0.63

PM10 daily max, all stations
v2017r5 18.07 32.28 25.95 −14.21 0.33

v2020-offline 17.2 32.28 25.45 −15.08 0.5
PM2.5 daily mean, all stations

v2017r5 11.75 11.01 7.87 0.75 0.5
v2020-offline 10.01 11.01 7.93 −1.00 0.66

PM2.5 daily max, all stations
v2017r5 15.69 20.28 15.8 −4.59 0.45

v2020-offline 15.71 20.28 16.31 −4.58 0.57

As Figure 3.5 highlights, several inputs are needed to compute the product and loss terms.

There are four inputs: i) the meteorology, modelled with Weather Research Forecast (WRF), fed

by the Global Forecast System (GFS); ii) the emission fluxes, that can be computed by emisurf,

a preprocessor included in CHIMERE interpolates emission inventories into a grid domain; iii) the

boundary conditions, using MEGAN 30 s and iv) the domain with grid points. Last, the chemical

reactions have been modelled using the MELCHIOR kinetic mechanism [237].

The reason to choose CHIMERE is the good correlation against reference measurements, as

stated in Table 3.2, which presents simulation results for various air quality parameters, including

O3, NO2, PM10, PM2.5, and AOD, measured in µg/m3. It compares two models, ”v2017r5” and

”v2020-offline,” by reporting the observed values (Obs), the Root Mean Square Error (RMSE), the

Bias, and the correlation coefficient (R) between the observed and simulated data. In summary,

for O3 daily mean and daily max, v2020-offline outperforms v2017r5 with lower RMSE and Bias

values while maintaining a similar correlation coefficient. For NO2, PM10, and PM2.5, v2020-offline

generally exhibits lower RMSE and Bias values than v2017r5. Finally, for AOD, both models show

improved performance in terms of RMSE and Bias in v2020-offline compared to v2017r5.
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The integration of hyperlocal Internet of Things (IoT) devices represents this thesis’s significant

and innovative aspect. This disruption is facilitated through the workflow implementation detailed

in Figure 3.6, which encompasses several key stages. First, the initial phase involves collecting

hyperlocal data from various sources, thus enabling a comprehensive and granular understanding of

the environmental conditions at specific locations. This data acquisition process is the foundation

for subsequent stages and plays a pivotal role in enhancing the precision and accuracy of the

entire system. The next crucial step involves using this hyperlocal data to calibrate dispersion

models. Calibration ensures that the simulation results align closely with real-world measurements,

which is instrumental in improving the overall reliability and effectiveness of the system. This

calibration process is integral to achieving accurate and relevant insights into the local air quality

and environmental conditions.

Figure 3.6: Workflow for data collecting and processing

Furthermore, the results obtained from the dispersion models serve as valuable input for the

analytical layer, incorporating cutting-edge artificial intelligence techniques. This analytical layer is

instrumental in extracting meaningful patterns, trends, and actionable insights from the vast and

complex dataset. By harnessing the power of artificial intelligence, it becomes possible to uncover

hidden correlations and make predictions that can substantially impact environmental decision-

making. This thesis has provided some analytics focused on personal exposure assessment, risk

prevention and air quality zoning in this context.
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Finally, the integration of hyperlocal IoT data and the insights gained from the analytical

layer culminate in the computation of Key Performance Indicators (KPIs). These KPIs act as

vital metrics, providing a clear and concise means of evaluating and quantifying the effectiveness of

environmental measures and interventions. Visualizing these KPIs through a user-friendly interface

empowers stakeholders, researchers, and decision-makers to access and interpret the data efficiently,

thus fostering a more informed and proactive approach to addressing environmental challenges.
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Abstract

Particulate matter (PM) monitoring and climate change mitigation actions have been promoted due to the Paris

agreement because of their impact on health and high mortality rate. High-resolution networks based on hyperlocal

Internet of Things (IoT) sensors can play a fundamental role in improving data quality. In this context, hyperlocal

refers to air quality IoT systems that allow collecting data in real time and in the cheapest way in comparison with

local reference stations. Despite these methods are powerful and widely used by the scientific community, the signal

is highly affected by relative humidity (RH). In this article, we present a system for measuring nanoparticles based

on drying the air sampled and avoiding the hygroscopic growing of the particles. To the best of our knowledge, this

is the first dryer system approach developed for IoT hyperlocal sensors. In addition, the relevance of our solution is

supported by the following points: 1) we propose a new dryer system that has been patented; 2) our solution can

be integrated into an IoT infrastructure that allows it to interact with other services; and 3) our solution has been

validated in a real scenario in the city of Madrid. We have observed that the integration of a dryer system improves

the performance of the OPC-N3 sensor and that we can measure the PM10 and PM2.5 fractions with high

precision, R2=0.83 . In addition, our solution can measure small particles, such as PM1, with a good correlation

against the reference air quality stations. Thus, our work contributes by improving high-spatial-resolution

nanoparticle monitoring in correlation to official measurements to mitigate climate change.
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Abstract

Indoor particulate matter (PM) are small solid and liquid particles present in the air, and its monitoring is one of

the key challenges regarding workplace safety because of its impact on human health. To address this issue, the

Internet of Things (IoT) paradigm allows the implementation of hyperlocal monitoring systems, typically using

traditional cloud architectures, which can be enhanced using edge computing architectures. For this reason, we

propose an IoT-Edge-Cloud architecture for a platform which promotes the early detection of unsafe environments

through machine learning, composed of a sensing layer that collects all the data, an edge layer that performs the

artificial intelligence tasks and a cloud layer orchestrating. This architecture is based on the FogFlow framework

and the FIWARE components. Our solution proposes an embedded model that can predict the occurrence of PM

values higher than the recommended ones—according to the Occupational Safety and Health Administration

(OSHA) indicators—with an 87 % of accuracy and a reduction of latency of 26 %. Our platform is innovative

because it is based on the FogFlow framework for edge computing and supported by the Smart Spot device

validated in a field test. This step is missing from similar state-of-the-art platforms. Thus, we believe that this

work contributes to demonstrating the usefulness of AIoT to monitor workplace safety and make trustable

predictions, avoiding risky environments.
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Abstract

According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory into air quality zones

where pollution and citizen exposure are similar and can be monitored using similar strategies. However, there is

no standardized computational methodology to solve this problem, and only a few experiences in the Comunidad of

Madrid based on chemistry transport models. In this study, we propose a methodological improvement based on

the application of deep learning. Our method uses the CHIMERE-WRF air quality modelling system and adds a

step that uses neural networks architectures to calibrate the simulations. We have validated our method in the

Region of Murcia. The results obtained are promising given the values of the Pearson coefficient, obtaining r=0.94

for NO2 and r=0.95 for O3 , improving 86 % and 29 % the performances reported in the state of the art. In

addition, the cluster score improves after applying neural networks, demonstrating that neural networks improve

the consistency of clusters compared to the current air quality zoning. This opened new research opportunities

based on the use of neural networks for dimension reduction in spatial clustering problems, and we were able to

provide recommendations for a new measurement point in the Region of Murcia Air Quality Network.
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Abstract

The World Health Organization has estimated that air pollution will be one of the most significant challenges

related to the environment in the following years, and air quality monitoring and climate change mitigation actions

have been promoted due to the Paris Agreement because of their impact on mortality risk. Thus, generating a

methodology that supports experts in making decisions based on exposure data, identifying exposure-related

activities, and proposing mitigation scenarios is essential. In this context, the emergence of Interactive Process

Mining—a discipline that has progressed in the last years in healthcare—could help to develop a methodology

based on human knowledge. For this reason, we propose a new methodology for a sequence-oriented sensitive

analysis to identify the best activities and parameters to offer a mitigation policy. This methodology is innovative

in the following points: i) we present in this paper the first application of Interactive Process Mining pollution

personal exposure mitigation; ii) our solution reduces the computation cost and time of the traditional sensitive

analysis; iii) the methodology is human-oriented in the sense that the process should be done with the

environmental expert; and iv) our solution has been tested with synthetic data to explore the viability before the

move to physical exposure measurements, taking the city of Valencia as the use case, and overcoming the difficulty

of performing exposure measurements. This dataset has been generated with a model that considers the city of

Valencia’s demographic and epidemiological statistics. We have demonstrated that the assessments done using

sequence-oriented sensitive analysis can identify target activities. The proposed scenarios can improve the initial

KPIs—in the best scenario; we reduce the population exposure by 18 % and the relative risk by 12 %.

Consequently, our proposal could be used with real data in future steps, becoming an innovative point for air

pollution mitigation and environmental improvement.
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Chapter 8
Discussion and Conclusions

One of the key aspects within the digital transformation, and in the challenges faced by today’s society such as climate

change, is the monitoring of air quality. The World Health Organization has estimated that air pollution will be

one of the most significant challenges related to the environment in the following years, and air quality monitoring

and climate change mitigation actions have been promoted due to the Paris Agreement because of their impact on

mortality risk. The particular importance is the effect of aerosol and particle matter (PM). In 2019, approximately

74 % of the urban population was still exposed to PM2.5 concentrations exceeding the World Health Organization

(WHO). Thus, generating methodologies and tools that supports experts in making decisions based on sustainability

impact assessment, monitoring actions, identifying exposure-related activities, and proposing mitigation scenarios is

essential. For this reason, the development of solutions for air quality monitoring is a heat research topic in the context

of Internet of Things and Smart Cities.

8.1— Synthesis of the Thesis

This thesis has investigated solutions for sustainability impact assessment of mitigation policies, by following a bottom-

up methodology. The first step was to perform a benchmarking study of the hyperlocal air quality sensors in the market

according to the standard CENT/TS 17660, that was later validated in Madrid, by using machine learning techniques

that allow an improvement in the analysis and correction of the signal for PM and toxic gases, as well as their evaluation

and standardisation with respect to the reference methods. Finally, once the quality of the measurements has been

assessed, it was possible to use this hyperlocal data to feed chemistry transport model that computes the dispersion

of pollutants across the space. In this work, the CHIMERE model has been improved by using reference stations and

IoT devices. The last step is to manage all this data by applying FAIR guidelines and to transform the CHIMERE

simulation datasets into a knowledge graph by using an ontology driven approach – we have reused vocabularies from

FIWARE Smart Data Models and CHEBI ontology - to improve the interoperability of data and results, and make it

more trustable for end users and policy makers.

The proposed solutions act at the different layers in an IoT architecture, implementing innovation in both

hardware and software sides. By acting at different levels, it was possible to apply different use cases goals according

to the needs of different stakeholder and policy makers.

For the sensing layer, IoT devices integrates a wide range of hyperlocal pollutant sensors. In the case of particles

these sensors are based on light scattering technology, and one of the main limitations of optical particle counters (OPC)

is the error related to high humidity levels because of the hygroscopic growth of the particles. For this reason, we

have proposed in Chapter 4 a new dryer system for IoT sensors, which has been validated using co-location tests. The

system has been tested in the city of Madrid, in concrete in three measurement points inside the low emissions zone
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area, in the Center district. We demonstrated in this Chapter that our system can remove the humidity from the air

sampling, improving the performance of the system.

Next, Chapter 5 provides insights in the context of architecture. The main challenges in traditional IoT-Cloud

architectures are latency and processing times, not allowing for a real time processing of the information, required

for most of the use cases in Smart Cities and IoT applications. In consequence, we have proposed an IoT-Edge-

Cloud architecture for promoting safe workplaces, demonstrating that the edge approach reduce latency in processing

information and allows to emedd machine learning models using interfaces as FogFLOW.

On the top of the architecture proposed for sustainability impact assessment are placed artificial intelligence

services. In this sense, one of the solutions that this thesis has developed is an air quality zoning algorithm based on

deep learning and clustering. One of the key step of this algorithm is the calibration through hyperlocal measurements,

making a clear connection between the sensing layer. In Chapter 6 we proposed the CHIMERE-WRF chemistry

transport model as pollutant dispersion engine, followed by a calibration using a ResNET architecture based on

hyperlocal sensors, finishing with a clustering to classify the domain in different air quality zones. This study has been

done in the Region of Murcia, proposing a new measurement point in the north of the region.

Last, other service implemented during this thesis is the personal exposure assessment, starting from gridded air

quality data from a model, which in this case was bi-linear interpolation. We developed a new methodology based on

interactive process mining that for each activity compute different KPI related to exposure and health, and select the

target activities in which policy makers can act. This methodology has been validated using a synthetic population,

and it has been observed that the measurements taken improve the KPIs in all proposed scenarions, becoming a

promising technology that should be test with real data.

8.2—Hypothesis and Objective Compliance

8.2.1. Achievement of Objectives

The main objective of this thesis has been addressed, as new devices, methodologies and models has been developed

inside the proposed sustainability impact assessment framework. Next, we discuss the achievement of the objectives

defined in Chapter 2.

• Improve the quality and reliability of hyperlocal air quality systems (O1).

– Improve data measurement by implementing humidity correction systems (O1.1). This objective has been

fulfilled by the development of a new IoT device that includes a dryer system. We have measured humidity

and outside the device, and it is observed that the humidity decrease. However, there is still a strong

correlation between internal and external humidity, showing that the device is still affected by humidity

changes, being important to continue researching on this topic.

– Implement architectures based on edge computing to implement short-term forecasting services (O1.2).

This objective has been completed by deploying the IoT-Edge-Cloud architecture in a real working

environment - Libelium’s laboratory - and demonstrating that the system has an 87 % of accuracy.

• Integrate chemistry transport models in IoT platforms and improve its performance by using

hyperlocal ground measurements (O2).
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– Improve performance of chemistry transport models (O2.1). The CHIMERE performance improves after

applying neural network calibration, obtaining better performance for all pollutants, increasing all the

values of r and R2 and improving the performance reported by CHIMERE [161]. This goal is specially

achieved for NO2 and O3, by improving correlation in a 25 % and a 73 %. The same occurs with mean

absolute error, reducing the bias of CHIMERE due to the uncertainities in the emission inventories.

– Improve the application of chemistry transport models to air quality zoning problems (O2.2). In this

thesis, an automatic air quality zoning methodology has been extended and improved by proposing ANN

as an additional step to calibrate air quality simulations, as the zoning proposed for the Region of Murcia

is more coherent that the proposed by the current one according to the regulation criteria.

– Use chemistry transport models to assess personal exposure and health impacts to citizens (O2.3). The

sequence-oriented methodology proposed in this thesis part from air quality models, and compute exposures

by multiplying the air quality in a geographical feature by the time spent by an individual in this location.

Moreover, our methodology goes beyond and allows to compute relative risk and identify target activities

for policy makers.

• Implement a knowledge layer for FAIRification based on semantic web technologies (O3).

– Define an ontology that describes the air quality domain (O3.1). A new ontology has been created in

this thesis. The core of ontology is the concept of Simulation, which refers to the result of a running of

CHIMERE. Each simulation is composed of a set of instances of Air Quality Forecast, which is the part

of the simulation linked to a geospatial unit and a timestamp, and it is possible to infer an Air Quality

Index. Each air quality instance can have several Concentration instances, that is linked to an unique

Chemical Entity. The ontology is published in the following link 1

– Transform netCDF data into RDF triples (O3.2). The generation of RDF triples has been performed

for short term simulations, using the SWIT framework, with a linear time cost. This transformation

goes beyond and allows to store the triples and a GraphDB database providing an SPARQL endpoint.

We have achieved not only store the air quality simulations in a GraphDB database, but also access the

data in a proper way. This is an alternative to the traditional relational and time series approach, which

present limitations regarding the flexibility to represent complex relationships in air quality data because

of the underlying complex schemas.

8.2.2. Hypothesis Validation

The overall hypothesis of this doctoral thesis was that by following a bottom-up methodology and integrating the

different components proposed in Figure 1.1 it will be possible to implement a sustainability impact assessment

platform for smart cities. In general, we consider that this hypothesis has been validated as this thesis has contributed

to each of the mentioned layers providing valuables insights and applications in the sustainability impact assessment

platform.

In concrete, this global hypothesis was divided into the following technical hypotheses, that has been analysed

in a separated way, to understand the how each one of the specific contributions helped us to validate the hypothesis

proposed.

1https://purl.org/chimere-ontology
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• The combination of hardware improvements, artificial intelligence algorithms and chemistry

transport models will improve the accuracy of hyperlocal IoT sensors (H1).

We can conclude that this hypothesis has been validated, as the dryer system developed during this thesis

improves the correlations of the particulate matter hyperlocal air quality sensors. In concrete, our system

increase correlation of OPC-N3 compared to the study performed by the South Coast AQMD without humidity

system. For PM10, we obtained R2 ranging from 0.62 to 0.83 for hourly measurements, contrasting with

R2 = 0.48 − 0.53 for the single sensor. A similar pattern occurred for the PM2.5 fraction, achieving values

ranging from 0.34 to 0.82 compared to R2 = 0.61 − 0.69. In this case, we achieved a greater score in the best

scenario but a lower score in the worst one. However, the PM2.5 results were more coherent with the 0.38-0.67

proposed for OPC-N2 [95]. Finally, R2 = 0.50 for PM1, which was lower than the obtained in the validation

done by the South Coast AQMD (0.78-0.82). It is important to notice that we could only validate PM1 against

one station, so there is a lack of statistical evidence to compare with the proposed ranges. On the other hand,

we achieved similar performances to those obtained in the state of the art for PM2.5 using machine learning

approaches, with R2 ranging from 0.78 to 0.83, compared with 0.78 and 0.88 [238].

• The use of an IoT-Edge-Cloud architecture will improve the performance of the system by

reducing latency and bandwidth usage (H2).

This hypothesis has been demonstrated thanks to the effectiveness of the IoT-Edge-Cloud approach in enhancing

performance within a real indoor workplace. It is necessary to emphasise that we improved state of the art

approaches by reducing latency and bandwidth usage, using a standard FIWARE IoT-Cloud architecture as

control, and comparing it with the solution proposed using the edge computing approach. The results obtained

demonstrates that the edge approach is more efficient with a latency reduction of 26 % and an accuracy in the

prediction of the 87 %, improving other proposals without edge computing in the melting sector [239].

• It is possible to integrate chemistry transport models in IoT platforms to validate sustainability

impact assessment applications in different scenarios (H3).

Regarding the air quality zoning methodology proposed in this thesis, it is easy to note that hyperlocal data

plays a key role in this methodology, essential to guarantee the completeness of the data. Some of the results

proposed in this paper are based on the data provided by public authorities. Thus, the proposed methodology

should be validated with more complete data in other locations, especially concerning particles where the

number of missing values is around 80 % for PM2.5. We have demonstrated that IoT devices are essential to

improve chemistry transport models, as they improve their application to sustainability impact assessment use

cases, such as air quality zoning or personal exposure assessment.

• It is possible to model the air quality domain using ontologies and knowledge graphs, increasing

the explainability of the models used in the platform (H4).

Taking into consideration the results presented, we can conclude that the hypothesis has been validated for

short term air quality forecasting by using SWIT. A RDF file in turtle format has been obtained, and this

can be automated for a simulation of 72 h. In addition, a scalability analysis has been performed, obtaining a

linear complexity when individuals increase, which suggests that our approach could be extended to long term

simulations as a future research line. This is coherent with the complexity analysis performed in the state of the

art, which assesses that in the best scenario (without collisions between individuals) the complexity of SWIT

is linear [240]. One of the reasons for the successful mapping is the use of a proper ontology. In this work, a

new ontology has been defined to model a CHIMERE simulation, providing a new insight in the state of the

art, and complaining with the objectives proposed for this thesis.



8.3. Contributions 69

8.3—Contributions

The main contribution of this thesis has been the study of artificial intelligence technologies to support the development

of a framework for sustainability impact assessment in Smart Cities. We have demonstrated that this framework

improves the limitations found in the state of the art in terms of accuracy, processing time, computational complexity

and explainability. In concrete, the following contributions were achieved during this research:

• An analysis of the CEN/TS 17660 standard regarding air quality systems. This thesis has analysed

the effect of intersensor variability on the uncertainty calculated using the new to obtain conclusions on the

effect of this variability in the new methodology. For this purpose, a sensitivity analysis has been carried out,

and the classification has been computed for each of the inputs. Our results show that CEN/TS 17660-1:2021 is

a robust measure that can accurately assess the quality of the sensor systems and could determine their ability

to meet data quality objectives.

• Development of a new dryer systems for particulate matter IoT devices. One of the main contribution

of this thesis is the development of a new IoT device that integrates a dryer system based on two silica

columns and an infrared heating system. We have observed that the integration of a dryer system improves

the performance of the OPC-N3 sensor and that we can measure the PM10 and PM2.5 fractions with high

precision, R2 = 0.83, in comparison with other IoT sensors in the state of the art. In addition, the relative

humidity is reduced inside the device compared to the ambient values provided by meteorological stations.

Additionally, we have demonstrated that these devices can be integrated into an IoT architecture and provide

real time particulate matter data, which allows to implement high dense sensor networks for sustainability

impact assessment.

• Implementation of an IoT-Edge-Cloud architecture for risk assessment in work environments.

During this research we have deployed an IoT-Edge-Cloud architecture for a platform which promotes the

early detection of unsafe environments through machine learning, composed of a sensing layer that captures

particulate matter data, an edge layer that encapsulates a machine learning model and a cloud layer orchestrating.

This architecture is based on the FogFlow framework and the FIWARE components. We demonstrated that

the proposed architecture can predict the occurrence of PM values higher than the recommended ones with an

87 % of accuracy and a reduction of latency of 26 %.

• Improve CHIMERE-WRF accuracy thank to the calibration through deep learning models.

We have developed several deep learning calibration models for different pollutants, using hyperlocal ground

measurements as reference. The performance of CHIMERE improves after applying ANN calibration, obtaining

better performance for all pollutants, increasing all the values of r and R2 and improving the performance

reported by CHIMERE according to the validation performed in 2021 [161]. For O3, a Pearson Coefficient of

0.94 is obtained, improving our performance by 32 % and official performance by 25 %. The same occurs for

NO2, improving our performance by 73 % and official performance by 63 % with an r = 0.88. In contrast, for

PM10, the performance is 0.89 and for PM2.5, r = 0.75, but the elevated number of missing values indicates

that it is necessary to be careful in interpreting these results. NO2 and CO present good correlations -r = 0.81

and r = 0.68, respectively - but the number of missing values for CO is around 60 %. At the same time, for

NO, it is possible to infer an improvement as the time series for training is complete. For SO2, the performance

is poor after ANN calibration.

• A new air quality zoning proposal for the Region of Murcia, applying an automatic methodology.

We propose a new air quality zoning based on the clusters obtained after applying ANN, following the recommendation

of functional air quality zoning and the European regulation. The main difference compared to the Ministry for

the Ecological Transition and the Demographic Challenge (MITECO) zoning for the Region of Murcia is the
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creation of a new zone in the north part of the region, with a new monitoring point. This is quite important

because, at this moment, the ES1401 zone covers more than 50 % of the territory with a unique monitoring

point, so it is impossible to define all the exposure in this zone. Thus, the new zoning is based on splitting this

huge area into two different ones and proposing a new monitoring point in Cieza or Jumilla.

• Definition of a new methodology for particulate matter exposure and health impact assessment

based on interactive process mining. This thesis has defined a new methodology for particulate matter

personal exposure assessment in collaboration with Karolinska Institute in Sweden. This new methodology

can identify target activities and tasks for exposure mitigation, being a valuable tool for policy makers. This

sequence-oriented sensitive analysis presents several advantages concerning the classical methodologies. As an

example, by studying the sequences it is possible to assess that acting on building infrastructure is effective

because it is a common place that appears in all the sequences, and the same applies to studying any scenario.

Thus, the interactive process mining workflow is more agile, explainable, and human-oriented, avoiding the

black box effect. Indeed, this new methodology shows the target parameters, and it is only necessary to iterate

on these few inputs.

• A new ontology that describes the domain of chemistry transport models. In this work, a new

ontology has been defined to model a CHIMERE simulation, providing a new insight in the state of the art, and

complaining with the second objective proposed for this paper. In addition, this ontology meets with the quality

standard according to the OQuaRE metrics and the ROBOT consistency tests. This ontology has been also

compared with others present in the state of the art, showing that the ontology is more similar to the chemical

ontologies than the environmental ones. This is logical because this ontology is focused on describing chemical

components in the atmosphere as well as mathematical processes in simulations. However, this ontology covers

a domain that is not explored in the state of the art, and should be part of future research.

8.4— Limitations in the Work Performed

This thesis has found different limitations in the technologies applied, which encompass challenges related to the

hardware of the sensors, as the miniaturization drying systems and the detection limits of particulate matter sensors, as

well as limitations regarding software scalability and the unavailability of datasets for training the artificial intelligence

models. Understanding these limitations is essential for interpreting the findings and outlining potential avenues for

future research in the field.

• Miniaturisation of particulate matter sensors and drying systems. The atmospheric science community

frequently utilizes optical particle counters (OPCs) and Mie scattering theory for sizing individual aerosol

particles. However, measurements of aerosols by small systems have many advantages, such as low cost, ease

and cost of deployment, and ease of access to inaccessible areas such as those close to urban conurbations, as

well as integrate it in wearable devices. The dimensions of the solution proposed in this thesis is not easy to

miniaturise, being important to research on how to reduce the size of the different components or explore other

technologies for particulate matter quantification.
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• Effect of particle shape and chemical composition in the measurements. One of the limitations of

the field test performed is that it is not possible to quantify the effect of chemical composition and particle

size [48]. However, it is known that this physical parameters strongly affect the optical principle behind the

technology of particulate matter sensors. Regarding chemical composition, it is possible to standardize urban

environments, as particles in these environments present similar compositions [241]. Thus, to test this effect,

comparing urban with rural locations is necessary. In contrast, it is more complicated to assess and correct the

effect of particle size, and the literature suggests that this can be done by applying other technologies based on

gravimetry [242].

• Scalability of the IoT-Edge-Cloud architecture. The proposed platform in this thesis presents limitations

in terms of scalability regarding the replication of the platform, according to the following lines: i) decrease

the dependency of edge nodes, allowing to replicate of the platform without increasing the number of nodes

and allowing to connect more IoT devices; ii) test the latency times to identify bottlenecks in the architecture

and demonstrate an improvement in comparison with cloud architecture; and iii) scaling the machine learning

models to guarantee the applicability in different environments, and the replication of models in different nodes.

• Spatial resolution of the simulations performed with CHIMERE-WRF. The air quality zoning

performed in this thesis starts from the simulations performed using the chemistry transport model CHIMERE-

WRF. The spatial resolution used for these simulations was 10 x 10 km. However, the literature suggests to

cover a major spatial resolution of 1 km x 1 km [231]. This resolution is possible with CHIMERE, but requires

a high computational cost and infrastructures that were not available during this thesis. For an air quality

zoning, a resolution of 10 km x 10 km is acceptable as we worked over a regional scale, but personal exposure

assessment requires a higher resolution. To overcome this limitation, we used bi-linear interpolation as air

quality model, which is less complex in computational terms, but it will be interesting to assess exposure using

data from more complex models.

• Unavailability of sequential datasets for highly exposed activities identification. The main limitation

of the validation of the sequence oriented methodology developed in this thesis is the use of synthetic data.

It is true that this is enough to demonstrate the effectiveness of the methodology but it is necessary to test

it in a real pilot. In this context, the use of wearable sensors can allow activity monitoring, creating a new

cultural phenomenon in citizen science, whereby members of the general population voluntarily wear tracking

devices that continuously log their data in exchange for potential improvements in the quality of life or physical

performance. This paradigm can be applied to the real-time monitoring of exposure, and used for medical

purposes [243]. Thus, the next step is to apply the proposed methodology to real data collected by citizens. In

addition, the use of the architectures developed in this thesis allows to easily integrate all these processes and

data.

8.5— Future Works and Vision

Possible research paths to follow up this thesis include taking into consideration research in each one of the components.

As we proposed an architecture based on an IoT-Edge-Cloud strategy, it is necessary to research on each one of the

levels in the architecture proposed. In this sense, the development of more accurate particulate matter sensors by

exploring different physical technologies combined with more complex distributed computing strategies at edge level

seems to be one of the next steps. In addition to this, more research is need in the top layer to improve the resolution
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of chemistry transport models and implementing semantic mechanisms to make the architecture more compliant with

FAIR guidelines.

8.5.1. Towards Nanoparticles Detection Devices

Nanoparticles are particles having a diameter lower than 100 nm. These particles are in the ultrafine size range,

meaning that they can be deposited in the lower areas of the respiratory tract and can be translocated directly into

the blood through the alveolar barrier [244]. The chemical composition of these particles is complex, including metallic

traces, organic compounds, carbonaceous species or biological agents as virus [245]. Therefore, it is necessary to know

their properties, impact on the environment, effect on human health, methods of protection against them, and to

provide sensing methodologies to monitor and detect their presence in air [246]. Currently, there are two conceptual

approaches based on different physical principles to reach nanoparticles scale.

The first approach are based on suspended microchannel resonators, an emerging technology that allows a

powerful characterization tool for nano-scale particles [247]. This methodology allows for measuring the mass and

concentration of particles suspended in fluid in a flow-through mode [248]. The buoyant mass is defined as mb =

V × (ρo − ρl), where V is the volume of the object, ρo is the density of the object and ρl is the density of the liquid in

which the object is immersed [249]. Here, the main challenge is to apply this principle to particulate matter detection

in air. In these sense, there are few theoretical studies in the state of the art that the demonstrate that solidly mounted

resonator can detect PM in air improving detection limit to 50 ng thanks to temperature modulation [250].

The second approach is based on thermophoresis, where particles move thanks to a transport force that occurs

due to a temperature gradient. In consequence, it is easy to note that particles with larger sizes travel a shorter path,

implying that it is possible to discriminate particles in function of the covered distance [251]. This is shown in Figure

8.1, and different electrodes can be used to detect different size particles. The signal transmission is done by impedance

variations due to particle/electric field interactions occurring while a single particle precipitates towards an electrode

surface, increasing its capacitance, being the concentrations/mass of this particle proportional to the impedance

[252]. This concept has been applied in a prototype which employs thermophoresis and capacitance measurement

for particulate matter separation and detection, allowing to identify airbone pathogens [253]. The strength of this

approach is that can separate also particles from differents compositions.

However, the state of these technologies is not mature enough to be integrated in real IoT infrastructures.

These approaches should deal with different challenges that are not explored yet in the state in the art, and are a

subject of future research in the field. The first one is the miniaturization of the technology, a requirement for any IoT

particulate matter sensor. The second one is the lack of validation of these methodologies with the official ones. To

the best of my knowledge, there are not comparisons between termophoresis and resonators with manual gravimetry,

because of the premature state of the technology. In this sense, a validation in terms of accuracy will be required for

demonstrate usability in IoT infrastructures.

8.5.2. Towards Hyperresolution Air Quality Dispersion Models

Chemistry transport models have limitations in terms of resolution, primarily due to the trade-off between achieving

more accurate and detailed information and incurring higher computational costs associated with the Courant-

Friedrichs-Lewy condition. In this context, it is impractical to attain a resolution higher than 1 km x 1 km. As

explained in section 6, the simulations performed for air quality zoning had a resolution of 10 km x 10 km, but lower

resolutions are required for more accurate zoning or use of models in other applications. Additionally, uncertainties
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Figure 8.1: Nanoparticle theoretical sensor design and model illustrating size discrimination via
thermophoresis. Adapted from [254]

in initial conditions, input variables, and parameterizations introduce biases that restrict their utility for certain

tasks [254]. Last, another limitation of CTMs is excessive numerical diffusion, one of the major limitations in the

representation of long-range transport by chemistry transport models [255].

To overcome this limitation, the most explored solution in the state of the art to deal with the Courant-

Friedrichs-Lewy condition is to model pollution at a street level [30]. Different types of models may be used to

represent the pollution in street canyons. The first approach is based on computational fluid dynamics (CFD) models

[179], which describe the urban geometry, the air flow, and the pollutant concentrations in the streets. The main

limitation of this strategy is the computational costs, requesting log time simulations in a city scale with a large street

network. Some recurring CFD models in the literature are OpenFOAM [256], STAR-CCM+ [257], and the PALM

model [258].

On the other hand, parametric models are more suitable for smart cities purposes because of their low computational

cost, and are combined with statistical assumptions. Some parametric models, e.g. Polyphemus [259] and CALINE4

[260], are based on the use of a Gaussian dispersion methodology to represent emitted traffic-related pollutants, such

as a Gaussian plume or puff. Other parametric models use parameterisations based on CFD modeling or wind-

tunnel experiments to describe the flow in each street and the exchange from street to street and between streets

and the overlying atmosphere. The transport of pollutants from one street to another is taken into account through

intersections, e.g. SIRANE [261] and the Model of Urban Network of Intersecting Canyons and Highways MUNICH

[262]. The flow above the street network is represented by a Gaussian dispersion methodology (SIRANE) or by one-

or two-way nesting in a regional model (MUNICH).
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8.5.3. Towards Knowledge Graph Representation of Chemistry Transport

Models Data

To conduct reliable data-driven research, it is crucial to utilize large-scale data and shift away from isolated, closed

methods of investigation towards a more interconnected scholarly approach [263]. In this context, a group of internationally

recognised experts in data science and bioinformatics co-authored the FAIR Principles — a set of recommendations

to ensure that data resources and scientific software are Findable, Accessible, Interoperable, and Reusable [23]. FAIR

compliance is a milestone in enabling new prediction analytics to access data for forecasting computation, understanding

the semantic context providing provenance of the information, and assessing the rules for data transformation [264].

Chemistry Transport Models (CTMs) are one of the computational scientific models for air quality modelling and were

explored in this thesis. Thus, future research steps should work on the FAIRification of these mathematical models

[265].

However, most part of the data generated by CTMs are not FAIR, delaying the use of interoperable data

in air quality systems [266]. In concrete, CHIMERE works with the netCDF, a scientific format for representing

multidimensional arrays in low-level, to allow the fast processing using programming languages such as C, C++ or

FORTRAN [267]. This implies that the information provided does not meet with FAIR guidelines, and makes it

difficult to guarantee the re-usability, meaning a lack of research in this field. For this reason, this thesis has developed

the CHIMERE ontology which describes the information present in a netCDF output file using terms from ChEBI and

the FIWARE Smart Data Models. Future research will aim to generate knowledge graphs representing the outputs

of a chemistry transport model simulation keeping the relationships between pollutants and entities. Our hypothesis

states that it is possible to transform netCDF files into RDF/XML knowledge graphs with semantic information as the

CHIMERE ontologys by using an ontology-driven methodologies [268]. In addition, the knowledge graphs generated

will be stored in an RDF database, from where stakeholders can extract relevant information through the SPARQL

endpoint.

8.5.4. Towards Distributed Algorithms in IoT Sensor Networks

The development and research on IoT devices enable the proliferation of new services and applications, in which edge

computing encompasses a highly complex scenario with a huge amount of different devices that must cooperate with

each other. However, this approach requires effective orchestration mechanisms to guarantee the smooth performance

of applications and services [269]. However, mechanisms typically applied to the cloud can not directly be migrated to

the edge given its particular characteristics. These problems highlight the importance of the design and development

of new orchestration mechanisms for the edge, particularly to handle the demands of low latency.

In this line, this thesis has demonstrated that using edge computing reduces the latency of machine learning

services, but it is important to address more complex orchestrating mechanism for addressing more complex use

cases. The first approach proposed in the literature is service migration according final user movement, which can

be predicted using machine learning methodologies [270]. Another approach is exploring machine learning techniques

with alternative heuristics for the service placement and priority assignment. This requires to have access to datasets

that contain enough information for the learning process. It is important to note that in this case the machine learning

model will be placed in the orchestrator side and would be in charge off coordinating other machine learning models

that performs different tasks [271].



8.5. Future Works and Vision 75

8.5.5. Towards Individual Personal Exposure Identification

By measuring and modeling pollutant exposure concentrations and by characterizing spatial and temporal sequential

human activities, an exposure surveillance system that provides real-time exposure data can be developed based on

health risk indicators [272]. The methodology proposed in this thesis allows to improve this surveillance by identifying

target activities, but requires a lot of data regarding air quality, personal activities and individual geolocalization,

which are sensible according to regulations and are difficult to collect [273].

In this context, citizen science approaches are emerging to engage citizens for collecting environmental data.

This is specially relevant as a new type of devices, called wearable air quality sensors, which allow citizen scientists

to collect exposure data from its daily activities [274]. Some projects as SOCIO-BEE (101037648) or GreenGage

(101086530) are acting on promoting community engagement and social innovation to bridge this gap via wearable

modules for air-quality observation, providing an affordable, accessible and open wearable with a low-cost ICT-based

solution, combining trusted service modules for co-creation activities and micro-volunteering crowdsourcing tools [275].

For this reason, the next step in scientific research is to combine the interactive process mining methodology

proposed in this thesis with data collected in different citizen sciences projects. By using wearable devices, it is

possible to monitor exposure in different areas, and citizens can label the activity or task that they are performing in

the moment of measurement. This methodology will allow to collect all the input data required for 7, as well as to

create awareness among the most important stakeholders involved.

8.5.6. Towards Implementation of Sustainability Impact Assessment in

Smart Cities

Regarding digital climate mitigation tools and sustainability impact assessment, this thesis has developed improvements

on particle matter measurements and data analysis by combining hardware improvements and machine learning

algorithms, allowing end users and public authorities to perform scenario simulations, KPIs computation, and decision

making. Our proposal is disruptive in the state of the art because it is the first approach, to our knowledge, that

combines IoT measurements with dispersion simulations of a wide combination of scenarios. In this thesis, we have

combined our scientific contribution with a high user experience so that public authorities can efficiently use our tools.

However, it is necessary to add improvements to the prototypes solution by integrating new data sources to

improve the quality of the models. The most important point is generating hyper local data by installing devices in

the pilot cities contributing in the following aspects: i) it will improve the interpolation and dispersion models, as

they act as air quality stations; ii) it will allow obtaining data with a higher temporal resolution, allowing adjusting

the system to small changes, iii) it will allow validating the generated models more reliably and iv) the measurement

of new variables such as new pollutants, noise, and crowd monitoring. The hardware improvements and algorithms

developed during this thesis will help to increase the quality of the data and going to dense IoT networks thanks to

the combination of the humidity correction systems and the distributed computing approaches.

In addition, integrating new data on parking - in real-time -, public transport, bikes, and all the information

provided from the city level will make it possible to implement new functionalities in the solution, complementing the

air quality and particulate matter data explored in this thesis. Some suggestions proposed for development in smart

cities platforms that could be benefited from the solutions developed in this thesis are the following: i) a model that

predicts the availability of bicycles and public transport in the city, ii) a system for calculating routes that minimize

the impact on air quality, and iii) artificial intelligence models that predict the movement of people and predict high

traffic events.
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8.6—Publications, Conferences and Projects

8.6.1. Publications Indexed in Journal Citation Report (JCR)

• Eduardo Illueca Fernández, Antonio Jesús Jara Valera , and Jesualdo Tomás Fernández Breis, “Improving

Air quality zoning through deep learning and hyperlocal measurements,” IEEE Access, 2024. Available:

https://doi.org/10.1109/access.2024.3374208

• Eduardo Illueca Fernández, Iris Cuevas Mart́ınez, Jesualdo Tomás Fernández Breis, and Antonio Jesús Jara

Valera, “Design and evaluation of a dryer system for IoT hyperlocal particulate matter monitoring device,”

IEEE Sensors Journal, 2024. Available:

https://doi.org/10.1109/JSEN.2024.3364537

• Eduardo Illueca Fernández, Antonio Jesús Jara Valera , and Jesualdo Tomás Fernández Breis, “Embedded

machine learning of IoT streams to promote early detection of unsafe environments,” Internet of Things, 2024.

Available: https://doi.org/10.1016/j.iot.2024.101128

• Eduardo Illueca Fernández, Carlos Martinez Llatas, Antonio Jesús Jara Valera, Jesualdo Tomás Fernández

Breis, and Fernando Seoane Mart́ınez, “Sequence-oriented sensitive analysis for PM2.5 exposure and risk

assessment using interactive process mining,” PLoS ONE, 2023. Available:

https://doi.org/10.1371/journal.pone.0290372

8.6.2. Articles Submitted to JCR Journals

• Noel Gomáriz Kühne, Eduardo Illueca Fernández, Youngseob Kim, Jesualdo Tomás Fernández Breis, Yelva

Roustan and Antonio Jesús Jara Valera, “Towards Sustainability Impact Assessment: Air Quality Modelling

for Low Emissions Zones and Energy Management in Smart Cities,” Energy.

8.6.3. Publications at Conferences

• Eduardo Illueca Fernández, Nuria Bernabé Mulero, Alejandro Pujante Pérez, Jorge Maŕıa Merino Garćıa, Iris

Cuevas Mart́ınez , and Antonio Jesús Jara Valera, “CEN/TS 17660 in air quality systems for data quality

validation and certification over smart spot air quality systems,” In International Conference on Ubiquitous

Computing and Ambient Intelligence, 2022. Available: https://doi.org/10.1007/978-3-031-21333-5 65

• Eduardo Illueca Fernández, Noel Gomáriz Kühne, Nuria Bernabé Mulero, and Antonio Jesús Jara Valera,

Advancing Sustainability Impact Assessment: A Comprehensive Tool for Low Emissions Zone Management,”

In 8th International Conference on Smart and Sustainable Technologies, 2023. Available:

https://doi.org/10.23919/SpliTech58164.2023.10193202

8.6.4. Projects

The studies performed during this thesis have contributed to the project Knowledge graph methods for process mining

models and clinical guideline models in support of the Learning Health System (MINEGRAPH), led by Dr. Jesualdo

Tomás Fernández Breis, funded through grant PID2020-113723RB-C22 funded by MCIN/AEI/10.13039/501100011033/
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small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter,”

Environmental Pollution, vol. 206, pp. 696–704, 2015.

[90] S. Sousan, K. Koehler, L. Hallett, and T. M. Peters, “Evaluation of the Alphasense optical particle counter

(OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108),” Aerosol Science and Technology,

vol. 50, no. 12, pp. 1352–1365, 2016. [Online]. Available: ⟨GotoISI⟩://WOS:000393463100008



Bibliography 83

[91] I. Han, E. Symanski, and T. H. Stock, “Feasibility of using low-cost portable particle monitors for measurement

of fine and coarse particulate matter in urban ambient air,” Journal of the Air & Waste Management Association,

vol. 67, no. 3, pp. 330–340, 2017.

[92] P. J. Dacunto, N. E. Klepeis, K.-C. Cheng, V. Acevedo-Bolton, R.-T. Jiang, J. L. Repace, W. R. Ott, and L. M.

Hildemann, “Determining pm 2.5 calibration curves for a low-cost particle monitor: common indoor residential

aerosols,” Environmental Science: Processes & Impacts, vol. 17, no. 11, pp. 1959–1966, 2015.

[93] L. R. Crilley, M. Shaw, R. Pound, L. J. Kramer, R. Price, S. Young, A. C. Lewis, and F. D. Pope, “Evaluation of

a low-cost optical particle counter (alphasense opc-n2) for ambient air monitoring,” Atmospheric Measurement

Techniques, vol. 11, no. 2, pp. 709–720, 2018.

[94] A. Mukherjee, L. G. Stanton, A. R. Graham, and P. T. Roberts, “Assessing the utility of low-cost particulate

matter sensors over a 12-week period in the cuyama valley of california,” Sensors, vol. 17, no. 8, p. 1805, 2017.

[95] T. Zheng, M. H. Bergin, K. K. Johnson, S. N. Tripathi, S. Shirodkar, M. S. Landis, R. Sutaria, and D. E.

Carlson, “Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments,”

Atmospheric Measurement Techniques, vol. 11, no. 8, pp. 4823–4846, 2018.

[96] H.-Y. Liu, P. Schneider, R. Haugen, and M. Vogt, “Performance assessment of a low-cost pm2. 5 sensor for a

near four-month period in oslo, norway,” Atmosphere, vol. 10, no. 2, p. 41, 2019.

[97] B. Chakrabarti, P. M. Fine, R. Delfino, and C. Sioutas, “Performance evaluation of the active-flow personal

dataram pm2. 5 mass monitor (thermo anderson pdr-1200) designed for continuous personal exposure

measurements,” Atmospheric Environment, vol. 38, no. 20, pp. 3329–3340, 2004.

[98] S. Steinle, S. Reis, C. E. Sabel, S. Semple, M. M. Twigg, C. F. Braban, S. R. Leeson, M. R. Heal, D. Harrison,

C. Lin et al., “Personal exposure monitoring of pm2. 5 in indoor and outdoor microenvironments,” Science of

the Total Environment, vol. 508, pp. 383–394, 2015.

[99] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statical Learning, second edition ed., ser. Springer

Series in Statics: Data Mining, Inference and Prediction. Springer, 2017.

[100] A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regression,” STATISTICS AND COMPUTING,

Tech. Rep., 2003.

[101] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001. [Online]. Available:

https://doi.org/10.1023/A:1010933404324

[102] R. M. Morales and J. T. P. Méndez, Inteligencia artificial: Métodos, técnicas y aplicaciones. McGraw-Hill

España, 2011.

[103] R. Rojas and R. Rojas, “The backpropagation algorithm,” Neural networks: a systematic introduction, pp.

149–182, 1996.
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