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Abstract 

Background The application of data‑driven methods is expected to play an increasingly important role in healthcare. 
However, a lack of personnel with the necessary skills to develop these models and interpret its output is prevent‑
ing a wider adoption of these methods. To address this gap, we introduce and describe ORIENTATE, a software for 
automated application of machine learning classification algorithms by clinical practitioners lacking specific techni‑
cal skills. ORIENTATE allows the selection of features and the target variable, then automatically generates a number 
of classification models and cross‑validates them, finding the best model and evaluating it. It also implements a 
custom feature selection algorithm for systematic searches of the best combination of predictors for a given target 
variable. Finally, it outputs a comprehensive report with graphs that facilitates the explanation of the classification 
model results, using global interpretation methods, and an interface for the prediction of new input samples. Feature 
relevance and interaction plots provided by ORIENTATE allow to use it for statistical inference, which can replace and/
or complement classical statistical studies.

Results Its application to a dataset with healthy and special health care needs (SHCN) children, treated under deep 
sedation, was discussed as case study. On the example dataset, despite its small size, the feature selection algorithm 
found a set of features able to predict the need for a second sedation with a f1 score of 0.83 and a ROC (AUC) of 0.92. 
Eight predictive factors for both populations were found and ordered by the relevance assigned to them by the 
model. A discussion of how to derive inferences from the relevance and interaction plots and a comparison with a 
classical study is also provided.

Conclusions ORIENTATE automatically finds suitable features and generates accurate classifiers which can be used 
in preventive tasks. In addition, researchers without specific skills on data methods can use it for the application of 
machine learning classification and as a complement to classical studies for inferential analysis of features. In the case 
study, a high prediction accuracy for a second sedation in SHCN children was achieved. The analysis of the relevance 
of the features showed that the number of teeth with pulpar treatments at the first sedation is a predictive factor for a 
second sedation.

Keywords Machine learning, Classification, Special health care needs, Deep sedation, Predictive dentistry, Second 
sedation risk

Background
The application of data-driven methods is expected to 
play an increasingly important role in healthcare [1, 
2], as they can be a particularly effective tool for diag-
nosis (disease presence) or prognosis (risk of future 
outcome), among other tasks. To mention a few rep-
resentative examples: they have been used for the 
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identification and classifications of different types of 
cancers [3], or to predict individualized optimal drug 
doses for patients [4]; they have also been used for 
natural language processing of medical records for 
improving the accuracy of appendicitis diagnoses [4] 
and to prevent hypoxaemia during surgery [5]. They 
also allow to analyze how reliable medical information 
is conveyed on social networks [6]. Machine Learning 
(ML) is the branch of artificial intelligence that encom-
passes methods to make computers learn how to do 
some task from experience (data). In particular, ML 
uses statistical methods to predict outcomes in future 
data [2], that is, to make classifications or predictions. 
ML algorithms are trained with data and fall into two 
broad categories: supervised learning, which uses data 
that have been previously labeled (with the desired or 
correct value), and unsupervised learning, which uses 
data that have not been labeled. As described in recent 
works [1, 2] the prediction accuracy of ML systems in 
some fields may meet or surpass that of the experts. 
Finally, ML systems handle well large volumes of high 
dimensional data [2] and, therefore, can be a very effec-
tive tool for large scale preventive healthcare programs, 
for tasks such as large-scale screening [7]. As an exam-
ple, AutoPrognosis, a software that automatically builds 
an ensemble of predictive ML models, has been used 
to predict cardiovascular diseases: in a study done over 
5 years with a sample of 4801 cases it was able to pre-
dict correctly 368 more cases than alternative classical 
methods [8].

However, there are a number of challenges that prevent 
the wider adoption of these methods, both technical, 
such as the need for appropriate and interoperable data 
models [2] and high-quality data [7]; and operational, 
such as their integration in the clinical workflow [2, 7]. 
One particular problem pointed out by Callahan [2] is the 
lack of personnel with the necessary skills to develop these 
models and interpret their output. Developing an ML 
model for healthcare is a demanding task, which includes 
problem selection, data curation, development, and vali-
dation [7]. Even though the application of sophisticated 
ML algorithms is relatively easy thanks to high-level pro-
gramming libraries such as scikit-learn [9], clinical prac-
titioners usually lack the technical background required 
for its use. And conversely, technicians often lack the 
required clinical skills for appropriate model evaluation 
and refinement, which usually results in a time-consum-
ing exchange of requirements and model prototypes 
between the two groups [10]. In summary, a first step 
before deploying ML systems appropriate for preventive 
healthcare is the development of a validated model for 
the problem at hand, which is complicated due to a lack 
of complementary skills of the involved actors.

To address this problem, in this paper we introduce and 
describe ORIENTATE (applicatiOn of machine leaRn-
ing for classIfication of dENTal pATiEnts), a software 
that allows the use of sophisticated ML algorithms for 
the classification and prediction of oral health condi-
tions by clinical practitioners lacking specific technical 
skills (users). Given a collected dataset, the application 
basically provides a web-based interface for the selec-
tion of its features (predictors) that may be useful in the 
prediction of some other variable of interest (target). 
It then generates a number of ML classification models 
and cross-validate them against subsets of a training set, 
selecting the best model according to some performance 
metric, and evaluating it against a validation set. The tool 
shows a detailed summary of the evaluation with graphs 
that facilitates the explanation of the ML model results, 
using global interpretation methods [11], and an inter-
face for the prediction of new input samples. The previ-
ous procedure summarizes a first stage of use of the tool, 
where researchers generate and evaluate a suitable pre-
diction model from a given dataset. The integration of 
the tool into the clinical workflow would come in a sec-
ond stage, where the validated model can be used, either 
with the provided interface or a custom (not developed 
yet) application. The practitioner would generate a pre-
diction, just by filling in the corresponding predictors 
for a new patient, that may guide her in the planning of 
further treatments, complementing the information on 
caries risk and lesion management provided by clinical 
tools such as the Caries Management by Risk Assessment 
(CAMBRA) [12] or the International Caries Classifica-
tion and Management System (ICCMS) [13].

A first goal of the tool is to facilitate testing different 
combinations of predictors according to the user crite-
ria. It, therefore, allows an exploratory analysis that can 
be used to validate hypotheses about the influence of dif-
ferent features on the target variable [7]. The tool guides 
the user in the development process of the model, offer-
ing the selection of the class of interest, alternatives for 
imputation of missing data and selection of the perfor-
mance metric. It is also agnostic with respect to the data-
set used, that is, it can be used with different datasets as 
long as they follow a minimal shared data model. Once 
the exploratory phase has finished, the obtained model 
has usually enough quality (prediction performance) 
as to be used in production. Therefore, trained models 
can be used in preventive tasks by clinical practitioners 
without technical training. A second goal is to perform 
systematic searches for the best combination of predic-
tors for a target variable. A custom feature selection algo-
rithm has been implemented, which tests thousands of 
combinations of predictors and returns the best model 
found together with an extensive explanatory report 
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of the feature relevance and interactions. Finally, the 
explanatory report can be used to perform an inferential 
analysis of the data, complementary to classical statisti-
cal studies [14]. This analysis can be done by examining 
the relevance and interactions of the predictors used by 
the model, an information that is visually provided by the 
generated report. Users with varying technical expertise 
may benefit from the use of ORIENTATE. Researchers 
only need to complement their dataset with an addi-
tional metadata CSV file in a simple format and then 
proceed with the model generation. In fact, providing 
metadata forces the researcher to analyze her data and 
collect and organized it in a systematic way, facilitating 
the discovery of errors and removing redundant infor-
mation. The generated models can be critically analyzed 
by other researchers or practitioners just by examining 
the provided visual reports. The validation of the best 
model found is internally done by the tool by evaluating 
a separated test set from the available data. The predic-
tion results for all the samples are provided to the user, so 
that she may assess directly the quality of the predictions, 
even individually, even with plots of the relevance of each 
predictor for the final result. Finally, as mentioned previ-
ously, clinical practitioners can generate new predictions 
just by filling out a form and then examining the pro-
vided report.

To illustrate the use of the application and the perfor-
mance of the various functionalities, we use a particular 
case study: a dataset that describes the oral health con-
dition in two populations, one with healthy children and 
another one with SHCN, was collected to compare the 
treatments performed under deep sedation in both popu-
lations. The dataset was analyzed with classical statistical 
methods in a previous work [15, 16]. This particular data-
set is described in detail in the “Material and methods 
of the previous study” section. We apply to this dataset 
the feature selection algorithm implemented by ORI-
ENTATE and show how it finds a set of predictors that 
results in an accurate predictor model of the need for a 
second sedation. Next, we examine the relevance of the 
predictors and their interactions and discuss how they 
agree with the inferences derived in our previous work 
using classical statistical methods.

ORIENTATE source code is freely available in our 
repository, as well as the datasets used in the case study 
and an additional public dataset, whose format has 
been adapted, from [17], which can be used to test the 
application.

Implementation
ORIENTATE has been implemented as a web-based 
application and so it is independent of the platform and 
only requires a web browser to be used.

Data source
The application is independent of the dataset used, as 
long as it is provided in the format described in the 
Machine learning workflow section. The particular data-
set used in our use case is described in detail in Material 
and methods of the previous study section.

Libraries
A first prototype of the web application was implemented 
in Python v3.9.12 with Flask v2.0.3. Machine 
learning algorithms are implemented with SciKit-
Learn v1.1.1 and SHAP v.0.41.0.

Functionality
ORIENTATE allows uploading of the working data-
set which is stored for future use. Once the dataset has 
been uploaded or selected from the available ones, the 
entry point of the web application shows a view of the 
current dataset and a menu with the available actions, as 
shown in Fig.  1a. The menu entries with Statistics 
and Distributions provide a statistical summary of 
the dataset and the empirical distributions of the vari-
ables respectively. The main functionality can be found 
in Classifier evaluation, (CE) and Feature 
selection (FS) as described next.

• Classifier evaluation (CE). This link performs a search 
for the best classifier to predict a chosen target fea-
ture, given a set of features selected by the user. The 
application collects the information from the user in 
two separate steps as shown in Fig.  1b and c. First, 
the user selects the target variable to be predicted 
and the set of features to be used as predictors. Next, 
the user selects the class of interest for binary vari-
ables. For instance, for the variable Caries the user 
selects whether she is interested in presence (class 
1) or absence (class 0) of caries. For multiclass vari-
ables this action is skipped. The application shows 
the available options, and, in case of missing values 
(usually not registered) in the target feature, the user 
selects an imputation method for the missing values. 
Currently, the user can only select between removal 
of rows with missing values or replacement with a 
constant value. Once the input is collected, the appli-
cation searches for the best classifier among a set of 
predefined types of classifiers, which are described 
in detail in the “Machine learning workflow” sec-
tion, and shows a summary of the results. This step 
is described in detail in the following section. A par-
tial view of the evaluation results window is shown in 
Fig. 1d. Our goal is to simplify the interpretation of 
the results to clinical practitioners, so in this step an 
explanation of the performance metrics is provided 
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Fig. 1 Screenshots of the web application interface and steps for the evaluation of classifiers
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and additional information is presented to the user. 
The summary includes the metric scores and confu-
sion matrix obtained for all the classifiers tested [18]. 
The best classifier found according to the metric is 
separately highlighted. In addition, the predictions 
of the best classifier for each sample in the validation 
test are also displayed. That is, for all the samples in 
the validation test, the application shows a table with 
a row with the predicted value, the real value, the 
probability for each class and the values of the pre-
dictors. Finally, the user can predict, with the best 
classifier found, the value of a new sample by insert-
ing the values of the predictors in a form provided. 
All the results can be downloaded for further use. 
The goal of this functionality is to let the user find a 
good classifier when the set of predictors (features) 
is previously established, for instance, by the expert 
knowledge of the clinical practitioner. The results 
allow to examine the differences between classifiers. 
It also allows to test how minor variations in the fea-
ture set, such as the replacement of a few predictors, 
influence the classifier performance.

• Feature selection (FS). In many cases, however, the 
clinical practitioner is interested in finding out which 
features may help to predict a certain target variable. 
In fact, the goal of many studies is to uncover and 
describe the associational relationships between a set 
of features and the target variable. Similarly, our tool 
allows to search for the set of features that result in 
more accurate classifiers. This functionality can be 
viewed as an extension of CE, because the above pro-
cedure is repeated for different subsets of the feature 
set. Since it is usually not possible to test all the com-
binations of features, the application uses a feature 
selection algorithm that is described in detail in the 
Machine learning workflow section. The application 
shows the user the same steps as in CE: first, a fea-
ture selection window, where the user selects the set 
of features for the search, and then the class selection 
and imputation window. In this case, the application 
informs the user of the number of combinations to 
be tested and asks for a name for the selection task 
to be created. Since this task is time-consuming 
usually, a background task is executed and the user 
is directed to another tab where the progress of the 
pending tasks is shown. Once the background task 
has finished the search for the best combination of 
features, the user can view the results. First, the user 
is presented with a summary of the feature selection 
search which includes: 1) a plot of the best metric 
achieved for each of the combinations of features 
tested, as shown in Fig. 2a; 2) the best model and fea-
tures found; 3) the relative relevance of each of the 

features for the best model found; and 4) when the 
best model found is a DecisionTree classifier, 
the application additionally shows the actual deci-
sion tree generated by the model, shown in Fig.  2b. 
Our goal again is to provide the information in a way 
that can be interpreted by the clinical user as easily 
as possible. Relative feature relevance helps the user 
understand the importance that the model assigns 
to each feature, which can be critically assessed by 
the user. The generated decision tree is particularly 
helpful in this sense, since it allows the user to actu-
ally reproduce the decision process of the model and 
assess its soundness. Moreover, users can use the tree 
to derive their own protocols, adapting it to the clini-
cal practice by refining or simplifyingthe tree. When 
clicking on the SHAP report button for the found 
model, further support for interpretation is provided. 
In this case, a SHAP report of the model is generated. 
SHAP [11] is a method to explain individual predic-
tions and generate global interpretations. The appli-
cation computes the SHAP values and generates a 
number of global interpretation plots, which include 
feature importance, feature dependence, interactions 
and clustering of feature relevance, as shown in the 
snapshots in Fig. 2c. Finally, the user can inspect indi-
vidual results. In that case, the application displays 
the individual predictions and corresponding SHAP 
explanations for all the elements in the dataset. The 
snapshot in Fig. 2d shows the particular values of the 
features for that individual as well as the predicted 
and real values of the target variable. Below, a SHAP 
waterfall plot displays how the values of the features 
contribute to the particular decision. In the Case 
study  section we use our case study to discuss and 
describe in detail those plots.

• Predictions for new samples. Once a satisfactory 
classifier has been found, either by CE or FE, it can 
be used to predict the result for new samples. ORI-
ENTATE generates automatically a form, shown in 
Fig. 3a, for the user to fill the values of the predictors 
for a new sample. After submitting, the results are 
displayed to the user, as shown in Fig. 3b, including 
the probabilities for the different predicted classes 
and a plot for the SHAP values of the new samples to 
interpret how the feature values have influenced the 
newly predicted sampled.

Machine learning workflow
In this section we describe the ML procedures used by 
the tool. Most of them are implemented as functions that 
are combined to yield the desired result. For instance, 



Page 6 of 19Gomez‑Rios et al. BMC Oral Health          (2023) 23:408 

Fig. 2 Screenshots of the web application interface for the selection of features
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Feature Selection uses data selection and preprocessing 
and then calls repeatedly classifier evaluation with differ-
ent combinations of features. Details can be checked in 
the source code in our repository.

• Data format. Data are compiled into a CSV file, with 
an additional metadata file with custom format, pro-
viding a description of the type of variable of each 
column and its range of values and optionally a leg-
end to facilitate showing content in a human-friendly 

format. Variable types may be continuous variables, 
bounded and unbounded discrete variables, categori-
cal variables encoded as integers with a given valid 
range and tooth-lists. The latter maps a set of teeth to 
their number according to the ISO 3950:2016 stand-
ard [19], which designates teeth or areas of the oral 
cavity using two digits.

• Data selection and preprocessing. ORIENTATE 
allows the user to select the target and the predic-
tor features from the set of features present in the 

Fig. 3 Screenshots of the web application interface for the prediction of new samples
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dataset. Once they are selected, the tool analyzes the 
number of classes present in the target feature. For 
binary classification, the user is prompted to mark 
the relevant class, which is used later to select the 
best model as the one with the best selected perfor-
mance metric for that class. The performance metric 
used can also be chosen, among precision, recall and 
f1-score [18]. For multiclass classification, the best 
model is that with the best average performance met-
ric over all the classes. The presence of missing data 
in the target feature is analyzed. In case there is miss-
ing data, the user must select an imputation method 
for it. Since the dataset used comprised only categor-
ical data, the options are to remove or fill with some 
constant value the missing data. Additional imputa-
tion methods are available (use average or more fre-
quent value). Afterward, the predictor features are 
prepared for the classifiers by normalizing continu-
ous variables and one-hot encoding tooth-lists and 
optionally categorical variables. A transformation 
pipeline with the imputation and encoding is gener-
ated and the dataset is passed for the evaluation of 
the classifiers.

• Classifier evaluation. The dataset is split into a train 
set with 80% of the samples and a validation set with 
the remaining ones. Then, a default set of classifiers 
is evaluated with 3-fold cross-validation on the train-
ing set and a series of performance scores is gener-
ated for each classifier. The default set of classifiers 
includes single instance classifiers: logistic regression, 
support vector machines with linear and Gaussian 
RBF kernels, linear classifier with stochastic gradi-
ent descent learning, different naive Bayes classifiers, 
Gaussian Process classifier, multilayer perceptron; 
and ensemble methods: random forest, gradient 
boosting (XGBoost), AdaBoost and stacking with 
random forest, Gaussian and logistic regression. All 
the classifiers are initialized with a set of previously 
selected default parameters, not configurable at the 
moment by the user. Automated hyperparameter 
optimization might be added as an additional stage 
for the tool, if necessary, but we consider that the 
potential gains are not worthy for the current func-
tionality and given the increased complexity of the 
software. Once the cross-validation is done for each 
of the classifiers, the tool selects as best classifier the 
one with the best performance metric as described 
before. The best classifier is trained with the com-
plete training set and finally the validation set is pre-
dicted with the fitted model, resulting in a final set of 
performance scores. The results from this process are 
a set of metrics for each of the classifiers evaluated 
as well as for the fitted best model: confusion matrix, 

recall, precision, f1-score and ROC AUC. All of them 
are gathered and shown to the user by the tool. The 
best model is saved to be used for the prediction of 
new input samples. For the validation set, the predic-
tion probabilities for all the samples in the set are also 
stored and shown. Since for most of the classifiers 
these are not precise estimates of the class probabili-
ties, they need to be calibrated before being shown to 
the user.

• Feature selection. When the user completes the data 
selection and preprocessing stage described before, a 
set of potential features is ready. At this point two dif-
ferent algorithms are used, depending on the number 
of features in the set (N). The total number of combi-
nations to test is c = 2

N
− N − 1 , since we include at 

least two features, and when this number is too high, 
it is not computationally feasible to test them all. So 
we have arbitrarily set N = 13 as the maximum num-
ber of features for fully testing all the combinations. 
Obviously, this parameter should be set according 
to the available processing power. For instance, in 
our server (i9-9280X CPU, 2 NVIDIA RTX 2080Ti 
GPUS, 32 GB RAM), testing N = 11 features, that 
is, c = 2036 combinations, takes around one hour. 
Therefore, when the number of features is up to 13, 
N ≤ 13 , a background processing task iteratively exe-
cutes the classifier evaluation procedure described 
above for each of the combinations in the dataset, 
that is, first with the N features, then all the N − 1 
combinations and so on until testing all combinations 
of 2 features. The results of each evaluation are saved 
to the database. Otherwise, when N > 13 , a custom 
feature selection algorithm is executed in the back-
ground task. Feature selection is, in general, a hard 
problem due to the combinatorial explosion, and 
there are multiple algorithms available and different 
methods [20]. We employ here a so-called wrapper 
method [20], using the predictor performance as the 
objective function, and implement a simple variant 
of a Sequential Backward Selection (SBS) algorithm. 
Though this kind of algorithms typically returns a 
local optimum, they can produce good results, are 
computationally feasible, and we avoid the additional 
complexity of more sophisticated methods, which 
we do not consider critical for our goals. Our algo-
rithm proceeds as follows: at each iteration there is 
a set of predictors to be tested, which we call T with 
size T, and a removal parameter, k. The algorithm is 
initialized with T including the total number of fea-
tures, N, and evaluates the performance for all the 
classifiers in the default set as described in the clas-
sifier evaluation procedure. The results and metrics 
obtained in the evaluation are saved to the database, 
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including the best classifier found. Next it evaluates 
all combinations of T − k elements from the total set 
and saves the metrics and best classifier found. After-
ward, the predictors in the test set are replaced by the 
predictors used by the best classifier. Notice that now 
the number of elements in the test set, T, has been 
reduced by k elements. And again all the combina-
tions of T − k elements are evaluated as described 
above. This procedure is repeated until the test set 
contains fewer than 2 elements. Finally, we select the 
best classifier found from all the combinations evalu-
ated. We illustrate the algorithm with an example, 
where we start with N = 20 features, so that T con-
tains the all the 20 features, and use k = 2 . After the 
first evaluation with all the features, we evaluate all 
the combinations of 18 elements, taken from the 20 
elements. Then we replace the test set with the fea-
tures used by the best classifier found, that is, the test 
set contains now 18 elements, and evaluate all the 
combinations of 16 elements from the 18 features 
in the test set. Notice how the size of the test set is 
reduced at each iteration, in this example by k = 2 
elements.

• Generation of reports. Reports are generated at the 
end of the classifier evaluation (CE) or feature selec-
tion (FS) procedures. For the former, the confusion 
matrices and metrics obtained for all the evaluated 
models are shown. In addition, the probabilities pre-
dicted by the best model for all the elements in the 
validation set are displayed. For the feature selection 
procedure, we show a plot of the f1-metric for the 
best classifier for all the evaluated combinations and 
the list of the predictors for the best classifier found. 
If the best found model is able to compute the feature 
importances, those are shown. Additionally, when 
the best found model is a DecisionTree, the 
application displays the generated tree. Afterwards, 
the SHAP values for the model are computed [11]. 
For this, we use the specialized TreeExplainer 
[21], otherwise, we use an ExactExplainer [11] 
with an independent masker of 1000 samples. Once 
the values are computed, different plots are shown 
to the user as described in the Functionality section, 
including waterfall plots for individual explanations.

Results
We have applied our tool to a dataset collected for a pre-
vious study [15, 16]. The goal of that study was to describe 
the oral health condition in two populations, one with 
healthy children and another one with SHCN, that is, 
children who due to physical, medical, developmental or 
cognitive conditions require special consideration when 

receiving dental treatment [22]; and to compare the treat-
ments performed under deep sedation in both popula-
tions. This way we illustrate two of the main goals of our 
tool: (1) the performance of the feature selection algo-
rithm and prediction power of the trained classifier and 
(2) its capabilities as an alternative to classical statistical 
studies. We first briefly describe our previous work, then 
describe the feature selection results and the interpreta-
tion plots provided by ORIENTATE for inferences.

All these results are put in context in the Discussion 
section, where we discuss our results in comparison with 
the findings of our previous study [15, 16] and related 
works.

Material and methods of the previous study
A cohort study was carried out with children who had 
been treated for their oral pathology under deep seda-
tion in a private clinic in Cartagena (Murcia, Spain), 
during the years 2006 to 2018, both included. 274 medi-
cal records of patients aged 2 to 18 years were reviewed, 
including both children with an optimal general health 
condition which we will call "healthy children", and 
SHCN children [22]. Patients whose medical records did 
not correctly show demographic data or health status 
data were excluded. Finally, a total of 230 clinical records 
(109 (47.4%) healthy and 121 (52.6%) SHCN) were 
included in the study. Within the SHCN, 19.50% were 
general developmental disorders, 14.70% were encepha-
lopathies and cerebral palsy, Down syndrome 3.5%, 
intellectual and/or motor disability 4.7%, and other syn-
dromes 10%. The sample consisted of 142 men (61.74%) 
and 88 women (38.26%), with a mean age of 7.10 ± 3.40 
years. The mean age of the healthy patients was 5.04 ± 
2.42 years and that of the group of SHCN children was 
8.95 ± 3.09 years. Most of children were 4, 6, 7, 8 and 9 
years old.

The information that was collected from the clinical 
records was: from the first visit, sex, age, systemic health 
status (healthy or SHCN child), reason for the first seda-
tion, information on the oral health status prior to the 
intervention (hygiene habits, plaque, tartar, caries lesions, 
pulp involvement, root remains and absences). On the 
day of the intervention, the following data were collected: 
the types of treatments performed (fillings, direct pulp 
protections, pulpotomies, pulpectomies, endodontics, 
apex formation, scaling, scaling and root planing, appli-
cation of fluoride and extractions) and the number of 
teeth treated. Follow-up data include attendance or not 
at the check-up where the presence of plaque is assessed, 
the need for medication due to oral pathology, and 
improvement at mealtime. In addition, it was recorded 
the performance of the prevention follow-up behavior 
in appointments, classifying the patient as "cooperative" 
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or "non-cooperative", according to whether the patient 
allowed the dentist and/or hygienist to carry out their 
work; the motivation of parents in the oral care of their 
children, classifying them as “motivated” or “not moti-
vated”, according to whether they are involved in the care 
of their children mouth and implement at home the die-
tary and oral hygiene recommendations that are given to 
them. Finally, treatments performed subsequently with-
out sedation, year of last check-up and tracking time. The 
data of the successive sedations included the cause, failed 
treatments, treatments performed, number of sedations 
and time from the first to the last sedation.

The collected data described above were incorporated 
into a dataset and systematically encoded and labeled 
according to the type of data and data format described 
in the Machine learning workflow section: binary vari-
ables are labeled by a descriptive name, continuous or 
integer variables are prefixed with Num, while tooth-lists 
are prefixed with List. For instance, the presence of car-
ies is encoded with a binary variable (0 or 1) and labeled 
Caries, the number of teeth with caries is labeled Num-
Caries and the list of teeth with caries is labeled ListCar-
ies. Notice that some information is redundant.

Our previous study is a traditional one, where the data 
were statistically analyzed with classical methods. In 
particular, a descriptive analysis of all the variables was 
performed. Continuous quantitative variables were com-
pared two by two using a T-test, a T-test with Welch’s 
correction, or a Mann-Whitney test, depending on the 
assumptions of normality and homoscedasticity. For dis-
crete variables, the Kruskal-Wallis test was used together 
with the Dwass-Steel-Critchlow-Fligner test to determine 
the two-to-two differences. To establish the relationship 
between discrete qualitative or quantitative variables, 
contingency tables were made with Pearson χ2 or Fisher 
exact test, depending on whether or not the assumptions 
were fulfilled. Finally, a test of equality of proportions 
without continuity correction was used for testing pro-
portions. Additional information on these methods can 
be found in [15].

Feature selection performance
The dataset compiled from the previously described 
cohort study contains 102 different features, some of 
them redundant. From them, 30 potential features of 
interest were extracted by consensus between 2 odon-
tologists, ruling out those not determining, such as being 
referred or need to take oral medication, those with 
insufficient number of data, such as endodontic treat-
ments and apical formation, or those for whom there 
were not enough variability in the data. The Feature 
Selection (FS) functionality was executed on them, with 
SecondSedation as target variable, a binary variable that 

indicates whether the patient was subjected to a second 
sedation. Or in other words, the goal of the test is to find 
the classifier that is able to better predict the need for a 
second sedation from all or a subset of the 30 selected 
predictors (features), using f1-score as peformance met-
ric. Since the number of features N = 30 is greater than 
13, our SBS algorithm was executed, taking 1 hour and 40 
minutes to evaluate c = 2360 combinations of predictors.

Figure  4 shows the f1-score for the best classifiers 
found versus the number of features in the test set and 
combinations evaluated. As can be seen, the best classi-
fier is found when the feature set contains 10 features and 
all the combinations of 8 features were tested. Therefore, 
the best classifier uses 8 predictors, listed in Table 1. The 
best model is a DecisionTree classifier, therefore, the 
generated tree can be displayed and the decision process 
of the model can be analyzed. Actually, the generated tree 
has been shown previously as example in Fig.  2b. The 
scores achieved by the classifier on the validation set are 
shown in Table 2. Additionally, the ROC (AUC) achieved 
is 0.92. It has to be taken into account that the dataset is 
imbalanced, that is, only 24% of the patients underwent 
a second sedation. Therefore, it is easier to predict the 
absence of second sedation. Anyway, the model found is 
able to accurately predict the need for a second sedation, 
with a f1-score for the class of interest of 0.83 and a bal-
anced accuracy of 0.81. There is an additional imbalance 
in the dataset, that of the healthy to SHCN patients: the 
number of second sedations for SHCN patients is much 
higher than that for healthy children. In Table 3 we com-
pare the scores when conditioning on the two groups. 
As seen, only 6% of the healthy patients undergo a sec-
ond sedation, and the model has difficulties to correctly 
predict those sedations, as expected, but for the SHCN 
patients it is accurate in the predictions.

In summary, our Feature Selection algorithm is able 
to find a good set of predictors and returns an accurate 
predictor of the target variable. Let us remark that the 
size of the dataset is quite small, with only 230 records. 
Once a potential model has been found, a larger dataset 
might be compiled and further optimizations and refine-
ments of the model may also be tested before being used 
in production.

Analysis of features for inference
In this subsection we analyze the relevance assigned by 
the model to the different features with the help of SHAP 
explanations. All the figures shown have been taken from 
the report generated and displayed by our application. 
The inferences that can be extracted from this informa-
tion are briefly commented but a further discussion and 
comparison with our results in the previous traditional 
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study [15, 16], as illustrated in [14], is deferred to the Dis-
cussion section.

As general remarks, first let us note that the fact that 
the algorithm has chosen these particular 8 predic-
tors indicates that they are more relevant than the other 
potential features, at least for prediction. Second, we 
use SHAP values for interpretation [11]. Briefly, a SHAP 

Fig. 4 f1 score obtained by the best classifier found versus the number of features in the test set and number of combinations evaluated 
(Predictors‑Combinations). The f1 score shown is for the class of interest, in this case, the occurrence of a second sedation

Table 1 Features used by the best classifier found by the feature selection algorithm

Feature Type Description

Healthy binary Systemic health status

Plaque binary Presence of plaque before first sedation

Fillings binary Fillings done at first sedation

PreventionTracking ternary Compliance with prevention follow‑ups

NumPulparInvolvement integer Number of teeth with pulpar involvement before first sedation

NumPulparTreatmentsFirstSedation integer Number of pulpar treatments done at first sedation

NumExosPathology integer Number of extractions due to pathology done at first sedation

ListPulpotomies tooth‑list List of teeth with pulpotomies done at first sedation

Table 2 Scores achieved by the best classifier found

Second sedation Precision Recall f1

No 0.87 0.96 0.92

Yes 0.92 0.75 0.83

Table 3 Scores achieved by the best classifier found when conditioned on the Healthy variable for both classes [0 (absence), 1 
(presence)]

Group Size Second sedation sed/group sed/total Precision Recall f1

SHCN 121 48 0.39 0.2 [0.85, 0.84] [0.9, 0.77] [0.88, 0.8]

Healthy 109 7 0.06 0.03 [0.96, 1] [1, 0.43] [0.98, 0.6 ]
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value computes the contribution of each feature to an 
individual prediction. That is, the SHAP value of a feature 
provides a numerical additive value to the final model 
output for an individual. However, one has to be care-
ful regarding the quantitative aspects of the interpreta-
tion. For example, if the model predicts a probability of 
0.8 for an individual to undergo a second sedation, and 
the Healthy feature is assigned a SHAP value of 0.16, 
to directly assign 0.16 of that total probability to being 
healthy or not is not meaningful, and may even be mis-
leading [23]. Therefore, we will mainly discuss qualita-
tive aspects, unless a quantitative interpretation is clear: 
SHAP values should be interpreted as the relative influ-
ence of a predictor in the final outcome, with the sign 
indicating the direction of the influence in the outcome, 
that is, a positive value indicates higher probability of 
second sedation, while a negative one indicates lower 
probability. Let us note also that quantitative claims are 
not common in classical studies either, where typically 
only acceptance or rejection of a null hypothesis with a 
measure of confidence is given, reported as “significant 
differences were found between the two variables”.

In Fig.  5 we plot two views of the features’ relevance, 
according to their mean SHAP value. On the left, in 
Fig. 5a the mean absolute average value for each feature 
is plotted, grouped by healthy or SHCN patients. With 
this plot we can see the relative influence of each feature 
in the model output (the probability that a patient under-
goes a second sedation) in absolute value, that is, without 
assessing whether the influence is positive or negative. 
While on the right, in Fig.  5b we show a scatter plot, 
which does show the direction of the influence as a func-
tion of the feature value. The value of the feature at each 
row is represented as a color scale, with red for high val-
ues and blue for low values. The assigned color depends 
on the type of variable, for instance, for a binary value, 
1 is shown in red while 0 is shown in blue. For an inte-
ger variable, red represents the maximum, blue the mini-
mum and purple hues values in between. This plot allows 
us to clearly see the influence of the different features in 
the final outcome. For instance, we see that being healthy 
clearly decreases the value of the output, and since that 
value is a probability, we see that it makes it less likely to 
undergo a second sedation.

As seen, the healthy status has the major influence 
in absolute value, as expected, since SHCN patients 
require more often a second sedation. Since the results 
are grouped by this feature in Fig.  5a, its value is equal 
for both groups. In Fig.  5b we can see the direction of 
the influence with the sign of the feature: healthy chil-
dren (red points) SHAP values are negative, that is, tend 
to decrease the probability of a second sedation, while 
SHCN children (blue points) are positive and so tend to 

increase the probability of a second sedation. For SHCN 
patients, next in importance is the compliance with the 
prevention tracking program (PreventionTracking in 
Fig. 5a). However, for healthy children, the second more 
relevant feature is the number of teeth that required pul-
par treatment at the first sedation (NumPulparTreat-
mentsFirstSedation in Fig. 5a). The number of teeth that 
showed pulpar involvement is the fourth more relevant 
predictive factor for a second sedation for both groups 
(Fig.  5a). Figure  5 also shows that the probability of a 
second sedation increases with the presence of bacterial 
plaque and a high number of extractions due to pathol-
ogy during the first sedation.

Next, we turn to interactions between features. In Fig. 6 
we plot the strongest interactions found by the model as 
dependence plots. These plots show the dependence of 
the SHAP value (Y axis right) with the value of the fea-
ture (X axis), and the interaction is depicted by color-
ing the points according to the value of another feature 
which has the strongest interaction with the former (Y 
axis left). The feature that has the strongest interaction is 
automatically computed by the application, but the user 
can also select other feature interactions that she might 
be interested in. As expected, most of the features have 
the strongest interaction with the healthy condition.

Figure 6a shows that, for SHCN patients, a higher num-
ber of teeth with pulpar involvement is associated with 
less likelihood of a second sedation. From Fig. 6b we see 
that the majority of the patients have undergone fillings 
during the first sedation, but it is noticeable that patients, 
especially SHCN, that did not receive that treatment are 
more likely to be sedated again. Finally, the model shows 
in Fig. 6c that the absence of plaque before the first seda-
tion is a clear indicator that the probability of a subse-
quent sedation is low.

Discussion
We separate our discussion into two parts: first, we focus 
on the technical aspects of our tool and compare them 
with previous similar works, then we discuss the relevant 
findings of our case study.

Technical aspects
A general overview of ML methods in healthcare can 
be found in [2]. Their potential advantages are outlined 
in [1], while [7] discusses how to develop effective ML 
models for healthcare and related challenges and prob-
lems. As in other healthcare fields, the use of data-driven 
methods in odontology is growing quickly. Several sys-
tematic reviews focused in particular fields are available: 
Revilla-Leon reviews the application of ML methods in 
restorative dentistry [24] and also for gingivitis and peri-
odontal disease [25]. More general reviews can be found 
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Fig. 5 Feature relevance and impact on model output
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Fig. 6 Dependence plot with interactions between variables. Brownish shaded bands show the histogram of the data in the X‑axis. Interaction with 
the healthy status is displayed by showing healthy patients in red
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in [26] and [27]. Most of the reviewed works are focused 
on diagnosis and prediction and in the majority of cases 
the ML methods have been applied to radiography 
and medical images. Particular and general systematic 
reviews stress the potential and accuracy of these meth-
ods but also warn that they are still in development.

We do not further discuss image-based methods, the 
technique most applied, but focus on the works most 
similar to our own in this paper, that is, those using 
clinical, behavioral, demographic, and laboratory data as 
input predictors for a ML model. A prominent example 
is given by Karhade et  al. [28] who developed an auto-
mated ML model for classification of early childhood 
caries (ECC). As in our work, they performed a feature 
selection procedure, introducing different sets of plausi-
ble predictors, from a total number of 14 features, to the 
Google AutoML framework and performing an itera-
tively search process using the classification accuracy of 
the model for selecting the best performing model and 
proceeding with internal validation. But the feature selec-
tion procedure is not described in detail and no system-
atic search for features has been done. On the contrary, 
our feature selection algorithm tests all the combinations 
for a comparable size of the total set of predictors, or 
otherwise systematically searches the best combination 
for larger feature sets. In addition, ORIENTATE pro-
vides different global and individual interpretation plots 
to assess the relevance the model assigns to each predic-
tor and support further inferences. Qu et al. [29] provide 
a prediction model for early childhood caries risk based 
on behavioral data. For feature selection, they manually 
remove the low-variance features and then use all of them 
to train only three different classifiers. They only provide 
the relative weights assigned by the model to the fea-
tures used, without further explanatory reports. Campo 
et al. [30] evaluate different classifiers for the need for a 
root canal retreatment for a dataset with 205 cases, and 
propose a case-based reasoning algorithm with Bayes-
ian networks that outperforms other types of classifiers. 
Unlike our work, they do not carry out a feature selection 
search but use all the features, and they extract the more 
relevant variables but do not provide further interpret-
ability analysis or plots. Similarly, Thanathornwong [31] 
develops a Bayesian network decision support system for 
the prediction of the need of an orthodontic treatment. 
No feature selection search is done but they provide a 
graphical interface for the application and the results 
are compared to the assessments of two experts. Finally, 
Cui et  al. [32] also trained several multiclass classifiers 
for tooth extraction, retention or restorative treatment. 
The authors do perform a feature selection algorithm 
after performing a feature extraction phase that recov-
ers features and values from clinical records, retaining 34 

features for the model. The most relevant features for the 
model are shown but no further explanation, interaction 
or interpretation plot is provided. Results were compared 
to expert predictions and showed that the model outper-
forms the experts.

Regarding the predictive capabilities of our models, 
our results agree with others [28], as expected, in that the 
number of features used as predictors is not directly cor-
related with the accuracy of predictions, see Fig.  4, and 
moreover, it is not obvious which ones are going yield 
the best-performing classifier. In Karhade et al. [28], they 
found that a parsimonious model including only two pre-
dictors (children age and the oral health status reported 
by parents) achieved the highest accuracy as predictors 
of ECC. A notable difference with this work is that they 
do not systematically search for the best combination of 
predictors, even though the size of their predictor set 
makes it computationally feasible (14 predictors). We 
believe the reason is that even though they use a rea-
sonably user-friendly platform (Google AutoML), it still 
requires a certain technical background to truly automate 
a feature selection process, a problem that we intend to 
ameliorate with ORIENTATE. The accuracy of our best 
model is reasonably good (0.92 AUC, 0.75 recall and 0,92 
precision) and higher than theirs (0.74 AUC, 0.67 recall 
and 0.64 precision), even though the size of their data-
set is much larger (6404 samples) than ours (230 sam-
ples), which may also be due to their selected predictors. 
Therefore, we consider that an effective feature selection 
algorithm is essential for this kind of application and 
intend to improve ours as a future work.

Supporting feature relevance and global interpretation 
methods allows us to use our tool for statistical inference 
that can replace and/or complement classical statistical 
studies, as discussed by Bzdok et al. [14], where the simi-
larities and differences between ML and classical statisti-
cal studies are analyzed. To elaborate on this point let us 
note that our application provides three main services: (1) 
to obtain a descriptive view of the dataset, (2) to find the 
best classifier model for a fixed set of features of interest 
(CE) and (3) to find the best subset of features and associ-
ated model from a broader set of features of interest (FS). 
The latter service is the most interesting from our point 
of view, because it allows to achieve two goals: first, it 
covers partially the goals of statistical inference, that is, 
it draws inferences about a population from the sample, 
which is the subject of what we call traditional studies. 
And second, it finds the combination of features and 
model that best predicts our target variable, which is the 
goal of ML algorithms typically. Let us clarify that infer-
ences drawn by ML methods are derived by observing 
the subset of features used by the model and the contri-
bution of each feature to the outcome (feature relevance) 



Page 16 of 19Gomez‑Rios et al. BMC Oral Health          (2023) 23:408 

[14]. As an illustrative example, in our use case study our 
target is to predict the value of the variable SecondSeda-
tion, that is, the need to perform a second intervention 
under sedation for the subject, and we see that the best 
classifier uses, among others, the Healthy feature, that is, 
the absence of pathologies in the subject, and it is given a 
high relevance by the model. The equivalent procedure in 
a traditional study is to perform a statistical test against 
the null hypothesis that Healthy is associated with Sec-
ondSedation [14].

The ML approach to inference has some advantages: 
it can handle a large number of variables (features) and 
few samples, multiple testing and nonparametric mod-
els [14]. But it has several particular drawbacks too: ML 
models tend to use regularization to obtain the simplest 
model that predicts well, which means that it selects fea-
tures that may capture efficiently the effects of other vari-
ables through correlations but are not meaningful to the 
user. For instance, in our case test, we find that the pul-
par treatments on a particular tooth (75) have relevance 
for the prediction of the target variable, but which the 
actual relationship may be is not obvious at all. Addition-
ally, ML models typically have worked as black boxes, 
where the user inputs some data and gets a result, with-
out any clue about the actual process to reach the out-
put [33]. Fortunately, a number of methods to explain 
ML output have been developed [33] and, in particular, 
the SHAP reports used here supply both individual and 
global explanations in intuitive formats, even though they 
have their own issues [23]. Both ML and classical statis-
tic studies are complementary in several aspects: with FS, 
the ML approach can highlight relevant features quickly 
but is not appropriate in this form to examine the asso-
ciations of particular variables that might be of interest 
to the practitioner but have been discarded by the model 
during the feature search. Instead, using CE is useful to 
test those cases, by including the variable of interest and 
examining the model results, which can and should be 
complemented by additional classical statistical tests.

As a summary, from the technical point of view, there-
fore, the distinguishing aspects of our proposal compared 
to previous works are: most of them use a custom appli-
cation tailored for a specific target, while we provide a 
general purpose classifier evaluation application, and 
our tool supports systematic feature selection search and 
extensive interpretation functionality with a user inter-
face designed for users with non-technical background. 
This latter aspect also allows ORIENTATE to be used to 
draw inferences about the features like classical statistical 
studies do. A limitation of our study is the small sample 
size of the dataset that we have used to test the applica-
tion. Most of ML algorithms improve their performance 
with larger datasets. But, an advantage of our tool is that 

it is agnostic with respect to the dataset as we said, so 
it can be applied seamlessly to any other dataset in the 
proper format. As future steps we intend to collect addi-
tional datasets for evaluation. We should finally note that 
the interpretation of the features relevance may also be 
considered another limitation of our tool: the major risk 
of using predictive methods for inference is that incorrect 
interpretation of the model results in unwarranted causal 
inferences [34]. This kind of limitation is also acknowl-
edged for example in [29], where they warn that some of 
the predictors were not considered causative. But this is a 
problem shared with classical statistical methods [34]. To 
tackle this problem, we plan to extend the functionality 
of ORIENTATE to apply causal inference methods to our 
datasets [34]: there are programming libraries [35] that 
can be seamlessly integrated with ORIENTATE.

Case study
According to the relevance assigned to each feature 
by our model, the predictive factors were, in order, for 
healthy children: systemic health status, number of teeth 
with pulpar treatment at the first sedation, prevention 
tracking, number of teeth with pulpar involvement before 
the first sedation, presence of bacterial plaque, number of 
teeth extracted due to pathology and the number of fill-
ings (Fig.  5a). For SHCN children, they were: systemic 
health status, prevention tracking, number of teeth with 
pulpar treatment at the first sedation, number of teeth 
with pulpar involvement before the first sedation, pres-
ence of bacterial plaque, number of teeth extracted due 
to pathology and the number of fillings (Fig. 5a).

According to our model, thus, healthy children would 
not need a second sedation, unlike SHCN children 
(Fig. 5b). This difference between both groups of children 
has also been observed in other published studies [36, 
37]. For SHCN, complying with the prevention track-
ing program after the first sedation is a predictive factor 
for a second sedation. One of the goals of the prevention 
tracking program is to achieve a collaborative attitude 
in the patient, which would prevent future treatments 
under sedation. Thus, several authors believe that the 
lack of preventive programs or a bad design of them may 
be the cause of the reinterventions [36, 38–41]. However, 
few works have evaluated the effect of those programs in 
the long term [36, 42, 43]. In our previous study [15, 16] 
we showed that 80% of healthy children that complied 
with the prevention tracking program after a first seda-
tion were able to receive at the dental chair treatments of 
relative complexity. On the contrary, due to their physi-
cal or mental limitations, only 18.4% of SHCN children 
were able to receive this kind of treatment at the den-
tal chair. Despite it may seem contradictory, the fact 
that children show up at the prevention follows-up is a 
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predictive factor for a second sedation. The reason is, as 
we said, that the prevention tracking program for this 
children, in addition to implement preventive measures, 
allows to carry out an early diagnosis of the therapeutic 
needs that will have to be implemented under sedation 
for them. A limitation here is that we have patients for 
whom the compliance of the prevention program has 
not been recorded. Let us recall that compliance with the 
prevention tracking program is a ternary variable. That 
is, some patients were referred from other clinics and 
returned after the first sedation, so their compliance with 
the prevention tracking program was not recorded. For 
those patients, the PreventionTracking feature takes value 
2 and is shown in red in Fig.  5b, for children that did 
have complied with the prevention program the value is 
1 and is shown in purple, while children that did not fol-
low the program, with value 0, are shown in blue. We see 
that not-recorded values (red) decrease the likelihood of 
a second sedation, since those patients do not come back 
to the clinic in many cases and we do not have records 
about the evolution of their oral pathology.

For healthy children, the second predictive factor in 
importance according to ORIENTATE was the num-
ber of teeth with pulpar treatment at the first sedation. 
However, in our previous study [15, 16] neither the initial 
oral pathology nor the treatments done during the first 
sedation were indicators that could predict the need for 
a second sedation. But other works [36, 43] did report 
that children that received more conservative restoration 
treatment during the first intervention tend to need more 
retreatments under deep sedation.

The fourth predictive factor for both groups of chil-
dren was the number of teeth with pulpar involvement 
before the first sedation. In fact, when the number of 
such teeth increases, the probability a second sedation 
decreases (Fig. 5b). In SHCN patients, a higher number 
of teeth with pulpar involvement is associated with less 
likelihood of a second sedation, and similarly for healthy 
children but in a less pronounced way (Fig.  6a). As we 
already found in our previous study [15, 16], SHCN chil-
dren are usually older so most of those teeth with pulpar 
involvement were about to exfoliate. In those cases, the 
selected treatment was extraction at the sedation. This 
way, since those children have more extractions and, 
since due to having fewer teeth, the likelihood of dental 
pathology is lower, ORIENTATE decreases also the prob-
ability of a second sedation. This particular result allows 
us to remark that, to make inferences, we have to com-
plement the model results and explanations with the rest 
of the data available, in this case, the age of the patients, a 
feature that was not selected by the FS algorithm.

The model also shows that SHCN children that have not 
had fillings done at the first sedation are more likely to be 

sedated again (Fig. 6b) and the absence of plaque before 
the first sedation is a clear indicator that the probability of 
a subsequent sedation is low and vice versa (Fig. 6c). This 
seeming contradiction is due to the fact that many SHCN 
children without caries lesions are sedated only to remove 
the large amount of tartar that they produce, due to their 
diet and poor hygiene, since they are not able to collabo-
rate with the dentist for its removal. So, in our previous 
study [15, 16], we found that 3 out of a total of 7 healthy 
children (42,85%) needed a second sedation to undergo a 
tartar removal procedure, whereas 42 out of a total of 48 
of SHCN children (87,5%) needed it.

In summary, we have shown that the predictive factors 
for a second sedation found by ORIENTATE are coher-
ent and complement the ones previously found in our 
classical study. For SHCN children, the systemic health 
status was the more relevant, followed by prevention 
tracking, number of teeth with pulpar treatment at the 
first sedation, number of teeth with pulpar involvement 
before the first sedation, presence of bacterial plaque, 
number of teeth extracted due to pathology and the 
number of fillings. In addition, it is capable of detecting 
predictive factors, which would escape the usual analy-
sis of clinical practice, and even may seem contradictory 
but, upon careful reflection, turn out to be consistent as 
we have discussed.

Conclusion
ORIENTATE allows the automated application of 
machine learning classification algorithms on general 
datasets by clinical practitioners lacking technical skills. 
It can find the best subset of predictors for a given tar-
get variable and shows several graphs that facilitate the 
explanation of the classification model results, using 
global interpretation methods, and an interface for the 
prediction of new input samples. For the case study, our 
tool was able to achieve a high prediction accuracy for a 
second sedation in SHCN children, despite the dataset 
being heavily imbalanced and its small size. The analysis 
of the relevance of the features showed that, for healthy 
children, the number of teeth with pulpar treatments at 
the first sedation is a predictive factor for a second seda-
tion, whereas for SHCN children a predictive factor was 
the compliance with the prevention tracking program. 
Our analysis is complementary to others done with clas-
sical statistical methods. In summary, ORIENTATE 
achieves several goals: first, it automatically finds suit-
able features and generates accurate classifiers for predic-
tive tasks. Second, it helps researchers without specific 
skills in data methods in both the application of machine 
learning classification and as a complement to classical 
studies for inferential analysis of features.
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