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Abstract

Normalized cross-correlation is the reference approach to carry out template matching on images. When it is computed in
Fourier space, it can handle efficiently template translations but it cannot do so with template rotations. Including rotations
requires sampling the whole space of rotations, repeating the computation of the correlation each time.

This article develops an alternative mathematical theory to handle efficiently, at the same time, rotations and translations.
Our proposal has a reduced computational complexity because it does not require to repeatedly sample the space of rotations.
To do so, we integrate the information relative to all rotated versions of the template into a unique symmetric tensor template
-which is computed only once per template-. Afterward, we demonstrate that the correlation between the image to be processed
with the independent tensor components of the tensorial template contains enough information to recover template instance
positions and rotations.

Our proposed method has the potential to speed up conventional template matching computations by a factor of several

magnitude orders for the case of 3D images.

Keywords: Template matching, Tensors, Rotations & Quaternions, 3D images, Cross-correlation, Convolution,
Hyperspherical harmonics, Cryo-electron microscopy, Tomography.
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1. Introduction

A classical problem in image processing and, particularly, in pattern recognition, is to identify if a large image
contains copies -and how many, and their locations and orientations- of a small image, named “template”. The
resulting algorithms are generically known as template matching algorithms Brunelli (2009); Forsyth and Ponce (2002);
Gonzalez and Woods (2017). The most classical solution is based on using cross-correlations, although there are other
approaches based, for example, in metaheuristic algorithms Corona et al. (2023) or on deep learning Lamm et al.
(2022); Moebel et al. (2021); de Teresa-Trueba et al. (2023). In this paper, we show the mathematical foundations
of the cross-correlation-based template matching algorithm (TM in all that follows), and we introduce a new fast
algorithm that solves the problem using tensors.

The main advantages of TM, when compared to the algorithms based on machine learning, are that TM is a white
box model, it is directly applicable when you have just one template and one larger image (not requiring any kind
of training, which may be a very difficult task in some applications), and locates rotations with arbitrary precision.
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Current deep learning based algorithms for template matching in three-dimensional images are not able to estimate
rotations accurately Lamm et al. (2022).

On the other hand, a major drawback of TM is its computational cost. TM basic idea is to compute the inner
product between the (rotated) template and the (translated) image, and normalize the result. These computations
are made, for each rotation, in the Fourier domain to efficiently address translations Lewis (1995); Böhm et al.
(2000); Roseman (2003). However, this process has to be repeated for every rotation to be investigated, thus the
resulting complexity has a dependency with the rotations processed. The computational cost of this process may
become restrictive for 3D images since SO(3), the space of rotations of R3, is a (compact) manifold of dimension
3. In application domains such as cryo-electron microscopy, there are required more than ten thousand rotations
for achieving an angular precision of a few degrees. An alternative approach is to apply steerable filters to compute
efficiently the correlation at different rotations. However, although a new method has been developed to generate
steerable filters for any arbitrary kernel Fageot et al. (2021) in 2D, there is no solution yet for 3D images.

We propose an algorithm called tensorial template matching, TTM, which integrates into a unique symmetric
tensor the information relative to the template in all rotations. In other words, the tensor template incorporates in a
unique object the information about all rotations of the template, thus allowing us to find the position and rotation
of instances of the template in any tomogram with just a few correlations with the linearly independent components
of the tensor. The tensor template is computed only once per template, and, as soon as it is generated, it enables to
process any image.

2. Classical template matching

Let us introduce some notation. d-dimensional images are just elements of L2(Rd), which is a Hilbert space with
the inner product ⟨f, g⟩ =

∫
Rd f(x)g(x)dx. It is natural to use the inner product to compare two images f, g of the

same size. Concretely, we can use that ⟨f, g⟩ = ∥f∥2∥g∥2 cos θ, where θ is the angle formed by f and g. In particular,

f = αg for some positive constant α if ⟨f,g⟩
∥f∥2∥g∥2

= 1.

Template matching is typically used to study if instances of a “small” image t (the template) is present in a larger
image f , e.g. look for instances of an specific macromolecule in a cryo-electron tomogram (3D volumetric image). The
size of the image is connected to the set of points where the image does not vanish, the support of the image. That

is, t is meant “small” when the set K = supp(t) = {x : t(x) ̸= 0}
Rd

is small (e.g., is a subset of a small ball D). Let’s
assume that f and t have quite different sizes, so our interest is to compare t (the template, the small image) with
just a part of f . In such case we need to introduce some special operators S : L2(Rd) → L2(Rd) that fix our attention
in just a part of the domain of f . An interesting example of such operators is

Sr(f)(x) = U(1− 1

r
∥x∥2)f(x) =

{
f(x) , ∥x∥2 ≤ r
0 , otherwise

, (1)

where U : R → R denotes Heaviside’s unit step function and r > 0. If the support of the template t is D0(r) = {x :
∥x∥2 ≤ r}, the ball of radius r centered at 0 ∈ Rd, the normalized inner product

⟨Sr(f), t⟩
∥Sr(f)∥2∥t∥2

informs about the similarity between t and the restriction of f to D0(r). Moreover, if we introduce the translation
operator τx : L2(Rd) → L2(Rd), τx(f)(z) = f(z + x) and compute

⟨Sr(τx(f)), t⟩
∥Sr(τx(f))∥2∥t∥2
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the result informs about the similarity between t and the restriction of f to Dx(r) = {z : ∥x− z∥2 ≤ r}. Of course, it
may happen that f contains a copy of a rotated version of t, so rotations are also necessary for a complete discussion
of the problem. Thus, given R ∈ SO(d), we define the operator OR : L2(Rd) → L2(Rd), OR(t)(z) = t(Rz), and for
t ∈ L2(Rd), we define a rotated version of t,

tR = OR−1(t). (2)

The normalized inner product
⟨Sr(τx(f)), tR⟩

∥Sr(τx(f))∥2∥t∥2
informs about the similarity of tR and the restriction of f to Dx(r). It is important to notice that ∥t∥2 = ∥tR∥2.

The operator Sr defined by (1) has some special properties. Concretely, it is symmetric, semidefinite positive and
commutes with rotations Recall that, given (X, ⟨·, ·⟩X) a (real) inner product space1, an operator S : X → X is named:

• Symmetric (also named self-adjoint) if

⟨f, S(g)⟩X = ⟨S(f), g⟩X for all f, g ∈ X

• Semidefinite positive, if
⟨f, S(f)⟩X ≥ 0 for all f ∈ X

• Definite positive, if it is semidefinite positive and ⟨f, S(f)⟩ = 0 implies f = 0.

If S : X → X is a symmetric semidefinite positive operator (SSP, in all what follows), then X becomes a semi-normed
space with the inner product

⟨f, g⟩S := ⟨f, S(g)⟩X (3)

and the seminorm
∥f∥S =

√
⟨f, f⟩S (4)

Observe, for example, that if S is given by (1), then ∥f∥S = 0 means that f|D0(r) = 0 almost everywhere.

Theorem 2.1. Let X be an inner product space, S : X → X be an SSP operator, and consider the inner product
given by (3). Then

(a) ⟨f, g⟩S ≤ |⟨f, g⟩S | ≤ ∥f∥S∥g∥S for all f, g ∈ L2(Rd).

Moreover, if f, g ∈ L2(Rd), ∥g∥S ̸= 0, the following are equivalent statements:

(b) ⟨f, g⟩S = ∥f∥S∥g∥S.

(c) ∥f − ∥f∥S

∥g∥S
g∥S = 0.

Proof. As S is SSP, we have that, for all α ∈ R,

0 ≤ ⟨f + αg, f + αg⟩S = ∥f∥2S + 2α⟨f, g⟩S + α2∥g∥2S . (5)

Hence, if ∥g∥S ̸= 0, the only way that the quadratic polynomial (in α) above is nonnegative everywhere is that

4⟨f, g⟩2S − 4∥f∥2S∥g∥2S ≤ 0,

1In all that follows, we will also use the notation x · y to denote ⟨x, y⟩, if this simplifies computations.
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which is equivalent to
|⟨f, g⟩S | ≤ ∥f∥S∥g∥S . (6)

On the other hand, if ∥g∥S = 0, the only way to satisfy (5) is ⟨f, g⟩S = 0, in whose case (6) also holds. This proves
(a).

Let us now demonstrate (b) ⇔ (c) whenever ∥g∥S ̸= 0. Indeed, (c) is equivalent to

0 = ∥f − ∥f∥S
∥g∥S

g∥2S

= ⟨f − ∥f∥S
∥g∥S

g, f − ∥f∥S
∥g∥S

g⟩

= ∥f∥2S +
∥f∥2S
∥g∥2S

∥g∥2S − 2
∥f∥S
∥g∥S

⟨f, g⟩S

= 2∥f∥2S − 2
∥f∥S
∥g∥S

⟨f, g⟩S ,

which holds if and only if
⟨f, g⟩S = ∥f∥S∥g∥S .

Thus (b) ⇔ (c). 2

Note that, if f, t ∈ L2(Rd) are two images, α > 0, and we take S = Sr given by (1), then ∥τxf − αOR−1(t)∥S = 0
means that f has a match with tR in the unit ball centered at x. Indeed, there are many ways to define operators S
with the property that ∥f −g∥S = 0 means that f = g in a neighbourhood of 0, so that ∥τxf −αOR−1(t)∥S = 0 means
that f has a match with a rotated version of t in a neighbourhood of 0. Although arbitrary SSP operators may not
enjoy this property, they allow the creation of a general way to deal with this kind of operators.

Thus, in all what follows, we assume that X is a vector subspace of L2(Rd) doted with the inner product that
inherits from L2(Rd), S : X → X is an SSP operator, and ∥1∥2S = ⟨1,1⟩S > 0, where 1(x) = 1 is the constant image.2

Rotations and composition of operators will play an important role in this paper. Thus, it is natural to ask how
the composition of rotations acts on the images. This is, indeed, a simple computation:

OR1R2(t)(z) = t(R1R2z) = t(R1(R2z))

= OR1(t)(R2z) = OR2(OR1(t))(z)

Hence
OR1R2

= OR2
◦OR1

(7)

and

tR1R2 = O(R1R2)−1(t) = OR−1
2 R−1

1
(t)

= OR−1
1

◦OR−1
2
(t) = (tR2)R1 .

(8)

2Note that 1 is not an element of X since X ⊆ L2(Rd), but this can be managed in several ways. In fact, in practice we only consider
images f with compact support K. Then, when we compute ⟨f,1⟩, we mean ⟨f,1⟩ =

∫
Rd f(x)dx =

∫
K f(x)dx = ⟨f,1χK⟩. Moreover,

since our interest is on operators S that vanish on functions vanishing outside of a certain neighbourhood D of 0, by ⟨1,1⟩S we mean
⟨1χD,1χD⟩S .
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Given an image f , we consider its projection onto the space of images which are S− orthogonal to the constant
image 1,

PS(f) = f − ⟨f,1⟩S
⟨1,1⟩S

1. (9)

Remark 2.2. These projections are important to study invariant properties with respect to constant brightness changes
in the images of translations and rotations. Note that there is no “real” difference between an image f and the images
of the form f + α1, α ∈ R. When we modify the constant α, what we observe is a uniform change in the density or
the brightness, but not the apparition of new structures or forms, in the image f . Thus, f and its projection PS(f)
essentially represent the very same image, since f = PS(f) + α1 for certain α ∈ R.

Given two images f, t, we have that

f = PS(f) + α1 and t = PS(t) + β1 for certain constants α, β.

Hence

⟨f, t⟩S = ⟨PS(f) + α1, PS(t) + β1⟩S
= ⟨PS(f), PS(t)⟩S + αβ⟨1,1⟩S

since PS(f), PS(t) ⊥S 1. Consequently, if x ∈ Rd and R ∈ SO(d), there are two constants ρ = ρ(x) and δ = δ(R) such
that

⟨τx(f), tR⟩S = ⟨PS(τx(f)), PS(tR)⟩S + ρδ⟨1,1⟩S .

Assume that S commutes with rotations, and take x ∈ Rd fixed. Then, for each R ∈ SO(d) we have that

tR = OR−1(t) = OR−1(PS(t) + β1)

= OR−1(PS(t)) + β1
(10)

since OR−1(1) = 1. Moreover

⟨OR−1(PS(t)),1⟩S

=

∫
Rd

PS(R
−1u)S(1)(u)du

=

∫
Rd

PS(v)S(1)(Rv)dv

(just take v = R−1u and use that detR = 1 )

=

∫
Rd

PS(t)(v)(OR ◦ S)(1)(v)dv

=

∫
Rd

PS(t)(v)(S ◦OR)(1)(v)dv

(since OR ◦ S = S ◦OR)

=

∫
Rd

PS(t)(v)(S)(1)(v)dv
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(since OR(1) = 1 )

= ⟨PS(t),1⟩S = 0.

Hence OR−1(PS(t)) ⊥S 1 and this, in conjunction with (10), implies that

PS(tR) = PS(OR−1(t)) = OR−1(PS(t)) = PS(t)R.

Hence
tR = PS(t)R + β1

is an S-orthogonal decomposition of tR, which means that the constant β that multiplies 1 in the S-orthogonal
decomposition of tR does not depend on R, and

⟨τx(f), tR⟩S = ⟨PS(τx(f)), PS(t)R⟩S + ρβ⟨1,1⟩S
= ⟨PS(τx(f)), PS(tR)⟩S + ρβ⟨1,1⟩S .

In particular, for each x ∈ Rd, the problems:

• Maximize ⟨τx(f), tR⟩S over rotations R.

• Maximize ⟨PS(τx(f)), PS(t)R⟩S over rotations R.

• Maximize ⟨PS(τx(f)), PS(tR)⟩S over rotations R.

are equivalent.
Let us define:

f−x,R−1 := (OR ◦ τx)(f). (11)

Lemma 2.3. If S is an SSP operator that commutes with rotations, the parameter δ that appears in the S-orthogonal
decomposition

f−x,R−1 = PS(f−x,R−1) + δ1

does not depend on R. Consequently, given x ∈ Rd, the problems

• Maximize ⟨f−x,R−1 , t⟩S over rotations R.

• Maximize ⟨PS(f−x,R−1), PS(t)⟩S over rotations R.

are equivalent.

Proof. We know that δ =
⟨f−x,R−1 ,1⟩S

⟨1,1⟩S , so that we only need to prove that ⟨f−x,R−1 ,1⟩S does not depend on R.

Indeed,

⟨f−x,R−1 ,1⟩S =

∫
Rd

f(Ry + x)S(1)(y)dy

(Make the change of variable z = Ry )

=

∫
Rd

f(z + x)S(1)(R−1z)dz

=

∫
Rd

f(z + x)(OR−1 ◦ S)(1)(z)dz

=

∫
Rd

f(z + x)(S ◦OR−1)(1)(z)dz
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(since S commutes with OR−1 )

=

∫
Rd

f(z + x)S(1)(z)dz

(since OR−1(1) = 1 )

= ⟨τx(f),1⟩S

2

We can now state and demonstrate the following:

Theorem 2.4 (Classical template matching). Let S be a SSP operator which commutes with rotations and let
x ∈ Rd be fixed. Then the following are equivalent problems:

(a) Maximize ⟨f−x,R−1 , t⟩S over rotations R.

(b) Maximize ⟨τx(f), tR⟩S over rotations R.

(c) Maximize ⟨PS(τx(f)), PS(tR)⟩S over rotations R.

(d) Maximize ⟨PS(f−x,R−1), PS(t)⟩S over rotations R.

Moreover, if ∥t∥S > 0 and S also has the property that ∥f∥S = 0 implies f|D = 0 for a certain neighborhood D of

0 ∈ Rd which contains the supports of all the rotated templates tQ with Q ∈ SO(d), then a match between f and tR in
x is got whenever any one of the following claims hold:

(a∗)
⟨f−x,R−1 ,t⟩S

∥f−x,R−1∥S∥t∥S
= 1

(b∗) ⟨τx(f),tR⟩S
∥τx(f)∥S∥tR∥S

= 1

(c∗) ⟨PS(τx(f)),PS(tR)⟩S
∥PS(τx(f))∥S∥PS(tR)∥S

= 1

(d∗)
⟨PS(f−x,R−1 ),PS(t)⟩S

∥PS(f−x,R−1 )∥S∥PS(t)∥S
= 1

Finally, the normalized correlations described in (a∗), (b∗), (c∗), and (d∗) do not change when we substitute f by
αf + β, and t by δt+ γ, with α, β, δ, γ ∈ R, α, δ ̸= 0.

Proof. The equivalences (a) ⇔ (d) and (b) ⇔ (c) have been already shown. The following identities demonstrate
(a) ⇔ (b):

⟨f−x,R−1 , t⟩S =

∫
Rd

f(Rz + x)S(t)(z)dz

=

∫
Rd

f(y + x)S(t)(R−1y)dy

( just take Rz = y and use that detR = 1 )

=

∫
Rd

f(y + x)(O−1
R ◦ S)(t)(y)dy

=

∫
Rd

f(y + x)(S ◦O−1
R )(t)(y)dy
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(since S commutes with OR−1 )

= ⟨τx(f), tR⟩S

The other claims are a direct consequence of Theorem 2.1.
2

In all that follows, we assume that S is an SSP operator that commutes with rotations and t is normalized in the
sense that t ⊥S 1 and ∥t∥S = 1. Then PS(tR) = tR and ∥tR∥S = 1 for all rotation R. Consequently,

⟨τx(f), tR⟩S = ⟨PS(τx(f)) + α1, tR⟩S = ⟨PS(τx(f)), tR⟩S = ⟨PS(τx(f)), PS(tR)⟩S
and

c(x,R) =
⟨PS(τx(f)), PS(tR)⟩S

∥PS(τx(f))∥S∥PS(tR)∥S
=

⟨τx(f), tR⟩S
∥PS(τx(f))∥S

attains its maximum (= 1) if and only if there is a perfect match between f and tR in x. Moreover, if we define
w(x) = 1

∥PS(τx(f))∥S
and consider the cross-correlation of functions f, g ∈ L2(Rd), which is defined by

(f ⋆ g)(x) =

∫
Rd

f(z + x)g(z)dz = ⟨τx(f), g⟩, (12)

then
c(x,R) = w(x)(f ⋆ S(t)R)(x). (13)

A perfect match is, in general terms, never attained. This is so because the desired image, represented by the
template t, is usually supported on a strict subset Ω of the domain D were the operator S is able to distinguish
functions. Thus, the image f may well contain a copy of the image represented by tR but in the neighbourhoods of
the support of tR, f will contain some information which is not present in tR. In addition, f is usually corrupted by
noise and distortions. This means that the normalized correlations described in items (a∗)− (d∗) of Theorem 2.4, will
never equal 1. Consequently, a threshold should be introduced in order to decide if a match has (or has not) been
produced.

In order to find the rotation which maximizes c(x,R), the cross-correlation (f ⋆ S(t)R)(x) should be computed for
a huge amount of rotations R, which makes classical matching an inefficient approach for template matching. Indeed,
for d = 3, the size of the set of rotations R used to sample SO(3) well enough to guarantee a reliable result varies
between 104 and 5 · 105 rotations Chaillet et al. (2023).

Due to numerical reasons, high frequencies may be altered during rotation transformation. Thus, in practice, we
do not apply the operator S to the original images f, t but to a filtered version of them that eliminates these high
frequencies. Concretely, we apply an isotropic (i.e. rotation invariant) low-pass filter h to both images and, after
that, we apply the template matching algorithm to the resulting images. The idea behind this is that, if there is a
match between f and t, there will be a match between f = f ∗ h and t = t ∗ h too. The operator S results from
applying a rotationally symmetric mask m(x) = ρ(∥x∥) to the given image. Thus, we substitute f by f = f ∗ h and
t by t = t ∗ h. Then we apply the classical (or tensor) matching algorithm to the pair of images f, t using the SSP
operator S(f)(x) = m(x)f(x). Usually, the mask m equals 1 within a certain radius around 0 and equals 0 outside a
sightly larger radius. In between these radii the mask takes values between 0 and 1. Under these restrictions, it is
clear that the operator S is SSP and commutes with rotations. Moreover, if 0 = ∥f∥S = ⟨f, S(f)⟩ ≥

∫
D
f2(x)dx ≥ 0,

we have that f|D = 0 where D is a ball of positive radius centered at 0. Let us compute the inner product

⟨τx(f), tR⟩S = ⟨τx(f),mtR⟩
= ⟨τx(f ∗ h),m(t ∗ h)R⟩
= ⟨τx(f) ∗ h,m(tR ∗ h)⟩

8



(since every filter is translation invariant, and h is isotropic)

= ⟨τx(f), h ∗ (m(tR ∗ h))⟩

(use h̃(x) := h(−x) = h(x), which follows from isotropy of h )

= ⟨τx(f), tR⟩S

where
S(f) = h ∗ (m · (f ∗ h))

and we use · to denote the standard product of real functions. This means that we would have the same effect just
considering the template matching algorithm associated with the operator S applied to the images f, t. Moreover, the
following holds:

Lemma 2.5. Let S : L2(Rd) → L2(Rd) be given by

S(f) = h ∗ (m · (f ∗ h)) (14)

with h defining an isotropic filter and m a rotationally symmetric mask as described above. Then S is SSP.

Proof. For the proof, we use the following (well-known) formulae: For functions a, b, c ∈ L2(Rd), we have that

(a ⋆ b)(x) = ⟨τx(a), b⟩, so that (a ⋆ b)(0) = ⟨a, b⟩ = (a ∗ b̃)(0), a ⋆ b = a ∗ b̃, and a ⋆ (b ∗ c) = (a ⋆ b) ⋆ c.
Let us now consider the product ⟨f, S(f)⟩:

⟨f, S(f)⟩ = (f ⋆ S(f))(0)

= (f ⋆ (h ∗ (m · (f ∗ h))))(0)
= ((f ⋆ h) ⋆ (m · (f ∗ h)))(0)
= ⟨f ⋆ h,m · (f ∗ h)⟩
= ⟨f ∗ h,m · (f ∗ h)⟩ ≥ 0

(since h = h̃ and m ≥ 0). This proves that S is semidefinite positive. Let us show the symmetry:

⟨f, S(g)⟩ = (f ⋆ S(g))(0) = (f ⋆ (h ∗ (m · (g ∗ h))))(0)
= ((f ⋆ h) ⋆ (m · (g ∗ h)))(0)
= ⟨f ⋆ h,m · (g ∗ h)⟩
= ⟨m · (f ⋆ h), (h ∗ g)⟩

(since g ∗ h = h ∗ g and · is the standard product of functions)

= ((m · (f ⋆ h)) ⋆ (h ∗ g))(0)
= (((m · (f ⋆ h)) ⋆ h) ⋆ g)(0)

= ⟨((m · (f ⋆ h)) ⋆ h), g⟩
= ⟨((m · (f ∗ h)) ∗ h), g⟩ (since h = h̃ )

= ⟨S(f), g⟩.

2
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Remark 2.6. Lemma 2.5 also applies when we consider S as an operator on the space C0(Rd) of continuous functions
with compact support defined on Rd, doted with the scalar product of L2(Rd), so that S : C0(Rd) → C0(Rd). This is
so because C0(Rd) is a vector subspace of L2(Rd), and the convolution of continuous functions with compact support
is also continuous with compact support. The space C0(Rd) is, in fact, a good model for images that can be used in
many application domains.

In all that follows, we assume that the SSP operator S is of the form (14) with h, m verifying the hypotheses of Lemma
2.5. Thus, the template matching algorithm is applied with this operator and a fast computation of c(x,R) is needed.

A direct computation leads to:

c(x,R) =
⟨τx(f), tR⟩S
∥PS(τx(f))∥S

=
1

∥PS(τx(f))∥S
⟨τx(f), S(tR)⟩

=
1

∥PS(τx(f))∥S
(τx(f) ⋆ S(tR))(0)

=
1

∥PS(τx(f))∥S
(τx(f) ⋆ (h ∗ (m · (h ∗ tR))))(0)

=
1

∥PS(τx(f))∥S
((τx(f) ⋆ h) ⋆ (m · (h ∗ tR)))(0)

=
1

∥PS(τx(f))∥S
((τx(f) ∗ h) ⋆ (m · (h ∗ tR)))(0)

(since h = h̃)

=
1

∥PS(τx(f))∥S
⟨(τx(f) ∗ h),m · (h ∗ tR)⟩

=
1

∥PS(τx(f))∥S
⟨(τx(f) ∗ h), (m · (h ∗ t))R⟩

(since h is isotropic, and m is rotationally symmetric). Moreover,

∥PS(τx(f))∥2S = ∥τx(f)−
⟨τx(f),1⟩S

∥1∥2S
1∥2S

= ∥τx(f)∥2S − 2⟨τx(f),
⟨τx(f),1⟩S

∥1∥2S
1⟩S + ∥⟨τx(f),1⟩S

∥1∥2S
1∥2S

= ∥τx(f)∥2S − 2⟨τx(f),
⟨τx(f), S(1)⟩

∥1∥2S
S(1)⟩+ ∥⟨τx(f), S(1)⟩

∥1∥2S
1∥2S

= ∥τx(f)∥2S − 2
(⟨τx(f), S(1)⟩)2

∥1∥2S
+

(⟨τx(f), S(1)⟩)2

∥1∥4S
∥1∥2S

= ∥τx(f)∥2S − (⟨τx(f), S(1)⟩)2

∥1∥2S

= ⟨τx(f), S(τx(f))⟩ −
(⟨τx(f), S(1)⟩)2

∥1∥2S

10



Now, using the definition of S (and imposing h ∗ 1 = 1), we can simplify the computation as follows:

∥PS(τx(f))∥2S = ⟨τx(f), h ∗ (m · (h ∗ τx(f))⟩ −
(⟨τx(f), h ∗ (m · (h ∗ 1))⟩)2

∥1∥2S

= ⟨τx(f) ∗ h,m · (τx(f) ∗ h)⟩ −
(⟨τx(f) ∗ h,m · (h ∗ 1)⟩)2

∥1∥2S

= ⟨(τx(f) ∗ h)2,m⟩ − (⟨τx(f) ∗ h,m · (h ∗ 1)⟩)2

∥1∥2S

= ⟨(τx(f) ∗ h)2,m⟩ − (⟨τx(f) ∗ h,m⟩)2

∥1∥2S

Note that the FFT algorithm can be used to compute the inner products appearing at the end of the formula above,
which helps to fasten the algorithm. Indeed, if f, g are two images, ⟨f, g⟩ = (f ∗ g̃)(0), so that

⟨f, g⟩ = F−1(F(f) · F(g̃))(0) = F−1(F(f) · F(g))(0). (15)

Moreover, the following identities also hold:

∥1∥2S = ⟨1, S(1)⟩ = ⟨1, h ∗ (m · (h ∗ 1))⟩
= ⟨1 ∗ h, (m · (h ∗ 1))⟩ = ⟨1,m⟩,

∥PS(t)∥S =

√
⟨(h ∗ t)2,m⟩ − (⟨t ∗ h,m⟩)2

⟨1,m⟩
,

and
⟨t,1⟩S = ⟨h ∗ t,m⟩.

Thus,

m

(
h ∗ PS(t)

∥PS(t)∥S

)
= m

h ∗
t− ⟨t,1⟩S

∥1∥2
S
1√

⟨(h ∗ t)2,m⟩ − (⟨t∗h,m⟩)2
⟨1,m⟩


= m

h ∗ t− ⟨h∗t,m⟩
⟨1,m⟩ 1√

⟨(h ∗ t)2,m⟩ − (⟨t∗h,m⟩)2
⟨1,m⟩

The formulae above can be used to code an algorithm for classical template matching.
An important tool we will use in this paper is the set H of quaternions. In particular, we will use that rotations

can be parametrized by unit quaternions (which can be identified with the unit 3-sphere S3), as well as the following
formulae (see, e.g. Ebbinghaus et al. (1991); Pontryagin (2010)):

• If x ∈ H has norm 1, then x−1 = x∗.

• Given x ∈ H, x = a+ bi+ cj+ dk, we identify x with a pair (a, v) where a ∈ R and v = (b, c, d) ∈ R3, and call a
the real part of x, a = Re(x). Then, if x = (a, v), y = (b, w) ∈ H, we have that

Re(xy) = ab− ⟨v, w⟩

11



Consequently, if x, y ∈ H have norm 1, then

⟨x, y⟩ = Re(y−1x) = Re(xy−1)

= Re(yx−1) = Re(x−1y)
(16)

We end this section with a result about composition of SSP operators that will be used in the proof of the main
theorem of the paper. We state the result for arbitrary inner product spaces, and include its proof for the sake of
completeness:

Lemma 2.7. Let X be an inner product vector space. If the operators T, S : X → X are semidefinite positive,
symmetric, and commute, then TS is also semidefinite positive and symmetric.

Proof. Let S, T satisfy the hypothesis of the lemma. Let us define S1 = S/∥S∥ and Sn+1 = Sn − S2
n, n = 1, 2, 3, · · · .

We prove by induction on n that 0 ≤ Sn ≤ I for all n ≥ 1, where I denotes the identity operator on X.
It is clear that S1 ≥ 0 since S ≥ 0. Moreover, given x ∈ X,

⟨S1(x), x⟩ =
1

∥S∥
⟨S(x), x⟩ ≤ 1

∥S∥
∥S(x)∥∥x∥ ≤ 1

∥S∥
∥S∥∥x∥∥x∥ = ∥x∥2

so that S1 ≤ I. Assume that 0 ≤ Sk ≤ I and consider the case k + 1: From Sk ≤ I we get 0 ≤ I − Sk. From 0 ≤ Sk,
we get −Sk ≤ 0 and, henceforth, I − Sk ≤ I. Now, given x ∈ X, we have that

⟨S2
k(I − Sk)(x), x⟩ = ⟨Sk(I − Sk)(x), Sk(x)⟩ = ⟨(I − Sk)Sk(x), Sk(x)⟩

= ⟨(I − Sk)(yk), yk⟩ ≥ 0 (where yk = Sk(x))

since 0 ≤ I − Sk. This proves S
2
k(I − Sk) ≥ 0. An analogous computation also shows that Sk(I − Sk)

2 ≥ 0:

⟨Sk(I − Sk)
2(x), x⟩ = ⟨(I − Sk)Sk(I − Sk)(x), x⟩

= ⟨(I − Sk)Sk(x), (I − Sk)(x)⟩
= ⟨Sk((I − Sk)(x)), (I − Sk)(x)⟩ ≥ 0

= ⟨Sk(yk), yk⟩ ≥ 0 (where yk = (I − Sk)(x)).

Hence
0 ≤ S2

k(I − Sk) + Sk(I − Sk)
2 = Sk − S2

k = Sk+1.

On the other hand, S2
k ≥ 0 and I − Sk ≥ 0 imply that

0 ≤ I − Sk + S2
k = I − Sk+1.

Thus 0 ≤ Sn ≤ I for all n.
Now, Sn+1 = Sn − S2

n can be written as Sn = S2
n + Sn+1, so that:

S1 = S2
1 + S2 = S2

1 + S2
2 + S3 = · · · = S2

1 + · · ·S2
n + Sn+1 for all n ≥ 1.

Hence
S2
1 + · · ·+ S2

n = S1 − Sn+1 ≤ S1, n = 1, 2, · · · .

12



It follows that, for x ∈ X,

n∑
k=1

∥Sk(x)∥2 =

n∑
k=1

⟨Sk(x), Sk(x)⟩

=

n∑
k=1

⟨S∗
kSk(x), x⟩

=

n∑
k=1

⟨S2
k(x), x⟩

= ⟨(
n∑

k=1

S2
k)(x), x⟩

≤ ⟨S1(x), x⟩, n = 1, 2, · · · .

Thus,
∑∞

k=1 ∥Sk(x)∥2 < ∞ and ∥Sn(x)∥ goes to 0 for n → ∞, for all x ∈ X. Consequently,

∞∑
k=1

S2
k(x) = lim

n→∞

n∑
k=1

S2
k(x) = S1(x)− lim

n→∞
Sn+1(x) = S1(x), x ∈ X.

Let us now consider the product ST = TS, and let x ∈ X be arbitrarily chosen. It follows from the definition of the
operators Sn that they are symmetric and commute with T . Hence

⟨(TS)(x), x⟩ = ∥S∥⟨(TS1)(x), x⟩ = ∥S∥⟨T ( lim
n→∞

n∑
k=1

S2
k(x)), x⟩

= ∥S∥⟨ lim
n→∞

n∑
k=1

(TS2
k)(x), x⟩

= ∥S∥⟨ lim
n→∞

n∑
k=1

(SkTSk)(x), x⟩

= ∥S∥⟨ lim
n→∞

n∑
k=1

T (Sk(x)), Sk(x)⟩

= ∥S∥⟨ lim
n→∞

n∑
k=1

T (yk), yk⟩ ≥ 0,

which proves that ST = TS is SSP.
2

3. Tensor template matching

This section introduces a tensorial template matching (TTM) algorithm. The purpose is to handle translations
and rotations efficiently at the same time. First, we introduce some background necessary to understand further
mathematical developments. Second, we present the main theorem for TTM, which allows us to determine the
optimal rotation of the template, t, on every match in the image f without sampling the SO(3) by computing some
tensors. Finally, we explain how to determine match positions (template translations) directly from the computed
tensors.
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3.1. Tensor background

A tensor A ∈ Tn(Rd) of order n and dimension d is just an array of the form A = (Ai1,··· ,in)1≤i1,··· ,in≤d where
all the entries Ai1,··· ,in are real numbers. The tensor A is named symmetric if Ai1,··· ,in = Aiσ(1),··· ,iσ(n)

for every

permutation σ ∈ Σn (the set of permutations of {1, · · · , n}). We denote by Sn(Rd) the set of symmetric tensors of
order n and dimension d. An important example of symmetric tensor of order n is the so called n-th tensor power of
a vector v = (v1, · · · , vd) ∈ Rd, which is defined as

v⊙n = (vi1vi2 · · · vin)1≤i1,··· ,in≤d. (17)

It is well known that Tn(Rd) and Sn(Rd) are real vector spaces with the natural operations (pointwise sum
and multiplication by a scalar), and that dimTn(Rd) = dn, dimSn(Rd) =

(
n+d−1

n

)
for all n, d ≥ 1. For example,

dimT 4(R4) = 44 = 256, dimS4(R4) =
(
7
4

)
= 35. Moreover, every symmetric tensor is a finite sum of tensor powers,

which allows us to introduce the concept of the (symmetric) rank of a symmetric tensor as the minimal number of
tensor powers used to represent the tensor with their sum Comon et al. (2008).

The map ⟨·, ·⟩ : Tn(Rd)× Tn(Rd) → R given by

⟨A,B⟩ =
d∑

i1=1

d∑
i2=1

· · ·
d∑

in=1

Ai1,··· ,inBi1,··· ,in (18)

defines an inner product. It is also usual to denote A · B = ⟨A,B⟩. Moreover, with this notation, if x, y ∈ Rd are
d-dimensional vectors, a direct application of the multinomial theorem shows that

x⊙n · y⊙n = (x · y)n = (⟨x, y⟩)n. (19)

Moreover, if A ∈ Sn(Rd), and x = (x1, · · · , xd) ∈ Rd, we can also consider the inner product

A · x⊙n = ⟨A, x⊙n⟩ =
d∑

i1=1

d∑
i2=1

· · ·
d∑

in=1

Ai1,··· ,inxi1 · · ·xin , (20)

which can be seen as an homogeneous polynomial in d variables, of degree n, which justifies using the notation
Axn = A · x⊙n. Moreover, if k < n, Axk ∈ Sn−k(Rd) denotes the symmetric tensor whose components are

(Axk)i1,··· ,in−k
=

d∑
j1=1

d∑
j2=1

· · ·
d∑

jk=1

Ai1,··· ,in−k,j1,··· ,jkxj1 · · ·xjk . (21)

In particular, Axn−1 ∈ S1(Rd) = Rd is a vector whose i-th component is

(Axn−1)i =

d∑
j1=1

d∑
j2=1

· · ·
d∑

jn−1=1

Ai,j1,··· ,jn−1
xj1 · · ·xjn−1

. (22)

Indeed, if φ(x) = Axn then
∇φ(x) = nAxn−1,

where ∇φ denotes the gradient of the function φ : Rd → R.
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Note that the vector x can be chosen from Cd in the definitions above. This justifies the following definition (see
Cui et al. (2014)): Given A ∈ Sn(Rd), B ∈ Sm(Rd). We say that λ ∈ C is a B-eigenvalue of A and u ∈ Cd is its
associated B-eigenvector (equivalently, that (λ, u) is a B-eigenpair of A) if Aun−1 = λBum−1 and Bum = 1.

Using gradients, we can rewrite the equation Aun−1 = λBum−1 as

1

n
∇Aun = λ

1

m
∇Bum.

Hence u is a B-eigenvector of A if and only if it is a critical point of the following optimization problem:{
Maximize: Axn

under the restriction: Bxm = 1.
(23)

Two particularly important cases are the H-eigenvectors{
Maximize: Axn

under the restriction:
∑d

i=1 x
m
i = 1

(24)

and the Z-eigenvectors {
Maximize: Axn

under the restriction:
∑d

i=1 x
2
i = 1.

(25)

The optimization problem associated with finding Z-eigenvectors of a given symmetric tensor is particularly im-
portant for us since the tensor matching algorithm we propose is reduced to one of these problems in each position,
and, fortunately, there are good iterative algorithms to approximate the solutions of (25) (see e.g. Kofidis and Regalia
(2001); Kolda and Mayo (2010)). These algorithms have a linear rate of convergence. In section 3.4 we show an
heuristics that can be used to select the positions where a match is probable, so that solving (25) is necessary.

3.2. Defining of the Tensor template

In all that follows in this paper, our inner product space is X = C0(Rd), and S : X → X denotes an SSP operator
which commutes with rotations. Moreover, we also assume that the template t ∈ X is normalized by t ⊥S 1 and
∥t∥S = 1. In section 2 we proved that, for each x ∈ Rd, c(x,R) = w(x)(f ⋆ S(t)R)(x) attains its maximum value on
rotation R (and this value equals 1) if and only if there is a match between f and t at (x,R) (i.e., a match between
τx(f) and tR). Let us define the symmetric tensor Cn(x) ∈ Sn(Rd′

), where d′ is the number of parameters used to
describe the rotations SO(d) (in particular, for d = 3, we get d′ = 4) by the formula:

Cn(x) =

∫
SO(d)

R⊙nc(x,R)dR (26)

This means that

(Cn(x))i1,··· ,in =

∫
SO(d)

Ri1Ri2 · · ·Rinc(x,R)dR (27)
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for all 1 ≤ i1, · · · , in ≤ d′. Hence

(Cn(x))i1,··· ,in =

∫
SO(d)

Ri1 · · ·Rinc(x,R)dR

= w(x)

∫
SO(d)

Ri1 · · ·Rin(f ⋆ S(t)R)(x)dR

= w(x)

∫
SO(d)

Ri1 · · ·Rin⟨τx(f), S(t)R⟩dR

= w(x)

∫
SO(d)

Ri1 · · ·Rin

∫
Rd

τx(f)(z)S(t)R(z)dzdR

= w(x)

∫
Rd

τx(f)(z)

(∫
SO(d)

Ri1 · · ·RinS(t)R(z)dR

)
dz

= w(x)⟨τx(f), (T (z))i1,··· ,in⟩,

where

T (z) =

∫
SO(d)

R⊙nS(t)R(z)dR ∈ Sn(Rd′
) (28)

is a tensor template (or tensorial needle).
It is of fundamental importance to observe that T (z) is computed only once and contains a reduced number of

components, since dimSn(Rd′
) =

(
n+d′−1

n

)
(in particular, dimS4(R4) =

(
7
4

)
= 35). Indeed, this is the main reason why

the tensor template matching algorithm we introduce in this paper is fast. Another reason is that rotations R defining
a match between f and tR at x are Z-eigenvectors of the symmetric tensor Cn(x), which is really remarkable because
the power method used in Kolda and Mayo (2010); Kofidis and Regalia (2001) for the solution of the corresponding
optimization problem is fast. Moreover, the corresponding algorithm does not require using myriads or even millions
of rotations -as is the case with classical matching algorithms- but just a reduced set of them: one by iteration.

3.3. Finding the correct rotation

Let us state the main result of this paper:

Theorem 3.1. Let f, t ∈ C0(R3), x ∈ R3, and n ∈ 2N be given. If there is a match between f and tR at x, the
function φ(Q) = Cn(x) ·Q⊙n, defined on rotations of R3, when parametrized by unit quaternions Q, attains its global
maximum at Q = R.

Proof. We prove the result as a consequence of Theorem 2.4. Thus, our main goal is to represent φ(Q) in terms of a
scalar product, φ(Q) = w(x)⟨τx(f), tQ⟩S′ , for some SSP operator S′, which would guarantee that if there is a match
between f and tR at x, then φ(Q) attains its global maximum at Q = R.

Let us compute φ(Q):

φ(Q) = Cn(x) ·Q⊙n = Q⊙n ·
∫
SO(3)

R⊙nc(x,R)dR

=

∫
SO(3)

Q⊙n ·R⊙nc(x,R)dR

=

∫
SO(3)

(Q ·R)nc(x,R)dR
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=

∫
SO(3)

(Re(R−1Q))nc(x,R)dR (using (16))

=

∫
SO(3)

(Re(R−1Q))nw(x)⟨τx(f), tR⟩SdR

(by definition of c(x,R)). Hence, dividing by w(x), we get:

1

w(x)
φ(Q)

=

∫
SO(3)

(Re(R−1Q))n
∫
R3

f(z + x)(OR−1 ◦ S)(t)(z)dzdR

=

∫
SO(3)

∫
R3

f(z + x)(OR−1 ◦ S)(t)(z)(Re(R−1Q))ndzdR

=

∫
R3

f(z + x)

∫
SO(3)

(OR−1 ◦ S)(t)(z)(Re(R−1Q))ndRdz

=

∫
R3

f(z + x)

(∫
SO(3)

S(t)(z)(R)(Re(R−1Q))ndR

)
dz

(where S(t)(z)(R) = (OR−1 ◦ S)(t)(z))

=

∫
R3

f(z + x)(S(t)(z)⊛SO(3) K)(Q)dz

where K(R) = (Re(R))n and

(a⊛SO(3) b)(Q) =

∫
SO(3)

a(R)b(R−1Q)dR

denotes the convolution of functions a, b ∈ L2(SO(3)).
In other words,

φ(Q) = Q⊙n · Cn(x) = w(x)⟨τx(f), (S(t)⊛SO(3) K)(Q)⟩. (29)

Here,

(S(t)⊛SO(3) K)(Q) =

∫
SO(3)

S(t)RK(R−1Q)dR

must be interpreted as a function defined on R3 with values on R (indeed, it is an element of C0(R3)):

(S(t)⊛SO(3) K)(Q)(z) =

(∫
SO(3)

S(t)RK(R−1Q)dR

)
(z)

:=

∫
SO(3)

S(t)R(z)K(R−1Q)dR

= (S(t)(z)⊛SO(3) K)(Q),

where S(t)(z) : SO(3) → R is given by

S(t)(z)(R) = S(t)R(z) = (OR−1 ◦ S)(t)(z) = S(t)(R−1z).
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Indeed, in general, every element t ∈ C0(R3) can be interpreted, for each z ∈ R3, as an element of L2(SO(3)) just
making t(z)(R) = tR(z). Consequently, (t⊛SO(3) K)(Id) is an element of C0(R3),

(t⊛SO(3) K)(Id)(z) = (t(z)⊛SO(3) K)(Id). (30)

It follows that

(S(t)⊛SO(3) K)(Q)(z) =

∫
SO(3)

S(t)R(z)K(R−1Q)dR

=

∫
SO(3)

S(t)QP (z)K(P−1)dP

(in the last equality, set R = QP and use that |Q| = 1)

=

∫
SO(3)

(O(QP )−1 ◦ S)(t)(z)K(P−1)dP

=

∫
SO(3)

(OP−1Q−1 ◦ S)(t)(z)K(P−1)dP

=

∫
SO(3)

(OQ−1 ◦OP−1 ◦ S)(t)(z)K(P−1)dP

=

∫
SO(3)

OQ−1(S(t)P )(z)K(P−1)dP

= OQ−1

(∫
SO(3)

S(t)PK(P−1)dP

)
(z)

=

(∫
SO(3)

S(t)PK(P−1)dP

)
Q

(z)

= (S(t)⊛SO(3) K)(Id)Q(z),

where Id denotes the identity rotation.
Let us now denote by S2 : C0(R3) → C0(R3) the operator given by

S2(t) = (t⊛SO(3) K)(Id)

and let S′ = S2 ◦ S. Then

Q⊙n · Cn(x) = w(x)⟨τx(f), (S(t)⊛SO(3) K)(Q)⟩
= w(x)⟨τx(f), (S(t)⊛SO(3) K)(Id)Q⟩
= w(x)⟨τx(f), S2(S(t))Q⟩
= w(x)⟨τx(f), S2(S(tQ))⟩

(since S, S2 commute with rotations)

= w(x)⟨τx(f), S′(tQ)⟩
= w(x)⟨τx(f), tQ⟩S′
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Thus, the proof ends as soon as we demonstrate that S′ is an SSP operator, and it is for this that we need to use
Lemma 2.7. Indeed, S′ = S2 ◦ S is a composition of operators, S is, by hypothesis, symmetric semidefinite positive,
and S, S2 commute because S commutes with rotations and S2 is defined in terms of convolution in SO(3). Thus,
Lemma 2.7 implies that S′ is SSP whenever S2 is SSP.

To prove that S2 is symmetric semidefinite positive, we use the properties of the convolution on SO(3) when
interpreted as a hyperspherical convolution on S3, the unit sphere of R4. Recall that if Sd−1 = {x ∈ Rd : x · xt = 1}
denotes the (unit) sphere of Rd, then SO(d) acts transitively on Sd−1 (which means that, given z1, z2 ∈ Sd−1 there is
a rotation R ∈ SO(d) such that R(z1) = z2), which makes of Sd−1 a homogeneous space and allows to introduce the
convolution of functions defined on Sd−1 as follows:

(f ∗Sd−1 g)(z) =

∫
SO(d)

f(Rη)g(R−1z)dR,

where η ∈ Sd−1 is the north pole of the sphere and f, g ∈ L2(Sd−1). Thus, if we use that the elements of SO(3) are
parametrized by quaternions of norm 1, which that can be identified with the elements of the sphere S3 = {x ∈ H :
xx = |x| = 1} in fourth-dimensional space, then assuming that the north pole of S3 is given precisely by the identity
rotation Id, the convolution of f, g ∈ L2(SO(3)) can be interpreted as a hyperspherical convolution on S3:

(f ⊛SO(3) g)(Q) =

∫
SO(3)

f(RId)g(R
−1Q)dR

= (f ∗S3 g)(Q).

(31)

Now, as it is well known, L2(S3) is a Hilbert space and the so-called hyperspherical harmonics, {Ξℓ
M}, form an

orthonormal basis of this space. Thus, every function f ∈ L2(S3) admits a Fourier expansion

f(z) =
∑
ℓ,M

f̂(ℓ,M)Ξℓ
M (z) (32)

f̂(ℓ,M) = ⟨f,Ξℓ
M (z)⟩ =

∫
S3

f(ξ)Ξℓ
M (ξ)dξ. (33)

Moreover, in Dokmanic and Petrinovic (2009), it was proven that, if f, g ∈ L2(S3) and f = f ∗S3 g, then

f̂(ℓ,M) = (ℓ+ 1)f̂(ℓ,M)ĝ(ℓ, 0) (34)

It follows that, given a template t ∈ C0(R3), for each z ∈ R3, the map t(z)(R) = tR(z) belongs to L2(S3) (here the
rotations R are parametrized as unit quaternions, so that R ∈ S3) and

t(z)(R) =
∑
ℓ,M

t̂(z)(ℓ,M)Ξℓ
M (R) (35)

K(R) =
∑
ℓ,M

K̂(ℓ,M)Ξℓ
M (R), (36)

and
(t(z)⊛SO(3) K)(R) =

∑
ℓ,M

t̂(z)(ℓ,M)K̂(ℓ, O)(ℓ+ 1)Ξℓ
M (R) (37)

We need the following Lemma, whose proof is included in section 4:
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Lemma 3.2. K̂(ℓ, O) ≥ 0 for all ℓ.

Then
⟨t(z), (t(z)⊛SO(3) K)(R)⟩L2(SO(3)) =

∑
ℓ,M

(t̂(z)(ℓ,M))2K̂(ℓ, O)(ℓ+ 1) ≥ 0 (38)

This means that convolution with K, which is an operator CK : L2(SO(3)) → L2(SO(3)), CK(f) = f ⊛SO(3) K, is
semidefinite positive. Moreover, it is well known that this operator is symmetric (and we will use both things in our
computations bellow).

In order to prove that S2 is SSP, we introduce the operator L : C0(R3) → C(SO(3), C0(R3)) defined by L(t)(R) =
tR, as well as the operator L∗ : C(SO(3), C0(R3)) → C0(R3) defined by L∗(a)(z) =

∫
SO(3)

a(R)R−1(z)dR.

Then

⟨f, L∗(a)⟩ =

∫
R3

f(z)

(∫
SO(3)

a(R)R−1(z)dR

)
dz

=

∫
R3

∫
SO(3)

f(z)a(R)(Rz)dRdz

=

∫
SO(3)

∫
R3

f(z)a(R)(Rz)dzdR

=

∫
SO(3)

∫
R3

f(R−1w)a(R)(w)dwdR (just take w = Rz )

=

∫
R3

∫
SO(3)

f(R−1w)a(R)(w)dRdw

=

∫
R3

(∫
SO(3)

L(f)(R)(w)a(R)(w)dR

)
dw

=

∫
R3

⟨L(f)(w), a(w)⟩SO(3)dw,

where L(f)(w)(R) := L(f)(R)(w) = fR(w) = f(R−1w) and a(w)(R) := a(R)(w). On the other hand,

S2(t) = (t⊛SO(3) K)(Id)

=

∫
SO(3)

tRK(R−1)dR

=

∫
SO(3)

L(t)(R)K(R−1)dR

= (L(t)⊛SO(3) K)(Id)
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Thus, if V =
∫
SO(3)

dR is the volume of SO(3), then

V S2(t) = (L(t)⊛SO(3) K)(Id)

∫
SO(3)

dR

=

∫
SO(3)

(L(t)⊛SO(3) K)(Id)dR

=

∫
SO(3)

(L(t)⊛SO(3) K)(Id)R−1RdR

=

∫
SO(3)

(L(t)⊛SO(3) K)(R)R−1dR

= L∗(L(t)⊛SO(3) K),

where we have used that
(L(t)⊛SO(3) K)(Id)R−1R = ((L(t)⊛SO(3) K)(Id)R)R−1

and that

(L(t)⊛SO(3) K)(Id)(z) = (L(t)(z)⊛SO(3) K)(Id)

=

∫
SO(3)

L(t)(z)(Q)K(Q−1Id)dQ

=

∫
SO(3)

tQ(z)K(Q−1Id)dQ

=

∫
SO(3)

t(Q−1z)K(Q−1Id)dQ

so that

(L(t)⊛SO(3) K)(Id)R(z) = (L(t)⊛SO(3) K)(Id)(R
−1z)

=

∫
SO(3)

t(Q−1R−1z)K(Q−1Id)dQ

=

∫
SO(3)

t(Θ−1z)K(Θ−1R)dQ

(set Θ−1 = Q−1R−1, so that Q−1 = Θ−1R)

=

∫
SO(3)

L(t)(z)(Θ)K(Θ−1R)dQ

= (L(t)(z)⊛SO(3) K)(R)

= (L(t)⊛SO(3) K)(R)(z).
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It follows that

⟨t, S2(t)⟩ =
1

V
⟨t, L∗(L(t)⊛SO(3) K)⟩

=
1

V

∫
R3

⟨L(t)(w), (L(t)⊛SO(3) K)(w)⟩SO(3)dw

=
1

V

∫
R3

⟨L(t)(w), (L(t)(w)⊛SO(3) K)⟩SO(3)dw ≥ 0.

Thus, S2(t) is semidefinite positive.
Moreover, the same type of computation shows that

⟨f, S2(g)⟩ =
1

V
⟨f, L∗(L(g)⊛SO(3) K)⟩

=
1

V

∫
R3

⟨L(f)(w), (L(g)(w)⊛SO(3) K)⟩SO(3)dw

=
1

V

∫
R3

⟨(L(f)(w)⊛SO(3) K), L(g)(w)⟩SO(3)dw

=
1

V

∫
R3

⟨L(g)(w), (L(f)(w)⊛SO(3) K)⟩SO(3)dw

=
1

V
⟨g, L∗(L(f)⊛SO(3) K)⟩

= ⟨g, S2(f)⟩,

which proves that S2 is symmetric. This ends the proof of the theorem. 2

Note that Theorem 3.1 connects the problem of finding, at a given position x, the rotation R which gives a match
between f and tR at x with the problem of finding the dominant Z-eigenvalue-eigenvector pair by solving (25) with
A = Cn(x) ∈ Sn(R4) and n even.

3.4. Finding the correct position

Although we can find the spatial positions of peaks by running an algorithm to find the dominant Z-eigenvalue-
eigenvector pair for each and every voxel, this is fairly expensive using the current decomposition algorithms for
higher degree tensors. However, the Frobenius norm of a tensor is related to its spectral norm, and in practice it
turns out it can be used as an excellent proxy for finding the spatial locations of peaks. Indeed, we know that
Cn(x) ∈ Sn(Rd′

) = Sn(R4). Now, if ∥T∥σ denotes the spectral norm of tensor T and ∥T∥F denotes its Frobenius
norm, it is well-known that the largest singular value of T equals its spectral norm, and that

∥T∥σ ≥ ∥T∥F
1√
4n−1

= ∥T∥F
1

2n−1

(see e.g., Cao et al. (2023); Kozhasov and Tonelli-Cueto (2022)).
In fact, the connection between ∥T∥σ and ∥T∥F is stronger than just this inequality. As is well-known, every tensor

is a finite sum of tensors of rank 1 (indeed, if the tensor is symmetric, the tensors of rank one can also be chosen
symmetric) Comon et al. (2008). Moreover, if W1 is a tensor of rank 1 satisfying

∥T −W1∥F = E1(T ) := min
rank(W )=1

∥T −W∥F
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then (see, e.g., Regalia and Kofidis (2000))
∥W1∥F = ∥T∥σ

and
E1(T )

2 = ∥T∥2F − ∥T∥2σ
Thus,

∥T∥2F = ∥T∥2σ + E1(T )
2.

Hence if E1(T ) is preserved, an increment on the size of ∥T∥σ (∥T∥F , respectively) is translated into an increment on
the size of ∥T∥F (∥T∥σ, respectively).

Moreover, in 1938 Banach demonstrated (see Banach (1938)) that, for any symmetric tensor T ,

∥T∥σ = max
∥Q∥=1

∣∣⟨T,Q⊙n⟩
∣∣ = max

∥Q∥=1

∣∣T ·Q⊙n
∣∣ .

Thus, large ∥T∥F implies large spectral norm of T , and the spectral norm of Cn(x) is strongly connected to the
optimization problem solved in Theorem 3.1, which justifies using the Frobenius norm of Cn(x) as a parameter to
select positions x where a match is possible.

For each position x identified as a potential peak, the SS-HOPM algorithm (see Kofidis and Regalia (2001); Kolda
and Mayo (2010); Regalia and Kofidis (2000) for precise definition and implementation of this algorithm) is used to
find the exact dominant Z-eigenvalue and its associated Z-eigenvector, which is the rotation R candidate to give a
match at x.

We have just explained an heuristics to locate the positions -and, after that, the rotations- where a match is
possible. Now, sometimes a false positive may occur. Indeed, in the previous subsection we showed that the tensor-
based correlation function ⟨Cn(x), Q

⊙n⟩ can be seen as using a slightly different degenerate inner product, based on
S′ from the proof of Theorem 3.1, rather than S. Concretely, we proved that

⟨Cn(x), Q
⊙n⟩ = w(x)⟨τx(f), tQ⟩S′

where w(x) = 1
∥PS(τx(f))∥S

, ∥tR∥S = 1 and tR = PS(tR). This implies that the relation −1 ≤ ⟨Cn(x), Q
⊙n⟩ ≤ 1 does

not necessarily hold because the normalizations were taken in terms of S instead of S′. Taking S′ into account would
lead to the equality

⟨Cn(x), Q
⊙n⟩ = ⟨τx(f), tQ⟩S′

∥τx(f)∥S′∥tQ∥S′
w(x)∥τx(f)∥S′∥tQ∥S′

where −1 ≤ ⟨τx(f),tQ⟩S′
∥τx(f)∥S′∥tQ∥S′

≤ 1 (and it is equal to 1 when we have a match).

So what is the impact of this? First of all, observe that the operation that is missing from S in the normalization is
effectively a kind of convolution, so that its effect on the constant component of an image is to scale it. Consequently,
if an image is S-orthogonal to 1, it will also be S′-orthogonal to 1. However, the norms are affected.

For the template t, this means that the normalization is off by a certain factor, but this factor is the same
everywhere. For the image f , the impact is less benign though, as ∥τx(f)∥S will differ from ∥τx(f)∥S′ in a nonuniform
way.

When will this shortcoming would cause a false positive? For this to happen, the normalization factor used at a
non-match position would have to be much higher than the “correct” normalization factor, and/or the normalization
factor would have to be too low at a match position. Since the difference between S and S′ is essentially a smoothing
operation, and the normalization factor is the reciprocal of the norm of the projected image, the image would thus
have to be (very) smooth at the non-match position, while exhibiting a lot of high frequency energy around the match
position. Such a situation would not be impossible, but would at the very least be unusual in the context of a typical
application like the analysis of electron microscopy images.
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4. Proof of Lemma 3.2

Let us start recalling the formulae associated to Fourier expansions in hyperspherical harmonics on the sphere S3.
The parametrization of the sphere we consider is the following one:

a = cos θ
b = sin θ cosϕ
c = sin θ sinϕ cosφ
d = sin θ sinϕ sinφ

with

 0 ≤ θ ≤ π
0 ≤ ϕ ≤ π
0 ≤ φ < 2π

where (a, b, c, d) ∈ S3 is identified with the unit quaternion Q = a+ bi+ cj+ dk, which represents a rotation of three
dimensional euclidean space R3. The volume element (used for integration on S3 and, henceforth, also in SO(3)) is
then given by

dV = sin2 θ sinϕdθdϕdφ.

Then every function f ∈ L2(S3) can be decomposed as

f(θ, ϕ, φ) =

∞∑
ℓ=0

ℓ∑
k2=−ℓ

ℓ∑
k1=|k2|

f̂(ℓ, (k1, k2))Ξ
ℓ
(k1,k2)

(θ, ϕ, φ),

where {Ξℓ
(k1,k2)

} denotes the orthonormal basis of L2(S3) formed by the hyperspherical harmonics and f̂(ℓ, (k1, k2)) =

⟨f,Ξℓ
(k1,k2)

⟩S3 are the Fourier coefficients of f in this basis. We want to prove that K̂(ℓ, (0, 0)) ≥ 0 for all ℓ. Now,

K(Q) = (Re(Q))n = an = (cos θ)n and
Ξℓ
(0,0) = Aℓ

(0,0)C
1
ℓ (cos θ),

where Aℓ
(0,0) is a positive constant and Cλ

ℓ (t) denotes the Gegenbauer polynomial of degree ℓ, which appears as the

ℓ-th Taylor coefficient in the expansion: (1 − 2tz + z2)−1 =
∑∞

ℓ=0 C
1
ℓ (t)z

ℓ. It is well-known that C1
ℓ (t) = Uℓ(t) (the

ℓ-th Chebyshev’s polynomial of second kind) and that Uℓ(cos θ) =
sin((ℓ+1)θ)

sin θ . Hence Ξℓ
(0,0) = Aℓ

(0,0)
sin((ℓ+1)θ)

sin θ and

K̂(ℓ, (0, 0)) = Aℓ
(0,0)⟨(cos(θ))

n,
sin((ℓ+ 1)θ)

sin θ
⟩S3

= Aℓ
(0,0)

∫ π

0

∫ π

0

∫ 2π

0

(cos(θ))n
sin((ℓ+ 1)θ)

sin θ
sin2 θ sinϕ

×dθdϕdφ

= Aℓ
(0,0)

(∫ π

0

(cos(θ))n
sin((ℓ+ 1)θ)

sin θ
sin2 θdθ

)
×
(∫ π

0

sinϕdϕ

)(∫ 2π

0

dφ

)
= 4πAℓ

(0,0)

∫ π

0

(cos(θ))n
sin((ℓ+ 1)θ)

sin θ
sin2 θdθ

= 4πAℓ
(0,0)

∫ π

0

(cos(θ))n sin((ℓ+ 1)θ) sin θdθ

To estimate the integral above, we need to use a few trigonometric formulas, as well as the hypothesis that n is even.
Concretely, n even implies that n/2 is an integer and (cos(θ))n = (cos(π − θ))n. Moreover, for ℓ odd, we have that

sin((ℓ+ 1)θ) sin(θ) = − sin((ℓ+ 1)(π − θ)) sin(π − θ)
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This makes the integral equal to 0 for ℓ ∈ 2N+ 1.
Assume ℓ ∈ 2N. Then

(cos θ)n =

(
eiθ + e−iθ

2

)n

=
1

2n

n∑
k=0

(
n

k

)
eiθ(n−k)e−iθk

=
1

2n

n∑
k=0

(
n

k

)
eiθ(n−2k)

=
1

2n

n/2∑
s=0

(
n

n
2 − s

)
eiθ(n−2(n

2 −s)) +

n/2∑
s=1

(
n

n
2 + s

)
eiθ(n−2(n

2 +s))


=

1

2n

(n
n
2

)
+

n/2∑
s=1

(
n

n
2 − s

)
e2iθs +

n/2∑
s=1

(
n

n
2 + s

)
e−2iθs


=

1

2n

(n
n
2

)
+ 2

n/2∑
s=1

(
n

n
2 − s

)
e2iθs + e−2iθs

2


=

1

2n

(n
n
2

)
+ 2

n/2∑
s=1

(
n

n
2 − s

)
cos(2θs)


=

1

2n

(n
n
2

)
+ 2

n/2∑
k=1

(
n

k

)
cos(θ(n− 2k))


(for the last line, just set k = n/2− s). Moreover, it is well-known that

sin(θ) sin((ℓ+ 1)θ) =
1

2
(cos(ℓθ)− cos((ℓ+ 2)θ)),

so that, by a direct substitution in the formula defining K̂(ℓ, (0, 0)) we get

K̂(ℓ, (0, 0))

4πAℓ
(0,0)

=

∫ π

0

1

2
(cos(ℓθ)− cos((ℓ+ 2)θ))

×

 1

2n

(n
n
2

)
+ 2

n/2∑
k=1

(
n

k

)
cos(θ(n− 2k))

 dθ

=
1

2n+1

∫ π

0

(cos(ℓθ)− cos((ℓ+ 2)θ))

×

(n
n
2

)
+ 2

n/2∑
k=1

(
n

k

)
cos(θ(n− 2k))

 dθ.

We can now use that

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y))
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to claim that

K̂(ℓ, (0, 0))

4πAℓ
(0,0)

=

1

2n+1

∫ π

0

(
n
n
2

)
(cos(ℓθ)− cos((ℓ+ 2)θ))dθ +

1

2n

∫ π

0

n/2∑
k=1

(
n

k

)
(cos(ℓθ)− cos((ℓ+ 2)θ)) cos(θ(n− 2k))dθ

=
1

2n+1

∫ π

0

(
n
n
2

)
(cos(ℓθ)− cos((ℓ+ 2)θ))dθ

+
1

2n+1

∫ π

0

n/2∑
k=1

(
n

k

)
[cos(θ(ℓ+ n− 2k)) + cos(θ(ℓ+ 2k − n))− cos(θ(ℓ+ 2 + n− 2k))− cos(θ(ℓ+ 2 + 2k − n)]dθ

The parity of ℓ and n implies that all factors that appear multiplying the variable θ inside of the cosine functions
are even numbers. This makes the corresponding integrals (on [0, π]) equal to 0, except in the case that the factor
itself is 0. In such case, cos(0) = 1 implies that only the cosine functions that appear with a minus sign in front
of them in the formula can contribute with a negative number to the integral. Now clearly ℓ + 2 > 0 always since
ℓ ≥ 0, and ℓ+ 2 + n− 2k = 0 implies 2k = n+ ℓ+ 2 > n, so that k > n/2 which is impossible since the sum’s range
goes from k = 1 to k = n/2. This means that the term − cos(θ(ℓ + 2 + n − 2k)) never contributes with a negative
number to the sum. On the other hand, if the cosine function with factor ℓ + 2 + 2k − n contributes, which means
that ℓ+2+ 2k− n = 0, then k = (n− ℓ− 2)/2 < n/2. In particular, taking k∗ = k+1, we have that 1 ≤ k∗ ≤ n/2 so
that cos(θ(ℓ+ 2k∗ − n)) = cos(θ(ℓ+ 2k + 2− n)) = cos(0) = 1 and the corresponding term effectively appears in the
sum. In particular, adding these two terms of the sum we get

1

2n+1

∫ π

0

[

(
n

k∗

)
cos(θ(ℓ+ 2k∗ − n))−

(
n

k

)
cos(θ(ℓ+ 2 + 2k − n)]dθ

=
1

2n+1

∫ π

0

[(
n

k + 1

)
−
(
n

k

)]
dθ

=
π

2n+1

((
n

k + 1

)
−
(
n

k

))
> 0

since n is even and k < n/2. This ends the proof of Lemma 3.2
2

5. Conclusions

We have exposed the maths of classical template matching with rotations. Moreover, an alternative to the classical
algorithm, named tensorial template matching (or TTM), has been shown. TTM integrates the information relative
to all rotated versions of a template t into a unique symmetric tensor template T , which is computed only once per
template. The main theorem of the paper, Theorem 3.1, shows that finding an exact match between an image f and
a rotated version tR of the template t at a given position x is equivalent to finding a best rank 1 approximation (in
the Frobenius norm) to a certain tensor Cn(x). The resulting algorithm has reduced computational complexity when
compared to the classical one. TTM finds the position and rotation of instances of the template in any tomogram
with just a few correlations with the linearly independent components of T . In particular, Cryo-electron tomography
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(3D images) for macromolecular detection requires 7112, 45123 and 553680 rotations to achieve an accuracy of 13◦,
7◦ and 3◦ respectively Chaillet et al. (2023). Therefore, and considering 4-degree tensors (35 linearly independent
components), the potential speed-up of our approach with respect to TM is 203x, 1239x and 184560x in these cases,
while the angular accuracy remains constant for TTM and it is limited by the computation of tensorial template.

In Martinez-Sanchez et al., we develop a practical implementation of TTM showing with both, synthetic and real
data, that our method is able to find template instances and determine their rotations with computational complexity
independent of the rotation accuracy.

Acknowledgements

This work is based on unpublished ideas of Jasper van de Gronde when he was a researcher of the University of
Groningen. We also want to express our thanks to Holger Kohr, Erik Franken and Remco Schoenmakers from Thermo
Fisher Scientific for their support and feedback about the potential of tensorial template matching.

This work was supported by the Ramon y Cajal program [Grant RYC2021-032626-I funded by MICIU/AEI/10.13039/501100011033
and the European Union NextGenerationEU/PRTR]; and the University of Murcia [Attract-RYC, 2023].

Conflict of Interest

H.P. is an employee of Thermo Fisher Scientific.

References
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