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ABSTRACT Pollen, fungi, and bacteria are the main microscopic biological entities
present in outdoor air, causing allergy symptoms and disease transmission and hav-
ing a significant role in atmosphere dynamics. Despite their relevance, a method for
monitoring simultaneously these biological particles in metropolitan environments
has not yet been developed. Here, we assessed the use of the Hirst-type spore
trap to characterize the global airborne biota by high-throughput DNA sequenc-
ing, selecting regions of the 16S rRNA gene and internal transcribed spacer for
the taxonomic assignment. We showed that aerobiological communities are well
represented by this approach. The operational taxonomic units (OTUs) of two
traps working synchronically compiled �87% of the total relative abundance for
bacterial diversity collected in each sampler, �89% for fungi, and �97% for pol-
len. We found a good correspondence between traditional characterization by
microscopy and genetic identification, obtaining more-accurate taxonomic as-
signments and detecting a greater diversity using the latter. We also demon-
strated that DNA sequencing accurately detects differences in biodiversity be-
tween samples. We concluded that high-throughput DNA sequencing applied to
aerobiological samples obtained with Hirst spore traps provides reliable results
and can be easily implemented for monitoring prokaryotic and eukaryotic enti-
ties present in the air of urban areas.

IMPORTANCE Detection, monitoring, and characterization of the wide diversity of
biological entities present in the air are difficult tasks that require time and expertise
in different disciplines. We have evaluated the use of the Hirst spore trap (an instru-
ment broadly employed in aerobiological studies) to detect and identify these or-
ganisms by DNA-based analyses. Our results showed a consistent collection of DNA
and a good concordance with traditional methods for identification, suggesting that
these devices can be used as a tool for continuous monitoring of the airborne biodi-
versity, improving taxonomic resolution and characterization together. They are also
suitable for acquiring novel DNA amplicon-based information in order to gain a bet-
ter understanding of the biological particles present in a scarcely known environ-
ment such as the air.
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The outdoor air carries many biological particles such as viruses, archaea, bacteria,
fungi, and pollen coming from soil, vegetation, water sources, and other origins (1).

Several studies have proposed that they play a significant role in weather conditions
and atmospheric dynamics by triggering ice nucleation and producing oxidizing com-
pounds (2–5). Moreover, some of these airborne organisms or parts thereof can cause
allergy symptoms and relevant diseases in humans such as influenza, tuberculosis, and
aspergillosis (6–8) and can also affect animals and plants, with critical consequences for
health and the economy (6, 9, 10). Despite their importance, a real-time system for
monitoring all this biodiversity has not yet been developed, partly because of technical
factors such as different chemical and physical properties, low concentrations, and
variable residence time in the atmosphere that make difficult an integrated analysis (7).
Impingers, filters, and impactors are conventionally employed to collect these airborne
biological entities for subsequent characterization by culture and microscopy, although
new approaches such as mass spectrometry, immunological techniques, and DNA
sequencing have been alternatively tested (1, 11–13).

Inside cities, where human population is congregated and more extensively ex-
posed to airborne disease transmission, aerobiological networks perform an inestima-
ble labor. With a worldwide distribution, these stations constantly monitor urban
atmosphere to provide valuable information about the presence, abundance, and peak
season of allergenic pollen and fungal propagules. These aerobiological stations mostly
operate with Hirst-type spore traps to collect these biological particles (14, 15), and
further identification is performed by microscopy, recognizing distinctive characters
such as size, apertures, and furrows for pollen and color, scars, and uni- or multicelled
spores for fungi (17, 18). While this traditional characterization is extremely time-
consuming and requires considerable expertise, the results are widely accepted and
have been consistent across the years. Unfortunately, precise taxonomic discrimination
(especially to the genus and species levels) is not always accomplished, and some
groups are frequently clustered during annotation as pollen or spore types with
different taxonomic correspondences. For instance, pollen grains from all the grass
species are usually included within the pollen type “Poaceae” because of their matching
morphologies, and grains from the families Amaranthaceae and Chenopodiaceae
cannot be distinguished. Fungal spores are also difficult to classify because the spores
look very similar under a light microscope. Therefore, propagules from the genera
Mucor, Histoplasma, and Rhizopus may be easily misplaced into the group “Aspergillus/
Penicillium.” As a result, information about the global biodiversity present in the air is
limited and is not always supplemented with a rigorous taxonomic classification, which
is valuable knowledge in regard to allergens and pathogenic agents.

On the other hand, the current taxonomy is strongly supported by DNA sequence
information in comparison to the traditional classification based on morphological
features. 16S rRNA data for bacteria (19, 20), internal transcribed spacer (ITS) data for
fungi (21), mitochondrial cytrochrome oxidase I (COI) gene data for animals (22), and
data corresponding to the plastid RuBisCO (rbcL) and maturase K (matK) genes com-
plemented with ITS2 for land plants (23, 24) represent the most popular gene markers
employed for phylogenetic classification in individual isolates. Recent advances in
sequencing technologies have boosted new disciplines such as metagenomics. Thus,
the different next-generation sequencing (NGS) platforms have become powerful tools
for identification of any organism present in heterogeneous microbiomes such as those
represented by soil, water, or human specimens (25–29). Although NGS is fairly
established for the study of bacterial communities in different environments, there is a
shortage of surveys that apply this technology to air samples in urban spaces. More-
over, the existing publications are frequently focused on one particular group of
organisms (usually bacteria or fungi) and there is no general consensus about sampling
methodology or sequencing proceedings (30).

Here we evaluate the use of the Hirst-type spore trap for simultaneous character-
ization of the main groups of microscopic biological particles (bacteria, fungi, and
pollen) present in the urban atmosphere, applying high-throughput DNA sequencing
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techniques. We also compare the results with traditional identification by microscopy
for pollen and fungi and analyze the concordance between the two approaches. We
propose to use the samples collected in aerobiological stations worldwide to provide
additional metagenomic information about the airborne organisms in urban areas to
uncover their dynamics, relationships, and distribution.

RESULTS
Analysis of DNA concentrations between replicates. Our main goal was to

validate the Hirst-type spore trap as a sampler device for high-throughput DNA
sequencing analysis applied to bioaerosols in urban airborne studies. In order to collect
a representative sample of the biodiversity of the metropolitan atmosphere, a weekly
sampling approach was chosen to reduce the daily variability described in previous
studies (31–33). Accordingly, three independent 7-day sampling assays (labeled A, B,
and C; Table 1) were performed using two volumetric spore samplers running synchro-
nously and acting as biological replicates.

First, we checked the DNA concentration obtained from the replicates. As shown in
Table 1, the amounts of DNA recovered from the surveys were small (less than 1 ng/m3

but within the limit of detection of the measurement method), supporting previous
studies that demonstrated the low concentration of DNA and organisms present in the
air compared to other biomes (34–36). Additionally, in our study, some biological
replicates showed significant variations in the final DNA concentration obtained. For
instance, the relative standard deviation (SD) in assay A represented 81.24%. Although
several factors can interfere with the sampling and DNA extraction, the only remarkable
difference that we detected was a depletion in the airflow rate in sample A2 during
collection (�8.5 liters/min [checked at the end of the sampling] instead of 10 liters/min;
Table 1), which may partly explain this divergence. Significantly lower values were
obtained for the other two surveys, surveys B and C (relative SD � 23.77% and 18.61%,
respectively), suggesting a more consistent collection.

Analysis of pollen diversity. Next, we submitted the DNA samples to high-
throughput sequencing in a targeted amplicon approach, assuming similar taxon
identifications between replicates. For the analysis of the pollen diversity, the taxo-
nomic assignment was performed using a customized database for the 5.8S-ITS2 region
present in the plant genome (see Materials and Methods). Representatives of Cupres-
saceae, Urticaceae, Ulmaceae, and Fabaceae were the dominant taxa detected at that
time of the year by NGS (Fig. 1A). An additional sample collected during the summer
season taken in the same location was included as a contrast (M0), showing remarkable
differences in the relative abundances of the taxa (Fig. 1A).

The counts from the total number of sequences assigned to each operational
taxonomic unit (OTU) were used to perform statistical analyses. The concordance
correlation coefficient (CCC) described by Lin (37) that was used for evaluation of the
agreement between two measures of the same variable was determined to analyze the
consistency of the sampling method. Almost perfect concordances between the rep-

TABLE 1 Sampling information and DNA concentrations of the samples determined by PicoGreen assay

Assay Sampling dates Sample IDa

Airflow
(liters/min) (start–end) [DNA] (pg/m3) Mean SD (% relative SD)

A 2–9 December 2015
A1 10.00–10.00 34.78

19.19 15.59 (81.24)
A2 10.00–8.50 3.60

B 9–16 December 2015
B1 9.70–9.20 59.98

48.46 11.52 (23.77)
B2 9.70–9.70 36.94

C 16–23 December 2015
C1 9.50–9.40 54.80

67.33 12.53 (18.61)
C2 9.50–9.60 79.85

M 20–27 July 2015 M0 9.50–9.60 271.20
aID, identifier.
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licates were found for assays B and C (CCC � 0.99). In assay A, with a high difference
in DNA concentrations between replicates, a lower CCC value was determined (0.96,
representing substantial concordance). A remarkably poor coefficient value was ob-
tained in comparisons with sample M0 (taken in summer season) (for A1 versus M0,
CCC � 0.08) (Fig. 1B).

The OTUs in common within the replicates ranged from 45.1% to 54.7% of the total
number of OTUs for each assay, corresponding to 50.0% to 56.4% of the total number
of phylotypes. Nonetheless, these values represented �97% of the total relative
abundance for each sample, indicating that the pollen diversity was fairly well repre-
sented in both samplers. Moreover, although the number of noncommon OTUs/
phylotypes was apparently high, it represented only a minor fraction of the total
relative abundance (�3%; Fig. 1B). Interestingly, only ca. 30% of the OTUs were shared
between samples A1 (late fall) and M0 (summer), representing 54.9% of the abundance
in M0 (Fig. 1B). This result suggests an important change in the relative abundance of
the pollen diversity in the cold season compared to summer, confirmed by the pollen
calendar in the region (38), supporting the sensitivity of the NGS analysis for detection
of changes in the pollen community following this procedure.

Subsequently, we studied the dissimilarity between the replicates (beta diversity),
assuming that the samples from the same assay clustered together. Principal-
coordinate analysis (PCoA) of the Bray-Curtis distance matrix showed that replicates
tended to group and that the largest divergence was found between samples in assay
A (Fig. 1C). This result was anticipated since there was an important number of OTUs

FIG 1 Diversity of plants determined by NGS, statistics, and beta diversity analysis. (A) Relative abundances of the taxonomic assignments. Only
the taxa representing �2% are identified in the legend. (B) Statistical analyses for OTUs and phylogenetic taxa. CCC, concordance correlation
coefficient. The superscript “a” indicates a comparison with sample A1; the superscript “b” indicates relative abundances compiled by analysis of
the OTUs/phylotypes in common. (C) Beta diversity analysis. Principal-coordinate analysis (PCoA) was performed to determine the diversity of
plants from a Bray-Curtis distance matrix comprising the replicates and the divergence sample M0.
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not shared between A1 and A2 (Fig. 1B). However, the three replicates clustered far
apart from a divergent sample (M0), suggesting that these internal differences were
minor and resulting a global R value of 0.777 (P � 0.01; determined by analysis of
similarities [ANOSIM], considering 4 groups constituted by each replicate and M0) (Fig.
1C). Globally, these results suggest that real differences in pollen diversity and abun-
dance can be graphically and statistically detected by analyzing DNA sequence infor-
mation.

As additional validation of the Hirst spore trap for DNA sequencing studies, we
compared the NGS outcome (for samples A1, B1, and C1) with the results obtained from
traditional morphological identification of the same set of samples by microscopy (see
Materials and Methods for details). We would expect that sequencing would detect at
least the same taxa that microscopy revealed and, ideally, that the proportions of the
relative abundances of each taxa would be maintained between the two methods. As
shown in Table 2, the most abundant pollen type determined by morphology was
Cupressaceae/Taxaceae (81% to 89% across the samples), followed distantly by Urti-
caceae (2% to 4%) and by other types with less representation. Remarkably, NGS results
confirmed a major presence of the Cupressaceae/Taxaceae pollen type (37% to 60%),
although some divergences from other types were found. Moreover, NGS identified
more plant diversity (with a minor contribution to total abundance), as represented in
the group “Others,” which contained additional families and genera that are not
visualized by microscopy (data not shown).

To compare the results from the two methods statistically, we focused on the pollen
types detected by morphology and the percentages of NGS results were corrected (see
Materials and Methods [see also Table S2 in the supplemental material]). CCC values
determined a substantial concordance between the two approaches (CCC � 0.96),
except for sample A1 (CCC � 0.84 [poor concordance]).

Overall, these results confirmed that NGS analyses of samples collected with a Hirst
spore trap are suitable for airborne pollen characterization (detecting greater diversity
than microscopy) and that the results were in good agreement with the traditional
identification.

Comparison of fungal communities. Next, we compared the communities of fungi

between replicates. Sequences assigned to the class Dothideomycetes were highly
represented in all the samples (Fig. 2A) and consisted mostly of sequences from
Davidiella/Cladosporium (range, 33.48% to 50.35%; data not shown), in agreement with
other works that analyzed airborne fungal communities in urban spaces by NGS and
microscopy identification (39–43). CCC values of �0.98 confirmed a good concordance
between the replicates (Fig. 2B). Sample M0 obtained a value for CCC of 0.70 (which
indicates poor agreement between samples A1 and M0). The replicates shared 42.6%
to 57.1% of the OTUs, representing 89.4% to 95.9% of the total relative abundance in
each sample. As in the pollen analysis, these values showed a good representation of
the fungal population in the air, although the values were slightly lower, likely because
of the greater diversity of fungi that exists in the air (supported by the higher number
of unique OTUs detected; Fig. 2B). Interestingly, samples A1 and M0 had only 29.3% of
OTUs in common (28% of phylotypes) but represented 92.4% of the total abundance
in M0 (96.8% with respect to the phylotypes). These values suggested a higher diversity
in summer season, as described by other authors (41–43), but a relative steady
abundance of the main and common taxa.

Subsequently, we checked the beta diversity graphically by PCoA. As shown in Fig.
2C, the replicates were clustered together, suggesting high similarity between the
samples in fungal composition (also for assay A), and were placed at a significant
distance from sample M0 (global R � 1.000, P � 0.01 [determined by ANOSIM]),
indicating that the global differences in abundance and those divergent taxa present
in M0 (representing �8% of the total relative abundance compared with A1) are
enough to distinguish dissimilar samples.
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Similarly to the pollen analysis, we compared the results from NGS with microscopy
identification (see Materials and Methods). A taxonomic adjustment for comparisons
with NGS results is shown in Table 3 (for complete morphology classification results, see
Table S4 in the supplemental material). Results of classification of traditional fungal
propagules and spore types by morphological characterization do not always correlate
with the results of a strict taxonomic analysis, and specific recognition of the organisms
cannot always be achieved. Thus, for the sake of comparison, we selected the mor-
phological spore types that can be assigned to a unique taxon. The rest of the
morphological spore and propagule types were included in the category “Others”
(ranging from 38% to 65% across the samples), hampering the comparison with NGS
results (see Discussion). Nonetheless, morphology confirmed the dominant presence of
Cladosporium detected by DNA sequencing and of other allergens such as Alternaria or
Epicoccum. Next, the results were corrected to compare NGS outcome with morpho-
logical identification (see Materials and Methods for details; see also Table S3 in the
supplemental material). Moderate concordance between NGS and morphological iden-
tification was found for samples A1 and B1 (CCC � 0.94 in both cases), while a
substantial concordance (CCC � 0.98) was determined for sample C1.

In general, the differences between the samples of each replicate were due to minor
representatives of the total fungal diversity (relative abundances of �11% for OTUs and
�5% for phylotypes) and the NGS results correlated with the morphological identifi-
cation, validating the employment of the Hirst-type sampler for fungal characterization
by DNA sequencing analyses.

FIG 2 Diversity of fungi determined by NGS, statistics, and beta diversity analysis. (A) Relative abundances of the taxonomic assignments. Only
the taxa representing �2% are identified in the legend. (B) Statistical analyses for OTUs and phylogenetic taxa. CCC, concordance correlation
coefficient. The superscript “a” indicates a comparison with sample A1; the superscript “b” indicates relative abundances compiled by analysis of
the OTUs/phylotypes in common. (C) Beta diversity analysis. Principal-coordinate analysis (PCoA) was performed to determine the diversity of
fungi from a Bray-Curtis distance matrix comprising the replicates and the divergence sample M0.
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Comparison of bacterial communities. The similarity in bacterial diversity be-
tween replicates was also determined (see Fig. S3 in the supplemental material for
details). As shown in Fig. 3A, OTUs assigned to the phyla Actinobacteria and Proteo-
bacteria were the dominant taxa in all the samples, in accordance with previous studies
(44–46). Statistical analyses determined substantial concordance of the results for
replicates B and C (CCC � 0.95) and moderate concordance for assay A (CCC � 0.91).
The diversity of bacteria collected by both samplers (measured as observed OTUs)
ranged from 39.9% to 51.8%, correlating with 79.2% to 88.1% of the total relative
abundance. Although these values were moderately lower than those for fungal
diversity, they represented similar percentages of abundance with respect to phylo-
types (62.9% to 70.7% of phylotypes in common, corresponding to 95.7% to 98.2% of
the total relative abundance). Thus, despite the fact that the device is not primary
designed for collecting bacteria, a representative sample of prokaryotic diversity can be
reliably obtained.

Remarkably, a lower value of CCC was obtained for the comparison of samples A1
and M0: CCC � 0.70 (poor concordance) (Fig. 3B). Interestingly, 59.2% of the phylotypes
were shared between the two samples (34.0% of the total OTUs), representing 96.7%
of the total relative abundance in M0 (78.9% in assessing the abundance compiled by
the OTUs in common). These values were similar to those obtained with the other
replicates, suggesting lower variation of the bacterial diversity in the air than for the
other biological entities analyzed.

Next, we studied the beta diversity graphically by PCoA. While replicates B and C
clearly clustered together (small differences between the paired samples), an appar-

FIG 3 Diversity of bacteria determined by NGS, statistics, and beta diversity analysis. (A) Relative abundances of the taxonomic assignments. Only
the taxa representing �2% are identified in the legend. (B) Statistical analyses for OTUs and phylogenetic taxa. CCC, concordance correlation
coefficient. The superscript “a” indicates a comparison with sample A1; the superscript “b” indicates relative abundances compiled by analysis of
the OTUs/phylotypes in common. (C) Beta diversity analysis. Principal-coordinate analysis (PCoA) was performed to determine bacterial diversity
from a Bray-Curtis distance matrix comprising the replicates and the divergence sample M0.
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ently big disparity was found between sample A1 and sample A2 (Fig. 3C), in accor-
dance with the statistical analyses. Even though the value obtained for this clustering
was lower than that found for fungi or pollen (R � 0.630, P � 0.01), it was still possible
clearly to distinguish the replicates (containing a similar diversity) from sample M0.
Moreover, we noticed that the largest variation between the A1 and A2 replicates fell
along the second component (explaining 20% variance) whereas it clustered together
with replicates in the B and C samples, all far apart from the M0 sample, along the main
component.

Altogether, these results suggested that the diversity of airborne bacteria can be
described by employing the Hirst spore trap and subsequent DNA analysis and that it
is also possible to identify differences in composition by combining graphical and
statistical analyses.

DISCUSSION

The Hirst spore trap is the most widely used sampler in aerobiological surveys for
monitoring fungal propagules and pollen grains. Recent studies have taken advantage
of this device to perform DNA-based studies for pollen identification as described by
Kraaijeveld and coworkers (47), who obtained promising results, especially for grass
pollen. Here we assessed the use of the Hirst spore trap for monitoring not only pollen
but also fungal propagules and airborne bacteria by high-throughput sequencing.

Previous studies analyzing the Hirst spore sampler established that there are no
significant differences in counts or diversity among samples collected by two devices
placed in the same location, although error rates of around 20% to 30% during visual
identification must be assumed (48). Our results from DNA sequence analyses showed
a consistent sampling of the air biodiversity between the two samplers working
synchronically, excluding assay A because the technical issues observed might have
been interfering. Differences in the proportions of OTUs detected by the two devices
ranged from 17% to 27% for all the biological particles studied (13% to 23% in analysis
of diversity by phylotypes). The OTUs in common (47% to 57%) composed �92% of the
total relative abundance in each sampler for fungal and pollen (�87% in the case of
bacteria), indicating that the microscopic biological diversity is well represented in each
sample and that the differences are due to minor representatives with a small contri-
bution from each one. It is worthwhile to point out that the OTU level set at 97%
similarity does not always correlate with different species. In fact, in the analyses of
phylotypes in contrast to OTUs, the percentages in common were increased to 54% to
71%, corresponding to �95% of the total relative abundance. Accordingly, simpler
organisms (bacteria and fungi) showed higher diversity (with respect to numbers of
OTUs), likely because of their potential for genetic diversification, but they also showed
higher percentages of phylotypes in common. Additionally, these scores correlated
with almost perfect concordance between the devices for pollen (CCC � 0.99) and
substantial concordance for fungi (CCC � 0.98), confirming previous studies that
investigated sampling consistency by microscopy (49, 50). Lower values were deter-
mined for bacteria (CCC � 0.95 [moderate concordance]), probably because of greater
diversity, although these devices had never been evaluated previously for prokaryotes
by NGS, and more studies may be required. Overall, these results suggest high
consistency during collection of the airborne biological particles by DNA sequencing
technologies employing the Hirst spore trap for global characterization.

We also compared NGS results with traditional identification of fungal and pollen
diversity performed by light microscopy since it is essential to validate the results
obtained from DNA sequencing. Qualitative (detected/nondetected) differences can be
expected since the two methods analyze different items (DNA versus complete pollen
grains or fungal spores), with the expectation that NGS would be more sensitive.
Moreover, we used the DNA extracted from the whole half-tape used in the sampler,
whereas the standard procedure for identification by microscopy analyzes only 10% to
15% of the tape (51). Therefore, some divergences were observed during the analyses.
For instance, in the pollen diversity analysis, 9% to 13% of the sequences were assigned
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to Ulmus and 14% to 22% to Sophora (� Styphnolobium), whereas these pollen types
were not detected by microscopy and are not expected to be found in that region
according to their phenological calendar (38). Because NGS detects the DNA not only
from inside the pollen grains but also from any other plant residues or fragments
carrying nucleic acids, this type of disagreement may be found.

With regard to quantitative differences, this is a problem that has yet to be solved
for the targeted amplicon sequencing (TAS) strategy. The NGS data may be biased by
the number of copies of the targeted region present in the genome. Although
quantitative PCR (qPCR) may be applied, performance of additional analyses that focus
on a few species is required, as Kraaijeveld and colleagues did for grass pollen (47). Our
results using a nuclear marker for plants (5.8S-ITS2) worked fairly well, with good
agreement with morphological identification (CCC � 0.96), while CCC values of �0.94
(moderate concordance) were determined in comparisons of microscopy and NGS for
fungi. Taxonomic classification by visual identification is challenging because of the
great diversity of fungi in the air. Comparison with the results from NGS is as yet also
hampered because of poor knowledge of the teleomorph and anamorph stages with
respect to fungal diversity. Nonetheless, performing visual and DNA sequencing anal-
yses in parallel enriches the information for both approaches, as Pashley and coworkers
had also demonstrated (52).

On the other hand, DNA sequencing has very interesting advantages in aerobio-
logical studies. All types of biological entities (bacteria, fungi, pollen, archaea, etc.) can
be analyzed using the same sample, and the relationships among them, including
groups from different taxonomic kingdoms, can be studied. Moreover, NGS facilitates
the identification for those cryptic groups of plants and fungi that are difficult to
identify by morphology. For instance, in our analyses, 17 different genera of the family
Poaceae were identified across the samples (data not shown) whereas pollen features
do not allow such distinction, and other members of 11 orders that are not studied
routinely were also detected. Furthermore, the procedure that we have described is
sensitive enough to detect not only significant divergences between samples (com-
parisons with sample M0) but also subtler differences, as between the replicates, which
were taken across consecutive weeks and for which great dissimilarities were not
expected (see Fig. S4 in the supplemental material).

Our study evaluated the use of the Hirst spore trap for simultaneous monitoring of
pollen, fungi, and bacteria by high-throughput DNA sequencing. Sampling in aerobio-
logical stations can easily be adapted to perform both traditional and DNA-based
analyses, therefore providing additional information for comprehending the complexity
of the bioaresols in urban environments and their connections with meteorological
parameters, airborne disease transmission, and physical and chemical pollutants.

MATERIALS AND METHODS
Sampling methodology. Two volumetric spore traps (Burkard Manufacturing Co., United Kingdom)

were placed on the roof (height, 23 m) of the building Escuela Técnica Superior de Ingenieros Industriales
(Universidad Politécnica de Madrid, Madrid, Spain [40.439881°N, 3.689409°W, �700 m above sea level]),
with a 2-m separation. All the material that was to be in contact with the sample was sterilized in
advance. The drums employed in the spore trap device, Melinex tape, boxes to carry the drums, and
metallic stuff for manipulation were cleaned with 10% sodium hypochlorite solution, rinsed thoroughly
with Milli-Q (MQ) water, sprayed with ethanol (70%), and allowed to dry before autoclaving was
performed (121°C, 20 min). Further steps after sterilization were performed in a Telstar AV-100 biosafety
cabinet, with the use of sterile gloves to prevent DNA contamination. The Melinex tape was cut
longitudinally into two equal parts and attached to the drums. Next, it was covered with pharmaceutical
sterile petroleum jelly (Vaseline; Interapothek) as an adherence collection surface. One half of the tape
was used for DNA extraction and the other half for microscopy analyses. The two spore traps were run
synchronously, and three 7-day samples were taken in December 2015 (see Table 1; see also Table S1 in
the supplemental material for meteorological conditions). Airflow generated by the vacuum pump of the
samplers was checked before and after sampling to verify that the flow rate (�10 liters/min) was
constant across the time period and between devices. An additional 7-day sample was taken in summer
in the same location for use as a comparative-divergence sample for NGS analysis and statistics. A
negative control was set as a 7-day sample, keeping the vacuum of the sampler off. An amount of DNA
insufficient for performing any analysis was obtained, and none of the PCR product was amplified during
the preparation of the amplicon libraries using this specimen.
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DNA extraction and quantitation. After sampling, the petroleum jelly from one half of the Melinex
tape was collected for analysis in the biosafety cabinet by using a sterilized razor and the DNA was
extracted with a PowerSoil DNA isolation kit (Mo Bio Laboratories, CA, USA) following the manufacturer’s
instructions. Purified DNA was eluted in a final volume of 60 �l and quantified with a Quant-iT PicoGreen
double-stranded DNA (dsDNA) assay kit (Invitrogen, Molecular Probes) using a QuantiFluor Fluorometer
(Promega). Aliquots from the extracted DNA were used for next-generation DNA sequencing analyses.

Next-generation sequencing. High-throughput sequencing analyses were performed using the
purified DNA from each sample. Universal primers attached to adaptors and multiplex identifier se-
quences were used to amplify specific regions from 16S rRNA for bacteria [for Bakt_341 (F), 5=-CCTAC
GGGNGGCWGCAG-3=; for Bakt_805 (R), 5=-GACTACHVGGGTATCTAATCC-3= (53)], from 5.8S-ITS2 for fungi
[for ITS86 (F), 5=-GTGAATCATCGAATCTTTGAA-3= (54); for ITS-4 (R), 5=-TCCTCCGCTTATTGATATGC-3= (55)],
and for plants [for ITS-D (F), 5=-YGACTCTCGGCAACGGATA-3= (56); for ITS-4 (R), 5=-TCCTCCGCTTATTGAT
ATGC-3= (55)], in a targeted amplicon sequencing (TAS) approach. Purified-amplicon libraries were
sequenced using an Illumina MiSeq platform (2 � 300 reads) at Parque Científico de Madrid (Madrid,
Spain).

Bioinformatic analysis. Data from NGS were first submitted to a general checking with FastQC
software (version 0.11.3; Babraham Bioinformatics Group, Babraham Institute, United Kingdom [www
.bioinformatics.babraham.ac.uk/projects/]). Paired-end sequences were assembled with PANDAseq (57)
(version 2.8; https://github.com/neufeld/pandaseq/wiki/PANDAseq-Assembler), removing primer se-
quences and filtering by quality. For the fungal ITS2 library, as the sequencing protocol exceeded the
length of the amplicon, we employed “read_fastq” from Biopieces (version 2.0; http://maasha.github.io/
biopieces/) to remove the primer sequence at the end of the amplicon followed by “fastq-join” (59)
(https://github.com/brwnj/fastq-join) to pair the reads. Global processing was carried out in the Qiime
suite environment (60) (version 1.9.1; http://qiime.org). Taxonomic assignments were performed using
the Greengenes database (61) for bacteria (version gg_13_8 implemented in Qiime software by default)
and UNITE (62) (version no. 7.0; https://unite.ut.ee/) for fungi. A customized database was created for
plant assignment. Briefly, 5.8S-ITS2 sequences from local species (based on the work of Gavilán and
coworkers [63]) were extracted from GenBank (http://www.ncbi.nlm.nih.gov/GenBank/index.html) and
formatted for use within the Qiime workflow. The unidentified sequences found during the preliminary
tests were subjected to BLAST analysis using Web BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi), and
the database was manually upgraded until the “unassigned” proportion was �3% for the three assays
(806 sequences; �764 species in the final database).

For 16S analysis of bacteria, chloroplast and mitochondrion sequences were removed. During fungal
ITS2 analysis, sequences from other eukaryotic organisms were discarded. Supplementary filtering was
carried out in all analyses to remove OTUs with 5 or fewer counts (n � 5) in any sample. OTUs were
defined at 97% sequence similarity. Every unique taxonomic assignment was considered a phylotype,
independenly of the taxonomic level. For additional information and the rarefaction curves of each
library, see Fig. S1 to S3 in the supplemental material.

Fungal and pollen identification and quantification. One half of the Melinex tape from the
samples A1, B1, and C1 was used for morphological determination and quantification by microscopy
following the procedures of the Spanish Aerobiological Network (15). The longitudinal half of the Melinex
tape was cut into seven equal portions (48 mm in length) which were mounted on the microscopic slide
using fuchsin-stained glycerin gelatin as a mounting medium. Samples were observed using a light
microscope (Nikon Eclipse 50i and Nikon Eclipse E200) at a magnification of �400. One and four
continuous nonoverlapping horizontal sweeps over the whole slide were analyzed for fungal spores and
pollen grains, respectively. Every spore and pollen particle was counted and identified as one spore and
pollen type, based on morphological features (17, 18). The number of airborne particles counted was
multiplied by a factor that takes into account the volume of air sampled, the area analyzed, and the size
of the microscope field of vision used (15). Finally, total pollen or fungal spore counts per week were
expressed as the sum of daily mean counts per cubic meter of air (see Table 2 and 3; see also Table S4
in the supplemental material).

Statistics and graphical representation. Calculations of statistics were performed using the soft-
ware packages in the R software environment (version V3.2.1; https://www.r-project.org/). The statistical
agreement between paired samples (replicate) was determined by calculating the concordance corre-
lation coefficient (CCC) described by Lin (37) using rarefied OTU data filtered (n � 5) for each pair (with
the rarefaction depth adjusted to each amplicon; see Fig. S1 to S3 in the supplemental material), and the
calculations were performed with the “epiR” package in R (function “epi.ccc” with a confidence level at
95%). The scale of agreement for the test interpretation was set as follows (64): almost perfect (�0.99),
substantial (0.99 to 0.95), moderate (0.95 to 0.90), and poor (�0.90). In order to compare the NGS results
to the morphological data from microscopy, counts of pollen grains and fungal spores were transformed
to relative abundance data in reference to the total count of the sample. For statistical analyses, only
pollen or fungal types identified by morphology were selected, the relative abundances of NGS were
corrected to 100% (keeping the proportions constant), and subsequent CCC was performed as described
above (see Table S2 and S3 in the supplemental material).

Distance matrix analysis, principal-coordinate analysis (PCoA) graph calculations, and analysis of
similarities (ANOSIM [which compares the mean of ranked dissimilarities between groups to the mean of
ranked dissimilarities within groups]) were performed using Qiime scripts with the same rarefied OTU
data used for statistics.

Accession number(s). Raw sequence data obtained in this study are available in the National Center
for Biotechnology Information Sequence Read Archive under accession no. SRP095022.
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