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Resumen

El leitmtotiv de la optimización matemática consiste en la búsqueda de un mejor elemento

con respecto a un determinado criterio. Una de las manera más simple de describir este

proceso es por medio del problema de minimización

min
x∈H

φ(x),

donde H es un espacio de Hilbert real mientras que φ : H → R ∪ {+∞} es una función

con imagen sobre la recta real extendida que refleja las condiciones a optimizar. Los

avances actuales en tecnoloǵıa y el incremento de información disponible hacen que los

problemas de optimización aumenten progresivamente en tamaño y complejidad. Una

correcta aproximación a su tratamiento numérico precisa de un estudio cuidadoso de los

datos de partida. En otras palabras, es fundamental ser capaz de sacar provecho de la

estructura matemática de la función φ. Siguiendo la estrategia de divide y vencerás, los

algoritmos de desglose se especializan en abordar programas matemáticos a través de la

resolución iterativa de tareas simples, las cuales se definen empleando partes del problema

original de manera independiente. Esto ha hecho que esta clase de algoritmos se consolide

como una de las más fruct́ıferas en el área de la optimización numérica moderna.

Esta tesis contribuye a la teoŕıa de los algoritmos de desglose para optimización con-

vexa y no convexa, campos significativamente dispares. Nuestras aportaciones se presentan

en dos partes claramente diferenciadas, pero que comparten un mismo objetivo común:

mejorar la eficiencia de los procesos computacionales de los algoritmos. Cada uno de los

programas matemáticos abordados a lo largo de la tesis requerirá de un enfoque espećıfico

para la consecución de dicha meta. Las diferentes herramientas empleadas en el análisis de

las técnicas numéricas para la resolución de estos problemas delineará la organización de

la tesis. Asimismo, la eficacia de nuestros desarrollos teóricos se ilustrará en experimentos

numéricos con datos, tanto sintéticos como reales, que surgen en diversas aplicaciones,

como recuperación de imágenes, localización de instalaciones, computación distribuida y

planificación de tratamientos de radioterapia de intensidad modulada.
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xiv Resumen

Los Caṕıtulos 1 y 2 están dedicados respectivamente a presentar una breve intro-

ducción aśı como notación básica y resultados preliminares que serán requeridos más ade-

lante. Destacamos la última sección del Caṕıtulo 2, que pretende ser un escueto primer

contacto con el papel de la programación matemática en el modelado y resolución de

problemas que surgen en el campo del tratamiento de imágenes. El resto de caṕıtulos de

la tesis se distribuyen en dos partes claramente diferenciadas.

En la primera parte de la tesis nos focalizamos en los comúnmente conocidos como al-

goritmos de desglose para operadores monótonos. Diremos que un operador multi-valuado

A : H ⇒ H es monótono si verifica la desigualdad

⟨x− y, u− v⟩ ≥ 0,

para todo (x, u) e (y, v) pertenecientes al grafo de A, y donde ⟨·, ·⟩ representa el producto

interior de H. El problema de inclusión monótona, que consiste en hallar un cero de un

operador monótono, es decir,

encontrar x ∈ H tal que 0 ∈ A(x),

permite modelar una gran variedad de situaciones que surgen en optimización convexa.

Esto engloba la minimización de sumas de funciones convexas, problemas de factibili-

dad, problemas de punto de silla y desigualdades variacionales, entre muchas otras. En la

Sección 2.2 detallamos una primera conexión entre la optimización convexa y los opera-

dores monótonos. Además, introducimos herramientas fundamentales para el análisis de

los algoritmos de desglose para operadores monótonos, como son los resolventes, los ope-

radores no-expansivos y algunos resultados de teoŕıa de punto fijo. También presentamos

una selección de fórmulas cerradas de algunos resolventes que aparecerán recurrentemente

a lo largo de la tesis.

En las últimas décadas, un gran número de métodos de desglose han sido diseñados

para abordar un amplio rango de inclusiones monótonas. El objetivo del Caṕıtulo 3 es ini-

ciar al lector en la teoŕıa de métodos de desglose para operadores monótonos y establecer

una base común para los desarrollos presentados en los caṕıtulos siguientes. En concreto,

recopilamos las inclusiones monótonas más relevantes, destacamos sus aplicaciones en

optimización y discutimos las propiedades de convergencia de los algoritmos más populares

para su resolución. Entre otros, introducimos los algoritmos de Douglas–Rachford, Davis–

Yin, Chambolle–Pock y Tseng.

El tema central alrededor del cual gira la primera parte de la tesis es presentado en
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el Caṕıtulo 4. Más concretamente, definimos con rigurosidad el concepto de dimensión

del espacio subyacente al algoritmo, que denotaremos como lifting. A pesar de que los

algoritmos de desglose para operadores monótonos han sido minuciosamente estudiados

en la literatura, una anomaĺıa común ha persistido en el diseño de algoritmos en esta

familia: su lifting crece at́ıpicamente conforme aumenta el tamaño del problema. Esto

afecta directamente al rendimiento del algoritmo debido al incremento de los requisitos

de memoria. Como ejemplificación de este hecho, considérese que estamos aplicando un

algoritmo de desglose para la recuperación de una imagen borrosa con una resolución de

1000 × 1000 ṕıxeles (un tamaño razonable). Matemáticamente esta imagen se representa

a través de una matriz en el espacio R1000×1000, la cual tiene un total de n = 1 000 000

entradas. Además, supongamos que el lifting de nuestro algoritmo viene dado por un

número natural d. Esto implicaŕıa que en cada iteración del algoritmo estamos arrastrando

un total de d × n variables que deben ser almacenadas temporalmente en el ordenador.

Reducir el lifting del algoritmo es por tanto sumamente recomendable, especialmente si

el número n de variables del problema es grande.

En el Caṕıtulo 4 introducimos un marco general para el estudio del lifting de los

métodos de desglose para operadores monótonos y recopilamos los teoremas hasta ahora

existentes que caracterizan el lifting mı́nimo que un método puede tener bajo ciertas

condiciones. En particular, nuestras nuevas aportaciones teóricas son una generalización

del teorema de lifting mı́nimo de Malitsky–Tam que engloba el uso de parámetros de

tamaño de paso en los algoritmos de desglose, lo que aumenta considerablemente la gama

de métodos que verifican las hipótesis del teorema, aśı como el establecimiento del primer

resultado de lifting mı́nimo para algoritmos de desglose primales-duales.

El Caṕıtulo 5 continene una demostración novedosa de la convergencia del algoritmo

de desglose de Davis–Yin que permite duplicar el rango de valores admitidos del parámetro

de tamaño de paso del algoritmo. Aunque la discusión sobre el lifting mı́nimo del método

de Davis–Yin no tiene lugar en este caṕıtulo, la prueba propuesta recoge la esencia del

análisis de convergencia del método de desglose con lifting mı́nimo desarrollado en el

Caṕıtulo 6.

Esta primera parte concluye con los Caṕıtulos 6 y 7, donde presentamos cuatro nuevos

algoritmos con lifting mı́nimo (o reducido) para la resolución de los problemas de inclusión

monótona discutidos en el Caṕıtulo 3. En concreto, en el Caṕıtulo 6 desarrollamos un

algoritmo con lifting mı́nimo para la resolución de inclusiones monótonas conformadas por

la suma de operadores monótonos maximales y cocoercivos. A su vez, la inclusión de unos

términos de tipo reflexión nos permite diseñar una modificación del algoritmo adecuada
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para abordar inclusiones monótonas donde la hipótesis de cocoercividad es remplazada por

una menos exigente, esto es, los operadores pueden ser monótonos y Lipschitz continuos.

En el Caṕıtulo 7 introducimos el único método de desglose primal-dual existente para

la resolución de inclusiones monótonas compuestas, las cuales involucran composiciones

de operadores monónotonos maximales con operadores lineales. Por último, coordinamos

los tres métodos previos para desarrollar un esquema capaz de abordar combinaciones de

las inclusiones monótonas anteriores. Experimentos numéricos ilustran las ventajas de los

métodos propuestos con respecto a otros algoritmos con mayor lifting.

La primera parte de la tesis se fundamenta en los siguientes art́ıculos publicados:

[10] Aragón-Artacho, F. J., Boţ, R. I., and Torregrosa-Belén, D. A primal-

dual splitting algorithm for composite monotone inclusions with minimal lifting.

Numer. Algorithms 93, 1 (2023), 103–130.

[25] Aragón-Artacho, F. J., Malitsky, Y., Tam, M. K., and Torregrosa-

Belén, D. Distributed forward-backward methods for ring networks. Comput.

Optim. Appl. 86, 3 (2023), 845–870.

[26] Aragón-Artacho, F. J., and Torregrosa-Belén, D. A direct proof of con-

vergence of Davis–Yin splitting algorithm allowing larger stepsizes. Set-Val. Var.

Anal. 30, 3 (2022), 1011–1029.

En la segunda parte de la tesis introducimos dos avances independientes en la teoŕıa

de los algoritmos de desglose distribuidos en dos caṕıtulos. El marco necesario para el

análisis matemático de estas contribuciones no se sustenta en la teoŕıa de los operadores

monótonos. Este hecho ha motivado la separación de la tesis en dos partes diferenciadas

de acuerdo a las distintas metodoloǵıas empleadas en cada una de ellas.

En el Caṕıtulo 8 nos trasladamos al dominio no convexo. Citando a Tyrell Rockafellar,

uno de los padres de la optimización moderna, “...de hecho, la gran ĺınea divisoria en

optimización no separa la linealidad y la no linealidad, sino la convexidad y la no conve-

xidad”. En efecto, el análisis de algoritmos de desglose para problemas no convexos no se

ha desarrollado en la misma medida que en el caso convexo, solo habiéndose conseguido

resultados de convergencia para un número reducido de problemas. Aqúı introducimos

el algoritmo BDSA (Boosted Double-proximal Subgradient Algorithm), un nuevo método

de desglose diseñado para abordar programas matemáticos que involucran estructuras no

convexas y no diferenciables. BDSA explota la estructura de los datos del problema a

través del uso combinado de subgradientes y la evaluación de operadores de proximidad.
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Además, integra una búsqueda lineal al final de cada iteración con el objetivo de mejorar

su rendimiento computacional. Mientras que BDSA engloba algoritmos ya existentes en la

literatura, extiende su aplicación a configuraciones de problemas más diversas. Por medio

de experimentos numéricos con aplicaciones al problema de conglomerados de suma de

cuadrados mı́nima y una generalización del clásico problema de Heron, mostramos que la

búsqueda lineal reduce considerablemente el número de iteraciones y el tiempo que BDSA

necesita para converger en comparación con algoritmos con términos de inercia. Asimismo,

presentamos dos nuevas familias de funciones test que ilustran la eficacia de BDSA para

evitar puntos cŕıticos no óptimos. Este caṕıtulo se basa en el art́ıculo sometido

[29] Aragón-Artacho, F. J., Pérez-Aros, P., and Torregrosa-Belén, D.

The boosted double-proximal subgradient algorithm for nonconvex optimization.

Preprint, arXiv:2306.17144 [math.OC], 2023 .

Finalmente, en el Caṕıtulo 9 consideramos el problema de minimización dividido que

consta de dos subproblemas de minimización con restricciones en dos espacios distintos

bajo un operador lineal que asigna un espacio al otro. Este es un problema complejo

que surge en aplicaciones prácticas como la planificación de tratamientos de radioterapia

de intensidad modulada. Con frecuencia, la complejidad de los datos de dicho problema

hace que la obtención de una solución exacta suponga un gran desaf́ıo computacional. Para

afrontar esta situación distinguimos dos objetivos de diferente importancia en el problema

de minimización dividido: un objetivo mayor consistente en la verificación de la restric-

ciones y un objetivo secundario, pero deseable, de reducción de las funciones objetivo.

Seguidamente desarrollamos un enfoque basado en la metodoloǵıa de la superiorización.

Los algoritmos superiorizados son una clase de métodos “semi-heuŕısticos” que se basan

en entrelazar los pasos de dos procesos iterativos separados e independientes, perturbando

las iteraciones de un proceso de acuerdo con los pasos dictados por el otro proceso. En

este caso, el esquema de nuestro algoritmo se rige por un método de proyección, que ase-

gura la convergencia a un punto factible, mientras que escogemos las perturbaciones de

acuerdo a la meta secundaria de reducir (no minimizar) las funciones objetivo presentes

en el problema. De esta manera sacrificamos el objetivo de minimización global a cambio

de conseguir una mayor eficiencia numérica. Además, incluimos dos elementos novedosos

en la metodoloǵıa de la superiorización. El primero es la posibilidad de reiniciar las per-

turbaciones en el algoritmo superiorizado, lo que resulta en una aceleración significativa y

aumenta el rendimiento del método. El segundo elemento es la capacidad de superiorizar

subvectores de forma independiente. Las contribuciones presentes en este caṕıtulo fueron

publicadas en primer lugar en

https://arxiv.org/abs/2306.17144
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[23] Aragón-Artacho, F. J., Censor, Y., Gibali, A., and Torregrosa-Belén,

D. The superiorization method with restarted perturbations for split minimization

problems with an application to radiotherapy treatment planning. Appl. Math.

Comput. 440 (2023), Paper No. 127627, 17.



Abstract

With modern advances in technologies and quantity of information, optimization problems

become increasingly large in size and complexity. Successfully handling these ever evolving

programs requires a careful processing of the available data, namely, taking advantage

of the inherent mathematical structure of the problem. Following the divide-and-conquer

paradigm, splitting algorithms specialize in tackling mathematical programs by iteratively

solving simpler subtasks, which are defined by separately using some parts of the original

problem. This has led this class of algorithms to emerge as one of the most fruitful among

modern numerical optimization methods.

This thesis contributes to the theory of splitting algorithms for both convex and non-

convex optimization. Our contributions are presented in two clearly differentiated parts,

but which share a common core objective: to enhance the efficiency of the algorithms’ com-

putational processes. This goal is achieved through distinct approaches tailored to each

specific mathematical program faced throughout the thesis. In addition, the effectiveness

of our theoretical developments is validated in numerical experiments with synthetic and

realistic data arising in multiple real-world applications, such as image recovery, facility

location and intensity-modulated radiation therapy treatment planning.

In Part I, we concentrate on the so-called monotone operator splitting methods. These

algorithms are employed for solving monotone inclusions, a problem which models several

situations in convex optimization. Although these methods have been thoroughly studied

in the last decades, a common anomaly has persisted in the design of algorithms in

this family: the dimension of the underlying space —which we denote as lifting— of the

algorithms abnormally increases as the problem size grows. This has direct implications

on the computational performance of the methods as a result of the escalation of memory

requirements. In this framework, we characterize the minimal lifting that can be obtained

by splitting algorithms adept at solving certain general monotone inclusions. Moreover,

we pioneer the development of splitting methods matching these lifting bounds, and thus

having minimal lifting. The analysis developed in this context also leads to a new proof

of convergence of the popular Davis–Yin splitting algorithm which allows to double the

range of admitted stepsize parameter values.

xix
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Two independent advances to the family of splitting algorithms are presented in

Part II. In Chapter 8, we move to the nonconvex realm. The analysis of splitting methods

for nonconvex problems has not been developed to the same extent as in the convex set-

ting, with convergence guarantees only given for some restricted problem structures. We

introduce the Boosted Double-proximal Subgradient Algorithm (BDSA), a novel splitting

algorithm designed to address general structured nonsmooth and nonconvex mathemat-

ical programs. While BDSA encompasses existing schemes in the literature, it extends

its applicability to more diverse problem domains. One of the features of BDSA, which

differentiates it from previously proposed methods, is the integration of a linesearch pro-

cedure to enhance (or “boost”) its performance. Numerical experience reveals that this

linesearch considerably reduces both the number of iterations and the time that BDSA

needs to converge in comparison with algorithms including inertial terms. In addition,

we introduce two new families of test functions to illustrate BDSA’s ability to effectively

escape non-optimal critical points.

Finally, in Chapter 9, we study the split minimization problem that consists of two

constrained minimization problems in two separate spaces that are connected via a linear

operator that maps one space into the other. To handle the data of such a problem,

we develop a superiorization approach that can reach a feasible point with reduced (not

necessarily minimal) objective function values. The superiorization methodology is based

on interlacing the iterative steps of two separate and independent iterative processes by

perturbing the iterates of one process according to the steps dictated by the other. Further,

we include in our developed method two novel elements. The first one is the permission

to restart the perturbations in the superiorized algorithm, which results in a significant

acceleration and increases the computational efficiency. The second element is the ability

to independently superiorize subvectors.



Chapter 1

Introduction: A guide for the reader

The leitmotiv of mathematical optimization consists in the search for a best element with

respect to some criterion. The simplest way to mathematically describe this is by means

of the minimization problem

min
x∈H

φ(x), (1.1)

where H is a real Hilbert space and the extended real-valued function φ : H → R∪{+∞}
captures the conditions to optimize. The modern advances in technologies and quantity of

information lead to optimization problems becoming increasingly large in size and com-

plexity. Successfully handling these ever evolving problems requires a careful processing of

the available data, namely, taking advantage of the mathematical structure of the function

φ. Following the divide-and-conquer paradigm, splitting algorithms specialize in tackling

mathematical programs by iteratively solving simpler subtasks, which are defined by sep-

arately using some parts of the original problem. This has led this class of algorithms to

emerge as one of the most fruitful among modern numerical optimization methods.

Throughout this thesis, we shall investigate splitting algorithms applicable to a wide

spectrum of problems in the form of (1.1), encompassed in both convex and nonconvex

optimization. The different tools required for analyzing numerical approaches to each

of such programs will delineate the organization of the thesis. Nevertheless, a common

central objective underlies and motivates the developments furnished in this dissertation:

the enhancement of the efficiency of splitting algorithm’s computational processes. This

goal will be achieved through distinct approaches tailored to each specific problem setting.

The purpose of this introductory chapter is to provide an overview of the contents

and organization of the thesis. Furthermore, each chapter begins with a brief motivation

and listing of the main achievements contained therein. The reader is referred to those

sections for further specific details of each chapter.

1



2 Chapter 1. Introduction: A guide for the reader

Besides Chapter 2, which introduces basic notation and preliminary results, the thesis

is divided into two clearly differentiated parts.

1.1 Overview of Part I

In Part I, we concentrate on the subclass of monotone operator splitting algorithms. A

set-valued operator A : H ⇒ H is said to be monotone if

⟨x− y, u− v⟩ ≥ 0,

for all (x, u) and (y, v) belonging to the graph of A. The monotone inclusion problem

consisting in finding a zero of a monotone operator, i.e.,

find x ∈ H such that 0 ∈ A(x), (1.2)

can be used to model a great variety of situations in convex optimization. This encom-

passes the minimization of sums of convex functions, feasibility problems, and many more.

A first connection between convex optimization and monotone operators is detailed in

Section 2.2.

In the last five decades, a large number of splitting methods have been devised to

address a broad range of inclusions in the form of (1.2), which are determined by the

specific structure of A. Chapter 3 aims to introduce the reader to the family of monotone

operator splitting methods and to establish a common basis for the developments pre-

sented in subsequent chapters. Therein, we survey relevant monotone inclusion problems,

emphasizing their applications to optimization and introducing the most popular splitting

methods for their resolution.

The central theme on which this part of the thesis revolves around is rigorously defined

in Chapter 4. More concretely, the dimension of the underlying space of an algorithm,

also called lifting, which has a big influence on its computational performance. In this

chapter, we describe a unifying framework for analyzing the lifting of monotone operator

splitting algorithms and present the known theorems characterizing the minimal lifting

that a method can achieve under certain conditions.

Chapter 5 contains a new proof of convergence of the Davis–Yin splitting algorithm

which allows to double the range of admitted stepsize parameter values. Although the

discussion on the minimal lifting of the Davis–Yin method is not conducted there, the
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newly proposed proof gathers the essence of the convergence analysis of the minimal lifting

method devised in Chapter 6.

This part concludes with Chapters 6 and 7, where we introduce four new algorithms

with minimal (or reduced) lifting specialized in solving the monotone inclusion problems

described in Chapter 3. Numerical experiments illustrate the advantages of the proposed

algorithms with respect to other methods with higher lifting.

Part I of the thesis is founded on the following published papers:

[10] Aragón-Artacho, F. J., Boţ, R. I., and Torregrosa-Belén, D. A primal-

dual splitting algorithm for composite monotone inclusions with minimal lifting.

Numer. Algorithms 93, 1 (2023), 103–130.

[25] Aragón-Artacho, F. J., Malitsky, Y., Tam, M. K., and Torregrosa-

Belén, D. Distributed forward-backward methods for ring networks. Comput.

Optim. Appl. 86, 3 (2023), 845–870.

[26] Aragón-Artacho, F. J., and Torregrosa-Belén, D. A direct proof of con-

vergence of Davis–Yin splitting algorithm allowing larger stepsizes. Set-Val. Var.

Anal. 30, 3 (2022), 1011–1029.

1.2 Overview of Part II

This part presents two independent advances to the theory of general splitting algorithms,

which are distributed in two different chapters. The necessary setting for the analysis

of these contributions cannot be drawn upon the framework established by monotone

operators. This is what led us to split the thesis into two separate parts according to the

disparate methodology employed.

Rather than including here a detailed motivation of the topics to discuss in Part II,

we refer the reader to the introductions of Chapters 8 and 9. In what follows, we highlight

the main contributions of each chapter.

Chapter 8 introduces the novel Boosted Double-proximal Subgradient Algorithm (ab-

breviated as BDSA) for structured nonsmooth and nonconvex mathematical programs.

BDSA exploits the combined nature of subgradients from the data and proximal steps,

and integrates a linesearch procedure to enhance its performance. To evaluate the effec-

tiveness of BDSA, we introduce two novel test functions with an abundance of critical

points. We conduct comparative evaluations, including algorithms with inertial terms,
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that illustrate its ability to effectively escape non-optimal critical points. Additionally, we

present two practical applications of BDSA for testing its efficacy, namely, a constrained

minimum-sum-of-squares clustering problem and a nonconvex generalization of Heron’s

problem. This chapter is based on the submitted work

[29] Aragón-Artacho, F. J., Pérez-Aros, P., and Torregrosa-Belén, D.

The boosted double-proximal subgradient algorithm for nonconvex optimization.

Preprint, arXiv:2306.17144 [math.OC], 2023 .

Chapter 9 proposes an algorithm based on the superiorization methodology for tack-

ling a class of constrained optimization problem, with applications in intensity-modulated

radiation therapy treatment planning. This algorithm provides an efficient way of han-

dling the data from this challenging problem, for which it is computationally difficult,

or sometimes even impossible, to obtain exact solutions by standard splitting methods.

Superiorization algorithms are a class of “semi-heuristic” methods that interlace feasi-

bility seeking steps with the inclusion of certain perturbations which aim to reduce (not

minimize) a target function while ensuring constraint satisfiability. Hence, in the pursuit

of greater numerical efficiency, the objective of global minimization is sacrificed. Two new

elements are included. The first is a permission to restart the perturbations in the supe-

riorized algorithm, which increases the computational efficiency. The second is the ability

to superiorize independently over subvectors. The developments in this chapter were first

published in

[23] Aragón-Artacho, F. J., Censor, Y., Gibali, A., and Torregrosa-Belén,

D. The superiorization method with restarted perturbations for split minimization

problems with an application to radiotherapy treatment planning. Appl. Math.

Comput. 440 (2023), Paper No. 127627, 17.

https://arxiv.org/abs/2306.17144


Chapter 2

Preliminaries

The purpose of the chapter is to introduce the basic notation and preliminary results that

will be needed throughout the thesis. In Section 2.1, we fix the nomenclature. Section 2.2

establishes a first bond between optimization and monotone operators. This section con-

tains some key results from the areas of convex analysis, fixed point theory and monotone

operator theory. Section 2.3 provides closed-formulas for some proximal point and projec-

tion mappings that will be employed in the thesis. In subsequent chapters we shall test

algorithm performance by conducting numerical experiments in image processing. We

devote Section 2.4 to illustrate the mathematical formulation of problems in this field.

2.1 Notational conventions

Throughout this thesis, H and G are real Hilbert spaces. Otherwise stated, to simplify the

notation, we will employ ⟨·, ·⟩ and ∥ ·∥ to denote the inner product and the induced norm,

respectively, of any space. We use → to denote norm convergence of a sequence, while ⇀

refers to weak convergence. We denote by Hn the product Hilbert space Hn := H× (n)· · · ×H
with inner product defined as

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ :=
n∑

i=1

⟨xi, yi⟩, ∀(x1, . . . , xn), (y1, . . . , yn) ∈ Hn.

Sequences and sets in product spaces are marked with bold, e.g., x = (x1, . . . , xn) ∈ Hn.

We use Bε(x̄) to denote the closed ball of radius ε > 0 centered at x̄, namely,

Bε(x̄) := {x ∈ H : ∥x− x̄∥ ≤ ε} .

For a set-valued operator, we write A : H ⇒ H, in opposition to A : H → H, which

5
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denotes a single-valued operator. The notation dom, Fix, zer, ran and gra is used for the

domain, the set of fixed point , the zeros, the range and the graph of A, respectively, i.e.,

domA := {x ∈ H : A(x) ̸= ∅} , ranA := {u ∈ H : ∃x ∈ H : u ∈ A(x)} ,
graA := {(x, u) ∈ H ×H : u ∈ A(x)} , FixA := {x ∈ H : x ∈ A(x)} ,

and zerA := {x ∈ H : 0 ∈ A(x)} .

The inverse operator of A, denoted by A−1, is the operator whose graph is given by

graA−1 = {(u, x) ∈ H ×H : u ∈ A(x)}. The identity operator is denoted by Id. When

L : H → G is a bounded linear operator, we use L∗ : G → H to denote its adjoint, which

is the unique bounded linear operator such that ⟨Lx, y⟩ = ⟨x, L∗y⟩, for all x ∈ H and

y ∈ G.

We recall that a set C ⊆ H is said to be convex if for any x, y ∈ C,

(1 − α)x+ αy ∈ C, ∀α ∈ ]0, 1[.

For an arbitrary set C ⊆ H, we use the notation span to denote its span and co for its

convex hull , which are defined as

spanC :=

{
n∑

i=1

λixi : n ∈ {1, 2, . . .}, xi ∈ C, λi > 0

}
,

coC :=

{
n∑

i=1

λixi : n ∈ {1, 2, . . .}, xi ∈ C, λi ∈ ]0, 1],
n∑

i=1

λi = 1

}
.

The span of C coincides with the smallest linear subspace of H containing C, its closure

is the smallest closed linear subspace of H that contains C and is denoted by spanC. A

set K ⊆ H is said to be a cone if K = R++K, where R++ = {λ : λ > 0}. The conicall

hull of a set C ⊆ H is the intersection of all the cones in H containing C. It is denoted

by coneC.

If C is a convex set, its relative interior and strong relative interior are denoted as ri

and sri, respectively:

riC := {x ∈ C : cone (C − x) = span (C − x)} ,
sriC := {x ∈ C : cone (C − x) = span (C − x)} .

The symbol N is used for denoting the set of nonnegative integers, i.e., N := {0, 1, 2, . . .}.
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We use Rn to denote the Euclidean space of dimension n, while we define the extended-

real-valued line by R := R ∪ {−∞,+∞} and adopt the convention 1/0 = +∞. The

domain of a function f : H → R is defined as dom f := {x ∈ H : f(x) < +∞}. We say

that f is proper if it does not attain the value −∞ and dom f ̸= ∅. The function f is said

to be lower-semicontinuous (l.s.c.) at some point x̄ ∈ H if lim infx→x̄ f(x) ≥ f(x̄).

A function f : H → R is convex if for any x, y ∈ dom f

f((1 − α)x+ αy) ≤ (1 − α)f(x) + αf(y), ∀α ∈ ]0, 1[.

The function f : H → R is said to be (Fréchet) differentiable at a point x̄ ∈ H if there

exists ∇f(x̄) ∈ H such that

lim
x→x̄

f(x) − f(x̄) − ⟨∇f(x̄), x− x̄⟩
∥x− x̄∥ = 0.

In this case ∇f(x̄) is called the (Fréchet) gradient of f at x̄.

Finally, to simplify the notation we will usually employ the compact expression Jk, lK
to denote the set of integers between k, l ∈ N, i.e.,

Jk, lK :=

{
{k, k + 1, . . . , l}, if k ≤ l,

∅, otherwise.

2.2 Convex analysis and monotone operator theory

This section contains a brief presentation of the basic concepts required from three in-

terconnected areas: the theory of nonexpansive mappings, monotone operator theory and

convex optimization. Our exposition is mainly based on the book by Bauschke and Com-

bettes [44], which is an indispensable reference in this field. The recent book of Bauschke

and Moursi [52] contains an accessible introduction to convex analysis and optimization,

so we strongly recommend it to people who wish to get started in the area of splitting

algorithms.

2.2.1 Nonexpansiveness and fixed point theorems

The analysis of many numerical methods in optimization relies on the use of tools from

fixed point theory. A considerable number of the algorithms studied in this thesis can be
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described as a fixed point iteration of a single-valued operator T : H → H given by

xk+1 = T (xk), ∀k ∈ N. (2.1)

The following definition gathers some properties that are crucial in the convergence study

of the above sequence.

Definition 2.1. An operator T : H → H is said to be

(i) β-Lipschitz continuous for β > 0 if

∥T (x) − T (y)∥ ≤ β∥x− y∥, ∀x, y ∈ H;

(ii) nonexpansive if it is 1-Lipschitz continuous, i.e.,

∥T (x) − T (y)∥ ≤ ∥x− y∥, ∀x, y ∈ H;

(iii) quasi-nonexpansive if

∥T (x) − y∥ ≤ ∥x− y∥, ∀x ∈ H,∀y ∈ FixT ;

(iv) 1
β

-cocoercive for β > 0 if

⟨T (x) − T (y), x− y⟩ ≥ 1

β
∥T (x) − T (y)∥2, ∀x, y ∈ H;

(v) α-averaged nonexpansive for α ∈ ]0, 1[ if

∥T (x) − T (y)∥2 +
1 − α

α
∥(Id−T )(x) − (Id−T )(y)∥2 ≤ ∥x− y∥2, ∀x, y ∈ H;

(vi) 1−α
α

-strongly quasi-nonexpansive for α ∈ ]0, 1[ if

∥T (x) − y∥2 +
1 − α

α
∥(Id−T )(x)∥2 ≤ ∥x− y∥2, ∀x ∈ H,∀y ∈ FixT ;

(vii) firmly nonexpansive if

∥T (x) − T (y)∥2 + ∥(Id−T )(x) − (Id−T )(y)∥2 ≤ ∥x− y∥2, ∀x, y ∈ H.
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For brevity, we sometimes omit to mention the corresponding constant when referring

to some of the above operators. For instance, we say averaged nonexpansive instead of

α-averaged nonexpansive.

Remark 2.2. The properties in Definition 2.1 are closely intertwined.

(a) The following implications hold: (v) ⇒ (ii) ⇒ (iii) and (v) ⇒ (vi) ⇒ (iii).

(b) Firmly nonexpansiveness equals α-averagedness with α = 1
2
. Hence, any α-averaged

operator with α ∈
]
0, 1

2

]
is firmly nonexpansive.

(c) By the Cauchy–Schwarz inequality, a 1
β
-cocoercive operator is β-Lipschitz continuous.

The Baillon–Haddad theorem [37, Corolaire 10] states that the opposite inclusion also

holds when the operator is the gradient of a convex function.

(d) By [44, Proposition 4.4], an operator T is 1
β
-cocoercive if and only if 1

β
T is firmly

nonexpansive.

(e) An equivalent definition of averaged nonexpansive operator is the following. An oper-

ator T is α-averaged, with α ∈ ]0, 1[, if and only if it is of the form

T = (1 − α) Id +αR,

with R a nonexpansive operator.

The following characterization of firmly nonexpansive operators will be useful in the

sequel. For further equivalent expressions we refer the reader to [44, Chapter 4].

Proposition 2.3 ([44, Proposition 4.4]). An operator T : H → H is firmly nonex-

pansive if and only if

0 ≤ ⟨T (x) − T (y), (Id−T )(x) − (Id−T )(y)⟩, ∀x, y ∈ H.

The next result states that the sum of cocoercive operators is also cocoercive.

Proposition 2.4 ([44, Proposition 4.12]). For every i ∈ {1, . . . , n}, let Ti : H → H
be a 1

βi
-cocoercive operator with βi > 0. Then the operator T =

∑n
i=1 Ti is 1

β
-cocoercive

with β =
∑n

i=1 βi.

Fejér monotonicity is a key property in fixed point theory, as it allows to derive weak

convergence of iterative sequences (see, e.g, [44, Chapter 5]).

Definition 2.5 (Fejér monotone). Let C ⊆ H be a nonempty set and let (xk)k∈N be a

sequence in H. Then (xk)k∈N is Fejér monotone with respect to C if, for all x ∈ C,

∥xk+1 − x∥ ≤ ∥xk − x∥, ∀k ∈ N.
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Proposition 2.6 ([44, Theorem 5.5]). Let C be a nonempty subset of H and let (xk)k∈N

be a sequence in H. Suppose that (xk)k∈N is Fejér monotone with respect to C and that

every weak sequential cluster point of (xk)k∈N belongs to C. Then (xk)k∈N converges weakly

to a point in C.

According to the widely-known Banach–Picard theorem, the iterative sequence (xk)k∈N

defined in (2.1) converges strongly to a fixed point of T provided this operator is contrac-

tive, i.e., it is β-Lipschitz continuous with β ∈ [0, 1[. However, the contraction assumption

is too restrictive as the operators that one encounters in practice are at most nonex-

pansive, namely, β = 1. When T is a nonexpansive operator, the fixed point iteration

(2.1) is well-known to usually diverge (for instance, set T = − Id). This situation can be

overcome by considering a Krasnosel’skǐı–Mann iteration, which might be regarded as a

relaxed version of (2.1).

Theorem 2.7 (Krasnosel’skǐı–Mann iteration, [44, Theorem 5.15]). Given a non-

expansive operator T : H → H such that FixT ̸= ∅, let (λk)k∈N be a sequence in [0, 1]

such that
∑

k∈N λk(1 − λk) = +∞, and let x0 ∈ H. Set

xk+1 = xk + λk
(
T (xk) − xk

)
, ∀k ∈ N.

Then the following hold.

(i) (xk)k∈N is Fejér monotone with respect to FixT .

(ii)
(
T (xk) − xk

)
k∈N converges strongly to 0.

(iii) (xk)k∈N converges weakly to a point in FixT .

The following is a refined version of Theorem 2.7 for averaged nonexpansive operators

that admits larger relaxation parameters λk.

Proposition 2.8 ([44, Proposition 5.16]). Let α ∈ ]0, 1[ and let T : H → H be an

α-averaged nonexpansive operator such that FixT ̸= ∅. Let (λk)k∈N be a sequence in [0, 1
α

]

such that
∑

k∈N λk(1 − αλk) = +∞. Given x0 ∈ H, set

xk+1 = xk + λk
(
T (xk) − xk

)
, ∀k ∈ N.

Then the statements (i), (ii) and (iii) in Theorem 2.7 also hold.
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Remark 2.9. (a) In view of Remark 2.2 (e), assertions (i), (ii) and (iii) in Theorem 2.7

also hold for the sequence generated by the fixed point iteration (2.1) of an α-averaged

nonexpansive operator by just setting T := R and λk := α, for all k ∈ N.

(b) If T is a firmly nonexpansive operator in Proposition 2.8, a constant relaxation pa-

rameter can be chosen in the interval ]0, 2[.

We say that a fixed point sequence (xk)k∈N defined by an operator T satisfies the

asymptotic regularity property if

T (xk) − xk → 0. (2.2)

This property is fundamental for guaranteeing the weak convergence of the sequence gen-

erated by the Krasnosel’skǐı–Mann iteration. In the sequel we shall encounter fixed point

iterations defined by operators that only possess “one-sided” nonexpansive properties,

such as strong quasi-nonexpansiveness. Theorem 2.7 and Proposition 2.8 are not appli-

cable in this situation. The verification of (2.2) will be the first step in the convergence

analysis of such sequences.

Finally, we say that a single-valued operator T : H → H is demiregular at x ∈ H if

for all sequences (xk)k∈N with xk ⇀ x and T (xk) → T (x), we have that xk → x.

2.2.2 Monotone operator theory

Many problems arising in convex optimization can be described using monotone operators.

In the following, we introduce some basic concepts about monotone operator theory.

Definition 2.10 (Monotone operator). Let A : H ⇒ H be a set-valued operator

(i) A is said to be µ-monotone for µ ∈ R if

⟨x− y, u− v⟩ ≥ µ∥x− y∥2, ∀(x, u), (y, v) ∈ graA.

Furthermore, A is said to be µ-maximally monotone if there exists no µ-monotone

operator B : H ⇒ H such that graB properly contains graA.

(ii) A is said to be uniformly monotone with modulus ϕ : R+ → [0,+∞[ if ϕ is increas-

ing, vanishes only at 0, and

⟨x− y, u− v⟩ ≥ ϕ(∥x− y∥), ∀(x, u), (y, v) ∈ graA.
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An operator is monotone (in the classical sense) if it is 0-monotone and it is µ-strongly

monotone (in the classical sense) if it is µ-monotone with µ > 0, in which case it is uni-

formly monotone with modulus ϕ(t) = µt2, for t ∈ R+. Obviously any strongly monotone

operator is in particular monotone. The next result states that strong monotonicity is

equivalent to cocoercivity of the inverse operator.

Proposition 2.11 ([44, Example 22.7]). Let β > 0, T : H → H, and set A = T−1.

Then T is 1
β

-cocoercive if and only if A is 1
β

-strongly monotone.

2.2.2.1 Examples of maximally monotone operators

Example 2.12. Let A : H ⇒ H be a maximally monotone operator, and let γ > 0. Then

the operators A−1 and γA are maximally monotone.

Example 2.13 (Skew symmetric operator). Let L : H → H be a linear bounded

operator. If L is skew symmetric, i.e., L∗ = −L, then it is maximally monotone.

By definition, it is clear that every cocoercive operator is monotone. Furthermore, the

following proposition implies that cocoercive operators are maximally monotone.

Proposition 2.14 ([44, Corollary 20.38]). Let T : H → H be monotone and continu-

ous. Then T is maximally monotone.

In general, the sum of maximally monotone operators may fail to be maximally mono-

tone. The next result provides a condition under which maximal monotonicity is preserved.

Proposition 2.15 ([44, Corollary 25.5]). Let A,B : H ⇒ H be two maximally mono-

tone operators such that at least one of them has full domain. Then A + B is maximally

monotone.

2.2.2.2 Resolvent of monotone operators

In this section, we present the concept of resolvent of a monotone operator, which will

later become one of the main building blocks of splitting algorithms.

Definition 2.16. Given an operator A : H ⇒ H, the resolvent of A with parameter γ > 0

is the operator JγA : H ⇒ H defined by JγA := (Id +γA)−1.

The following useful characterization of maximally monotone operators was proved by

Minty [179]. One of its fundamental consequences is gathered in Theorem 2.18.
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Theorem 2.17 (Minty’s theorem). Let A : H ⇒ H be a monotone operator. Then A

is maximally monotone if and only if ran (Id +A) = H.

Theorem 2.18 ([124, Proposition 3.4]). Let A : H ⇒ H be µ-monotone and let γ > 0

be such that 1 + γµ > 0. Then

(i) JγA is single-valued;

(ii) dom JγA = H if and only if A is µ-maximally monotone.

In particular, if A is monotone, then (i) and (ii) hold for every γ > 0.

Proposition 2.19 ([44, Corollary 23.9]). Let T : H → H. Then T is firmly nonex-

pansive if and only if it is the resolvent of a maximally monotone operator A : H ⇒ H.

The following propositions provide some formulas for the resolvents of certain opera-

tors. The first of them relates the resolvent of a maximally monotone operator to that of

its inverse.

Proposition 2.20 ([44, Proposition 23.20]). Let A : H ⇒ H be maximally monotone

and let γ > 0. Then

Id = JγA + γJγ−1A−1 ◦ γ−1 Id .

Proposition 2.21 (Cartesian product of operators, [44, Proposition 23.18]).

Let Ai : Hi ⇒ Hi be maximally monotone operators, for integers i ∈ {1, . . . , n}. Define

A := (A1, A2, . . . , An), also denoted by A :=×n

i=1
Ai, as the operator given by

A : H1 × · · · × Hn ⇒ H1 × · · · × Hn

(x1, . . . , xn) 7→
(
A1(x1), . . . , An(xn)

)
.

Then A is maximally monotone. Further, for any γ > 0, the resolvent of A with parameter

γ is given component-wise as (xi)
n
i=1 7→

(
JγAi

(xi)
)n
i=1

.

In principle, the composition of a maximally monotone operator with linear opera-

tors does not preserve monotoniciy (see Section 3.3). Nevertheless, the following result

ensures maximal monotonicity for some particular compositions as well as characterizes

its resolvent.

Proposition 2.22 ([44, Proposition 23.25]). Let A : H ⇒ H be a maximally mono-

tone operator and L : H → G be a bounded linear operator. Assume LL∗ is invertible and

let B = L∗AL. Then the following hold.
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(i) B : H ⇒ H is maximally monotone.

(ii) Suppose that LL∗ = µ Id for some µ > 0. Then JB = Id−L∗ ◦ 1
µ
(Id−JµA) ◦ L.

We conclude this section with the following result that is vital for the convergence

analysis of splitting algorithms. It states that the graph of a maximally monotone operator

A : H ⇒ H is sequentially closed in the weak-strong topology of H×H.

Proposition 2.23 (Demiclosedness of a maximally monotone operator, [44,

Proposition 20.38]). Let A : H ⇒ H be a maximally monotone operator. Then A

is demiclosed, i.e., for every sequence (xk, uk)k∈N ⊆ graA, if xk ⇀ x and uk → u, then

(x, u) ∈ graA.

2.2.3 Convex optimization

The most elementary problem in convex optimization is that of minimizing a proper

convex function f : H → R, that is,

min
x∈H

f(x). (2.3)

A solution to (2.3) can be characterized in terms of the (convex) subdifferential of f ,

which is the set-valued operator ∂f : H ⇒ H defined as

∂f(x) = {u ∈ H : f(x) + ⟨u, y − x⟩ ≤ f(y), ∀y ∈ H}. (2.4)

A vector u ∈ H belonging to ∂f(x) is said to be a subgradient of f at x ∈ H. Moreover, if

f is proper, convex and differentiable at x, then ∂f(x) = {∇f(x)}. Fermat’s rule relates

the global minimizers of f with the zeros of its subdifferential.

Theorem 2.24 (Fermat’s rule, [44, Theorem 16.3]). Let f : H → R be a proper

function. Then

argmin f = zer ∂f := {x ∈ H : 0 ∈ ∂f(x)}.

The next theorem establishes maximal monotonicity of the subdifferential of a proper

l.s.c. convex function, and can be understood as the generalization of the fact that the

derivative of a convex function of one real variable is monotonic non-decreasing. It dates

back to Moreau [186, Chapter 12]. An earlier result assuming continuity was due to Minty

in [180] while it was extended to Banach spaces by Rockafellar in [214].
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Theorem 2.25. Let f : H → R be a proper lower-semicontinuous convex function. Then

∂f is maximally monotone

From Theorem 2.25 and Fermat’s rule, it follows that the minimization of a proper l.s.c.

convex function is equivalent to the problem of finding a zero of a maximally monotone

operator, a problem which will be investigated in detail in Chapter 3. Furthermore, it

holds that Jγ∂f = proxγf : H ⇒ H, where proxγf is the proximity operator of f (with

parameter γ > 0) defined at x ∈ H by

proxγf (x) := argmin
u∈H

{
f(u) +

1

2γ
∥x− u∥2

}
,

see, e.g., [44, Theorem 20.25 & Example 23.3].

Example 2.26. Given a nonempty set C ⊆ H, the indicator function of C, ιC : H → R,

is defined as

ιC(x) :=

{
0, if x ∈ C,

+∞, if x /∈ C.

When C is a convex set, ιC is a convex function whose subdifferential becomes the normal

cone to C, NC : H ⇒ H, given by

∂ιC(x) = NC(x) :=

{
{u ∈ H : ⟨u, c− x⟩ ≤ 0, ∀c ∈ C}, if x ∈ C,

∅, otherwise.

Therefore, when C is nonempty, closed and convex, the normal cone NC is maximally

monotone. Furthermore, JNC
= PC, where PC : H → H denotes the projection operator

onto C, which is defined at x ∈ H by

PC(x) := argmin
c∈C

∥x− c∥,

see, e.g., [44, Example 20.26 & Example 23.4].

Let f, g : H → R be proper functions. It is clear from the definition of the convex

subdifferential that the following inclusion holds

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x),

for every x ∈ H. However, in order to ensure the equality, some constraint qualification

needs to be assumed.
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Theorem 2.27 (Sum rule, [44, Theorem 16.47]). Let f : H → R and g : H → R be

proper l.s.c. convex functions and let L : H → G be a bounded linear operator. Suppose

that 0 ∈ sri
(
dom g − L(dom f)

)
. Then,

∂(f + g ◦ L) = ∂f + L∗ ◦ ∂g ◦ L.

The conjugate function is vital for establishing a duality framework for convex opti-

mization.

Definition 2.28 (Conjugate function). Let f : H → R. The conjugate (also called

convex conjugate or Fenchel conjugate) of f is the convex function f ∗ : H → R given by

f ∗(x) := sup
u∈H

{⟨u, x⟩ − f(u)}.

Proposition 2.29 (Fenchel–Young inequality, [44, Proposition 13.15 & Propo-

sition 16.10]). Let f : H → R be proper. Then

f(x) + f ∗(u) ≥ ⟨x, u⟩, ∀x, u ∈ H. (2.5)

In addition, (2.5) holds with equality if and only if u ∈ ∂f(x). In that case, x ∈ ∂f ∗(u).

If f is proper, the Fenchel–Moreau theorem [44, Theorem 13.37] states that f is convex

and l.s.c. if and only if f = f ∗∗, where f ∗∗ := (f ∗)∗ denotes the biconjugate of f . In this

case, f ∗ is also proper. Hence, its subdifferential is also maximally monotone and, by

Proposition 2.29, it coincides with the inverse of the subdifferential of f , namely

∂f ∗ = (∂f)−1.

Thus, using Proposition 2.20, the proximity operator of f ∗ can be immediately computed

in terms of proxf . More concretely, for any γ > 0, we have the expression

proxγf∗(x) = x− γ proxγ−1f (γ−1x),

for every x ∈ H.

Theorem 2.30 (Fenchel–Rockafellar duality, [44, Theorem 15.23]). Assume that

f : H → R and g : G → R are proper l.s.c. convex functions, and let L : H → G be a
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bounded linear operator. Suppose that 0 ∈ sri
(
dom g − L(dom f)

)
. Then

inf
x∈H

f(x) + g(Lx) = −min
u∈G

g∗(u) + f ∗(−L∗u). (2.6)

The minimization problem in the right-hand side of (2.6) is known as the Fenchel–

Rockafellar dual problem. Note that by setting L = Id we recover the classical Fenchel

dual problem [44, Proposition 15.13].

2.3 A selection of proximity operators

Some functions are said to be prox-friendly, which means that their proximity operators

are easy to compute. In the following we present closed-form expressions of some selected

proximity operators that shall appear in this thesis. Formulas for a wide range of proximity

operators can be found in [110] or at the vast online repository [102].

Proposition 2.31 (Proximity operator of the ℓ1-norm, [102]). Let γ > 0. The

proximal point mapping of the ℓ1-norm of Rn, denoted as ∥ · ∥1, at a point x ∈ Rn is given

by

proxγ∥·∥1(x) = sign(x) ⊙ [|x| − γ]+,

where ⊙ denotes element-wise product, and [ · ]+ and | · | represent the positive part and

absolute value, respectively, applied element-wise. That is, for each i ∈ {1, . . . , n}, its i-th

component is given by

proxγ∥·∥1(x)i =





xi + γ, if xi < −γ,
0, if |xi| ≤ γ,

xi − γ, if xi > γ.

As described in Example 2.26, the proximity operator of the indicator function of a

nonempty convex closed set recovers the projection operator. The following propositions

gather some projection formulas.

Proposition 2.32 (Projection onto a box, [102]). Given a, b ∈ R with a < b. The

projection onto the box [a, b]n of a point x ∈ Rn is given component-wise by

P[a,b]n(x)i = max{a,min{xi, b}}, for i ∈ {1, . . . , n}.
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Proposition 2.33 (Projection onto a half-space, [44, Example 29.20]). Given

a ∈ H \ {0} and b ∈ R. The projection onto the half-space H := {x ∈ H : ⟨x, a⟩ ≤ b} of

a point x ∈ H is given by

PH(x) =

{
x, if ⟨x, a⟩ ≤ b,

x+ b−⟨x,a⟩
∥a∥2 a, if ⟨x, a⟩ > b.

Proposition 2.34 (Projection onto a ball, [44, Example 29.10]). Let x̄ ∈ H and

ε > 0. The projection onto the ball C := Bε(x̄) of a point x ∈ H is given by

PC(x) =

{
x, if ∥x− x̄∥ ≤ ε,

x̄+ ε x−x̄
∥x−x̄∥ , otherwise.

Proposition 2.35 (Projection onto an affine subspace, [44, Example 29.17]).

Let A ∈ Rm×n with full row rank and b ∈ Rm. The projection onto the affine subspace

C := {x ∈ Rn : Ax = b} of a point x ∈ Rn is given by PC(x) = x−AT (AAT )−1(Ax− b).

Proposition 2.36 (Projection on the diagonal subspace, [44, Proposition 26.4]).

Let ∆n denote the diagonal subspace of Hn, defined as

∆n := {(x, x, . . . , x) ∈ Hn : x ∈ H} .

The projection of a point x = (x1, . . . , xn) ∈ Hn onto ∆n is given by

P∆n(x) =

(
1

n

n∑

i=1

xi,
1

n

n∑

i=1

xi, . . . ,
1

n

n∑

i=1

xi

)
.

Proposition 2.37 ([64, Section 4]). Let α > 0. Let S ⊆ Rn ×Rn be the set defined as

S :=

{
(p, q) ∈ Rn × Rn : max

1≤i≤n

√
p2i + q2i ≤ α

}
. (2.7)

The projection operator PS : Rn × Rn → S onto S is given component-wise by

(xi, yi) 7→ α
(xi, yi)

max {α,
√
x2i + y2i }

, for i ∈ {1, . . . , n}.
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2.4 Regularization techniques for sparse image recovery

Splitting methods, and in general first order methods, have been found specially successful

for solving large-scale optimization problems arising in signal and image processing (see,

e.g., [55, 64, 97, 100, 142]). In this section we briefly introduce some basic concepts on

imaging that will enlighten the numerical experiments conducted throughout the thesis.

Our main goal is to motivate the different formulations of the image recovery problem

as an optimization program. We recommend the intrigued reader to refer to the work of

Chambolle and Pock [101] for a thorough introduction to the role of convex optimization

in imaging.

In the following, we face the task of recovering an unknown image x̄ which has been

transformed via a linear operator M (for instance, a blur), and perturbed by an additive

random noise ε. This results in the observed image b to be expressible as

b = Mx̄+ ε.

The recovery problem then amounts to obtaining an accurate approximation of x̄ assuming

the knowledge of M and b. In most situations the system Mx = b is ill-posed, which

encourages the employment of regularization techniques to avoid overfitting and induce

some special structure in the recovered data. This leads to considering the optimization

problem

min
x∈C

1

2
∥Mx− b∥2p + αρ(x),

where C is a restriction on the pixel values and ∥ · ∥p stands for some p-norm with

p ∈ {1, 2, . . .} ∪ {∞}. The regularization term is composed of the regularization function

ρ and the parameter α > 0, which is adapted to the noise level of b.

The most typical choice for the regularization function is the ℓ1-norm, which is devoted
to promote sparsity on the recovered image. In the celebrated paper [219] of 1992 , Rudin,
Osher and Fatemi introduced the so-called ROF model, which employs the total variation
function as a regularizer. In order to define the total variation, let us assume that x ∈ Rn

describes an N1 ×N2 pixel image. We start by considering the discrete gradient operator
D : Rn → Rn × Rn : x→ (D1x,D2x), where D1 and D2 are defined component-wise as

(D1x)i,j =

{
xi+1,j − xi,j , if i < N1,

0, otherwise,
and (D2x)i,j =

{
xi,j+1 − xi,j , if j < N2,

0, otherwise.
(2.8)
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The (isotropic) total variation function, also called TV -norm, is the convex function

TV : Rn → R defined as

TV (x) = ∥D(x)∥×, where ∥(p, q)∥× :=

N1∑

i=1

N2∑

j=1

√
p2i,j + q2i,j. (2.9)

For practical applications, it is useful to recall that an upper bound of the Lipschitz

constant of D is given by ∥D∥ ≤
√

8 (see [97, 98] for details).

The underlying idea to the total variation regularization is to induce sparsity to the

gradients of the image, hence it favours the restoration of piece-wise constant images.

In some circumstances it is convenient to replace the gradient operator with more gen-

eral analysis operators. A popular choice is the wavelet-based approach, usually employed

for signal compression. The simplest form of wavelet is given by the Haar wavelet trans-

form [146], which allows to express an image by an alternative basis collecting information

of pixel value averages. The image can be compressed in different stages or levels of scaling

depending on how many averages are considered. An exhaustive mathematical description

of this approach is out of the scope of this introductory section. The interested reader

is referred to [228] for an intuitive presentation of the linear algebra governing the Haar

wavelet.
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Monotone operator splitting

methods with minimal lifting
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Chapter 3

A stroll through monotone inclusion problems

and their splitting algorithms

A fundamental problem in mathematical programming is that of finding a zero of a

monotone operator. Given a monotone operator A : H ⇒ H, the inclusion problem

find x ∈ H such that 0 ∈ A(x) (3.1)

finds applications in a broad range of areas, such as dynamical systems [1], image process-

ing [99, 101, 142, 224], machine learning [111, 150] and optimal control [77, 78], among

many others (see [106] and he references therein).

The inclusion (3.1) can alternatively be written as the problem of finding a fixed point

of the resolvent of A. Indeed, for any γ > 0, we have the following chain of equivalences

0 ∈ A(x̄) ⇐⇒ x̄ ∈ (Id +γA)(x̄) ⇐⇒ x̄ = JγA(x̄) ⇐⇒ x̄ ∈ Fix JγA, (3.2)

where the equality in the third expression is due to Theorem 2.18 (i). Note that, when

A is the subdifferential of a proper l.s.c. convex function f , (3.2) recovers the well-known

characterization of optimality in terms of the proximity operator

argmin f = Fix proxγf ,

for any γ > 0 (see, e.g., [44, Proposition 12.29]).

Equation (3.2) entails that the set of solutions to the inclusion (3.1) coincides with

the set of fixed points of the resolvent of A. If, in addition, A is a maximally monotone

operator, then the firm nonexpansiveness of its resolvent can be harnessed to succes-

sively approximate a zero by constructing a fixed point iteration using JγA. This is the

23
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idea underlying the proximal point algorithm. This method was first introduced by Mar-

tinet [174] in the setting of variational inequalities and convex optimization problems, and

later extended in 1976 to the more general framework of maximally monotone operators

by Rockafellar [217].

Theorem 3.1 (Proximal point algorithm). Let A : H ⇒ H be a maximally monotone

operator. Let γ > 0 and λ ∈ ]0, 2[. Given an initial point x0 ∈ H, consider the sequence

(xk)k∈N generated by the iteration

xk+1 = (1 − λ)xk + λJγA(xk), ∀k ∈ N. (3.3)

Then, if zerA ̸= ∅, the sequence (xk)k∈N converges weakly to a point in zerA.

In the next remark we provide some comments on the proof of Theorem 3.1, as it

gathers the essence of the convergence analysis of the algorithmic schemes that will be

studied throughout this thesis.

Remark 3.2 (On the convergence of the proximal point algorithm). The fixed point

iteration given by (3.3) is a Krasnosel’skǐı–Mann iteration of the firmly nonexpansive

operator JγA (see Proposition 2.19). In addition, by (3.2),

Fix JγA = zerA.

By assumption, this equality yields that Fix JγA ̸= ∅. Consequently, Proposition 2.8 im-

plies that (xk)k∈N converges weakly to a point in zerA.

Although in this section we will only discuss iterations with constant relaxation pa-

rameters, we recall that in view of Proposition 2.8 a sequence (λk)k∈N of varying stepsizes

can be taken in (3.3). For more details on the admitted stepsizes in the proximal point

algorithm, we refer the reader to [106, Theorem 5.1].

While the proximal point algorithm is a powerful tool for addressing problem (3.1)

when A is maximally monotone, in most situations in optimization we aim to find a zero of

an operator which is not maximally monotone. Monotone inclusions gather a vast family of

challenging problems with unique features. In order to successfully address them it is vital

to be able to exploit their inherent characteristics and structure. The algorithms in the

family of the splitting methods are able to do this by iteratively solving simpler problems

which are defined by separately using some parts of the original problem. Further, as
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these methods typically only use first-order information, they are well suited for large-

scale problems. All this have contributed to make splitting algorithms the methods par

excellence for addressing monotone inclusions.

In this section, we will introduce some of the most relevant monotone inclusion prob-

lems and present their applications to optimization. We will describe the different difficul-

ties arising in their treatment, which urge to consider specific splitting schemes suitable

for each problem.

3.1 Classical monotone inclusion

We start by considering one of the most basic monotone inclusion problems. It consists

in finding a zero in the sum of two maximally monotone operators. Namely, given two

maximally monotone operators A1, A2 : H ⇒ H, we are interested in the problem

find x ∈ H such that 0 ∈ A1(x) + A2(x). (3.4)

We shall refer to the inclusion in (3.4) as classical monotone inclusion, in order to distin-

guish it from problems where the operators hold additional properties beyond maximal

monotonicity, which will be discussed in the subsequent sections.

In addition to the (primal) inclusion problem (3.4), in most situations it is useful to

consider an associate dual problem. Duality in this setting was first studied by Mercier

in [178, page 40] and widely disseminated after the work of Attouch and Théra [35].

Theorem 3.3 (Attouch–Théra duality, [35, Theorem 3.1]). Let A1, A2 : H ⇒ H be

two operators. The primal inclusion problem (3.4) and its dual inclusion problem, which

is given by

find u ∈ H such that 0 ∈ A−1
1 (u) − A−1

2 (−u), (3.5)

are equivalent in the sense:

(i) If x ∈ H is a solution of (3.4), then there exists u ∈ A1(x) that solves (3.5).

(ii) If u ∈ H is a solution of (3.5), then there exists x ∈ A−1
1 (u) that solves (3.4).

Problem (3.5) is usually referred to as the Attouch–Théra dual problem of (3.4). It is

worth noting that this is an algebraic duality result and it does not require any assump-

tions concerning the operators. Nevertheless, if the operators A1 and A2 are maximally

monotone, (3.5) also becomes a classical monotone inclusion, where the operators involved
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are maximally monotone due to Example 2.12 and Proposition 2.22. Further results on

duality for monotone inclusions can be found in [43, 49, 203].

3.1.1 Applications to optimization

We now analyze the subtle interplay between the monotone inclusion (3.4) and two core

problems in mathematical optimization: the minimization of the sum of two convex func-

tions and convex feasibility problems.

3.1.1.1 Minimization of the sum of two convex functions

Let f, g : H → R be proper l.s.c. convex functions. We study the optimization problem

min
x∈H

f(x) + g(x), (3.6)

which we assume to have at least one solution. Provided that the constraint qualification

0 ∈ sri(dom g−dom f) is satisfied, the subdifferential equality ∂f(x)+∂g(x) = ∂(f+g)(x)

holds for every x ∈ H, by Theorem 2.27. Consequently, Fermat’s rule yields

argmin(f + g) = zer(∂f + ∂g).

In other words, the minimization problem (3.6) becomes equivalent to finding a zero in

the sum of the subdifferentials of f and g. This is, solving the monotone inclusion (3.4)

setting

A1 = ∂g and A2 = ∂f.

Furthermore, with this replacement, the Attouch–Théra dual problem (3.5) corresponds

to the Fenched dual problem in Theorem 2.30, which in this case reads as

min
u∈H

g∗(u) + f ∗(−u).

For further details on the tight interconnection between Fenchel and Attouch–Théra du-

ality we recommend [189, Section 4.6].

At this point it is worth noting that, although it may seem that only working with sub-

differential operators (instead of maximally monotone operators) is enough for addressing

minimization problems, this is not the case. Indeed, resolvent operators of maximally

monotone operators which are not subdifferentials naturally arise when tackling problems

in the form of (3.6) (see, e.g., [53],[132, Proposition 4.10],[189, Example 5.32]).
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3.1.1.2 Convex feasibility problems

Given two nonempty closed convex sets C1, C2 ⊆ H, the feasibility problem consists in

finding a point in the intersection of the sets, namely,

find x ∈ H such that C1 ∩ C2. (3.7)

This problem can be posed as the monotone inclusion (3.4) by considering the normal

cone operators of the sets, i.e., by setting

A1 = NC1 and A2 = NC2 .

Equivalently, (3.7) is recovered from the minimization problem (3.6) with the choice of

functions f = ιC1 and g = ιC2 . Note that no constraint qualification is required when

addressing feasibility problems by means of its associated monotone inclusion, besides the

fact that C1 ∩ C2 ̸= ∅.

3.1.2 The Douglas–Rachford splitting algorithm

A first naive approach for the numerical resolution of (3.4) would be trying to apply

the fixed point algorithm with the resolvent of A1 + A2. However, this strategy exhibits

some inconveniences. First, the operator A1 +A2 might not be maximally monotone (see,

e.g., [44, Example 25.1]), which is a necessary assumption to guarantee the convergence

by Theorem 3.1. Second, we may not be able to precisely compute the resolvent JA1+A2 ,

even having closed formulas for the resolvents of A1 and A2. Monotone operator splitting

algorithms provide an alternative to avoid these pitfalls, as they permit to separately

tackle the different elements in the problem. For instance, in the framework of (3.4), it

would be desirable to handle the maximally monotone operators A1 and A2 individually,

by means of each of their resolvents.

This is the case of the Douglas–Rachford splitting algorithm, which is undoubtedly the

most celebrated scheme among the class of splitting methods (see, e.g., [19, 48, 50, 51,

61, 164]). This algorithm owes its name to the 1956 paper of Jim Douglas and Henry H.

Rachford [131], where it was originally proposed for tackling systems of linear equations

where the matrices are symmetric and positive semidefinite. The scheme given there was

solely applied to a particular problem in heat conduction, and in fact it is not trivial

to find an expression that resembles the current form of the Douglas–Rachford splitting

algorithm in it. It was Lions and Mercier [165] who presented in 1979 the generalization to
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maximally monotone operators widely-known nowadays. In the last decades, many authors

have contributed to analyzing the convergence properties of the Douglas–Rachford method

scheme introduced by Lions and Mercier (see, e.g., [41, 45, 107, 108, 133, 134]). However,

it was not until 2011 when Svaiter [230] provided the complete result guaranteeing weak

convergence to a solution of (3.4).

Theorem 3.4 (Douglas–Rachford splitting algorithm). Let A1, A2 : H ⇒ H be two

maximally monotone operators such that zer (A1 + A2) ̸= ∅. Let γ > 0 and λ ∈ ]0, 2[.

Given an initial point z0 ∈ H, consider the sequences (zk)k∈N and (xk)k∈N given by the

iteration {
xk = JγA1(z

k),

zk+1 = zk + λ
(
JγA2(2x

k − zk) − xk
)
,

(3.8)

for all k ∈ N. Then the following statements hold.

(i) The sequence (zk)k∈N converges weakly to a point z̄ ∈ H.

(ii) The sequence (xk)k∈N converges weakly to the point x̄ := JγA1(z̄), which solves the

monotone inclusion (3.4).

Proof. This follows as a particular case of Theorem 5.3. It can also be found in [44,

Theorem 26.11].

The iteration (3.8) generated by the Douglas–Rachford algorithm can be alternatively

obtained as a fixed point iteration of the commonly-known as Douglas–Rachford splitting

operator.

Remark 3.5 (Douglas–Rachford algorithm as a fixed point iteration). Define the Douglas–

Rachford splitting operator, TDR : H → H, as

TDR(z) = z + λ
(
JγA2(2JγA1(z) − z) − JγA1(z)

)
.

Then the sequence (zk)k∈N generated by the Douglas–Rachford algorithm is obtained as

the fixed point iteration

zk+1 = TDR(zk), ∀k ∈ N.

We can now refine the statement in Theorem 3.4 (i) by highlighting that the sequence

(zk)k∈N converges weakly to a fixed point of TDR, namely, zk ⇀ z̄ ∈ Fix TDR. It is impor-

tant to note that, in general, the fixed point z̄ does not necessarily belong to zer (A1 + A2).
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Nonetheless, by Theorem 3.4 (ii) we obtain a solution to the monotone inclusion (3.4) by

applying the resolvent of A1 to z̄, i.e.,

x̄ := JγA1(z̄) ∈ zer (A1 + A2).

Hence, the operator JγA1 is what we term a solution operator of the Douglas–Rachford

splitting. We shall pay special attention to this class of mappings in Chapter 4.

Finally, we recall that the Douglas–Rachford splitting operator has an equivalent for-

mulation in terms of reflected resolvents. The reflected resolvent of a maximally monotone

operator A is the nonexpansive operator given as RγA := 2JγA − Id. In particular, if A is

the normal cone of a nonempty closed convex set C, then RNC
coincides with the reflection

onto C. In view of this, the Douglas–Rachford operator can be expressed as

TDR(z) =
(2 − λ)z + λRγA2RγA1(z)

2
. (3.9)

For the Douglas–Rachford algorithm, and also for other splittings schemes, we call

the fixed point sequence (zk)k∈N as governing sequence, while we use the term shadow

sequence for referring to the sequence converging to a solution of the monotone inclusion,

in this case (xk)k∈N.

In order to illustrate the interplay between the fixed point iteration (zk)k∈N and the

solutions of the monotone inclusion problem, we concentrate on a feasibility problem in

the form of (3.7) where C1, C2 ⊆ R2 are the closed balls displayed in Figure 3.1. Let

λ = 1. Then the formulation of the Douglas–Rachford operator given in (3.9) becomes

particularly intuitive. Indeed, (zk)k∈N is generated by the iteration

zk+1 =
zk +RC2RC1(z

k)

2
, ∀k ∈ N,

where RC1 and RC2 denote the reflections onto the balls C1 and C2, respectively. Namely,

at each iteration the method performs the double reflection RC2RC1(z
k) and computes the

average with zk to obtain the following iterate. For the first iteration these computations

are shown in Figure 3.1 left. In Figure 3.1 right, we observe how (zk)k∈N converges to a

fixed point z which is not in the intersection of the two balls. However, PC1(z) provides a

solution to the feasibility problem.

Remark 3.6 (Peaceman–Rachford algorithm). The Peaceman–Rachford algorithm [165,

200] can be regarded as the limiting case of the Douglas–Rachford splitting in which λ = 2.

In [44, Proposition 26.13], an analogous result to Theorem 3.4 for the Peaceman–Rachford
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Figure 3.1: Geometric interpretation of the Douglas–Rachford splitting method for a feasibility
problem involving two balls.

splitting follows provided that A2 is uniformly monotone. In this context, the sequence

(xk)k∈N converges strongly to a point in zer (A1 + A2). Observe that strong convergence

under the assumption of uniform monotonicity can also be obtained by the Douglas–

Rachford algorithm (see Theorem 5.3 below).

3.1.3 Pierra’s product space reformulation

Now we draw our attention to the monotone inclusion problem consisting in finding a

zero of the sum of an arbitrary finite number of maximally monotone operators.

Problem 3.7. Let A1, A2, . . . , An : H ⇒ H be a family of maximally monotone operators.

We aim to solve the monotone inclusion

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x).

The above problem finds immediate applications to feasibility problems and convex

optimization problems with more than two sets and functions, respectively. Of course, if

n = 2, we recover the monotone inclusion in (3.4) and the Douglas–Rachford algorithm

becomes the benchmark method for addressing the problem. Until quite recently the

approach for tackling more than two operators has solely consisted in the use of the so-

called Pierra’s product space reformulation [206]. Specifically, this reformulation allows

solving Problem 3.7 by applying Douglas–Rachford to a concrete choice of operators.
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Let n ≥ 2 in Problem 3.7. Let us consider the normal cone N∆n : Hn ⇒ Hn onto the

diagonal subspace of Hn and the Cartesian product of operators

A := (A1, A2, . . . , An) : Hn ⇒ Hn,

whose resolvents are given by Proposition 2.36 and Proposition 2.21, respectively. By

Theorem 3.4, the Douglas–Rachford splitting algorithm applied to N∆n and A converges

to a point x̄ ∈ Hn such that

0 ∈ N∆n(x̄) + A(x̄).

In particular, this implies that N∆n(x̄) ̸= ∅, and therefore x̄ = (x̄, . . . , x̄) for some x̄ ∈ H.

Let a = (a1, . . . , an) ∈ Hn be such that a ∈ A(x̄) and −a ∈ N∆n(x̄). The latter yields∑n
i=1 ai = 0, by [44, Proposition 26.4 (ii)]. Therefore, we get that

0 = a1 + a2 + . . .+ an ∈ A1(x̄) + A2(x̄) + . . .+ An(x̄),

which concludes that x̄ solves Problem 3.7.

Remark 3.8 (Pierra’s reformulation does not recover the Douglas–Rachford operator).

In principle, one would expect that applying Pierra’s product space reformulation with

n = 2 may recover the Douglas–Rachord splitting operator TDR. However, by setting

A1 := N∆2 and A2 := A in Theorem 3.4, we obtain the fixed point iteration generated by

the operator TPR : H2 → H2 defined as

TPR

(
z1

z2

)
=

(
z1

z2

)
+
λ

2

(
2JγA1(z2) − z1 − z2

2JγA2(z1) − z2 − z1

)
,

where λ, γ > 0. The operator TPR not only does not coincide with TDR, but it is defined

in a different space! Observe that inverting the order of the operators when applying

Douglas–Rachford to Pierrra’s product space reformulation, i.e., setting A1 := A and

A2 := N∆2 , modifies the definition of TPR. Nonetheless, the resulting operator remains a

mapping from H2 to H2.

For the general monotone inclusion with any n ≥ 2, Pierra’s reformulation is defined

by an operator in the space Hn (see (4.2) below). Nonetheless, the Douglas–Rachford

splitting suggests the plausibility of obtaining algorithms for this problem whose under-

lying ambient space is Hn−1. This was a long-standing open problem, already posed by

Lions and Mercier in 1979, and finally answered by Ryu [220] in 2020. In this work, it

was proposed the first splitting algorithm for Problem 3.7 with n = 3, which is defined
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by an operator in H2. Moreover, Ryu’s splitting, as it is commonly called, leads to the

Douglas–Rachford method when applied to a problem with two operators. The study of

monotone operator splittings which are embeddable in spaces of reduced dimension is one

of the main topics of Part I of this thesis. We shall start to delve into it in Chapter 4.

3.2 Monotone inclusions with Lipschitzian operators

In the previous section we focused on Problem 3.7, where only maximal monotonicity

of the operators was assumed. The splitting algorithms studied there to address such

monotone inclusion are referred to as resolvent splittings, as they handle each operator

Ai by means of its resolvent. Resolvent operators cannot always be computed efficiently

and closed formulas are only known for a selection of operators. In some problems, the

operators involved possess stronger properties beyond maximal monotonicity, which allows

avoiding the use of resolvents. In this section, we focus on a class of monotone inclusions

encompassing operators with Lipchitzian properties.

Problem 3.9 (Monotone inclusion with Lipschitzian operators). Let the operators

A1, . . . , An : H ⇒ H be maximally monotone and let T1, . . . , Tm : H → H be cocoercive

operators or monotone and Lipschitz continuous operators. The problem consists in solving

the inclusion

find x ∈ H such that 0 ∈
(

n∑

i=1

Ai +
m∑

j=1

Tj

)
(x). (3.10)

For simplicity, we will omit the index when only one operator of a class is considered.

For instance, if n = 1, we simply write A instead of A1.

We start by recalling that a cocoercive operator is Lipschitz continuous due to the

Cauchy–Schwarz inequality. However, the converse implication is not true in general. For

instance, the matrix

T =

(
0 −1

1 0

)
(3.11)

is clearly Lipschitz continuous and monotone, as it is skew symmetric. Nevertheless, by

taking x := (1, 0)T and y := (0, 0)T it follows that

0 = ⟨T (x) − T (y), x− y⟩ < 1

β
∥T (x) − T (y)∥2 =

1

β
, ∀β > 0.
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Hence, T is not cocoercive. In any case, both cocoercive operators and monotone and Lip-

schitz continuous operators are maximally monotone by Proposition 2.14. Therefore, the

operators comprising the monotone inclusion in Problem 3.9 are all maximally monotone.

3.2.1 Applications to optimization

Problem 3.9 arises in a number of settings of fundamental importance in mathematical

optimization. In what follows, we describe three such examples.

3.2.1.1 Structured convex minimization

Consider the minimization problem given by

min
x∈H

n∑

i=1

gi(x) +
m∑

j=1

fj(x), (3.12)

where g1, . . . , gn : H → R are proper l.s.c. convex functions, and f1, . . . , fm : H → R
are convex and differentiable with β-Lipschitz continuous gradients. Through its first

order optimality condition and under appropriate constraint qualifications (see, e.g, [44,

Corollary 16.50]), problem (3.12) can be posed as the monotone inclusion (3.10) with

Ai = ∂gi and Tj = ∇fj.

Recall from Remark 2.2 (c), that in this case the operators T1, . . . , Tm are both β-Lipschitz

and 1
β
-cocoercive, due to the Baillon–Haddad theorem.

3.2.1.2 Structured saddle-point problems

Let us now work over the saddle-point problem given by

min
x∈H

max
y∈G

n∑

i=1

gi(x) +
m∑

j=1

Φj(x, y) −
n∑

i=1

hi(y), (3.13)

where g1, . . . , gn : H → R, h1, . . . , hn : G → R are proper l.s.c. convex functions, and the

saddle-functions Φ1, . . . ,Φm : H×G → R are differentiable convex-concave functions with

Lipschitz continuous gradient. Assuming a saddle-point exists, (3.13) can be posed as
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(3.10) in the space H× G with

Ai(x, y) =

(
∂gi(x)

∂hi(y)

)
and Tj(x, y) =

( ∇xΦj(x, y)

−∇yΦj(x, y)

)
,

where we note that the operators T1, . . . , Tm : H×G → H×G are monotone, due to [216,

Corollary 2], and β-Lipschitz continuous, but generally not cocoercive.

3.2.1.3 Variational inequalities

Consider the variational inequality problem given by

find x̄ ∈ H such that
n∑

i=1

gi(x) −
n∑

i=1

gi(x̄) +
m∑

j=1

⟨Tj(x̄), x− x̄⟩ ≥ 0, ∀x ∈ H, (3.14)

where g1, . . . , gn : H → R are proper l.s.c. convex functions, and T1, . . . , Tm : H → H
are monotone and β-Lipschitz. Then (3.14) can be modeled as (3.10) with Ai = ∂gi. An

important special case of (3.14) is the constrained variational inequality problem given

by

find x̄ ∈ H such that
m∑

j=1

⟨Tj(x̄), x− x̄⟩ ≥ 0, ∀x ∈ C :=
n⋂

i=1

Ci,

where C1, . . . , Cn ⊆ H are nonempty, closed and convex sets. This formulation allows one

to exploit a representation of the set C in terms of the simpler sets C1, . . . , Cn.

3.2.2 Forward-backward-type splitting methods for cocoercive operators

When addressing Problem 3.9, it is desirable to employ methods adept at harnessing

the Lipchitzian properties of the single-valued operators. The family of forward-backward

splitting methods is comprised of a collection of algorithms whose iterations make use of

resolvents —also called backward steps— of the operators A1, . . . , An, and direct evalu-

ations —forward steps— of the single-valued operators T1, . . . , Tm. In the following, we

introduce some of the most popular algorithms in this class.

Observe that it is always possible to reduce Problem 3.9 to the m = 1 case by combin-

ing the single-valued operators into a single operator T :=
∑m

j=1 Tj whilst preserving the

above features. However, since the resolvent of a sum is generally not related to the individ-

ual resolvents, the same cannot be said for the set-valued operators, and so it makes sense

to distinguish algorithms for Problem 3.9 based on the value of n. In addition, as we will



3.2. Monotone inclusions with Lipschitzian operators 35

demonstrate later, problems with monotone and Lipschitz continuous operators require

the use of different algorithmic schemes than the ones consisting of cocoercive operators.

We devote this section to tackling Problem 3.9 when all the single-valued operators are

cocoercive, and will delve into the monotone and Lipschitz case in the subsequent section.

In the following, we make the recurrent assumption that T : H → H is a 1
β
-cocoercive

operator, with β > 0.

3.2.2.1 The forward-backward splitting algorithm

The forward-backward method is arguably the best-known method for the case n = 1. This

algorithm is a generalization of the proximal point algorithm which includes a forward

evaluation of the cocoercive operator before the computation of the resolvent. Let λ, γ > 0.

Given x0 ∈ H, the method is governed by the iteration

xk+1 = (1 − λ)xk + λJγA
(
xk − γT (xk)

)
, ∀k ∈ N. (3.15)

The sequence (xk)k∈N thus generated converges weakly to a point in zer(A+ T ) provided

that the stepsize and relaxation parameters satisfy γ ∈ ]0, 4/β[ and λ ∈
]
0, 2 − γβ

2

[
,

respectively. The theorem of convergence of the forward-backward method is detailed

in Corollary 5.5 below.

The iteration (3.15) has its roots in the projected-gradient method for the minimization

of a smooth function over a closed convex constraint set [143, 161]. The method was

extended to variational inequalities in 1979 by Mercier [177, Chapter 9], who first identified

cocoercivity as a key property to establish weak convergence. Since then it has been widely

studied by many authors (see, e.g., [70, 106, 107, 112, 113, 114, 140, 198, 236]).

3.2.2.2 The Davis–Yin splitting algorithm

Algorithms for the n = 2 case have only recently been proposed. One of them is the

commonly-known as Davis–Yin splitting algorithm, which was introduced in 2017 by

Damek Davis and Wotao Yin [128]. Let λ, γ > 0. Given an initial point z0 ∈ H, this

method is defined by the iteration

{
xk = JγA1(z

k),

zk+1 = zk + λ
(
JγA2

(
2xk − zk − γT (xk)

)
− xk

)
,

(3.16)
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for all k ∈ N. Observe that both the Douglas–Rachford and the forward-backward algo-

rithms can be recovered as particular cases of the Davis–Yin method. It suffices to set

T = 0 for Douglas–Rachford, while A1 = 0 for the forward-backward. When A2 = 0, the

scheme (3.16) becomes the backward-forward method of [34].

In their seminal work, Davis and Yin proved the weak convergence of the sequence

(xk)k∈N to a a point in zer (A1 + A2 + T ) when γ ∈ ]0, 2/β[ and λ ∈
]
0, 2 − γβ

2

[
. In the last

few years, the Davis–Yin splitting algorithm has been a constant object of research (see,

e.g., [117, 122, 160, 181, 201, 202, 232, 241, 245, 247]). The convergence of the method

will be deeply studied in Chapter 5. Specifically, in Theorem 5.3 we detail a new proof

which enables the stepsize γ to be chosen in the interval ]0, 4/β[.

3.2.2.3 The generalized forward-backward algorithm

For an arbitrary finite number of operators, Problem 3.9 can be tackled by the generalized

forward-backward algorithm of [209, 210]. This method can be understood as an applica-

tion of the Davis–Yin algorithm to a modification of Pierra’s product space reformulation

with an additional cocoercive operator. Indeed, let (ωi)
n
i=1 ∈ ]0, 1[n with

∑n
i=1 ωi = 1, and

consider the Hilbert space Hn endowed with the inner product ⟨·, ·⟩ given by

⟨x,y⟩ :=
n∑

i=1

ωi⟨xi, yi⟩, ∀x = (x1, . . . , xn), ∀y = (y1, . . . , yn) ∈ Hn.

Then the generalized forward-backward amounts to applying the Davis–Yin algorithm to

the problem

find x ∈ Hn such that 0 ∈ N∆n(x) + A(x) + T(x),

where A : Hn ⇒ Hn is the maximally monotone operator defined as

A(x) =

(
1

ω1

A1(x1),
1

ω2

A2(x2), . . . ,
1

ωn

An(xn)

)
, (3.17)

and T : Hn → Hn is the cocoercive operator given by

T(x) =
(
T (x1), T (x2), . . . , T (xn)

)
. (3.18)

The resulting scheme is presented in Theorem 3.10. Despite the above interpretation,

the generalized forward-backward goes back to before the Davis–Yin method, as it was

originally proposed in 2013. We refer the interested reader to [73, Section 6] for further
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details on the connection between the generalized forward-backward method and the

Davis–Yin splitting.

Theorem 3.10 (Generalized forward-backward algorithm, [210, Theorem 2.1]).

Let A1, . . . , An : H ⇒ H be maximally monotone operators and let T : H → H be

a 1
β

-cocoercive operator such that zer (
∑n

i=1Ai + T ) ̸= ∅. Choose (ωi)
n
i=1 ∈ ]0, 1[n with∑n

i=1 ωi = 1. Take γ ∈ ]0, 2/β[ and set λ ∈
]
0,min

{
3
2
, 1
2

+ 1
γβ

}[
. Given an initial guess

z0 = (z01 , . . . , z
0
n) ∈ Hn, consider the sequences (xk)k∈N and (zk)k∈N = (zk1 , . . . , z

k
n)k∈N

generated by the iteration





xk =
n∑

i=1

ωiz
k
i ,

zk+1
i = zki + λ

(
Jγ/ωiAi

(
2xk − zki − γT (xk)

)
− xk

)
, ∀i ∈ J1, nK,

(3.19)

for all k ∈ N. Then the sequence (xk)k∈N converges weakly to a point in zer (
∑n

i=1Ai + T ).

The new proof of the Davis–Yin splitting algorithm presented in Chapter 5 also leads

to an enlargement of the parameters range of the generalized forward-backward. This is

discussed in Remark 5.6 below.

3.2.3 Forward-backward splitting methods for Lipschitz continuous operators

We now concentrate on Problem 3.9 with the operators T1, . . . , Tm being monotone and

Lipschitz continuous. Again, we gather the m single-valued operators into the sum op-

erator T :=
∑m

j=1 Tj and assume it to be β-Lipschitz continuous. Developing splitting

algorithms which use forward evaluations of Lipschitz continuous monotone operators is

generally more intricate than those exploiting cocoercivity, such as the ones in the pre-

vious subsection. For a concrete example, consider the special case of (6.22) with two

operators given by

find x ∈ H such that 0 ∈ (A+ T ) (x), (3.20)

with H = R2, A = 0 and T is the matrix in (3.11), which is not cocoercive. The monotone

inclusion (3.20) is equivalent to solving the linear equation

(
0 −1

1 0

)(
x1

x2

)
= 0, (3.21)
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whose unique solution is (0, 0)T . The forward-backward method applied to this problem

results in the iteration

xk+1 = (Id−λγT )(xk) =

(
1 λγ

−λγ 1

)
xk, ∀k ∈ N.

The sequence (xk)k∈N diverges for any λ, γ > 0 and any initial point x0 ̸= (0, 0)T . Indeed,

since the eigenvalues of Id−λγT are 1 ± λγi, at every iteration the forward-backward

method amplifies the norm of the previous iterate by a factor |1+λγi| > 1 (see Figure 3.2

below).

In general, the methods that successfully solve this problem require one extra forward

evaluation of the Lipschitz monotone operators per iteration. This is the case of the

algorithms we present next.

3.2.3.1 The forward-reflected-backward splitting algorithm

A subtle modification in the forward-backward algorithm gives rise to the forward-reflected-

backward method [172]. Given γ > 0 and x−1, x0 ∈ H this method iterates as

xk+1 = JγA
(
xk − 2γT (xk) + γT (xk−1)

)
, ∀k ∈ N. (3.22)

The schemes coincides with the one in (3.15) (when λ = 1) with the addition of the

reflected-like term −γ
(
T (xk) − T (xk−1)

)
. Note that the Lipschitzian operator is invoked

twice per iteration, as T is evaluated at both xk and xk−1. This also entails that knowledge

from the two previous iterates is required at every iteration. Unlike (3.15), the forward-

reflected-backward method converges weakly to a point in zer (A+ T ) for any γ ∈
]
0, 1

2β

[
.

This is illustrated for the linear system (3.21) in Figure 3.2. Other methods making use

of reflected-like terms are the ones in [121, 212, 223].

3.2.3.2 Tseng’s forward-backward-forward splitting algorithm

One of the most renowned splittings for addressing (3.20) is the forward-backward-forward

method proposed by Tseng in [237], which is itself a generalization of the scheme inves-

tigated in [8]. At each iteration, the algorithm first activates the Lipschitz continuous

operator T with a forward evaluation, followed by a backward evaluation of A and finally

performs a second forward evaluation of T .
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Figure 3.2: Forward-backward (red) and forward-reflected-backward (blue) for the linear equa-
tion (3.21).

Theorem 3.11 (Forward-backward-forward algorithm, [44, Theorem 26.17]).

Let A : H ⇒ H be a maximally monotone operator and T : H → H be a monotone

and β-Lipschitz continuous operator such that zer (A+ T ) ̸= ∅. Given γ ∈ ]0, 1/β[ and

x0 ∈ H, iterate as 



uk = γT (xk),

vk = JγA(xk − uk),

xk+1 = vk − γT (vk) + uk,

for all k ∈ N. Then the sequences (xk)k∈N and (vk)k∈N converge weakly to a point in

zer (A+ T ).

Observe that, in contrast to the forward-reflected-backward, only information from the

previous iterate is required in Tseng’s algorithm. Extensive results and generalizations of

this method can be found in [44, 68, 74, 75, 106, 109, 188, 223].

3.3 Composite monotone inclusions

Numerous relevant problems in mathematical optimization can be modeled as a special

class of monotone inclusions in which some maximally monotone operators are composed

with linear mappings. These problems are usually referred to as composite monotone

inclusions and consist in simultaneously solving two inclusions which are closely related

to each other.

Problem 3.12 (Composite monotone inclusion). Let H and (Gj)
m
j=1 be real Hilbert

spaces. Let A1, . . . , An : H ⇒ H be maximally monotone operators. Let Bj : Gj ⇒ Gj
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be maximally monotone and Lj : H → Gj be a bounded linear operator whose adjoint is

denoted by L∗
j , for all j ∈ {1, . . . ,m}. The problem consists in solving the primal inclusion

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x) +
m∑

j=1

L∗
jBj(Ljx), (3.23)

together with its associated dual inclusion

find (u1, . . . , um) ∈ G1 × · · · × Gm such that (∃x ∈ H)





−
m∑

j=1

L∗
juj ∈

n∑

i=1

Ai(x),

uj ∈ Bj(Ljx), j ∈ {1, . . . ,m}.
(3.24)

As will be later demonstrated in Section 7.1, the primal and dual inclusions of Prob-

lem (3.12) are equivalent in the following sense: the set of solutions of (3.23) is nonempty

if there exists a solution to (3.24), and vice versa.

Another particularity of the inclusion (3.23) is that it is not comprised of a sum

of maximally monotone operators. Notice that the composition L∗
jBjLj : H ⇒ H is a

monotone operator, but in general it is not maximally monotone. For instance, suppose

H = R2, take L =

(
1 0

0 0

)
and B = NB1((0,1)T ). Then ran (Id +L∗BL) = {0} × R, which

implies that L∗BL is not maximally monotone by Theorem 2.17. This contrasts with the

inclusions in Problems 3.7 and 3.9, and urges to consider a new class of splitting schemes.

We will discuss about them in Section 3.3.2.

3.3.1 Applications to optimization

We now describe some variational problems expressible as Problem 3.12.

3.3.1.1 Composite convex minimization

Consider the optimization problem given by

min
x∈H

f(x) + g(Lx), (3.25)

where f : H → R and g : G → R are proper l.s.c. convex functions and L : H → G is a

bounded linear operator. By Theorem 2.27, if 0 ∈ sri
(
dom g − L(dom f)

)
, then (3.25) is
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equivalent to the monotone inclusion (3.23) with n = m = 1,

A = ∂f and B = ∂g.

Moreover, if (3.25) has at least one solution, its Fenchel–Rockafellar dual problem reduces

to the dual inclusion (3.24) (see [44, Proposition 28.21]), which in this case is expressed

as

find u ∈ G such that 0 ∈ −LA−1(−L∗u) +B−1(u).

In a similar fashion, given some proper l.s.c. convex functions f1, . . . , fn : H → R and

gj : Gj → R, for j ∈ {1, . . . ,m}, and some bounded linear operators Lj : H → Gj, for

j ∈ {1, . . . ,m}, we can address the more general problem

min
x∈H

n∑

i=1

fi(x) +
m∑

j=1

gj(Ljx), (3.26)

by setting Ai = ∂fi and Bj = ∂gj in Problem 3.12.

3.3.1.2 Saddle-point problems

Let f : H → R be a proper l.s.c. convex function and let (gj)
m
j=1 and (Lj)

m
j=1 be as

in (3.26). The minimax problem given by

min
x∈H

max
(u1,...,um)∈G1×···×Gm

f(x) +
m∑

j=1

⟨uj, Ljx⟩ −
m∑

j=1

g∗j (uj), (3.27)

has been extensively studied in the literature, in part due to its applications to multiple

areas such as imaging or mechanics [36, 100, 101, 213, 215]. In view of the Fenchel–Moreau

theorem, we observe that (3.27) is a primal-dual formulation of its counterpart problem in

the form of (3.26), and thus it can be tackled in the same way by means of Problem 3.12.

In this framework, the dual inclusion acquires a special importance as it recovers the

solution of the maximization problem in (3.27). Indeed, a pair (x̄, ū) ∈ H×G1 × · · · ×Gm

solves (3.27) if and only if x̄ solves (3.23) and ū solves (3.24).

3.3.2 Primal-dual splitting methods for composite monotone inclusions

The particular features of Problem 3.12 lead to a series of requirements that should be

taken into consideration when designing splitting algorithms for its resolution. Firstly, it is
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desirable to simultaneously obtain solutions to both inclusions (3.23) and (3.24), namely, a

primal-dual solution. Secondly, the lack of maximality of the compositions L∗
jBjLj makes

the evaluation of its resolvents a non-viable option (see Proposition 2.22 for an exemption).

Therefore, the methods should be capable of handling the composed operators separately.

More precisely, we will consider schemes which only employ the resolvents of the maxi-

mally monotone operators A1, . . . , An, B1, . . . , Bm, and forward evaluations of the linear

operators L1, . . . , Lm and their adjoints L∗
1, . . . , L

∗
m. The use of the (generalized) inverse

of the linear operators is not recommended as its computational cost is high.

The above are standard conditions satisfied by most of the methods employed to tackle

Problem 3.12 (see, e.g., [58, 59, 69, 64, 75, 109, 167, 239, 246]). The term primal-dual

splitting algorithms is used to encompass all theses algorithmic schemes. In the following,

we present some of the most relevant algorithms within this class.

3.3.2.1 The Chambolle–Pock algorithm

The primal-dual hybrid gradient algorithm —popularly known as the Chambolle–Pock

algorithm— is probably one of the most famous methods for tackling Problem 3.12 in

the case n = m = 1. This algorithm generates a sequence of primal variables in H and a

sequence of dual variables in G by making use of the resolvents of A and B−1, respectively.

At each variable update, both the primal and dual variables are activated by resorting to

evaluations of L or its adjoint. It should be noted that, by Proposition 2.20, evaluating

the resolvent of B−1 is essentially as challenging as computing the resolvent of B. Hence,

we remain in the framework of primal-dual splitting algorihms.

An initial version of the method was proposed by Zhu and Chan [249] for an application

in total variation image restoration. Later, multiple modifications for the minimization

problem (3.25) were studied by different authors in [115, 136, 147, 207], and by Chambolle

and Pock in [100]. Now, the algorithm can be recovered as a particular case of various

schemes for addressing the more general Problem 3.12 with monotone operators (see,

e.g., [59, 239]). The scheme of the Chambolle–Pock algorithm we present next is obtained

as a simplified version of [239, Theorem 3.1].

Theorem 3.13 (Chambolle–Pock algorithm). Let A : H ⇒ H and B : G ⇒ G be

maximally monotone operators, and let L : H → G be a bounded linear operator. Assume

that zer (A+ L∗BL) ̸= ∅. Let γ1 and γ2 be positive constants such that γ1γ2 ≤ ∥L∥2 and
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λ ∈ ]0, 2[. Given initial points (x0, u0) ∈ H × G, consider the iteration





zk = Jγ1A(xk − γ1L
∗uk),

vk = Jγ2B−1

(
uk + γ2L(2zk − xk)

)
,

xk+1 = xk + λ(zk − xk),

uk+1 = uk + λ(vk − uk),

(3.28)

for all k ∈ N. Then the following hold.

(i) The sequence (xk)k∈N ⊆ H converges weakly to a primal solution of Problem 3.12:

xk ⇀ x̄ ∈ zer
(
A+ L∗BL

)
.

(ii) The sequence (uk)k∈N ⊆ G1 converges weakly to a dual solution of Problem 3.12:

uk ⇀ ū ∈ zer
(
−LA−1(−L∗) +B−1

)
.

Finally, we refer the interested reader to the papers [191, 196] for a beautiful connection

between the Chambolle–Pock algorithm and the Douglas–Rachford splitting.

3.3.2.2 A monotone + skew splitting model

A fair number of splitting schemes developed for Problem 3.12 rely on applying an existing

splitting algorithm to a suitable choice of maximally monotone operators. For instance,

the method developed by Vũ in [239] has the structure of the forward-backward method,

while two different algorithms having its core on the Douglas–Rachford splitting were

introduced in [69]. In this section, we present the primal-dual algorithm proposed by

Briceño-Arias and Combettes in [75], which is based on an application of the forward-

backward-forward method.

To derive this scheme, let us first consider the particular instance of Problem 3.12 in

which n = m = 1 and define the pair of operators M and N given by

{
M : H× G ⇒ H× G : (x, u) 7→ A(x) ×B−1(u),

N : H× G → H× G : (x, u) 7→ (L∗u,−Lx).
(3.29)
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By Proposition 2.21, the operator M is maximally monotone and N is a skew symmetric

bounded linear operator. Further, the set of zeros of the sum M + N consists of primal-

dual solutions to Problem 3.12. Applying the forward-backward-forward algorithm to the

problem of finding the zeros of M + N generates a sequence (wk)k∈N := (xk, uk)k∈N in

H× G given by the fixed point iteration

wk+1 =
(
JγM (Id−γN) + γN (Id−JγM (Id−γN))

)
(wk), ∀k ∈ N, (3.30)

where γ > 0. The weak convergence of the forward-backward-forward method to a zero

of M + N leads to the sequence (xk)k∈N converging weakly to a solution of (3.23) while

(uk)k∈N converges weakly to a solution of (3.24).

The general case involving more than two operators can be easily addressed as follows.

Theorem 3.14 (Briceño-Arias–Combettes splitting). Let A1, . . . , An : H ⇒ H and

Bj : Gj ⇒ Gj, for j ∈ {1, . . . ,m}, be maximally monotone operators. Let Lj : H → Gj be

bounded linear operators, for j ∈ {1, . . . ,m}. Assume zer
(∑n

i=1Ai +
∑m

j=1 L
∗
jBjLj

)
̸= ∅.

Take

γ ∈


0,

(
(n− 1) +

m∑

j=1

∥Lj∥2
)− 1

2


,

consider initial points (x01, . . . , x
0
n) ∈ Hn and (u01, . . . , u

0
m) ∈ G1 × · · · × Gm, and set





pk1 = xk1 − γ

(
n∑

i=2

xki +
m∑

j=1

L∗
ju

k
j

)
,

zk1 = JγA1(p
k
1),

zki = JγA−1
i

(xki + γxk1), ∀i ∈ J2, nK,

vkj = JγB−1
j

(ukj + γLjx
k
1), ∀j ∈ J1,mK,

xk+1
1 = xk1 − pk1 + zk1 − γ

(
n∑

i=2

zki +
m∑

j=1

L∗
jv

k
j

)
,

xk+1
i = zki + γ(zk1 − xk1), ∀i ∈ J2, nK,

uk+1
j = vkj + γLj(z

k
1 − xk1), ∀j ∈ J1,mK,

(3.31)

for all k ∈ N. Then the following statements hold.

(i) The sequence (xk1)k∈N converges weakly to a solution of the primal inclusion (3.23).

(ii) The sequence (uk1, . . . , u
k
m)k∈N converges weakly to a solution of the inclusion (3.24).
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Proof. Simply modify the definition of M and N in (3.29) by setting

A := A1, B := A2 × · · · × An ×B1 × · · · ×Bm, and

L : H → Hn−1 × G1 × · · · × Gm : x 7→ (x,
(n−1)· · · , x, L1x, · · · , Lmx).

Then the result trivially follows.

It can be seen that (3.31) is a full splitting algorithm, as it only requires evaluations of

the resolvents of the maximally monotone operators A1, A
−1
2 . . . , A−1

n , B−1
1 , . . . , B−1

m , and

of the linear operators and their adjoints.

In addition, it will be important for the sequel to notice that, according to the equiv-

alent formulation (3.30), the scheme in (3.31) is generated by a fixed point iteration of an

operator defined in the ambient space Hn × G1 × · · · × Gm.

For the last 20 years, the study of monotone operators splitting algorithms has been an

active topic of research beyond the mere design of new schemes. Among the most popular

lines of investigation we find the development of acceleration techniques [33, 55, 154,

176, 222], the connection with dynamical systems [32, 63], or the analysis of algorithms’

behavior in the inconsistent case [51, 190, 221], to name a few. In the next chapter, we

explore one of the directions that has attracted the most attention in recent years: the

determination of the minimal dimension of a splitting scheme.





Chapter 4

Minimal lifting for monotone operator splitting

methods

Consider the abstract problem of finding a zero of a monotone operator M : H ⇒ H, i.e.,

find x ∈ H such that 0 ∈ M(x). (4.1)

As discussed in Chapter 3, the monotone inclusion (4.1) is considerably broad, as it covers

Problems 3.7, 3.9 and 3.12. In this chapter, our main focus will be the underlying algebra

of the methods employed for addressing this kind of monotone inclusion. Thus, it will be

useful to consider the following unifying approach for devising algorithms for (4.1).

Framework 4.1. Abstract approach for solving (4.1):

(i) Encoding: Find a real Hilbert space X , a fixed point mapping T : X → X and a

solution mapping S : X → H such that

Fix T ̸= ∅ ⇐⇒ zerM ≠ ∅ and S(Fix T ) ⊆ zerM.

(ii) Iterate: Perform a fixed point iteration of T to obtain a point z̄ ∈ Fix T .

(iii) Solve: Recover a solution to (4.1) as S(z̄) ∈ zerM.

Framework 4.1 is general enough, it groups all the methods previously presented as

well as the ones that will be introduced in subsequent chapters. For instance, if we con-

sider the classical monotone inclusion with two maximally monotone operators in (3.4),

the Douglas–Rachford splitting algorithm is gathered under the above scheme by setting

X = H, T = TDR and S = JγA1 in (i). Therefore, we will say that the Douglas–Rachford

splitting is a fixed point encoding for (3.4) determined by the pair (TDR, JγA1) (see Defi-

nition 4.2 for details).

47
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The key idea behind Framework 4.1 is very intuitive. In order to find a zero of M, we

resort to an operator T whose set of fixed points is related to zerM. Further, the solution

mapping provides an explicit expression for this connection: from a point z̄ ∈ Fix T
we recover a solution to the original problem by evaluating S(z̄). Obviously, additional

assumptions on T might be required for being able to obtain a fixed point in step (ii). In

practice, one looks for a fixed point operator with nonexpansive properties, but this is not

required for the theoretical framework discussed in this chapter. This procedure aligns

with the convergence proof of the proximal point algorithm described in Remark 3.2 and

is latent in the convergence analysis of the methods studied in the sequel.

In this chapter, we concentrate on the encoding step in Framework 4.1 (i) and pay

special attention to X , the space in which T and S are defined, which can be understood

as the ambient space of an algorithm described by Framework 4.1. We are particularly

interested in the dimension of X , which for now we will roughly refer to as lifting.

Recall the classical monotone inclusion in Problem 3.7. We say that an algorithm

for solving Problem 3.7 has d-fold lifting if X is the d-fold Cartesian product space Hd.

When n = 2 in Problem 3.7, the Douglas–Rachford operator has 1-fold lifting in view

of Remark 3.5. Until very recently, the only way to tackle the problem when n > 2

was using Pierra’s product space reformulation, which implies an n-fold lifting. Indeed,

applying Douglas–Rachford splitting to the operators N∆n and A in Section 3.1.3, we

obtain the fixed point iteration of the operator TPR : Hn → Hn given by

TPR(z) := z + λ




x1 − x0

x2 − x0
...

xn − x0



, (4.2)

where z = (z1, z2, . . . , zn) ∈ Hn and x = (x0, x1, . . . , xn) ∈ Hn+1 is the vector defined as





x0 =
1

n

n∑

i=1

zi,

xi = JγAi
(2x0 − zi), ∀i ∈ J1, nK,

for any γ, λ > 0. Note that this scheme is also gathered by Framework 4.1, by defining

the solution operator as SPR : Hn → H : z 7→ (z1 + . . .+zn)/n. In particular, when n = 2,

Pierra’s product space reformulation not only does not recover the Douglas–Rachford

splitting but it has 2-fold lifting, as discussed in Remark 3.8.
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Although this reformulation always allows to tackle Problem 3.7 for any finite number

of operators, numerical experience shows that it usually slows down the resulting algorithm

(see, e.g., [20, Section 6.1] and [81, Section 6.1]), especially when the number of operators

is large (see, e.g., [22, Section 4] and [67, Section 5]).

In general, for the abstract monotone inclusion (4.1), the dimension of the under-

lying space is directly related to the memory requirements of the resulting algorithm.

A smaller dimension of X usually translates into less consumption of computational re-

sources. For this reason, the development of algorithms with reduced lifting for solving

monotone inclusion problems has recently become an active topic of research (see, e.g.,

[72, 81, 123, 173, 220, 231, 250]). Besides, different works have been devoted to determine

the minimal lifting, namely, the minimal dimensional reduction that can be achieved under

certain conditions, see [173, 187, 220].

The main contributions of this chapter are the following:

� We survey the existing minimal lifting results for the monotone inclusion problems

studied in Chapter 3.

� Specifically, in Theorem 4.9, we extend the minimal lifting theorem for Problem 3.7

proposed by Malitsky and Tam [173] to algorithmic schemes that admit the use of

parameters in the evaluation of resolvents.

� In Section 4.3, we formalize the notion of lifting for the composite monotone in-

clusions in Problem 3.12, and use it to prove the first minimal lifting theorem for

primal-dual splitting algorithms in Theorem 4.21.

Except for Fact 4.13, there referenced, the results of this chapter were first developed

in [10].

4.1 The case of resolvent splittings

In this section, we present a minimal lifting theorem for Problem 3.7. We start by in-

troducing the definition of fixed point encoding, which was already anticipated in Frame-

work 4.1 (i) and is vital for our analysis. More concretely, Definition 4.2 specifies the

encoding step in Framework 4.1 in the context of Problem 3.7. Again, we employ T for

denoting a fixed point operator and S a solution operator, both depending on the maxi-

mally monotone operators appearing in the problem.
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Definition 4.2 (Fixed point encoding). A pair of operators (T ,S) is a fixed point

encoding for Problem 3.7 if, for any particular instance of the problem,

Fix T ̸= ∅ ⇐⇒ zer

(
n∑

i=1

Ai

)
̸= ∅ and z ∈ Fix T =⇒ S(z) ∈ zer

(
n∑

i=1

Ai

)
.

As shown in Section 3.1, the resolvents of the operators A1, A2, . . . , An are the funda-

mental blocks used for building splitting algorithms for addressing Problem 3.7. A fixed

point encoding that only makes use of resolvents is known as a resolvent splitting.

Definition 4.3 (Resolvent splitting). A fixed point encoding (T ,S) for Problem 3.7

is a resolvent splitting if, for any particular instance of the problem, there is a finite

procedure that evaluates T and S at a given point which only uses vector addition, scalar

multiplication, and the resolvents of A1, . . . , An.

In general, resolvents are not effortless to compute, even when closed formulas are

known. If the aim is to improve the efficiency of an algorithm, it is desirable to properly

limit the number of resolvent evaluations per iteration. This motivates the concept of

frugal resolvent splitting.

Definition 4.4 (Frugality). A resolvent splitting (T ,S) for Problem 3.7 is frugal if, in

addition, each of the resolvents of A1, . . . , An is used exactly once.

We now present the precise definition of lifting for fixed point encodings of Problem 3.7.

Definition 4.5 (Lifting). Let d ∈ N \ {0}. A fixed point encoding (T ,S) is a d-fold

lifting for Problem 3.7 if T : Hd → Hd and S : Hd → H.

For concision, we will say that a splitting algorithm has d-fold lifting if it can be

described as a fixed point encoding with d-fold lifting.

At this point, we consider convenient to provide some comments on the history of

minimal lifting for classical monotone inclusions. The concept of lifting in the framework

of splitting algorithms was introduced by Ryu [220] in 2020. In addition, he was the

first to consider the notion of resolvent splitting as an important property for studying

the lifting reduction of an algorithm. More precisely, Ryu proved the uniqueness of the

Douglas–Rachford splitting as a frugal resolvent splitting having 1-fold lifting for solving

Problem 3.7 with n = 2. The definitions of these concepts were later refined by Malitsky

and Tam [173] to generalize Ryu’s result to the case n > 2. In [173, Theorem 1], they
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proved that the minimal lifting that can be achieved for Problem 3.7 with frugal resolvent

splittings is n− 1.

In both works [173] and [220], the definition of resolvent splitting considered differs

from the one in Definition 4.3, as they do not allow including parameters in the resolvents

(i.e., it only permits computation of the resolvents JA1 , . . . , JAn). This definition comprises

the Douglas–Rachford algorithm and the scheme derived from Pierra’s product space

reformulation. Since in these methods there is no upper bound for the stepsize parameter,

it can always be set to γ = 1. Nonetheless, their framework leaves aside various well-known

splitting methods (see, for instance, Example 4.6 below). Anticipating the discussion on

minimal lifting for Problem 3.9, the inclusion of resolvent parameters is also fundamental

for controlling the constants of cocoercivity, as well as the norms of the linear operators

in Problem 3.12.

From the proof of Malitsky and Tam, it cannot be directly determined whether

their result holds when the resolvents are allowed to have different parameters. Here we

present the adaptation of the minimality theorem in [173, Theorem 1] to the more general

parametrized setting. In the original publication of this work (see [10]), the authors opted

for using the term parameterized resolvent splitting to make this distinction clear. How-

ever, we believe that the appropriate framework for this analysis involves the admission of

different parameters in the resolvents. Therefore, we omit the term parametrized in Defi-

nition 4.3 for simplicity. Nonetheless, the reasoning below is very similar and follows the

lines of [173, Section 3].

Example 4.6 (Campoy’s minimal lifting splitting algorithm). Slightly prior to

the work of Malitsky and Tam, one of the first resolvent splittings with minimal lifting

was derived by Campoy [81] by resorting to a product space reformulation with reduced

dimension. This reformulation was actually employed earlier for a completely different

purpose by Kruger [156], where he devised necessary conditions for extreme points of

collections of closed sets. Given any γ > 0 and λ ∈ ]0, 2[, the reformulation considered by

Campoy applied to Problem 3.7 leads to the algorithm in [81, Theorem 5.1] (see also [54,

82, 117]), defined by the operator T : Hn−1 → Hn−1 given by

T (z) := z + λ




x1 − x0

x2 − x0
...

xn−1 − x0



,
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where z = (z1, z2, . . . , zn−1) and x = (x0, x1, . . . , xn−1) ∈ Hn is the vector defined as





x0 = J γ
n−1

An

(
1

n− 1

n−1∑

i=1

zi

)
,

xi = JγAi
(2x0 − zi), ∀i ∈ J1, n− 1K.

Moreover, given the operator S : Hn−1 → H defined as

S(z) := J γ
n−1

An

(
1

n− 1

n−1∑

i=1

zi

)
,

then the pair (T ,S) is a frugal resolvent splitting with (n − 1)-fold lifting according to

Definition 4.3, but it is not covered by the setting of [173], as different parameters are

required for the resolvents of A1, . . . , An−1 and An.

In the following, we assume that n ≥ 2. Let us also denote by An the collection of

all n-tuples of maximally monotone operators in H. Hence, an element A ∈ An is of

the form A = (A1, . . . , An), where Ai : H ⇒ H are maximally monotone operators for

all i ∈ J1, nK. Every instance of Problem 3.7 is determined by the choice of A ∈ An.

In particular, when considering a fixed point encoding for this problem, the fixed point

operator and the solution operator are both parametrized in terms of A. To emphasize

this idea, and to facilitate the exposition, we denote these operators by TA and SA in the

following.

Let (TA,SA) be a d-fold lifted frugal resolvent splitting for Problem 3.7. By definition,

there exists a finite procedure for evaluating TA and SA using only vector addition, scalar

multiplication and the resolvents Jγ1A1 , . . . , JγnAn precisely once, where γ = (γ1, . . . , γn)T

is a vector of positive stepsize parameters. This suggests that the evaluation of a point

z = (z1, . . . , zd) ∈ Hd by TA is subject to certain algebraic rules. In order to deduce them,

we proceed as follows.

First of all, since the resolvents are expected to be employed, there should exist points

x = (x1, . . . , xn) ∈ Hn and y = (y1, . . . , yn) ∈ Hn such that

x = JγA(y) ⇐⇒ 0 ∈ x− y + γA(x), (4.3)

where γA := (γ1A1, . . . , γnAn) ∈ An.

According to the above equation, each resolvent JγiAi
is evaluated at the point yi

(which is not specified yet) to get the point xi = JγiAi
(yi). Since apart from resolvent
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evaluations only sums and scalar products are allowed, each yi should have been obtained

as a linear combination of vectors already computed in the process. Assuming without

loss of generality that the resolvents of A1, A2, . . . , An are calculated in order, we get that

yi ∈ span{z1, z2, . . . , zd, x1, x2, . . . , xi−1, y1, y2, . . . , yi−1}
= span{z1, z2, . . . , zd, x1, x2, . . . , xi−1},

for all i ∈ J1, nK. Equivalently, this can be compactly expressed by the equation

y = Yzz + Yxx, (4.4)

where Yz ∈ Rn×d and Yx ∈ Rn×n is a lower-triangular matrix with zeros in the diagonal1.

Finally, by frugality, there exists Tz ∈ Rd×d and Tx ∈ Rd×n such that

TA(z) = Tzz + Txx. (4.5)

Similarly, also by frugality, the evaluation of z by the solution operator SA can be ex-

pressed as

SA(z) = Szz + Sxx, (4.6)

where Sz ∈ R1×d and Sx ∈ R1×n.

On the whole, equations (4.3)-(4.6) completely describe any frugal resolvent splitting

(TA,SA). In the following technical lemma, these equations are employed to characterize

the fixed points of the operator TA.

Lemma 4.7. Let (TA,SA) be a frugal resolvent splitting for Problem 3.7. Let M denote

the block matrix given by

M :=




0 Id − Id γT Id

Yz Yx − Id 0

Tz − Id Tx 0 0


 .

If z̄ ∈ Fix TA, then there exists v̄ = [z̄, x̄, ȳ, ā]T ∈ kerM with ā ∈ A(x̄). Conversely, if

v̄ = [z̄, x̄, ȳ, ā]T ∈ kerM and ā ∈ A(x̄), then it holds that z̄ ∈ Fix TA, x̄ = JγA(ȳ) and

SA(z̄) = Szz̄ + Sxx̄.

1Here we are making use of an abuse of notation. Strictly speaking, (4.4) should be written as the
equality y = (Yz ⊗ Id)z+ (Yx ⊗ Id)x, where ⊗ denotes the Kronecker product.
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Proof. Let z̄ ∈ Fix TA. Then (4.3) and (4.4) imply the existence of x̄, ȳ ∈ Hn and ā ∈ A(x̄)

such that

0 = x̄− ȳ + γā and ȳ = Yzz̄ + Yxx̄.

Together with the fact that z̄ = Tzz̄ + Txx̄, this yields that v̄ = [z̄, x̄, ȳ, ā]T ∈ kerM .

The converse implication follows similarly. The fact that SA(z̄) = Szz̄+Sxx̄ is implied

by equations (4.3)-(4.5).

Proposition 4.8 (Solution operator). Let (TA,SA) be a frugal resolvent splitting for

Problem 3.7. Let z̄ ∈ Fix TA and v̄ = [z̄, x̄, ȳ, ā]T ∈ kerM , where M is the block matrix

defined in the above lemma. Then

SA(z̄) =
1

n

n∑

i=1

(ȳi − γiāi) = x̄1 = · · · = x̄n, (4.7)

with ā ∈ A(x̄) and x̄ = JγA(ȳ).

Proof. Consider a particular instance of Problem 3.7 given by some operators A ∈ An.

Let TA and SA be the fixed point and the solution operators of this particular instance,

respectively. Let z̄ ∈ Fix TA. The existence of v̄ := [z̄, x̄, ȳ, ā]T ∈ kerM is guaranteed by

Lemma 4.7, which in addition ensures that ā ∈ A(x̄) and x̄ = JγA(ȳ). Therefore we only

need to prove the equalities in (4.7).

Define x∗ := SA(z̄). By (4.6), we have that x∗ = Sz(z̄) + Sx(x̄). Consider now the

n + 1 instances of Problem 3.7 given by the n-tuples of maximally monotone operators

A(0),A(1), . . . ,A(n) ∈ An defined as

A(0)(x) := ā and A(j)(x) := ā +




0
...

xj − x̄j
...

0



, ∀j ∈ J1, nK.

Since v̄ ∈ kerM and ā = A(j)(x̄), for all j ∈ J0, nK, Lemma 4.7 implies that z̄ ∈ Fix TA(j) ,

x̄ = JγA(j)(ȳ) and thus, SA(j)(z̄) = Szz̄ + Sxx̄ = x∗ is a solution to every instance.

Therefore, we have 0 =
∑n

i=1A
(0)
i (x∗) =

∑n
i=1 āi. Hence,

0 =
n∑

i=1

A
(j)
i (x∗) =

n∑

i=1

āi + x∗ − x̄j = x∗ − x̄j, ∀j ∈ J1, nK,
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from where it follows that x∗ = x̄1 = · · · = x̄n. Finally, since x̄ = JγA(0)(ȳ), we have that

ȳ − x̄ = γA(0)(x̄) = (γ1ā1, . . . , γnān). Consequently,
∑n

i=1 ȳi − nx∗ =
∑n

i=1 γiāi, which

completes the proof.

Note that, although the expression for the solution operator given by (4.7) differs from

the one obtained in [173, Proposition 1], it still holds that the vector x̄ belongs to the

diagonal subspace ∆n. This is what we employ to prove the minimal lifting theorem for

frugal resolvent splittings.

Theorem 4.9 (Minimal lifting for frugal resolvent splittings). Let (TA,SA) be a

frugal resolvent splitting with d-fold lifting for Problem 3.7 with n ≥ 2. Then d ≥ n− 1.

Proof. Suppose, by contradiction, that (TA,SA) is a frugal resolvent splitting for Prob-

lem 3.7 with d-fold lifting such that d ≤ n−2. Consider a particular instance of the prob-

lem given by A ∈ An such that zer (
∑n

i=1Ai) ̸= ∅ and take z̄ ∈ Fix TA. By Lemma 4.7,

there exists v̄ := [z̄, x̄, ȳ, ā]T ∈ kerM with ā ∈ A(x̄). The last row of M implies that

0 = (Tz − Id)z̄ + Txx̄. Since Tx ∈ Rd×n and d ≤ n − 2, by the rank-nullity theorem,

dim kerTx = n − dim rankTx ≥ n − d ≥ 2. Since the dimension of ∆n as a subspace of

Hn is 1, there exists x̃ ∈ Hn \ ∆n such that Txx̄ = Txx̃.

Now, set z̃ := z̄, ỹ := Yzz̃+Yxx̃ and ã := ((ỹ1− x̃1)/γ1, . . . , (ỹn− x̃n)/γn) and consider

the instance of the problem given by Ã ∈ An defined as Ã(s) := ã for all s ∈ Hn. Then,

ṽ := [z̃, x̃, ỹ, ã]T ∈ kerM with ã = Ã(x̃). By Lemma 4.7 and Proposition 4.8, this implies

that x̃ ∈ ∆n, obtaining thus a contradiction which completes the proof.

In accordance with Theorem 4.9, the Douglas–Rachford algorithm is a resolvent split-

ting with minimal lifting for Problem 3.7 with n = 2. In contrast, Pierra’s product space

reformulation leads to a frugal resolvent splitting which is not minimal, as it has n-fold

lifting. Besides Douglas–Rachford, only recently various frugal resolvent splittings with

minimal lifting have been developed. The first of them was Ryu’s splitting (see [220]

and [20, Appendix A]) for n = 3, which has 2-fold lifting for Problem 3.7. For an arbi-

trary finite number n of operators, Campoy’s splitting [81], the Malitsky–Tam splitting

(see Remark 6.10) and the methods in [72], [187, Theorem 8.1] and [231] describe frugal

resolvent splittings with (n− 1)-fold lifting.
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4.2 The case of forward-backward splittings

We now draw our attention to the monotone inclusion in Problem 3.9. Recall that this

problem amounts to finding a zero in the sum of n maximally monotone operators and m

single-valued operators that could be cocoercive or monotone and Lipschitz. Nonetheless,

the minimal lifting theorem presented here does not rely on cocoercivity nor Lipschitz

continuity and just assumes the operators T1, . . . , Tm to be single-valued.

The characterization of the minimal lifting for Problem 3.9 is due to Morin, Banert and

Giselsson [187], who proved under some mild assumptions that the lifting of the methods

for addressing this problem has the same lower bound than that of frugal resolvent split-

tings. In essence, their result shows that including forward evaluations of single-valued

operators in resolvent splittings does not alter the minimal dimension of the algorithm’s

underlying space.

Definition 4.10 (Fixed point encoding). A pair of operators (T ,S) is a fixed point

encoding for Problem 3.9 if, for any particular instance of the problem,

Fix T ̸= ∅ ⇐⇒ zer




n∑

i=1

Ai +
m∑

j=1

Tj


 ̸= ∅ and z ∈ Fix T =⇒ S(z) ∈ zer




n∑

i=1

Ai +
m∑

j=1

Tj


.

The definition of lifting for fixed point encoding for Problem 3.9 coincides with Defi-

nition 4.5, so we do not replicate it here.

Definition 4.11 (Frugal forward-backward splitting). A fixed point encoding (T ,S)

for Problem 3.9 is a frugal forward-backward splitting if, for any particular instance of

the problem, there is a finite procedure that evaluates T and S at a given point which only

uses vector addition, scalar multiplication, and the resolvents of A1, . . . , An and forward

evaluations of T1, . . . , Tm exactly once.

In the following remark we determine the lifting of the forward-backward methods

introduced in Section 3.2. For simplicity, we again set T :=
∑m

j=1 Tj and note that an

evaluation of T amounts to an evaluation of each one of the operators T1, . . . , Tm.

Remark 4.12 (Lifting of forward-backward methods). (i): By Lemma 5.1 below, the

pair (T γ
DY , JγA1) determines a fixed point encoding for the Davis–Yin algorithm. Hence,

Davis–Yin is a 1-fold frugal forward-backward splitting for Problem 3.9 with n = 2. As a

particular case, the forward-backward algorithm also has 1-fold lifting. For Problem 3.9

with n ≥ 2, the product space reformulation in Section 3.2.2.3 leads to a fixed point
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encoding for the generalized forward-backward, which is frugal and has n-fold lifting in

view of Theorem 3.10.

(ii): At each iteration, the forward-reflected-backward method makes use of two previously

computed iterates. This urges to include an additional variable in order to express the

algorithm as a fixed point iteration. The sequence in (3.22) can be written as the fixed

point iteration of the operator T : H2 → H2 given by

T
(
x

y

)
:=

(
JγA(x− 2γT (x) − γy)

T (x)

)
.

It is easy to check that together with the immersion S : H2 → H : (x, y) 7→ x, the opera-

tor T determines a fixed point encoding for the forward-reflected-backward. In addition,

note that T is only evaluated once per iteration. Hence, the forward-reflected-backward

is a frugal forward-backward splitting with 2-fold lifting for Problem 3.9 with n = 1.

(iii): A fixed point encoding for Tseng’s forward-backward method is given by the opera-

tors T : H → H and S : H → H defined as

S(x) := JγA
(
x− γT (x)

)
and T (x) := S(x) − γT (S(x)) + γT (x).

This makes the forward-backward-forward to have 1-fold lifting. However, (T ,S) is not a

frugal forward-backward splitting, as T is evaluated twice, specifically at x and S(x). As

noted in [187], Tseng’s method is not expressible as a frugal forward-backward splitting.

Fact 4.13 (Minimal lifting for frugal forward-backward splittings, [187, Corol-

lary 6.7]). Let (T ,S) be a frugal forward-backward splitting with d-fold lifting for Prob-

lem 3.9 with n ≥ 2. Then d ≥ n− 1.

Fact 4.13 and Remark 4.12 imply that the lifting of the Davis–Yin splitting is minimal

for Problem 3.9 with n = 2. In contrast, the generalized forward-backward method of

Theorem 3.10 does not have minimal lifting. Together with the proof of Fact 4.13, the

authors in [187] also proposed a frugal forward-backward splitting with (n−1)-fold lifting

for solving Problem 3.9 with n ≥ 2 and when the single-valued operators are exclusively

cocoercive. When n = 3, the convergence of a 2-fold lifting forward-backward splitting

which extends Ryu’s algorithm has been investigated in [250]. These were not the first

methods with minimal lifting for this class of problems. Previously, the authors in [25]

devised a forward-backward type scheme with minimal lifting that has the advantage of

being implementable in decentralized networks. We shall present it in Chapter 6.
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To the best of the author’s knowledge, there are no known frugal forward-backward

splittings with minimal lifting capable of solving Problem 3.9 when the single-valued

operators are monotone and Lipschitz continuous. When n = 2, some frugal resolvent

splitting methods are noted (see, e.g., the forward-reflected-Douglas–Rachford [223] and

the methods in [212]). However, these algorithms suffer from the same pathology than the

forward-reflected-backward (see, Remark 4.12 (ii)), which urges to resort to a 3-fold lifting

to express them as a fixed point iteration. The forward-Douglas–Rachford-forward [223]

has 1-fold lifting and solves the problem with n = 2, but it is not frugal as it requires

two forward evaluations of the Lipschitz continuous operator. In Chapter 6, we present

a method which solves the general problem with n ≥ 2 and has (n − 1)-fold lifting, but

also two evaluations of the monotone and Lipschitz continuous operator are needed per

iteration.

4.3 The case of primal-dual resolvent splittings

We now concentrate on establishing the minimal lifting reduction for the composite mono-

tone inclusion in Problem 3.12. We recall the importance of being able to simultaneously

identify solutions to both the primal inclusion (3.23) and the dual inclusion (3.24). This

motivates the following definition of fixed point encoding for Problem 3.12.

Definition 4.14 (Primal-dual fixed point encoding). A pair of operators (T ,S) is

a primal-dual fixed point encoding for Problem 3.12 if, for any particular instance of the

problem,

Fix T ̸= ∅ ⇐⇒ zer

(
n∑

i=1

Ai +
m∑

j=1

L∗
jBjLj

)
̸= ∅ and w ∈ Fix T =⇒ S(w) ∈ Z,

where Z is the set of primal-dual solutions of Problem 3.12 defined as

Z :=



(x, u1, . . . , um) ∈ H × G1 × . . .× Gm

∣∣∣∣ −
m∑

j=1

L∗
juj ∈

n∑

i=1

Ai(x) and uj ∈ Bj(Ljx), ∀j ∈ J1,mK



 .

Observe that if (x, u1, . . . , um) ∈ Z, then x solves (3.23) while (u1, . . . , um) solves (3.24),

the converse being also true. This will be discussed in detail in Section 7.1.

When talking about lifting for primal-dual problems, the need to distinguish between

variables in the space of primal solutions and dual solutions arises. Hence, we introduce

the notion of primal-dual lifting.
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Definition 4.15 (Primal-dual lifting). Let d, f ∈ N. A primal-dual fixed point encod-

ing (T, S) is a (d, f)-fold lifting for Problem 3.12 if

T : Hd × Gf1
1 × · · · × Gfm

m → Hd × Gf1
1 × · · · × Gfm

m

and

S : Hd × Gf1
1 × · · · × Gfm

m → H× G1 × · · · × Gm,

where fj ≥ 0 for all j ∈ J1,mK and f =
∑m

j=1 fj. We adopt the convention that the space

H (respectively Gj) vanishes from the equation when d = 0 (respectively fj = 0).

For the sake of brevity, we will say that a primal-dual splitting has (d, f)-fold lifting

if it can be described as a primal-dual fixed point encoding with (d, f)-fold lifting.

We now extend the definitions of resolvent splitting and frugality to the context of

composite monotone inclusions. The first of them is inspired by the standard conditions

satisfied by primal-dual splitting algorithms discussed at the beginning of Section 3.3.2.

Definition 4.16 (Primal-dual resolvent splitting). A fixed point encoding (T ,S) for

Problem 3.12 is a primal-dual resolvent splitting if, for any particular instance of the

problem, there is a finite procedure that evaluates T and S at a given point which only

uses vector addition, scalar multiplication, the resolvents of A1, . . . An and B1, . . . , Bm,

and forward evaluations of L1, . . . , Lm and their adjoints.

As previously mentioned, the evaluation of the resolvents of B−1
1 , . . . , B−1

m is common

in primal-dual algorithmic schemes. Since it is comparable to computing the resolvents of

B1, . . . , Bm (see Proposition 2.20), their use is also included in the definition of primal-dual

resolvent splitting.

Definition 4.17 (Frugality). A primal-dual resolvent splitting (T ,S) for Problem 3.12

is frugal if, in addition, each of the resolvents of A1, . . . , An and B1, . . . , Bm is used exactly

once.

Remark 4.18 (On the absence of restrictions on the evaluation of the linear operators).

Since in the finite case, a forward evaluation of a linear operator is computationally

equivalent to performing vector addition and scalar multiplication, this suggests that for

practical applications there is no computational need to control the number of evaluations

of the linear operators in the definition of frugality.

Example 4.19 (Chambolle–Pock as a primal-dual resolvent splitting). Consider

Chambolle–Pock’s algorithm presented in Theorem 3.13 for Problem 3.12 with n = m = 1.
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The iteration (3.28) can be written as the fixed point iteration defined by the operator

T : H× G → H× G given as

T
(
x

u

)
:=

(
x

u

)
+ λ

(
z − x

v − u

)
,

where {
z = Jγ1A(x− γ1L

∗u),

v = Jγ2B−1(u− γ2L(2z − x)).

It is a simple exercise to check that (x̄, ū) ∈ Fix T if and only if (x̄, ū) ∈ Z. Hence, defining

the solution operator S as the identity mapping in the space H× G, the Chambolle–Pock

method becomes a frugal primal-dual resolvent splitting with (1, 1)-fold lifting.

Example 4.20 (Briceño-Arias–Combettes method as a primal-dual resolvent

splitting). In the setting of Problem 3.12 with an arbitrary number of operators, the

Briceño-Arias–Combettes algorithm is derived from a suitable reformulation of Tseng’s

forward-backward-forward. In view of Remark 4.12 (iii) and Section 3.3.2.2, this method

can be expressed as primal-dual fixed point encoding. Furthermore, the resulting scheme

is a frugal primal-dual resolvent splitting with (n,m)-fold lifting, as shown in (3.31).

The following result characterizes the minimal lifting of frugal primal-dual resolvent

splitting algorithms with m dual variables.

Theorem 4.21 (Minimality theorem for frugal primal-dual resolvent splittings).

Let (T ,S) be a frugal primal-dual resolvent splitting for Problem 3.12 with (d,m)-fold

lifting. Then, if n ≥ 2, necessarily d ≥ n− 1.

Proof. By way of contradiction, let (T ,S) be a frugal primal-dual resolvent splitting for

Problem 3.12 with (d,m) fold lifting and d < n− 1. Consider the instance of the problem

in which Lj = Id : H → H, for all j ∈ J1,mK. Then, Problem 3.12 becomes the classical

monotone inclusion problem with n+m operators and (T ,S) is a frugal resolvent splitting

with (d + m)-fold lifting for such problem with d + m < n + m − 1, which contradicts

Theorem 4.9.

The lifting of the Briceño-Arias–Combettes algorithm is not minimal, as it has (n,m)-

fold lifting. Although, the above theorem is not applicable to Chambolle–Pock’s method

(it is applied with n = 1), its extensions to the general Problem 3.12 in [59, 116, 239] also

have (n,m)-fold lifting. We will introduce the first primal-dual resolvent splitting with

minimal lifting in Chapter 7.
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Finally, note that Theorem 4.21 only gives a lower bound for the lifting of the primal

variables, provided that the lifting of the dual variables coincides with the number of

composed operators in Problem 3.12. It remains open the question of whether it is possible

to reduce the dimension of the underlying space associated to the linearly composed

operators.

4.4 A brief note on the convergence of fixed point encodings

In this chapter, we have solely concentrated on the encoding step in Framework 4.1,

which aims to describe an algorithm as a fixed point iteration of a suitable operator.

Nevertheless, being a fixed point encoding is not sufficient for guaranteeing convergence

of an algorithm. A motivating example is the forward-backward method, which is a fixed

point encoding for the problem of finding a zero in the sum of a maximally monotone

operator and a monotone and Lipschitz continuous operator, but might fail to converge to

a solution of the problem. A central topic in the following chapters will be the convergence

analysis of algorithms in the context of Framework 4.1. We now make a brief preview of

what is to come.

Let us consider a fixed point encoding (T ,S) of a monotone inclusion problem asso-

ciated to an operator M. If T is averaged nonexpansive, the convergence of a sequence

(zk)k∈N, obtained by performing a fixed point iteration or a Krasnosel’skǐı–Mann itera-

tion of T , to a point in Fix T directly follows from Theorem 2.7 and Proposition 2.8,

respectively. However, in some cases T has milder nonexpansive properties (for instance,

it can be strongly quasi-nonexpansive), which prevents from resorting to Theorem 2.7 or

Proposition 2.8. Likewise, the proof of convergence of the shadow sequence (S(zk))k∈N to

a zero of M cannot be deduced by applying tools from fixed point theory. In both cases, a

more sophisticated analysis is required, which involves further techniques from monotone

operator theory.





Chapter 5

A new proof of convergence of Davis–Yin

splitting algorithm allowing larger stepsizes

This chapter is devoted to the study of the Davis–Yin splitting algorithm, already intro-

duced in Section 3.2.2.2. The algorithm is designed for solving the monotone inclusion

find x ∈ H such that 0 ∈ (A1 + A2 + T )(x), (5.1)

where all three operators involved are maximally monotone and act on the Hilbert space

H, and T is also 1
β
-cocoercive, for β > 0. In order to analyze the convergence of the

sequence governing the algorithm, Davis and Yin defined the operator

T γ
DY := JγA2 ◦ (2JγA1 − Id−γT ◦ JγA1) + Id−JγA1 , (5.2)

which we denote as T γ
DY to emphasize the dependence on γ. Subsequently, they proved

that T γ
DY is α-averaged for α = 2

4−γβ
when γ ∈ ]0, 2/β[. Observing that the sequence

(zk)k∈N in (3.16) (where now the relaxation parameters may vary per iteration) is obtained

through the standard Krasnosel’skǐı–Mann iteration

zk+1 = (1 − λk)zk + λkT γ
DY (zk), ∀k ∈ N, (5.3)

with λk ∈ ]0, 1/α], the convergence of (zk)k∈N to a fixed point of T γ
DY follows if the re-

maining assumptions of Proposition 2.8 hold. Further, the shadow sequence
(
JγA1(z

k)
)
k∈N

weakly converges to a solution to (5.1), and convergence is strong under additional as-

sumptions.

The main contributions of this chapter are summarized as follows:

� In Theorem 5.3, we provide a new proof of convergence of the iterative method (5.3)

63
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without relying on the averagedness of the operator T γ
DY . The proof has two key

advantages: (i) it permits to simplify the assumptions on the relaxation parameters,

and (ii) it allows to choose the stepsize γ in ]0, 4/β[ instead of ]0, 2/β[.

Observe that the operator T γ
DY does not need to be averaged when γ > 2/β (for

instance, take A1 = A2 = 0, T the identity, and apply T γ
DY to the points x = 1 and

z = −1). As a by-product, this shows that the stepsize in the forward-backward and

the backward-forward algorithms can be also chosen in ]0, 4/β[.

� In Theorem 5.10, we derive a strengthened version of the Davis–Yin splitting algo-

rithm which permits to compute the resolvent of A1 + A2 + T .

� We provide multiple numerical experiments illustrating the importance of appropri-

ately choosing the stepsize and the relaxation parameters of the algorithm.

Otherwise stated, the results in this chapter were extracted from [26].

5.1 The importance of properly adjusting the parameters of an al-

gorithm

Let us present a simple motivating example of the significance of the algorithm parameters.

Consider the problem of finding the minimum norm point in the intersection of two balls

A and B in the Euclidean space whose intersection has nonempty interior. The problem

can be solved with the Davis–Yin splitting algorithm, by taking A1 and A2 as the normal

cones to the respective balls, and T as the identity mapping. Since the resolvents of the

normal cones are the projectors (see Example 2.26), which we denote by PA and PB, the

iterative scheme is given by

zk+1 = zk − λkPA(zk) + λkPB
(
(2 − γ)PA(zk) − zk

)
, ∀k ∈ N,

and
(
PA(zk)

)
k∈N converges to the minimum norm point in A ∩ B (the normal cone sum

rule holds by Theorem 2.27). Both the relaxation parameter λk and the stepsize γ have a

big influence on the behavior of the algorithm, as shown in Figure 5.1.

In this example, since the cocoercivity constant 1
β

is equal to 1, [128, Theorem 2.1]

guarantees the convergence when the parameter γ is taken in ]0, 2[, while Theorem 5.3

below allows to take γ ∈ ]0, 4[. When the Davis–Yin splitting algorithm is applied to the
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z0

=1.5

= 2.5

s

z0

s

=
1.

5
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2.

5

Figure 5.1: Behavior of Davis–Yin splitting algorithm for two starting points z0 and z̃0 and
two stepsize parameters γ, with λk = 0.99(2− γ/2). The solution s is obtained after projecting
the fixed point onto A.

same problem with different starting points z0, it can behave very differently depending

on the parameters, as shown in Figures 5.1 and 5.2.
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Figure 5.2: Number of iterations needed until the shadow sequence gets sufficiently close to the
solution s (precisely, ∥PA(z

k) − s∥ < 10−10) for different values of γ and λk = λ, with starting
points z0 (left) and z̃0 (right) shown in Figure 5.1.

In general, larger stepsizes are commonly believed to be associated with faster conver-

gence of algorithms, but this is not always the case, particularly when an algorithm has

several parameters. It is important to have in mind that the relaxation parameter λk of

the Davis–Yin splitting algorithm is upper bounded by 2 − γβ
2

and that its value has an
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important effect. If γ ∈ ]0, 2/β[, overrelaxed steps (i.e., λk > 1) are allowed in (5.3), while

only underrelaxed steps can be taken when γ ≥ 2
β
. The fact that both the stepsize and

the relaxation parameters are significant is especially apparent when one considers the

particular case of A1 = A2 = 0 and T = ∇f for a differentiable function f whose gradient

is β-Lipschitz continuous. In this case, the iteration (5.3) reduces to the gradient descent

scheme:

zk+1 = zk − γλk∇f(zk), ∀k ∈ N. (5.4)

We observe in (5.4) that the stepsize of the algorithm is actually γλk, so the upper bound

2 − γβ
2

on the relaxation parameters λk entails γλk <
2
β
, as expected.

Finally, it is important to recall that in practical applications only a lower bound of

the best cocoercivity constant 1
β

is usually known, and this can affect the performance of

the algorithms. For instance, consider again the application of the Davis–Yin algorithm

with starting point z̃0 shown on the right in Figure 5.2 and imagine that we underestimate

1/β to 1/β̂ = 0.65 < 1 = 1/β. Then we observe in Figure 5.3 how the choice of a stepsize

parameter γ ∈ ]0, 2/β̂[ excludes better values like γ̂ ∈ ]2/β̂, 4/β̂[.
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Figure 5.3: Repetition of the experiment shown on the right of Figure 5.2. When only an
approximate value 1

β̂
of the cocoercivity constant is known, choosing the stepsize γ ∈ ]0, 2/β̂[

(shaded area) can exclude better choices like γ̂.

A typical choice for the parameters of the forward-backward algorithm is γ = (2−ε)/β
and λk = 1, for a small ε > 0 (see, e.g., [117]). This example shows that, when only an
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estimate 1

β̂
of the best value of 1

β
is known, it can be worth testing the performance of the

algorithm with parameters γ = (2 + ε)/β̂ and λk = 1 − ε (i.e., with underrelaxation).

5.2 The Davis–Yin splitting algorithm

The following lemma characterizes the set of zeros of the sum of operators in (5.1) in

terms of the set

Ωγ :=
{
z ∈ H : JγA1(z) = JγA2

(
2JγA1(z) − z − γT (JγA1(z))

)}
, (5.5)

with γ > 0, and shows that Ωγ = Fix T γ
DY , where

Fix T γ
DY = {x+ γy : x ∈ zer(A1 + A2 + T ), y ∈ (−A2(x) − T (x)) ∩ A1(x)} , (5.6)

as shown in [128, Lemma 2.2]. Furthermore, it reveals that the pair (T γ
DY , JγA1) determines

a fixed point encoding for the Davis–Yin algorithm.

Lemma 5.1. For every γ > 0, it holds

zer(A1 + A2 + T ) = JγA1(Ωγ).

In particular, zer (A1 + A2 + T ) ̸= ∅ ⇐⇒ Ωγ ̸= ∅. Further, Ωγ = Fix T γ
DY .

Proof. Observe that

x ∈ zer (A1 + A2 + T ) ⇔ −γT (x) ∈ (γA1 + γA2)(x),

⇔ (∃ z ∈ H) z − x ∈ γA1(x), x− z − γT (x) ∈ γA2(x),

⇔ (∃ z ∈ H) x = JγA1(z), 2x− z − γT (x) ∈ (Id +γA2)(x),

⇔ (∃ z ∈ H) x = JγA1(z), x = JγA2(2x− z − γT (x)),

from where the first claim follows. Further, we have

z ∈ Ωγ ⇔ (∃x ∈ zer (A1 + A2 + T )) x = JγA1(z), x = JγA2(2x− z − γT (x)),

⇔ (∃x ∈ zer (A1 + A2 + T )) z − x ∈ γA1(x), z − x ∈ (−γA2(x) − γT (u)),

⇔ (∃x ∈ zer (A1 + A2 + T )) (∃ y ∈ (−A2(x) − T (x)) ∩ A1(x)) z = x+ γy,

and thus, Ωγ = Fix T γ
DY , by (5.6).
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Using a technique similar to the one employed in [20, Theorem 8], we can provide

a direct proof of the convergence of Davis–Yin splitting algorithm with the additional

advantages of both allowing a larger stepsize and having a simpler condition on the relax-

ation parameters than [128, Theorem 2.1]. The proof makes use of the following technical

lemma.

Lemma 5.2. Let A1, A2 : H ⇒ H be two maximally monotone operators and T : H → H.

Let z, ẑ ∈ H and γ > 0, and set x := JγA1(z), x̂ := JγA1(ẑ), u := JγA2(2x − z − γT (x))

and û := JγA2(2x̂− ẑ − γT (x̂)). Then it holds

0 ≤ ⟨z − ẑ, (x− u) − (x̂− û)⟩ − ∥(x− u) − (x̂− û)∥2 − γ⟨T (x) − T (x̂), u− û⟩. (5.7)

Further, if A1 (respectively A2) is uniformly monotone with modulus ϕ, then (5.7) holds

with 0 replaced by γϕ(∥x− x̂∥) (respectively γϕ(∥u− û∥)).

Proof. Since z − x ∈ γA1(x) and ẑ − x̂ ∈ γA1(x̂), monotonicity of γA1 yields

0 ≤ ⟨(z − x) − (ẑ − x̂), x− x̂⟩. (5.8)

Likewise, since 2x−z−γT (x)−u ∈ γA2(u) and 2x̂−ẑ−γT (x̂)−û ∈ γA2(û), monotonicity

of γA2 implies

0 ≤ ⟨(2x− z − γT (x) − u) − (2x̂− ẑ − γT (x̂) − û), u− û⟩
= ⟨(û− x̂) − (u− x), u− û⟩ − ⟨(z − x) − (ẑ − x̂), u− û⟩ − γ⟨T (x) − T (x̂), u− û⟩.

(5.9)

Summing together (5.8) and (5.9), we obtain

0 ≤ ⟨(z − x)− (ẑ − x̂), (x− u)− (x̂− û)⟩+ ⟨(û− x̂)− (u− x), u− û⟩ − γ⟨T (x)− T (x̂), u− û⟩
= ⟨z − ẑ, (x− u)− (x̂− û)⟩ − ∥(x− u)− (x̂− û)∥2 − γ⟨T (x)− T (x̂), u− û⟩,

which proves (5.7). The last assertion easily follows from the definition of uniform mono-

tonicity.

5.2.1 A new proof of convergence of the Davis–Yin algorithm

In this section, we demonstrate the new convergence theorem for the Davis–Yin splitting

and sketch its consequences for the forward-backward algorithm. The following is the

main result of this chapter.
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Theorem 5.3 (Davis–Yin splitting algorithm). Let A1, A2 : H ⇒ H be two maxi-

mally monotone operators and T : H → H be a 1
β

-cocoercive operator, with β > 0, such

that zer (A1 + A2 + T ) ̸= ∅. Set a stepsize γ ∈ ]0, 4/β[ and consider a sequence of relax-

ation parameters (λk)k∈N in
]
0, 2 − γβ

2

]
such that

∑
k∈N λk

(
2 − γβ

2
− λk

)
= +∞. Given

some initial point z0 ∈ H, consider the sequences defined by





xk = JγA1(z
k),

uk = JγA2

(
2xk − zk − γT (xk)

)
,

zk+1 = zk + λk(uk − xk),

(5.10)

for all k ∈ N. Then the sequence (zk)k∈N is Fejér monotone with respect to the set Ωγ

given in (5.5). Moreover, the following assertions hold.

(i) zk ⇀ z̄ ∈ Ωγ, xk ⇀ x̄, uk ⇀ x̄, uk − xk → 0 and T (xk) → T (x̄) with

x̄ = JγA1(z̄) = JγA2

(
2x̄− z̄ − γT (x̄)

)
∈ zer (A1 + A2 + T ) .

Further, T (zer(A1 + A2 + T )) = {T (x̄)}.

(ii) If either A1 or A2 is uniformly monotone on every bounded subset of its domain,

or T is demiregular at every point in zer (A1 + A2 + T ), then (xk)k∈N and (uk)k∈N

converge strongly to x̄ ∈ zer (A1 + A2 + T ).

Proof. Define the sequences

vk := γT (xk) and wk := uk − xk, ∀k ∈ N,

and note the following relations that (5.10) yields

(xk, zk − xk) ∈ gra γA1 and (uk, 2xk − zk − vk − uk) ∈ gra γA2. (5.11)

Select any z ∈ Ωγ and denote x := JγA1(z). By the definition of Ωγ, we have that

x = JγA2(2x− z − γT (x)). Applying Lemma 5.2 to z and ẑ := zk, observing that x̂ = xk,

u = x and û = uk, yields

0 ≤ ⟨z − zk, wk⟩ − ∥wk∥2 − γ⟨T (x) − T (xk), x− uk⟩. (5.12)
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The first two terms in (5.12) multiplied by 2λk can be expressed as

2λk
(
⟨z − zk, wk⟩ − ∥wk∥2

)
= 2⟨z − zk, zk+1 − zk⟩ − 2λk∥wk∥2

= ∥zk − z∥2 − ∥zk+1 − z∥2 + λk(λk − 2)∥wk∥2.
(5.13)

Now, using the 1
β
-cocoercivity of T , the last term in (5.12) can be expressed as

−γ⟨T (x) − T (xk), x− uk⟩ = −γ⟨T (x) − T (xk), x− xk⟩ + γ⟨T (x) − T (xk), wk⟩
≤ −γ

β
∥T (x) − T (xk)∥2 + γ⟨T (x) − T (xk), wk⟩.

(5.14)

Using Cauchy–Schwarz and Young’s inequalities, the last term in (5.14) can be estimated

as

γ⟨T (x) − T (xk), wk⟩ ≤ γ

β
∥T (x) − T (xk)∥2 +

γβ

4
∥wk∥2. (5.15)

Combining (5.12)-(5.15), we have

∥zk+1 − z∥2 + λk(2 − λk)∥wk∥2 ≤ ∥zk − z∥2 +
γβ

2
λk∥wk∥2.

As a result, we reach the expression

∥zk+1 − z∥2 + λk

(
2 − γβ

2
− λk

)
∥wk∥2 ≤ ∥zk − z∥2. (5.16)

Since λk ≤ 2− γβ/2, equation (5.16) implies that (zk)k∈N is Fejér monotone with respect

to Ωγ and thus, bounded. Since resolvents are nonexpansive and T is β-Lipschitz contin-

uous (by Cauchy–Schwarz), it follows that (xk)k∈N, (vk)k∈N and (uk)k∈N are bounded.

(i): The Fejér monotonicity of (zk)k∈N implies that the sequence (∥zk − z∥)k∈N is

nonincreasing and convergent. Telescoping (5.16), we obtain

∑

k∈N

λk

(
2 − γβ

2
− λk

)
∥wk∥2 ≤ ∥z0 − z∥2,

which implies lim infk→∞ ∥wk∥ = 0, since
∑

k∈N λk

(
2 − γ

2β
− λk

)
= +∞. To prove that

wk → 0, it suffices to show that the sequence (∥wk∥)k∈N is nonincreasing. Applying

Lemma 5.2 with z := zk+1 and ẑ := zk yields

0 ≤ ⟨zk+1 − zk, wk − wk+1⟩ − ∥wk+1 − wk∥2 − γ⟨T (xk+1) − T (xk), uk+1 − uk⟩.
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The first two terms multiplied by 2 can be expressed as

2⟨λkwk, wk −wk+1⟩ − 2∥wk+1 −wk∥2 = λ2k∥wk∥2 −∥wk+1 −wk∥2 −∥wk+1 −wk + λkw
k∥2,

while the third term is equal to

−γ⟨T (xk+1) − T (xk), uk+1 − uk⟩
= −γ⟨T (xk+1) − T (xk), wk+1 − wk⟩ − γ⟨T (xk+1) − T (xk), xk+1 − xk⟩

≤ γ

β
∥T (xk+1) − T (xk)∥2 +

γβ

4
∥wk+1 − wk∥2 − γ

β
∥T (xk+1) − T (xk)∥2

=
γβ

4
∥wk+1 − wk∥2,

where we have used again Young’s inequality and the cocoercivity of T . Therefore, we

deduce

0 ≤ λ2k∥wk∥2 −
∥∥wk+1 − wk + λkw

k
∥∥2 +

(
γβ

2
− 1

)
∥wk+1 − wk∥2

= λ2k∥wk∥2 − λ2k∥wk∥2 + 2λk⟨wk+1 − wk,−wk⟩ +

(
γβ

2
− 2

)
∥wk+1 − wk∥2

= λk∥wk∥2 − λk∥wk+1∥2 +

(
γβ

2
− 2 + λk

)
∥wk+1 − wk∥2,

that is,

λk∥wk+1∥2 ≤ λk∥wk∥2 −
(

2 − γβ

2
− λk

)
∥wk+1 − wk∥2 ≤ λk∥wk∥2,

so (∥wk∥)k∈N is nonincreasing, since λk > 0. Hence, we have proved that wk → 0.

Let (z̄, x̄, v̄) be a weak sequential cluster point of the bounded sequence (zk, xk, vk)k∈N.

Hence, there is a subsequence (zkn , xkn , vkn)n∈N which is weakly convergent to (z̄, x̄, v̄).

Now, consider the operator C : H3 ⇒ H3 given by

C :=




(γA1)
−1

(γT )−1

γA2


+




0 0 − Id

0 0 − Id

Id Id 0


 ,

which is maximally monotone, because it is the sum of a maximally monotone operator

and a skew-symmetric matrix (see Example 2.13 and Proposition 2.15). From (5.11), it
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follows that 

xkn − ukn

xkn − ukn

xkn − ukn


 ∈ C



zkn − xkn

vkn

ukn


 .

Since by Proposition 2.23 the graph of a maximally monotone operator is sequentially

closed in the weak-strong topology, taking the limit as n→ ∞ and noting zkn−xkn ⇀ z̄−x̄
and ukn ⇀ x̄ (since wkn = ukn − xkn → 0), we deduce that




0

0

0


 ∈







(γA1)
−1

(γT )−1

γA2


+




0 0 − Id

0 0 − Id

Id Id 0









z̄ − x̄

v̄

x̄


 .

The latter inclusion is equivalent to

x̄ = JγA1(z̄), v̄ = γT (x̄) and x̄ = JγA2(2x̄− z̄ − v̄), (5.17)

which implies z̄ ∈ Ωγ. Therefore, every weak sequential cluster point of (zk)k∈N is contained

in Ωγ, and Proposition 2.6 implies that (zk)k∈N is weakly convergent to a point z̄ ∈ Ωγ.

Then (5.17) shows that x̄ = JγA1(z̄) and v̄ = γT (x̄) are the unique cluster points of

(xk)k∈N and (vk)k∈N, respectively, and hence xk ⇀ ū, uk ⇀ x̄ and vk ⇀ v̄.

Moreover, since z was arbitrarily chosen in Ωγ, (5.12) and (5.14) also hold with x

replaced by x̄ and z replaced by z̄. From the resulting inequalities, we obtain

γ

β
∥T (x̄) − T (xk)∥2 ≤⟨z̄ − zk, wk⟩ + ⟨xk − x̄, wk⟩

+ ⟨x̄− uk, wk⟩ + γ⟨T (x̄) − T (xk), wk⟩,

and thus T (xk) → T (x̄). Now, by Lemma 5.1, we know that x̄ ∈ zer (A1 + A2 + T ).

Finally, we conclude that T (zer(A1 + A2 + T )) = {T (x̄)} due to the uniqueness of

solution of the Attouch–Théra dual problem of (5.1).

(ii): Assume first thatA1 is uniformly monotone. Since the sequence (xk)k∈N is bounded,

the set {x̄} ∪ {xk, k ≥ 0} ⊂ domA1 is bounded. Thus, using uniform monotonicity in

Lemma 5.2 with z := z̄ and ẑ := zk, we obtain the stronger inequality

γϕ(∥x̄− xk∥) ≤ ⟨z̄ − zk, wk⟩ − ∥wk∥2 − γ⟨T (x̄) − T (xk), x̄− uk⟩,
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which entails γϕ(∥x̄ − xk∥) → 0. Since ϕ is increasing, we deduce that xk → x̄, which

implies uk → x̄. When A2 is uniformly monotone, the result similarly follows.

Finally, suppose that the demiregularity assumption holds. Since (i) yields xk ⇀ x̄ and

T (xk) → T (x̄), the demiregularity of T at x̄ then implies that xk → x̄. Since uk−xk → 0,

we also obtain that uk → x̄.

Remark 5.4. (i) The stepsize γ in [128, Theorem 2.1] is assumed to be in ]0, 2ε/β[, with

ε ∈ ]0, 1[, while Theorem 5.3 allows to take stepsizes in the interval ]0, 4/β[, which is

twice larger. Note that our assumption is required to guarantee that 2 − γβ/2 > 0. The

relaxation parameters (λk)k∈N in [128, Theorem 2.1] must be taken in ]0, 2− ε[, while the

interval given in Theorem 5.3 is ]0, 2 − γβ
2

]. If γ ∈ ]0, 2ε/β[, we have 2 − ε < 2 − γβ/2.

Thus, Theorem 5.3 additionally allows to take some of the relaxation parameters equal

to 2 − γβ/2 (but not all of them, as we need
∑

k∈N λk
(
2 − γβ

2
− λk

)
= +∞, unless either

A1 or A2 is uniformly monotone). Finally, unlike [128, Theorem 2.1], we do not require

the assumption infk∈N λk > 0.

(ii) In Theorem 5.3 (ii), even when
∑

k∈N λk
(
2 − γβ

2
− λk

)
< +∞, we have proved that the

sequence (xk)k∈N (respectively (uk)k∈N) is strongly convergent to x̄ when A1 (respectively

A2) is uniformly monotone.

(iii) Very close in time to [26], a similar convergence result allowing γ in the interval ]0, 4/β[

was proved in [126] using the notion of conically averaged operators recently introduced

in [39]. Observe that the proof there can be refined to prove zk ⇀ z̄ ∈ Ωγ not only

for a fixed relaxation parameter λk = λ, as it was done in [126, Corollary 4.2]. Indeed,

by [126, Theorem 4.1], the operator T γ
DY in (5.2) is conically (2−γβ/2)−1-averaged, so [39,

Proposition 2.9] can be applied to deduce the convergence of the Krasnosel’skǐı–Mann

iteration (5.3) to a fixed point of T γ
DY , which belongs to Ωγ by Lemma 5.1.

As a corollary, we obtain the following convergence result for the forward-backward

splitting algorithm that allows doubling the range of the stepsizes assumed in [44, The-

orem 26.14] (which is a particular case of [114, Proposition 4.4] and [116, Lemma 4.4]).

Although this wider range of the stepsizes has been shown before in [140, 141, 159], it has

not yet become widely known in the literature.

Corollary 5.5 (Forward-backward splitting algorithm). Let A : H ⇒ H be a

maximally monotone operator and T : H → H be a 1
β

-cocoercive operator, with β > 0,

such that zer (A+ T ) ̸= ∅. Set a stepsize γ ∈ ]0, 4/β[ and consider a sequence of relaxation

parameters (λk)k∈N in
]
0, 2 − γβ

2

]
such that

∑
k∈N λk

(
2 − γβ

2
− λk

)
= +∞. Given some
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initial point x0 ∈ H, consider the sequence (xk)k∈N defined by

xk+1 = (1 − λk)xk + λkJγA
(
xk − γT (xk)

)
, ∀k ∈ N.

Then the following assertions hold.

(i) (xk)k∈N converges weakly to a point x̄ ∈ zer (A+ T ) and
(
T (xk)

)
k∈N converges

strongly to the unique dual solution T (x̄).

(ii) If either A is uniformly monotone on every bounded subset of its domain, or T is

demiregular at every point belonging to zer (A+ T ), then (xk)k∈N converges strongly

to x̄ ∈ zer (A+ T ).

Proof. Apply Theorem 5.3 with A1 = 0 and A2 = A. Theorem 5.3 (i) then yields that

T (xk) → T (x̄) and T (zer (A+ T )) = {T (x̄)}, which is the unique solution to the dual

problem.

Remark 5.6 (Generalized forward-backward algorithm). The original proof of the gen-

eralized forward-backward method [210] relies on the averagedness of a composition of op-

erators, which leads to the parameter bounds in Theorem 3.10. Nonetheless, as described

in Section 3.2.2.3, this method can be regarded as an application of the Davis–Yin split-

ting to the operators in (3.17) and (3.18). As the latter preserves the same cocoercive

constant than T (see, e.g., [73, Proposition 6.2]), it follows from Theorem 5.3 that the

stepsize and relaxation parameters in Theorem 3.10 can be chosen as γ ∈ ]0, 4/β[ and

λ ∈
]
0, 2 − γβ

2

[
, respectively. This enlargement of the parameters range appears to have

not been previously reported.

5.2.2 Strengthened Davis–Yin splitting algorithm

Recently in [20], the authors developed a systematic framework for computing the re-

solvent of sums of maximally monotone operators, which draws upon the notion of

strengthening of an operator. The analysis there leads to new splitting schemes such

as the averaged alternating modified reflections [16], which is an enhanced version of

the Douglas–Rachford splitting suitable for addressing best approximation problems (see,

e.g., [5, 14, 17]). We now employ the techniques from [20] to derive a modification of the

Davis–Yin splitting for the calculation of the resolvent of A1 + A2 + T .
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Definition 5.7. Let θ > 0, σ ∈ R and let w ∈ H. Given A : H ⇒ H, the (θ, σ)-

strengthening with w of A is the operator wA
(θ,σ) : H ⇒ H defined by

wA
(θ,σ) := A ◦ (θ Id−w) + σ Id .

We now present two facts containing results from [20] and [125] that will be used to

derive the strengthened version of the Davis–Yin algorithm. The first of them explores

the monotonicity of strengthened operators and characterizes their resolvents. The second

relates the resolvent of sums of operators with the zeros of the sum of their strengthenings.

Fact 5.8. Let β, θ > 0, α, σ ∈ R and let w ∈ H. Given A : H ⇒ H, T : H → H and

γ > 0, the following hold.

(i) A is (maximally) α-monotone if and only if wA
(θ,σ) is (maximally) (θα+σ)-monotone.

(ii) T is 1
β

-cocoercive if and only if wT
(θ,0) is 1

θβ
-cocoercive. Consequently, if σ > 0 then

wT
(θ,σ) is 1

µ
-cocoercive with µ := θβ + σ.

(iii) If 1 + γσ ̸= 0, then

Jγ wA(θ,σ) =
1

θ

(
J γθ

1+γσ
A ◦
(

θ

1 + γσ
Id−w

)
+ w

)
.

If, in addition, A is maximally α-monotone and 1 + γ(θα + σ) > 0, then Jγ wA(θ,σ)

and J γθ
1+γσ

A are single-valued and have full domain.

Proof. (i) and (iii): [125, Proposition 2.1]. (ii): [20, Theorem 1 (iii)].

Fact 5.9 ([20, Proposition 3]). Let Ai : H ⇒ H and αi, σi ∈ R, for i ∈ {1, . . . , n},

and set σ :=
∑n

i=1 σi > 0. Let q ∈ H and θ > 0. Then

J θ
σ
(
∑n

i=1 Ai)
(q) :=

{
θx+ q : x ∈ zer

(
n∑

i=1

−qA
(θ,σi)
i

)}
.

Moreover, if each Ai is αi-monotone,
∑n

i=1(θαi + σi) > 0 and q ∈ ran
(
Id + θ

σ

∑n
i=1Ai

)
,

then J θ
σ
(
∑n

i=1 Ai)
(q) is a singleton and

zer

(
n∑

i=1

−qA
(θ,σi)
i

)
=

{
1

θ

(
J θ

σ
(
∑n

i=1 Ai)
(q) − q

)}
.
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Theorem 5.10 (Strengthened-Davis–Yin splitting). Let A1, A2 : H ⇒ H be max-

imally αA1-monotone and αA2-monotone operators, respectively, with αA1 , αA2 ∈ R. Let

T : H → H be a 1
β

-cocoercive and maximally αT -monotone operator, with β > 0 and

αT ∈ R. Let θ > 0, σA1 , σA2 ∈ R and σT ≥ 0 be such that

σA1 + σA2 + σT > 0 and (θαA1 + σA1 , θαA2 + σA2 , θαT + σT ) ∈ R3
+ \ {0}. (5.18)

Let µ := θβ + σT and take γ ∈ ]0, 4/µ[. Consider a sequence of relaxation parameters

(λk)k∈N in the interval
]
0, 2 − γµ

2

]
verifying

∑
k∈N λk

(
2 − γµ

2
− λk

)
= +∞. Suppose that

q ∈ ran
(

Id + θ
σA1

+σA2
+σT

(A1 + A2 + T )
)

. Given any z0 ∈ H, consider the sequences





xk = J γθ
1+γσA1

A1

(
1

1 + γσA1

(zk + γσA1q)

)
,

uk = J γθ
1+γσA2

A2

(
1

1 + γσA2

(
(2 − γσT )xk − zk − θγT (xk) + γ(σA2 + σT )q

))
,

zk+1 = zk + λk(uk − xk),

(5.19)

for all k ∈ N. Then (xk)k∈N and (uk)k∈N are weakly convergent to J θ
σA1

+σA2
+σT

(A1+A2+T )(q),

and (zk)k∈N is weakly convergent to z̄, with

J γθ
1+γσA1

A1

(
1

1 + γσA1

(z̄ + γσA1q)

)
= J θ

σA1
+σA2

+σT
(A1+A2+T )(q).

Further, if θαA1 + σA1 > 0 (respectively θαA2 + σA2 > 0) then the convergence of (xk)k∈N

(respectively (uk)k∈N) is strong, even when
∑

k∈N λk
(
2 − γµ

2
− λk

)
< +∞.

Proof. Set ẑ0 := 1
θ
(z0 − q) and consider the sequences





x̂k = J
γ −qA1

(θ,σA1
)(ẑk),

ûk = J
γ −qA2

(θ,σA2
)

(
2x̂k − ẑk − γ −qT

(θ,σT )(x̂k)
)
,

ẑk+1 = ẑk + λk(ûk − x̂k).

(5.20)

By (5.18) and Fact 5.8 (i)-(ii), the operators −qA1
(θ,σA1

), −qA2
(θ,σA2

) are maximally mono-

tone, and −qT
(θ,σT ) is 1

µ
-cocoercive. Since q ∈ ran

(
Id + θ

σA1
+σA2

+σT
(A1 + A2 + T )

)
by

assumption, (5.18) and Fact 5.9 imply that

zer
(
−qA1

(θ,σA1
) + −qA2

(θ,σA2
) + −qT

(θ,σT )
)
=

{
1

θ

(
J θ

σA1
+σA2

+σT
(A1+A2+T )(q)− q

)}
. (5.21)
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By Theorem 5.3 (i), x̂k ⇀ x̂ and ûk ⇀ x̂, with

x̂ ∈ zer
(
−qA1

(θ,σA1
) + −qA2

(θ,σA2
) + −qT

(θ,σT )
)
,

and ẑk ⇀ ẑ, where ẑ satisfies

x̂ = J
γ −qA1

(θ,σA1
)(ẑ) ∈ zer

(
−qA1

(θ,σA1
) + −qA2

(θ,σA2
) + −qT

(θ,σT )
)
. (5.22)

If θαA1 + σA1 > 0 (respectively θαA2 + σA2 > 0), then x̂k → x̂ (respectively ûk → x̂) by

Theorem 5.3 (ii), even if
∑

k∈N λk
(
2 − γµ

2
− λk

)
< +∞. Thanks to Fact 5.8 (iii), we may

rewrite (5.20) as





θx̂k + q = J γθ
1+γσA1

A1

(
θ

1 + γσA1

ẑk + q

)
,

θûk + q = J γθ
1+γσA2

A2

(
θ

1 + γσA2

(
2x̂k − ẑk − γ

(
T (θx̂k + q) + σT x̂

k
))

+ q

)
.

Further, by (5.21), (5.22) and Fact 5.8 (iii),

J θ
σA1

+σA2
+σT

(A1+A2+T )(q) = θJ
γ −qA1

(θ,σA1
) (ẑ) + q = J γθ

1+γσA1
A1

(
θ

1 + γσA1

ẑ + q

)
.

The result follows by making the change of variables (zk, xk, uk) := (θẑk+q, θx̂k+q, θûk+q)

for all k ∈ N and z̄ := θẑ + q. The final assertion is a consequence of Remark 5.4 (ii).

Remark 5.11. Another way of computing the resolvent with parameter δ > 0 of the

sum A1 + A2 + T at q ∈ H is applying the Davis–Yin splitting algorithm to A1, A2 and

T̃ := 1
δ
(Id−q) + T , where T̃ is δ+β

δβ
-cocoercive, by Fact 5.8 (ii), and 1

β
is the cocoercivity

constant of T . Note that this is a particular instance covered by Theorem 5.10, taking

σT = 1
δ
, σA1 = σA2 = 0 and θ = 1.

5.3 Numerical experiments

In this section we provide some numerical examples of the algorithms developed in the

chapter. These experiments aim not to be exhaustive and only intend to show the im-

portance of appropriately choosing the stepsize and the relaxation parameters of the

algorithms.
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5.3.1 A feasibility problem with hard and soft constraints

Let A,B,C ⊆ Rn be three closed and convex sets with nonempty intersection of the

relative interiors of A and B. Suppose A and B are hard constraints, which need to be

satisfied, and C is a third soft constraint, which does not necessarily need to be fulfilled,

but whose violation we want to reduce as much as possible. Imagine that, at the same

time, we would like to find a point in A ∩ B as close as possible to a point q ∈ Rn. This

problem can be written as

argmin
x∈A∩B

1

2
d2(x,C) +

ρ

2
∥x− q∥2, (5.23)

where d2(x,C) := ∥x − PC(x)∥2 and ρ > 0 is a regularization parameter specifying the

importance of remaining close to the point q. Problem (5.23) can be reformulated as

argmin
x∈Rn

ιA(x) + ιB(x) +
1

2
∥x− q∥2 +

1

2ρ
d2(x,C),

whose solution is given by prox(ιA+ιB+
1
2ρ

d2(·,C))(q). The subdifferential sum rule (see, e.g., [44,

Corollary 16.50(v)]) guarantees the equality

prox(ιA+ιB+
1
2ρ

d2(·,C))(q) = J(∂ιA+∂ιB+∇( 1
2ρ

d2(·,C)))(q) = J(NA+NB+
1
ρ
(Id−PC))(q),

and thus, solving (5.23) boils down to computing the resolvent at q of the sum of the

three maximally monotone operators A1 := NA, A2 := NB and T := 1
ρ

(Id−PC), with T

being 1
ρ
-cocoercive (see, e.g., [44, Corollary 12.31]).

To illustrate on the problem (5.23) the behavior of the Davis–Yin algorithm and its

strengthened version derived in Theorem 5.10, we retake our simple introductory example

of two balls A and B centered at (−1.6,−0.75) and (−0.35, 0.12), with radii 0.55 and 1,

respectively. We chose these values to make the problem slightly challenging. We now

add a new third ball C with center (1,−1) and radius 0.5, the point q := (−1.75, 1.5)

and take ρ := 1. Observe that any combination of σA1 ≥ 0, σA2 ≥ 0 and σT ≥ 0 such

that θ := σA1 + σA2 + σT > 0 satisfies the hypotheses of Theorem 5.10. Although finding

the best values is beyond our scope, for comparison, we tested the result of running

the algorithm (5.19) with (σA1 , σA2 , σT ) = (0, 0, 1) (which corresponds to the Davis–Yin

splitting algorithm, see Remark 5.11) and (σA1 , σA2 , σT ) = (0, 1, 1), using as starting point

z0 := (0.7, 1.7). In accordance with Theorem 5.10, the stepsize γ must be chosen so that

γµ ∈ ]0, 4[, for µ = ((σA1 + σA2 + σT )ρ + σT ). In Figure 5.4 we have represented the
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iterates for λk = 0.99(2 − γµ
2

) and for two values of γµ, namely 1.5 (overrelaxation) and

2.5 (underrelaxation).

z0

q

s

= 1.5/
= 2.5/

z0
q

s

= 1.5/

=2.5
/

Figure 5.4: Behavior of the iterates of the Davis–Yin (left) and the strengthened-Davis–Yin
(right) splitting algorithms for the problem (5.23) for two stepsize parameters γ and relaxation
parameters λk = 0.99(2 − γµ/2). Since σA1 = 0, the solution is obtained after projecting the
fixed point onto the set A.

In order to obtain the best combination of the stepsize and relaxation parameters,

we run the algorithms for every possible value of (γµ, λ) on a grid with 4950 points in

]0, 4[×]0, 2[. The algorithms were stopped when the norm of the difference between the

shadow sequence
(
PA(zk)

)
k∈N and the solution to the problem was smaller than 10−8.

The solution, which is approximately equal to (−1.227559,−0.3452923), was computed

in Maple by numerically solving the KKT conditions with high precision. A contour plot

representing the number of iterations is shown in Figure 5.5. The minimum number of

iterations for Davis–Yin was 17 and it was attained at (γµ, λ) = (3.11, 0.43), and for the

strengthened-Davis–Yin was 16 and it was reached at three pair of values of γµ and λ,

namely γµ = 2.34, λ ∈ {0.79, 0.81} and γµ = 2.39, λ = 0.79.

5.3.2 Image recovery via ℓ1 regularization

The restoration of blurred images using ℓ1 regularization has become a standard appli-

cation in the literature to test the performance of forward-backward algorithms, see [55].
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Figure 5.5: Number of iterations needed until the shadow sequence is sufficiently close to the
solution s when the Davis–Yin (left) and the strengthened-Davis–Yin (right) splitting algorithms
are applied for different values of γ and λk = λ, with the experiment setting shown in Figure 5.4.

This consists in solving a minimization problem of the form

argmin
x∈Rn

µ∥x∥1 +
1

2
∥Mx− b∥2, (5.24)

where M ∈ Rm×n, b ∈ Rm is the observed blurred image (the vectorization of the two-

dimensional matrix) and µ > 0 is a regularization parameter. Setting A2 = ∂ (µ∥ · ∥1) and

T = MT (Mx− b), this problem can be reformulated as finding a zero of the sum A2 + T

of two maximally monotone operators. Since T is Lipschitz continuous, we can employ

the forward-backward algorithm (i.e., Davis–Yin with A1 = 0), to solve (5.24). Recall

that the proximity operator of the ℓ1-norm is the well-known soft thresholding function

from Proposition 2.31. As pixel values must be in [0, 1], it is more realistic to solve instead

the problem

argmin
x∈[0,1]n

µ∥x∥1 +
1

2
∥Mx− b∥2,

By setting A1 = N[0,1]n and A2 and T as above, this problem can be solved without much

additional effort using the Davis–Yin splitting algorithm.

For our tests we replicated the wavelet-based restoration method in [55, Section 5.1],

including the additional constraint x ∈ [0, 1]n. We also ran our experiments without this

constraint (applying thus forward-backward) and the results were basically the same, so we

do not include them for brevity. We employed as observed images the widely-used 256×256

pixels cameraman image and a picture of a symbol from the University of Alicante: the

sculpture “Dibuixar l’espai” (by Pepe Azoŕın), with a resolution of 600× 800 pixels. The
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images, shown in Figure 5.6, were subjected to a Gaussian 9 × 9 blur with standard

deviation 4, followed by an additive zero-mean Gaussian noise with standard deviation

10−3. We chose M = RW , where R is the matrix representing the blur operator and W is

the inverse of the three stage Haar wavelet transform. The regularization parameter was

taken as µ = 2 · 10−5. The Lipschitz constant of T is the spectral radius of MTM , which

is equal to 1. Thus, T is 1-cocoercive and the stepsize in the Davis–Yin algorithm can be

chosen in the interval ]0, 4[. For values of (γ, λ) on a grid with 4950 points in ]0, 4[×]0, 2[,

we performed 200 iterations of the algorithm taking as initial image the observed blurred

image. Figure 5.7 shows the value of the objective function in the final iteration. We

observe a symmetry with respect to the diagonal. The lowest values of the objective

function were 0.349 for the cameraman and 2.684 for the sculpture, and they were both

attained at (γ, λ) = (1.98, 0.99).

Figure 5.6: Original (left), observed blurred (middle) and restored (right) images, showing
the cameraman at the top and the sculpture “Dibuixar l’espai” at the bottom. The Davis–Yin
algorithm was applied for 200 iterations with γ = 1.98 and λ = 0.99, using as starting point the
observed blurred image.

Interpretation of the results of the experiments The numerical experiments show

the importance of appropriately selecting the stepsize and relaxation parameters. In most

of our tests, the behavior of the algorithm with respect to the parameters was symmetric,
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Figure 5.7: Objective function value after 200 iterations of the Davis–Yin splitting algorithm
applied to the cameraman (left) and the sculpture “Dibuixar l’espai” (right), for different values
of γ and λ, and taking as starting point the observed blurred image.

as the one shown in Figure 5.7. Selecting the best parameters is not a simple task, but

even so, it is clear that having more freedom in the choice of the stepsize parameter can

only be advantageous.



Chapter 6

Forward-backward methods with reduced

lifting

In this chapter, we study forward-backward type schemes with reduced lifting for solving

the monotone inclusion in Problem 3.9. As previously demonstrated, the resolution of

this problem requires the employment of different algorithms depending on the properties

satisfied by the single-valued operators. In the same fashion, our analysis will distinguish

between the single-valued operators being cocoercive or monotone and Lipschitz contin-

uous.

We summarize the main topics of this chapter as follows:

� In Section 6.1, we concentrate on the case in which the single-valued operators are

cocoercive and analyze the convergence of a frugal forward-backward splitting with

minimal lifting (see Algorithm 6.6) in Theorem 6.7.

� We propose Algorithm 6.14 as a “reflected-like modification” of Algorithm 6.6 for

solving Problem 3.9 when the single-valued operators are monotone and Lipschitz

continuous. Algorithm 6.14 is the first algorithm for this problem with (n− 1)-fold

lifting. However, Fact 4.13 cannot be used to guarantee that this lifting is minimal,

as the method performs two evaluations of the single-valued operators per iteration.

� One of the advantages of the proposed algorithms is that they do not rely on product

space reformulations, which makes them conducive for distributed decentralized

optimization. We illustrate this in Section 6.1.3.

� Section 6.3 contains a numerical experiment comparing the performance of our

proposed minimal lifting forward-backward method with the generalized forward-

backward algorithm (see Section 3.2.2.3).

The results presented here first appeared in [25].

83
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6.1 A forward-backward method with minimal lifting

Let n ≥ 2. In this section, we consider the following instance of Problem 3.9:

find x ∈ H such that 0 ∈
(

n∑

i=1

Ai +
n−1∑

i=1

Ti

)
(x), (6.1)

with A1, . . . , An : H ⇒ H being maximally monotone operators and T1, . . . , Tn−1 : H → H
being 1

β
-cocoercive, with β > 0.

6.1.1 A fixed point encoding with (n− 1)-fold lifting

Let λ, γ > 0. In order to tackle (6.1), we propose a fixed point algorithm consisting in the

fixed point iteration generated by the operator TFB : Hn−1 → Hn−1 defined as

TFB(z) := z + λ




x2 − x1

x3 − x2
...

xn − xn−1



, (6.2)

where x = (x1, . . . , xn) ∈ Hn depends on z = (z1, . . . , zn−1) ∈ Hn−1 and is given by





x1 = JγA1(z1),

xi = JγAi

(
zi + xi−1 − zi−1 − γTi−1(xi−1)

)
, ∀i ∈ J2, n− 1K,

xn = JγAn

(
x1 + xn−1 − zn−1 − γTn−1(xn−1)

)
.

(6.3)

Remark 6.1. Note that, although in view of Proposition 2.4 the sum of cocoercive opera-

tors is cocoercive, considering the sum of n−1 operators in Problem 3.9 gives the freedom

of either applying each operator as a forward step before the corresponding backward step,

or to apply the sum of all of them before a particular backward step (by setting all the

operators to be equal to zero except for one of them, which would be equal to the sum).

One of the advantages of the first alternative is that it enables a distributed decentralized

implementation of the method, which is presented in Section 6.1.3.

Remark 6.2 (Special cases). If n = 2, then x1 = xn−1 and the fixed point iteration

generated by TFB recovers the Davis–Yin splitting for finding a zero of A1 + A2 + T1.

In turn, this includes the forward-backward splitting and Douglas–Rachford splitting as

special cases by further taking A1 = 0 or T1 = 0, respectively.
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If T1 = · · · = Tn−1 = 0, then TFB in (6.2) reduces to the Malitsky–Tam resolvent

splitting proposed in [173] and further studied in [54, 72, 231].

Remark 6.3 (On the number of single-valued operators in (6.1)). Although the number of

set-valued and single-valued monotone operators in (6.1) differ by one, it is straightforward

to derive a scheme where this is not the case by letting A1 = 0. In this case, setting

x1 = JγA1(z1) = z1 can be used to eliminate x1 so that (6.2) and (6.3) respectively

become

TFB(z) := z + λ




x2 − z1

x3 − x2
...

xn − xn−1



,

where 



x2 = JγA2

(
z2 − γT1(z1)

)
,

xi = JγAi

(
zi + xi−1 − zi−1 − γTi−1(xi−1)

)
, ∀i ∈ J3, n− 1K,

xn = JγAn

(
z1 + xn−1 − zn−1 − γTn−1(xn−1)

)
.

Nevertheless, the resulting operator TFB would now be defined in a space with dimension

equal to the number of (nonzero) set-valued operators in (6.1). We discuss in Remark 6.10

how this may affect determining whether the resulting scheme has minimal lifting.

Finally, observe that while at first it may seem unusual that the number of set-valued

and single-valued monotone operators in (6.1) are not the same, we note that this same

situation arises in Davis–Yin splitting, as described above.

The following lemma implies that the fixed point operator TFB (6.2) together with JγA1

as a solution mapping, constitute a fixed point encoding for the monotone inclusion (6.1)

which has (n− 1)-fold lifting.

Lemma 6.4. Let n ≥ 2 and λ, γ > 0. The following assertions hold.

(i) If x̄ ∈ zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
, then there exists z̄ ∈ Fix TFB.

(ii) If (z̄1, . . . , z̄n−1) ∈ Fix TFB, then x̄ := JγA1(z̄1) ∈ zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
. More-

over,

x̄ = JγAi

(
z̄i − z̄i−1 + x̄− γTi−1(x̄)

)
= JγAn

(
2x̄− z̄n−1 − γTn−1(x̄)

)
, (6.4)

for all i ∈ J2, n− 1K.
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Consequently,

Fix TFB ̸= ∅ ⇐⇒ zer

(
n∑

i=1

Ai +
n−1∑

i=1

Ti

)
̸= ∅.

Proof. (i): Let x̄ ∈ zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
. Then there exists (a1, . . . , an) ∈ Hn such that

ai ∈ Ai(x̄) and
∑n

i=1 ai +
∑n−1

i=1 Ti(x̄) = 0. Define the vector z̄ = (z̄1, . . . , z̄n−1) ∈ Hn−1

according to

{
z̄1 := x̄+ γa1 ∈ (Id +γA1)(x̄),

z̄i := γai + z̄i−1 + γTi−1(x̄) ∈ (Id +γAi)(x̄) − x̄+ z̄i−1 + γTi−1(x̄),

for every i ∈ J2, n− 1K. Then x̄ = JγA1(z1) and x̄ = JγAi
(z̄i + x̄ − z̄i−1 − γTi−1(x̄)) for

i ∈ J2, n− 1K. Furthermore, we have

2x̄− z̄n−1 − γTn−1(x̄) = x̄+ γan + x̄− z̄n−1 + γ
n−1∑

i=2

(ai + Ti−1(x̄)) + γa1

= x̄+ γan + x̄− z̄n−1 +
n−1∑

i=2

(z̄i − z̄i−1) + z̄1 − x̄

∈ (Id +γAn)(x̄),

which implies that x̄ = JγAn(2x̄−z̄n−1−γTn−1(x̄)). Altogether, it follows that z̄ ∈ Fix TFB.

(ii): Let z̄ ∈ Fix TFB and set x̄ := JγA1(z̄1). Then (6.4) holds thanks to the expression

of TFB. The definition of the resolvent therefore implies





z̄1 − x̄ ∈ γA1(x̄),

z̄i − z̄i−1 − γTi−1(x̄) ∈ γAi(x̄), ∀i ∈ J2, n− 1K,
x̄− zn−1 − γTn−1(x̄) ∈ γAn(x̄).

Summing together the above inclusions finally gives x̄ ∈ zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
, as

claimed.

6.1.2 Convergence analysis

The convergence analysis of our forward-backward algorithm with minimal lifting is based

on an adaptation of the methodology developed in Theorem 5.3 for the Davis–Yin splitting

to the framework presented in [173]. We start by studying the nonexpansive properties of

the operator TFB in (6.2).
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Lemma 6.5. For all z = (z1, . . . , zn) ∈ Hn−1 and z̄ = (z̄1, . . . , z̄n) ∈ Hn−1, we have

∥TFB(z) − TFB(z̄)∥2+
(

1 − λ

λ
− γβ

2λ

)
∥(Id−TFB)(z) − (Id−TFB)(z̄)∥2

+
1

λ

∥∥
n−1∑

i=1

(Id−TFB)(z)i −
n−1∑

i=1

(Id−TFB)(z̄)i
∥∥2 ≤ ∥z− z̄∥2.

(6.5)

In particular, if γ ∈
]
0, 2

β

[
and λ ∈

]
0, 1 − γβ

2

[
, then TFB is α-averaged nonexpansive for

α = 2λ
2−γβ

∈ ]0, 1[.

Proof. This proof mainly uses the monotonicity property of the operators A1, . . . , An to-

gether with the cocoercivity property of the operators T1, . . . , Tn−1 to obtain some bounds

which yield (6.5), from where the averagedness of operator TFB can be directly deduced.

For convenience, set z+ := TFB(z) and z̄+ := TFB(z̄). Further, let x = (x1, . . . , xn) ∈ Hn

be given by (6.3) from z, and let x̄ = (x̄1, . . . , x̄n) ∈ Hn be given analogously, this time

from z̄. Since z1 − x1 ∈ γA1(x1) and z̄1 − x̄1 ∈ γA1(x̄1), monotonicity of γA1 implies

0 ≤ ⟨x1 − x̄1, (z1 − x1) − (z̄1 − x̄1)⟩
= ⟨x2 − x̄1, (z1 − x1) − (z̄1 − x̄1)⟩ + ⟨x1 − x2, (z1 − x1) − (z̄1 − x̄1)⟩.

(6.6)

For all i ∈ J2, n− 1K, we have that zi − zi−1 + xi−1 − xi − γTi−1(xi−1) ∈ γAi(xi) and

z̄i − z̄i−1 + x̄i−1 − x̄i − γTi−1(x̄i−1) ∈ γAi(x̄i). Thus, monotonicity of γAi yields

0 ≤ ⟨xi − x̄i, zi − zi−1 + xi−1 − xi − γTi−1(xi−1)⟩
− ⟨xi − x̄i, z̄i − z̄i−1 + x̄i−1 − x̄i − γTi−1(x̄i−1)⟩

= ⟨xi − x̄i, (zi − zi−1 + xi−1 − xi) − (z̄i − z̄i−1 + x̄i−1 − x̄i)⟩
− γ⟨xi − x̄i, Ti−1(xi−1) − Ti−1(x̄i−1)⟩

= ⟨xi+1 − x̄i, (zi − xi) − (z̄i − x̄i)⟩ + ⟨xi − xi+1, (zi − xi) − (z̄i − x̄i)⟩
− ⟨xi − x̄i−1, (zi−1 − xi−1) − (z̄i−1 − x̄i−1)⟩
− ⟨x̄i−1 − x̄i, (zi−1 − xi−1) − (z̄i−1 − x̄i−1)⟩
− γ⟨xi − x̄i, Ti−1(xi−1) − Ti−1(x̄i−1)⟩.
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Summing this inequality for i ∈ J2, n− 1K and simplifying gives

0 ≤
n−1∑

i=2

⟨xi − xi+1, (zi − xi)− (z̄i − x̄i)⟩ −
n−2∑

i=1

⟨x̄i − x̄i+1, (zi − xi)− (z̄i − x̄i)⟩

− ⟨x2 − x̄1, (z1 − x1)− (z̄1 − x̄1)⟩+ ⟨xn − x̄n−1, (zn−1 − xn−1)− (z̄n−1 − x̄n−1)⟩

− γ

n−1∑

i=2

⟨xi − x̄i, Ti−1(xi−1)− Ti−1(x̄i−1)⟩.

(6.7)

Since we have that x1 + xn−1 − xn − zn−1 − γTn−1(xn−1) ∈ γAn(xn) and it holds that

x̄1 + x̄n−1 − x̄n − z̄n−1 − γTn−1(x̄n−1) ∈ γAn(x̄n), monotonicity of γAn gives

0 ≤ ⟨xn − x̄n, x1 + xn−1 − xn − zn−1 − γTn−1(xn−1)⟩
− ⟨xn − x̄n, x̄1 + x̄n−1 − x̄n − z̄n−1 − γTn−1(x̄n−1)⟩

= ⟨xn − x̄n, (x1 − xn) − (x̄1 − x̄n)⟩
+ ⟨xn − x̄n, (xn−1 − zn−1) − (x̄n−1 − z̄n−1)⟩
− γ⟨xn − x̄n, Tn−1(xn−1) − Tn−1(x̄n−1)⟩

= −⟨xn − x̄n−1, (zn−1 − xn−1) − (z̄n−1 − x̄n−1)⟩
+ ⟨x̄n − x̄n−1, (zn−1 − xn−1) − (z̄n−1 − x̄n−1)⟩

+
1

2

(
∥x1 − x̄1∥2 − ∥xn − x̄n∥2 − ∥(x1 − xn) − (x̄1 − x̄n)∥2

)

− γ⟨xn − x̄n, Tn−1(xn−1) − Tn−1(x̄n−1)⟩.

(6.8)

Adding (6.6), (6.7) and (6.8) and rearranging yields

0 ≤
n−1∑

i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi⟩

+
n−1∑

i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), zi − z̄i⟩

+
1

2

(
∥x1 − x̄1∥2 − ∥xn − x̄n∥2 − ∥(x1 − xn) − (x̄1 − x̄n)∥2

)

− γ
n−1∑

i=1

⟨xi+1 − x̄i+1, Ti(xi) − Ti(x̄i)⟩.

(6.9)
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The first term in (6.9) can be expressed as

n−1∑

i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi⟩

=
1

2

n−1∑

i=1

(
∥xi+1 − x̄i+1∥2 − ∥xi − x̄i∥2 − ∥(xi − xi+1) − (x̄i − x̄i+1)∥2

)

=
1

2

(
∥xn − x̄n∥2 − ∥x1 − x̄1∥2 −

1

λ2
∥(z− z+) − (z̄− z̄+)∥2

)
,

(6.10)

and the second term in (6.9) can be written as

n−1∑

i=1

⟨(xi − xi+1) − (x̄i − x̄i+1), zi − z̄i⟩

=
1

λ

n−1∑

i=1

⟨(zi − z+i ) − (z̄i − z̄+i ), zi − z̄i⟩

=
1

λ
⟨(z− z+) − (z̄− z̄+), z− z̄⟩

=
1

2λ

(
∥(z− z+) − (z̄− z̄+)∥2 + ∥z− z̄∥2 − ∥z+ − z̄+∥2

)
.

(6.11)

To estimate the last term, Young’s inequality and 1
β
-cocoercivity of T1, . . . , Tn−1 gives

−
n−1∑

i=1

⟨xi+1 − x̄i+1, Ti(xi) − Ti(x̄i)⟩

=
n−1∑

i=1

⟨(x̄i+1 − x̄i) − (xi+1 − xi), Ti(xi) − Ti(x̄i)⟩

+
n−1∑

i=1

⟨x̄i − xi, Ti(xi) − Ti(x̄i)⟩

≤ β

4

n−1∑

i=1

∥(x̄i+1 − x̄i) − (xi+1 − xi)∥2 +
1

β

n−1∑

i=1

∥Ti(xi) − Ti(x̄i)∥2

− 1

β

n−1∑

i=1

∥Ti(xi) − Ti(x̄i)∥2

=
β

4

n−1∑

i=1

∥(x̄i+1 − x̄i) − (xi+1 − xi)∥2

=
β

4λ2
∥(z− z+) − (z̄− z̄+)∥2.

(6.12)
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Thus, substituting (6.10) and (6.11) into (6.9), using (6.12) and simplifying gives the

claimed inequality (6.5). Finally, to show that (6.5) implies TFB is α-averaged nonexpan-

sive with α := 2λ
2−γβ

, note that α ∈ ]0, 1[ and satisfies 1−α
α

= 1−λ
λ

− γβ
2λ

. This completes the

proof.

We present the scheme obtained from the fixed point iteration of operator TFB in Al-

gorithm 6.6.

Algorithm 6.6 Forward-backward splitting for (6.1) with minimal lifting.

Require: γ ∈ ]0, 2/β[ and λ ∈
]
0, 1 − γβ

2

[
.

1: Choose z0 = (z01 , . . . , z
0
n−1) ∈ Hn−1.

2: for k = 0, 1, . . . do
3: Compute

zk+1 = zk + λ




xk2 − xk1
xk3 − xk2

...
xkn − xkn−1


 , (6.13)

with xk = (xk1, . . . , x
k
n) ∈ Hn computed as





xk1 = JγA1(z
k
1 ),

xki = JγAi

(
zki + xki−1 − zki−1 − γTi−1(x

k
i−1)
)
, ∀i ∈ J2, n− 1K,

xkn = JγAn

(
xk1 + xkn−1 − zkn−1 − γTn−1(x

k
n−1)

)
.

4: end for

The global convergence of Algorithm 6.6 is demonstrated in Theorem 6.7.

Theorem 6.7. Let n ≥ 2, let A1, . . . , An : H ⇒ H be maximally monotone and let

T1, . . . , Tn−1 : H → H be 1
β

-cocoercive with zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
̸= ∅. Further, let

γ ∈ ]0, 2/β[ and λ ∈
]
0, 1 − γβ

2

[
. Given z0 ∈ Hn−1, let (zk)k∈N and (xk)k∈N be the se-

quences generated by Algorithm 6.6. Then the following assertions hold.

(i) The sequence (zk)k∈N converges weakly to a point z̄ ∈ Fix TFB.

(ii) The sequence (xk)k∈N converges weakly to a point (x̄, . . . , x̄) ∈ Hn with x̄ solving the

monotone inclusion (6.1).

(iii) The sequence
(
Ti(x

k
i )
)
k∈N converges strongly to Ti(x̄) for all i ∈ J1, n− 1K.

Proof. (i): Since zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
̸= ∅, Lemma 6.4 (i) implies Fix TFB ̸= ∅. Since

γ ∈ ]0, 2/β[ and λ ∈
]
0, 1 − γβ

2

[
, Lemma 6.5 implies TFB is averaged nonexpansive. By
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applying Theorem 2.7, we deduce that (zk)k∈N converges weakly to a point z̄ ∈ Fix TFB

and that limk→∞ ∥zk+1 − zk∥ = 0.

(ii): By nonexpansiveness of resolvents, β-Lipschitz continuity of T1, . . . , Tn−1, and

boundedness of (zk)k∈N, it follows that (xk)k∈N is also bounded. Further, (6.2) and the

fact that limk→∞ ∥zk+1 − zk∥ = 0 implies that

lim
k→∞

∥xki − xki−1∥ = 0, ∀i ∈ J2, nK. (6.14)

Next, using the definition of the resolvent together with (6.13), we have

C




zk1 − xk1

(zk2 − xk2) − (zk1 − xk1) + γtk2
...

(zkn−1 − xkn−1) − (zkn−2 − xkn−2) + γtkn−1

xkn




∋




xk1 − xkn

xk2 − xkn
...

xkn−1 − xkn

xk1 − xkn + γ
n−1∑

i=1

tki+1




, (6.15)

where tki := Ti−1(x
k
i ) − Ti−1(x

k
i−1) and the operator C : Hn ⇒ Hn is given by

C :=




(γA1)
−1

(
γ(A2 + T1)

)−1

...(
γ(An−1 + Tn−2)

)−1

γ(An + Tn−1)




+




0 0 . . . 0 − Id

0 0 . . . 0 − Id
...

...
. . .

...
...

0 0 . . . 0 − Id

Id Id . . . Id 0



. (6.16)

As the sum of two maximally monotone operators is again maximally monotone provided

that one of the operators has full domain (see Proposition 2.15), it follows that C is

maximally monotone. Consequently, it is demiclosed by Proposition 2.23. That is, its

graph is sequentially closed in the weak-strong topology.

Let x̄ ∈ Hn be an arbitrary weak cluster point of the sequence (xk)k∈N. As a conse-

quence of (6.14), x̄ = (x̄, . . . , x̄) for some x̄ ∈ H. Taking the limit along a subsequence of

(xk)k∈N which converges weakly to x̄ in (6.15), using demiclosedness of C together with

β-Lipschitz continuity of T1, . . . , Tn−1, and unravelling the resulting expression gives





z̄1 − x̄ ∈ γA1(x̄),

z̄i − z̄i−1 ∈ γ(Ai + Ti−1)(x̄), ∀i ∈ J2, n− 1K,

x̄− z̄n−1 ∈ γ(An + Tn−1)(x̄),
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which implies z̄ ∈ Fix TFB and x̄ = JγA1(z̄1) ∈ zer
(∑n

i=1Ai +
∑n−1

i=1 Ti
)
.

In other words, x̄ = (x̄, . . . , x̄) ∈ Hn with x̄ := JγA1(z̄1) being the unique weak se-

quential cluster point of the bounded sequence (xk)k∈N. We therefore deduce that (xk)k∈N

converges weakly to x̄, which completes this part of the proof.

(iii): For convenience, denote yk = (yk1 , . . . , y
k
n) where





yk1 := zk1 ,

yki := zki + xki−1 − zki−1 − γTi−1(x
k
i−1), ∀i ∈ J2, n− 1K,

ykn := xk1 + xkn−1 − zkn−1 − γTn−1(x
k
n−1),

so that xki = JγAi
(yki ) for all i ∈ J1, nK. Define ȳ = (ȳ1, . . . , ȳn) in an analogous way with

z̄ in place of zk and (x̄, . . . , x̄) in place of xk, so that x̄ = JγAi
(ȳi) for all i ∈ J1, nK. As

resolvents are firmly nonexpansive, Proposition 2.3 yields

0 ≤
n∑

i=1

⟨JγAi
(yki ) − JγAi

(ȳi), (Id−JγAi
)(yki ) − (Id−JγAi

)(ȳi)⟩

= ⟨xk1 − x̄, (zk1 − xk1) − (z̄1 − x̄)⟩

+
n−1∑

i=2

⟨xki − x̄, (zki − xki ) − (zki−1 − xki−1) − γTi−1(x
k
i−1)⟩

+ ⟨xkn − x̄, xk1 − xkn − (zkn−1 − xkn−1) − γTn−1(x
k
n−1)⟩

−
n−1∑

i=2

⟨xki − x̄, z̄i − z̄i−1 − γTi−1(x̄)⟩ − ⟨xkn − x̄, x̄− z̄n−1 − γTn−1(x̄)⟩

= ⟨xk1 − xkn, (z
k
1 − xk1) − (z̄1 − x̄)⟩ + ⟨xkn − x̄, (zk1 − xk1) − (z̄1 − x̄)⟩

+
n−1∑

i=2

⟨xki − xkn, (z
k
i − xki ) − (zki−1 − xki−1) − (z̄i − z̄i−1)⟩

+ ⟨xkn − x̄, (zkn−1 − xkn−1) − (zk1 − xk1) − (z̄n−1 − z̄1)⟩

− γ
n−1∑

i=1

⟨xki+1 − xki , Ti(x
k
i ) − Ti(x̄)⟩ − γ

n−1∑

i=1

⟨xki − x̄, Ti(x
k
i ) − Ti(x̄)⟩

+ ⟨xkn − x̄, xk1 − xkn⟩ − ⟨xkn − x̄, (zkn−1 − xkn−1) + (x̄− z̄n−1)⟩.

(6.17)
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Rearranging (6.17) followed by applying 1
β
-cocoercivity of T1, . . . , Tn−1 gives

⟨xkn − x̄,xk1 − xkn⟩+ ⟨xk1 − xkn, (z
k
1 − xk1)− (z̄1 − x̄)⟩ − γ

n−1∑

i=1

⟨xki+1 − xki , Ti(x
k
i )− Ti(x̄)⟩

+

n−1∑

i=2

⟨xki − xkn, (z
k
i − xki )− (zki−1 − xki−1)− (z̄i − z̄i−1)⟩

≥ γ

n−1∑

i=1

⟨xki − x̄, Ti(x
k
i )− Ti(x)⟩ ≥

γ

β

n−1∑

i=1

∥Ti(xki )− Ti(x̄)∥2.

(6.18)

Note that the left-hand side of (6.18) converges to zero due to (6.14) and the boundedness

of the sequences (zk)k∈N, (x
k)k∈N and

(
Ti(x

k
i )
)
k∈N for i ∈ J1, n− 1K. It then follows that

Ti(x
k
i ) → Ti(x̄) for all i ∈ J1, n− 1K, as claimed.

Remark 6.8 (Attouch–Théra duality). Let I ⊆ {1, . . . , n− 1} be a non-empty index set

with cardinality denoted by |I|. Express the monotone inclusion (6.1) as

find x ∈ H such that 0 ∈
∑

i∈I

Ti(x) +

(
n∑

i=1

Ai +
∑

i ̸∈I

Ti

)
(x), (6.19)

and note that the first operator
∑

i∈I Ti is 1
|I|β -cocoercive, by Proposition 2.4. The Attouch–

Théra dual problem [35] associated with (6.19) takes the form

find u ∈ H such that 0 ∈
(∑

i∈I

Ti

)−1

(u) −
(

n∑

i=1

Ai +
∑

i ̸∈I

Ti

)−1

(−u), (6.20)

where we note that the first operator
(∑

i∈I Ti
)−1

is 1
|I|β -strongly monotone. Hence, as

a strongly monotone inclusion, (6.20) has a unique solution ū ∈ H. Moreover, for any

solution x̄ ∈ H of (6.19), Theorem 3.3 implies ū =
(∑

i∈I Ti
)

(x̄). In the context of the

previous result, Theorem 6.7 (iii) implies
∑

i∈I Ti(x
k
i ) → ū as k → ∞. In other words,

Algorithm 6.6 also produces a sequence which converges strongly to the unique solution

of the dual inclusion (6.20).

Remark 6.9. Theorem 6.7 is linked to the convergence result of different splitting algo-

rithms:

(i) When T1 = · · · = Tn−1 = 0, Theorem 6.7 recovers the convergence proof of the

Malitsky–Tam resolvent splitting in [173, Theorem 2].
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(ii) In the special case when n = 2, TFB : H → H and equality (6.5) from Lemma 6.5

simplifies to give the stronger inequality

∥TFB(z)−TFB(z̄)∥2+
(
2− λ

λ
− γβ

2λ

)
∥(Id−TFB)(z)−(Id−TFB)(z̄)∥2 ≤ ∥z− z̄∥2. (6.21)

This ensures averagedness of TFB, which in this case recovers the Davis–Yin split-

ting, provided that λ ∈
]
0, 2 − γβ

2

[
, which is larger than the range of permissible

values for λ in the statement of Theorem 6.7. However, by using (6.21), and modify-

ing the proof of Theorem 6.7 accordingly, guarantees the convergence for the same

range of parameters as Theorem 5.3, namely, when γ ∈ ]0, 4/β[ and λ ∈
]
0, 2 − γβ

2

[
.

Indeed, note that (6.21) is equivalent to (5.16) when λk = λ for all k ∈ N.

In turn, observe that (6.21) does not imply that the Davis–Yin splitting operator

T γ
DY , defined in (5.2), is 2λ

4−γβ
-averaged nonexpansive, as what we have is that

TFB = (1 − λ) Id +λT γ
DY .

Remark 6.10 (Algorithm 6.6 has minimal lifting). Algorithm 6.6 is a frugal forward-

backward splitting with (n− 1)-fold lifting for (6.1) with n ≥ 2. Consequently, Fact 4.13

implies that its lifting is minimal. In turn, the Malitsky–Tam resolvent splitting, which

is directly recovered by Algorithm 6.6 when T1 = . . . = Tn−1 = 0, is a frugal resolvent

splitting with minimal lifting due to Theorem 4.9.

We recall that the version of Problem 3.9 with m > n − 1 cocoercive operators,

T̃1, . . . , T̃m, can be tackled with Algorithm 6.6 by just distributing the operators between

T1, . . . , Tn−1 (for instance, setting T1 := T̃1, . . . , Tn−2 := T̃n−2, Tn−1 :=
∑m

j=n−1 T̃m). In

view of Fact 4.13, the resulting method will continue to have minimal lifting.

In contrast, if we force the number of set-valued operators to be the same than the

number of single-valued operators (i.e., n− 1), Algorithm 6.6 becomes the iteration given

in Remark 6.3, which has (n−1)-fold lifting. Hence, there is no reduction in the lifting with

respect to the number of set-valued operators, and the resulting scheme is not minimal

according to Fact 4.13. Nonetheless, [187, Corollary 6.7] implies that the lifting of this

scheme is minimal among the frugal forward-backward splittings that perform a forward

evaluation before any backward evaluation.
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6.1.3 Application to distributed decentralized optimization

Advances in hardware (parallel computation) and increasing the size of datasets (decen-

tralized storage) have made distributed algorithms one of the most prevalent trends in

algorithm development. Such algorithms rely on a network of devices that perform sub-

tasks and are able to communicate with each other. For details on the topic, the reader

is referred to the book of Bertsekas and Tsitsiklis [56].

From the perspective of distributed computing, product space formulations gener-

ally require the computation of a global sum across all nodes in every iteration. To be

more concrete, consider a distributed implementation of the generalized forward-backward

in Theorem 3.10 in which node i performs the zi-updates by using the operators Ai and T .

To perform the x-update, the local variables z1, . . . , zn must be aggregated and the result

then broadcast to the entire network. There may be many reasons why this is not desirable

including default network setting, privacy or cost issues.

Another important aspect of distributed communication is parallelism and synchro-

nization. Returning to our example involving the generalized forward-backward, the prod-

uct space reformulation provides a fully parallel algorithm in the sense that all nodes

performing z-update can compute their updates in parallel before sending to the cen-

tral coordinator. This parallelization comes at cost of requiring global synchronization

between nodes. Specially, the algorithm defined by (3.19) cannot move from the k-th to

the (k + 1)-th iteration until all nodes 1, . . . , n have completed their computation. This

can be overcome with asynchronous algorithms, that is, those which only require little

or no global synchronization. However, their development and mathematical analysis are

significantly more delicate.

The structure of Algorithm 6.6 lends itself to a distributed decentralized implemen-

tation. More precisely, consider a cycle graph with n nodes labeled 1 through n. Each

node in the graph represents an agent, and two agents can communicate only if their

nodes are adjacent. In our setting, this means that Agent i can only communicate with

Agents i− 1 and i + 1 mod n, for i ∈ J1, nK. We assume that each agent only knows its

operators in (6.1). Specifically, we assume that only Agent 1 knows the operator A1 and

that, for each i ∈ J2, nK, only Agent i knows the operators Ai and Ti−1. The responsibility

of updating xi is assigned to Agent i for all i ∈ J1, nK and the responsibility of updating

zi is assigned to Agent i for i ∈ J2, nK. This way, the order in which variables are updated

can vary significantly between executions: zk+1
i can be computed before evaluation of

zki+1, z
k
i+2, . . . Altogether, this gives rise to the protocol for decentralized implementation
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of Algorithm 6.6 described in Algorithm 6.11 and illustrated in Figure 6.1.

Algorithm 6.11 Protocol for decentralized implementation of Algorithm 6.6.

Require: γ ∈ ]0, 2/β[ and λ ∈
]
0, 1 − γβ

2

[
.

1: For each i ∈ J2, nK, Agent i chooses z0i−1 ∈ H and sends it to Agent i− 1.
2: for k = 0, 1, . . . do
3: Agent 1 computes xk1 = JγA1(z

k
1 ) and sends it to Agents 2 and n.

4: for i = 2, . . . , n− 1 do
5: Agent i computes

{
xki = JγAi

(
zki + xki−1 − zki−1 − γTi−1(x

k
i−1)
)
,

zk+1
i−1 = zki−1 + λ(xki − xki−1),

sends xki to Agent i+ 1 and sends zk+1
i−1 to Agent i− 1.

6: end for
7: Agent n computes

{
xkn = JγAn

(
xk1 + xkn−1 − zkn−1 − γTn−1(x

k
n−1)

)
,

zk+1
n−1 = zkn−1 + λ(xkn − xkn−1),

sends zk+1
n−1 to Agent n− 1.

8: end for

1

2n

3n− 1 . . .

xk1

xk1 zk+1
1

xk2

zk+1
2

xk3

zk+1
n−2

xkn−1

zk+1
n−1

zk+1
3

xkn−2

Figure 6.1: Distributed implementation of Algorithm 6.6 in a decentralized ring network with
n nodes following the protocol in Algorithm 6.11.

Remark 6.12 (Termination criterion for Algorithm 6.11). Let (zk)k∈N be the sequence

generated by Algorithm 6.11. In order to detect termination, one could compute (possibly
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periodically) the residual given by

∥zk+1 − zk∥2 =
n−1∑

i=1

∥zk+1
i − zki ∥2.

The structure of this residual is suitable for the decentralized implementation within the

protocol in the algorithm. Indeed, the i-th term in the sum, given by ∥zk+1
i − zki ∥2, can

already be evaluated by Agent i + 1, and therefore the full residual ∥zk+1 − zk∥2 can be

computed by a global summation and broadcast operation. The same stopping criterion

can also be applied to the algorithm presented in Section 6.2 generated by the iteration

given in (6.23) and (6.24).

Remark 6.13 (Connection to other methods for decentralized optimization). The algo-

rithm given by Algorithm 6.11 appears new even in the special case with Ai = 0 and

Ti = ∇fi for convex smooth functions fi. In this case, one of the most popular algorithms

for solving minx

∑m
i=1 fi(x) in a decentralized way is EXTRA, proposed in [225]. They are

similar in spirit, but also have quite different properties. In particular, the main update

of EXTRA is

xk+1 = (Id +W )xk − W̃xk−1 − γ[∇f(xk) −∇f(xk−1)], ∀k ∈ N,

where W and W̃ are certain mixing matrices and x1 = Wx0 − γ∇f(x0). The method

was later extended to PG-EXTRA [226] which also includes proximal steps of nonsmooth

convex functions. Likewise, PG-EXTRA does not recover Algorithm 6.11. Undoubtedly,

an advantage of EXTRA and PG-EXTRA is the ability to use a wider range of mixing

matrices which, in terms of communication, generalizes better for network topology.

Importantly, we believe that Algorithm 6.11 constitutes an important starting point

towards a more general template that will allow for a full distributed implementation of

forward-backward splittings with minimal lifting for different network topologies. Some

steps in this direction have been done for the case T1 = . . . = Tn−1 = 0 in [72, 231].

6.2 A forward-reflected-backward method with reduced lifting

We now focus our attention on designing a forward-backward type method for the in-

stance of Problem 3.9 in which the single-valued operators are monotone and Lipschitz
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continuous. In this section, we assume n ≥ 3 and consider the monotone inclusion

find x ∈ H such that 0 ∈
(

n∑

i=1

Ai +
n−2∑

i=1

Ti

)
(x), (6.22)

where A1, . . . , An : H ⇒ H are maximally monotone and T1, . . . , Tn−1 : H → H are mono-

tone and β-Lipschitz continuous operators, with β > 0. Again, the motivation behind

the different number of operators is to provide more freedom on how to distribute the

evaluation of single-valued operators. Nevertheless, it is always possible to equate them

by setting some of the set-valued operators to zero, or equivalently, by considering the

sum of certain single-valued operators.

6.2.1 A fixed point encoding with (n− 1)-fold lifting

As demonstrated in Section 3.2.3, the algorithmic schemes capable of solving (6.22) are

fundamentally different to those used to tackle (6.1). In this section, we develop a mod-

ification of the method from the previous section which converges for Lipschitz continu-

ous operators by drawing inspiration from the differences between the iterations of the

forward-backward and the forward-reflected-backward methods in (3.15) and (3.22), re-

spectively.

Algorithm 6.14 Forward-reflected-backward splitting for (6.22) with reduced lifting.

Require: γ ∈
]
0, 1

2β

[
and λ ∈ ]0, 1 − 2γβ[.

1: Choose z0 = (z01 , . . . , z
0
n−1) ∈ Hn−1.

2: for k = 0, 1, . . . do
3: Compute

zk+1 = zk + λ




xk2 − xk1
xk3 − xk2

...
xkn − xkn−1


 , (6.23)

with xk = (xk1, . . . , x
k
n) ∈ Hn computed as





xk1 = JγA1

(
zk1
)
,

xk2 = JγA2

(
zk2 + xk1 − zk1 − γT1(x

k
1)
)
,

xki = JγiAi

(
zki + xki−1 − zki−1 − γTi−1(x

k
i−1)− γ(Ti−2(x

k
i−1)− Ti−2(x

k
i−2))

)
, ∀i ∈ J3, n− 1K,

xkn = JγAn

(
xk1 + xkn−1 − zkn−1 − γ(Tn−2(x

k
n−1)− Tn−2(x

k
n−2))

)
.

(6.24)

4: end for
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Compared to Algorithm 6.6, the only major change here is that some expressions for

xki in (6.24) incorporate a reflection-type term involving the operator Ti−2. This precise

form seems important for our subsequence convergence analysis and it seems not easy to

incorporate reflection-type terms involving the operator Ti−1. Observe that now the single-

valued operators Ti, for i ∈ J1, n− 2K, are evaluated twice per iteration. The structure of

Algorithm 6.14 allows for a similar protocol to the one described in Algorithm 6.11 to be

used for a distributed decentralized implementation. The only change to the protocol (in

terms of communication) is that Agent i must also now send γ
(
Ti−1(x

k
i ) − Ti−1(x

k
i−1)
)

to

Agent i+ 1 for all i ∈ J2, n− 1K.

Remark 6.15. To the best of our knowledge, the scheme given by Algorithm 6.14 does

not directly recover any existing forward-backward-type scheme as special case (although

it is clearly related to the forward-reflected-backward). For example, if we take n = 3,

A2 = A, T1 = T , and A1 = A3 = 0. Then xk1 and xk3 can be eliminated from Algorithm 6.14

to give 



xk2 = JγA
(
zk2 − γT (zk1 )

)
,

zk+1
1 = zk1 + λ

(
xk2 − zk1

)
,

zk+1
2 = zk2 + λ

(
zk1 − zk2 − γ(T (xk2) − T (zk1 ))

)
.

To better understand the relationship between this and (3.22), it is instructive to consider

the limiting case with λ = 1. Indeed, when λ = 1, xk2 and zk2 can be eliminated to give

zk+1
1 = JγA

(
zk−1
1 − 2γT (zk1 ) + γT (zk−1

1 )
)
.

Although this closely resembles (3.22) for finding a zero of A + T , it is not exactly the

same due to the index of the first term inside the resolvent.

In order to analyze Algorithm 6.14, we introduce the underlying fixed point operator

TFRB : Hn−1 → Hn−1 given by

TFRB(z) := z + λ




x2 − x1

x3 − x2
...

xn − xn−1



, (6.25)
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where x = (x1, . . . , xn) ∈ Hn depends on z = (z1, . . . , zn) ∈ H and is given by





x1 = JγA1

(
z1
)
,

x2 = JγA2

(
z2 + x1 − z1 − γT1(x1)

)
,

xi = JγAi

(
zi + xi−1 − zi−1 − γTi−1(xi−1)− γ(Ti−2(xi−1)− Ti−2(xi−2))

)
, ∀i ∈ J3, n− 1K,

xn = JγAn

(
x1 + xn−1 − zn−1 − γ(Tn−2(xn−1)− Tn−2(xn−2))

)
.

(6.26)

In this way, the sequence (zk) given by (6.23) satisfies zk+1 = TFRB(zk) for all k ∈ N.

Furthermore, (TFRB, JγA1) defines a fixed point encoding with (n−1)-fold lifting for (6.22),

as proved in the following lemma.

Lemma 6.16. Let n ≥ 3 and λ, γ > 0. Then the following assertions hold.

(i) If x̄ ∈ zer
(∑n

i=1Ai +
∑n−2

i=1 Ti
)
, then there exists z̄ ∈ Fix TFRB.

(ii) If (z̄1, . . . , z̄n−1) ∈ Fix TFRB, then x̄ := JγA1(z̄1) ∈ zer
(∑n

i=1Ai +
∑n−2

i=1 Ti
)
. More-

over,

x̄ = JγAi

(
z̄i − z̄i−1 + x̄− γTi−1(x̄)

)
= JγAn(2x̄− z̄n−1), (6.27)

for all i ∈ J2, n− 1K.

Consequently,

Fix TFRB ̸= ∅ ⇐⇒ zer

(
n∑

i=1

Ai +
n−2∑

i=1

Ti

)
̸= ∅.

Proof. The proof follows similarly to that of Lemma 6.4.

6.2.2 Convergence analysis

Next, we analyze the nonexpansiveness properties of the operator TFRB. The proof of the

following result is similar to that of Lemma 6.5, but using the Lipschitzian properties of

the operators T1, . . . , Tn−2 instead of cocoercivity.

Lemma 6.17. Let z̄ = (z̄1, . . . , z̄n−1) ∈ Fix TFRB. For all z = (z1, . . . , zn−1) ∈ Hn−1, we

have

∥TFRB(z)−z̄∥2 +

(
1 − λ

λ
− 2γβ

λ

)
∥(Id−TFRB)(z)∥2 +

1

λ

∥∥
n−1∑

i=1

(Id−TFRB)(z)i
∥∥2

+
γβ

λ
∥(Id−TFRB)(z)1∥2 +

γβ

λ
∥(Id−TFRB)(z)n−1∥2 ≤ ∥z− z̄∥2.

(6.28)
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In particular, if γ ∈
]
0, 1

2β

[
and λ ∈ ]0, 1 − 2γβ[, then TFRB is σ-strongly quasi-nonexpansive

for σ = 1−λ
λ

− 2γβ
λ
> 0.

Proof. For convenience, denote z+ = TFRB(z). Further, let x = (x1, . . . , xn) ∈ Hn be given

by (6.26) and let x̄ = (x̄, . . . , x̄) ∈ Hn−1 be given analogously. Note that the expression

of x̄ is justified by (6.27) as z̄ = TFRB(z̄). Monotonicity of γA1 implies

0 ≤ ⟨x2 − x̄, (z1 − x1) − (z̄1 − x̄)⟩ + ⟨x1 − x2, (z1 − x1) − (z̄1 − x̄)⟩. (6.29)

In order to simplify the case study, we introduce the zero operator T0 := 0. By mono-

tonicity of γAi, we deduce

0 ≤ ⟨xi+1 − x̄, (zi − xi) − (z̄i − x̄)⟩ + ⟨xi − xi+1, (zi − xi) − (z̄i − x̄)⟩
− ⟨xi − x̄, (zi−1 − xi−1) − (z̄i−1 − x̄)⟩
− γ⟨xi − x̄, Ti−1(xi−1) − Ti−1(x̄)⟩
− γ⟨xi − x̄, Ti−2(xi−1) − Ti−2(xi−2)⟩,

(6.30)

for all i ∈ J2, n− 1K, and monotonicity of γAn yields

0 ≤ −⟨xn − x̄, (zn−1 − xn−1) − (z̄n−1 − x̄)⟩
− γ⟨xn − x̄, Tn−2(xn−1) − Tn−2(xn−2)⟩

+
1

2

(
∥x1 − x̄∥2 − ∥xn − x̄∥2 − ∥x1 − xn∥2

)
.

(6.31)

Summing together (6.29)-(6.31), we obtain the inequality

0 ≤
n−1∑

i=1

⟨(z̄i − x̄) − (zi − xi), xi+1 − xi⟩

+
1

2

(
∥x1 − x̄∥2 − ∥xn − x̄∥2 − ∥x1 − xn∥2

)

− γ

n−1∑

i=2

⟨xi − x̄, Ti−1(xi−1) − Ti−1(x̄)⟩

− γ
n∑

i=3

⟨xi − x̄, Ti−2(xi−1) − Ti−2(xi−2)⟩,

(6.32)
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where we have omitted the index i = 2 in the last sum, since T0 := 0. The first term

in (6.32) multiplied by 2λ can be written as

2λ
n−1∑

i=1

⟨(z̄i − x̄) − (zi − xi), xi+1 − xi⟩

=
n−1∑

i=1

(
∥z̄i − zi∥2 + ∥z+i − zi∥2 − ∥z+i − z̄i∥2

)

− 1

λ

n−1∑

i=1

∥z+i − zi∥2 + λ
(
∥xn − x̄∥2 − ∥x1 − x̄∥2

)
.

(6.33)

Therefore, multiplying (6.32) by 2λ and substituting (6.33), we reach the inequality

∥TFRB(z) − z̄∥2 +
1 − λ

λ
∥(Id−TFRB)(z)∥2 +

1

λ

∥∥
n−1∑

i=1

(Id−TFRB)(z)i
∥∥2

≤ ∥z− z̄∥2 − 2λγ
n−1∑

i=2

⟨xi − x̄, Ti−1(xi−1) − Ti−1(x̄)⟩

− 2λγ
n∑

i=3

⟨xi − x̄, Ti−2(xi−1) − Ti−2(xi−2)⟩.

(6.34)

Using monotonicity of T1, . . . , Tn−2, the second last term can be estimated as

−
n−1∑

i=2

⟨xi − x̄, Ti−1(xi−1) − Ti−1(x̄)⟩ ≤
n−1∑

i=2

⟨xi − x̄, Ti−1(xi) − Ti−1(xi−1)⟩ (6.35)

and, using β-Lipschitz continuity of T1, . . . , Tn−2, the last term can be estimated as

−
n∑

i=3

⟨xi − x̄, Ti−2(xi−1) − Ti−2(xi−2)⟩

= −
n∑

i=3

⟨xi−1 − x̄, Ti−2(xi−1) − Ti−2(xi−2)⟩

+
n∑

i=3

⟨xi−1 − xi, Ti−2(xi−1) − Ti−2(xi−2)⟩

≤ −
n∑

i=3

⟨xi−1 − x̄, Ti−2(xi−1) − Ti−2(xi−2)⟩

+
β

2

n∑

i=3

(
∥xi−1 − xi∥2 + ∥xi−1 − xi−2∥2

)
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= −
n−1∑

i=2

⟨xi − x̄, Ti−1(xi) − Ti−1(xi−1)⟩ + β

n∑

i=2

∥xi − xi−1∥2

− β

2
∥x2 − x1∥2 −

β

2
∥xn − xn−1∥2

= −
n−1∑

i=2

⟨xi − x̄, Ti−1(xi) − Ti−1(xi−1)⟩ +
β

λ2
∥(Id−TFRB)(z)∥2

− β

2λ2
∥(Id−TFRB)(z)1∥2 −

β

2λ2
∥(Id−TFRB)(z)n−1∥2. (6.36)

Thus, substituting (6.35) and (6.36) into (6.34) gives (6.28).

Remark 6.18. Compared to Lemma 6.5 from the previous section, the conclusions of

Lemma 6.17 are weaker in two ways. Firstly, the permissible stepsize range of γ ∈
]
0, 1

2β

[

is smaller than in Lemma 6.5, which allowed γ ∈
]
0, 2

β

[
. And, secondly, the operator TFRB

is only shown to be strongly quasi-nonexpansive in Lemma 6.17 whereas TFB is known to

be averaged nonexpansive.

The following theorem is our main result regarding convergence of Algorithm 6.14.

Observe that, as TFRB is not averaged nonexpansive, we cannot prove the weak conver-

gence of the sequence (zk)k∈N generated by Algorithm 6.14 to a fixed point of TFRB using

Theorem 2.7.

Theorem 6.19. Let n ≥ 3, let A1, . . . , An : H ⇒ H be maximally monotone and let

T1, . . . , Tn−2 : H → H be monotone and β-Lipschitz continuous. Further, assume that

zer
(∑n

i=1Ai +
∑n−2

i=1 Ti
)
̸= ∅ and let γ ∈

]
0, 1

2β

[
and λ ∈

]
0, 1 − 2γβ

[
. Given z0 ∈ Hn−1,

let (zk) ⊆ Hn−1 and (xk) ⊆ Hn be the sequences generated by Algorithm 6.14. Then the

following assertions hold.

(i) The sequence (zk)k∈N converges weakly to a point z̄ ∈ Fix TFRB.

(ii) The sequence (xk)k∈N converges weakly to a point (x̄, . . . , x̄) ∈ Hn with x̄ solving the

monotone inclusion (6.22).

Proof. (i): Since zer
(∑n

i=1Ai +
∑n−2

i=1 Ti
)
̸= ∅, Lemma 6.16 (i) implies that the set of

fixed points of operator TFRB is nonempty. Since γ ∈
]
0, 1

2β

[
and λ ∈

]
0, 1 − 2γβ

[
,

Lemma 6.17 implies that (zk)k∈N is Fejér monotone with respect to Fix TFRB and that

limk→+∞ ∥zk+1 − zk∥ = 0. By nonexpansiveness of resolvents, β-Lipschitz continuity of

T1, . . . , Tn−2, and boundedness of (zk)k∈N, it follows that (xk)k∈N is also bounded. Further,
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(6.25) and the fact that limk→∞ ∥zk+1 − zk∥ = 0 implies that

lim
k→∞

∥xki − xki−1∥ = 0, ∀i ∈ J2, nK. (6.37)

Let u = (u1, . . . , un−1) ∈ Hn−1 be an arbitrary weak cluster point of (zk)k∈N. Then, due to

(6.37), there exists a point x ∈ H such that (u,w) is a weak cluster point of (zk,xk)k∈N,

where w = (x, . . . , x) ∈ Hn. Let C denote the maximally monotone operator defined by

(6.16) when Tn−1 = 0. Then (6.24) implies

C




zk1 − xk1

(zk2 − xk2) − (zk1 − xk1) + γtk2

(zk3 − xk3) − (zk2 − xk2) + γtk3 − γtk2

...

(zkn−1 − xkn−1) − (zkn−2 − xkn−2) + γtkn−1 − γtkn−2

xkn




∋




xk1 − xkn

xk2 − xkn

xk3 − xkn
...

xkn−1 − xkn

xk1 − xkn




, (6.38)

where tki := Ti−1(x
k
i ) − Ti−1(x

k
i−1). Taking the limit along a subsequence of (zk,xk)k∈N

which converges weakly to (u,w) in (6.38), using demiclosedness of C together with the

β-Lipschitz continuity of T1, . . . , Tn−2, and unravelling the resulting expression gives that

u ∈ Fix TFRB and x = JγA1(u1) ∈ zer
(∑n

i=1Ai +
∑n−2

i=1 Ti
)
. Thus, by Proposition 2.6, it

follows that (zk)k∈N converges weakly to a point z̄ ∈ Fix TFRB.

(ii): Follows by using an argument analogous to the one in Theorem 6.7 (ii).

Remark 6.20 (Algorithm 6.14 has reduced lifting). To the best of the author’s knowledge,

Algorithm 6.14 is the first splitting with (n−1)-fold lifting for solving (6.22), when n ≥ 3.

However, as the single-valued operator are evaluated twice per iteration, the method is

not frugal. Therefore, we cannot apply Fact 4.13 to ensure that its lifting is minimal.

The case n = 2 is of particular interest. By setting A1 = 0 Algorithm 6.14 reduces to

the iteration 



xk2 = JγA2

(
zk2 − γT1(z

k
1 )
)
,

xk3 = JγA3

(
zk1 + xk2 − zk2 − γ(T1(x

k
2) − T1(z

k
1 ))
)
,

zk+1
1 = zk1 + λ(xk2 − zk1 ),

zk+1
2 = zk2 + λ(xk3 − xk2),

which has 2-fold lifting. Hence, in this case, no reduction in the lifting is achieved with

respect to the number of set-valued operators appearing in the problem.
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Remark 6.21 (Exploiting cocoercivity). If a Lipschitz continuous operator Ti in (6.22) is

actually cocoercive, then it is possible to reduce the number evaluations of Ti per iteration

by combining the ideas in Sections 6.1 and 6.2. In fact, we can consider the problem

find x ∈ H such that 0 ∈
(

n∑

i=1

Ai +
n−1∑

i=1

Ti

)
(x),

where T1, . . . , Tn−2 are each either monotone and Lipschitz continuous or cocoercive, and

Tn−1 is cocoercive. For this problem, we can replace (6.26) in the definition of TFRB with





x1 = JγA1

(
z1
)
,

x2 = JγA2

(
z2 + x1 − z1 − γT1(x1)

)
,

xi = JγAi

(
zi + xi−1 − zi−1 − γTi−1(xi−1) − γti−1

)
, ∀i ∈ J3, n− 1K,

xn = JλAn

(
x1 + xn−1 − zn−1 − γTn−1(xn−1) − λtn−1

)
,

where t2, . . . , tn−1 ∈ H are given by

ti =





0, if Ti−1 is cocoercive,

Ti−1(xi) − Ti−1(xi−1), if Ti−1 is monotone and Lipschitz.

This modification can be shown to converge using a proof similar to Theorem 6.19 for

γ ∈
]
0, 1

2β

[
. However, it is not straightforward to recover Theorem 6.7 as a special case

of such a result because the stepsizes range of γ ∈
]
0, 2

β

[
in the cocoercive only case (i.e.,

Theorem 6.7) are larger than the range in the mixed case. Moreover, Theorem 6.7 (iii)

(strong convergence to dual solutions) does not have an analogue in the statement of

Theorem 6.19. In addition, keeping the two cases separate allows the analysis to be as

transparent as possible.

6.3 A numerical experiment in quadratic optimization

In the following, we present a simple numerical experiment that aims to compare the per-

formance of the Minimal lifting Forward-Backward method (MFB) of Algorithm 6.6 and

the Generalized Forward-Backward (GFB). We consider the constrained convex quadratic
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optimization problem given as

min
x∈Rm

1

2
xTQx+ cTx+ µ∥x∥1,

s.t. Mx = b, −1 ≤ x ≤ 1,

(6.39)

where µ > 0, b ∈ Rp, c ∈ Rm, M ∈ Rp×m is a matrix with full row rank and Q ∈ Rm×m

is a symmetric positive definite matrix.

Let S := {x ∈ Rm : Mx = b}. Assuming that S intersects the interior of [−1, 1]m, the

minimization problem (6.39) is equivalent to the monotone inclusion

find x ∈ Rm such that 0 ∈
(
∂µ∥·∥1(x) +NS(x) +N[−1,1]m(x) +Qx+ c

)
, (6.40)

due to [215, Corollary 23.8.1] and [44, Corollary 16.50]. Observe that the single-valued

operator T (·) := Q(·) + c is 1
β
-cocoercive, with β the spectral radius of Q. Hence, (6.40) is

of the form of problem (6.1). Recall that the closed formulas for the projection operators

onto [−1, 1]m and S were given in Propositions 2.32 and 2.35, respectively.

Altogether, taking A1 := ∂µ∥·∥1 , A2 := NS, A3 := N[−1,1]m , T1 := 0, T2 := T and

choosing an initial guess (z10 , z
2
0) ∈ Rm × Rm, the iteration in Algorithm 6.6 applied

to (6.40) becomes 

xk1 = proxγµ∥·∥1(z
k
1 ),

xk2 = PS(zk2 − xk1 − zk1 ),

xk3 = P[−1,1]m
(
xk1 + xk2 − zk2 − γ(Qxk2 + c)

)
,

zk+1
1 = zk1 + λ(xk2 − xk1),

zk+1
2 = zk2 + λ(xk3 − xk2),

for all k ∈ N.

In order to fairly compare MFB and GFB, we first performed an experiment for

determining the best combination of parameters. We generated random problems in the

follwing way. We set µ := 2, [m, p] := [750, 500] and generated M and c with entries

randomly distributed in the interval [−1, 1]. The matrix Q was a sparse positive definite

matrix generated by Matlab’s sprandsym inbuilt function. To ensure feasibility, we chose

a vector w ∈ Rm with random entries in ]− 1, 1[ and set b := Mw. We tried the following

combination of parameters. The stepsizes of both MFB and GFB were tested in the range

obtained by setting γ = γ̄ 1
β

with γ̄ ∈ {0.3, 0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5, 1.7, 1.9}. For every

γ, we tried the relaxation parameters resulting from choosing λ̄ ∈ {0.3, 0.5, 0.7, 0.9, 0.99}
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and setting λ = λ̄
(
1 − γβ

2

)
and λ = λ̄min

{
3
2
, 1
γβ

+ 1
2

}
, for MFB and GFB, respectively.

Finally, the weights for GFB were wi = 1/3, for i ∈ {1, 2, 3}. Figure 6.2 displays the

average number of iterations over 10 random instances obtained by every method and

combination of parameters. Both algorithms were initialized at the origin and stopped

when the shadow sequence satisfied max
{
∥Mzk1 − b∥, ∥z

k+1
1 −zk1∥
1+∥zk1∥2

}
< 10−8. The best choice

of parameters for MFB resulted from setting (γ̄, λ̄) = (0.9, 0.99), while (γ̄, λ̄) = (0.5, 0.99)

were the best performing ones for GFB.

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 1.9
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Minimal lifting forward-backward
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103
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Generalized forward-backward

Figure 6.2: For 10 randomly generated problems, average number of iterations performed by
MFB (left) and GFB (right) before reaching the stopping criterion using different combinations
of parameters.

For this specific choice of parameters we repeated the same experiment with different

dimensions. Specifically, we took m ∈ {750, 1125, 1500, 1875, 2250, 3000} and p = 2
3
m.

Figure 6.3 shows that the forward-backward method with minimal lifting was approxi-

mately 2 times faster in time than the generalized forward-backward for this particular

experiment1.

1The experiment was ran in a computer of Intel Core i7-12700H 2.30 GHz with 16GB RAM, under
Windows 11 (64-bit)
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750 1125 1500 1875 2250 3000

m

1.8
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Figure 6.3: For each m ∈ {750, 1125, 1500, 1875, 2250, 3000} and p = 2
3m, we randomly gen-

erated 10 different problems and ran MFB and GFB using their respective best performing
parameters. We plot with circles the ratio of the running time of every particular instance. The
dotted line represents the average ratio for each choice of m.



Chapter 7

A primal-dual splitting algorithm for composite

monotone inclusions with minimal lifting

In this chapter, we devise the first primal-dual resolvent splitting algorithm with minimal

lifting for composite monotone inclusions in the form of Problem 3.12. The chapter is

organized as follows:

� In Section 7.1 we first concentrate on Problem 3.12 with m = 1, i.e., only one

maximally monotone operator is linearly composed. We propose a frugal primal-

dual splitting with (n−1, 1)-fold lifting and analyze its convergence to a primal-dual

solution of the problem in Theorem 7.4.

� By resorting to a product space reformulation, in Section 7.2, we obtain the general

splitting with (n − 1,m)-fold lifting presented in Algorithm 7.8. This method is

minimal among all frugal primal-dual resolvent splittings with m dual variables, as

discussed in Section 7.2.1.

� In Section 7.3, we devise a new splitting method for solving mixtures of monotone

inclusions, namely, monotone inclusions that involve linearly composed maximally

monotone operators, cocoercive operators and monotone and Lipschitz continuous

operators, jointly. The proposed method arises as a combination of Algorithm 6.6,

Algorithm 6.14 and Algorithm 7.8, and so it has reduced lifting with respect to the

existing algorithms in the literature for this class of problems.

� Finally, in Section 7.4, we include a numerical experiment on image recovery and

compare the performance of the new algorithm with the best performing primal-dual

scheme for this problem.

This chapter is mainly based on the work in [10].

109
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7.1 The case with one linear composition

In this section, we base our analysis in the case in which the primal problem involves

only one linear composition, i.e., m = 1. Later, in Section 7.2, it will be extended to an

arbitrary finite number of linearly composed maximally monotone operators by appealing

to a product space reformulation.

Let n ≥ 2. We start by considering the primal-dual composite monotone inclusion

given by

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x) + L∗B(Lx), (7.1)

and

find u ∈ G such that 0 ∈ −L
(

n∑

i=1

Ai

)−1 (
−L∗u

)
+B−1(u), (7.2)

where A1, . . . , An : H ⇒ H and B : G ⇒ G are maximally monotone operators and

L : H → G is a bounded linear operator. Note that in this case (7.2) corresponds to the

Attouch–Théra dual problem of (7.1). In the following, we denote the set of solutions

of (7.1) and (7.2) by P and D, respectively, and consider the set Z defined as

Z :=

{
(x, u) ∈ H × G : −L∗u ∈

n∑

i=1

Ai(x) and u ∈ B(Lx)

}
,

which is useful for tackling primal-dual inclusion problems. It is well-known that Z is a

subset of P ×D and that

P ̸= ∅ ⇐⇒ Z ̸= ∅ ⇐⇒ D ̸= ∅.

Indeed, we have

∃x ∈ P ⇐⇒ (∃x ∈ H) 0 ∈
n∑

i=1

Ai(x) + L∗B(Lx)

⇐⇒ (∃ (x, u) ∈ H × G)





−L∗(u) ∈
n∑

i=1

Ai(x),

u ∈ B(Lx),

⇐⇒ (∃ (x, u) ∈ H × G)





x ∈
(

n∑

i=1

Ai

)−1 (
−L∗u

)
,

Lx ∈ B−1(u),

⇐⇒ (∃u ∈ G) 0 ∈ −L
(

n∑

i=1

Ai

)−1 (
−L∗u

)
+B−1(u) ⇐⇒ ∃u ∈ D.
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We refer to an element of Z as a primal-dual solution of (7.1)-(7.2).

7.1.1 A primal-dual fixed point encoding with (n− 1, 1)-fold lifting

Now, we introduce a fixed point algorithm for solving the primal-dual problem given

by (7.1)-(7.2). Let λ, γ > 0 and TPD : Hn−1 × G → Hn−1 × G be the fixed point operator

given by

TPD

(
z

v

)
:=

(
z

v

)
+ λ




x2 − x1

x3 − x2
...

xn − xn−1

γ(y − Lxn)



, (7.3)

where (x, y) = (x1, . . . , xn, y) ∈ Hn × G depends on (z, v) = (z1, . . . , zn−1, v) ∈ Hn−1 × G
in the following way





x1 = JA1(z1),

xi = JAi
(zi + xi−1 − zi−1), ∀i ∈ J2, n− 1K,

xn = JAn

(
x1 + xn−1 − zn−1 − L∗(γLx1 − v)

)
,

y = JB/γ

(
L(x1 + xn) − v

γ

)
.

(7.4)

In the next lemma we characterize the set of fixed points of the operator TPD by means

of the set of primal-dual solutions to (7.1)-(7.2).

Lemma 7.1. Let n ≥ 2 and λ, γ > 0. The following assertions hold.

(i) If (x̄, ū) ∈ Z, then there exists z̄ ∈ Hn−1 such that (z̄, γLx̄− ū) ∈ Fix TPD.

(ii) If (z̄1, . . . , z̄n−1, v̄) ∈ Fix TPD, then (JA1(z̄1), γLx̄− v̄) ∈ Z.

As a result,

Fix TPD ̸= ∅ ⇐⇒ Z ̸= ∅.

Proof. (i) Let (x̄, ū) ∈ Z. Then ū ∈ B(Lx̄) and there exists (a1, . . . , an) ∈ Hn such that

ai ∈ Ai(x̄) and −L∗ū =
∑n

i=1 ai. Consider the vectors (z̄1, . . . , z̄n−1, v̄) ∈ Hn−1×G defined

as 



z̄1 := x̄+ a1 ∈ (Id +A1)(x̄),

z̄i := ai + z̄i−1 ∈ (Id +Ai)(x̄) − x̄+ z̄i−1, ∀i ∈ J2, n− 1K,

v̄ := γLx̄− ū ∈ (γ Id−B) (Lx̄).
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Then, we deduce that x̄ = JA1(z̄1) and x̄ = JAi
(z̄i + x̄ − z̄i−1) for all i ∈ J2, n− 1K.

Moreover, we have

2x̄− z̄n−1 − L∗(γLx̄− v̄) = 2x̄− z̄n−1 − L∗(ū)

= x̄+ an + x̄− z̄n−1 +
n−1∑

i=1

ai

= x̄+ an + x̄− z̄n−1 +
n−1∑

i=2

(z̄i − z̄i−1) + z̄1 − x̄

∈ (Id +An)(x̄).

Altogether, we obtain





x̄ = JA1(z̄1),

x̄ = JAi
(z̄i + x̄− z̄i−1), ∀i ∈ J2, n− 1K,

x̄ = JAn

(
2x̄− z̄n−1 − L∗(γLx̄− v̄)

)
,

Lx̄ = JB/γ

(
2Lx̄− v̄

γ

)
,

which implies that (z̄1, . . . , z̄n−1, v̄) ∈ Fix TPD.

(ii) Let (z̄1, . . . , z̄n−1, v̄) ∈ Fix TPD and set x̄ := JA(z̄1). By (7.3), y = Lx̄ and xi = x̄

for all i ∈ J1, nK. Consequently, from (7.4) we derive





z̄1 − x̄ ∈ A1(x̄),

z̄i − z̄i−1 ∈ Ai(x̄), ∀i ∈ J2, n− 1K,
x̄− z̄n−1 − L∗(γLx̄− v̄) ∈ An(x̄),

γLx̄− v̄ ∈ B(Lx̄).

Summing together the first n inclusions above and setting ū := γLx̄− v̄, we deduce





−L∗ū ∈
n∑

i=1

Ai(x̄),

ū ∈ B(Lx̄),

which implies (x̄, ū) ∈ Z, as claimed.
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Remark 7.2 (Primal-dual fixed point encoding). Let SPD : Hn−1 × G → H × G be the

solution operator defined as

SPD

(
z

v

)
:=

(
JA1(z1)

γLJA1(z1) − v

)
.

In view of Lemma 7.1, the pair (TPD,SPD) is a fixed point encoding, which is a frugal

primal-dual resolvent splitting with (n − 1, 1)-fold lifting, for the composite monotone

inclusion determined by (7.1)-(7.2).

7.1.2 Convergence analysis

The following technical lemma provides nonexpansive properties of the operator TPD in

the Hilbert space Hn−1 × G with scalar product given by

⟨(z1, . . . , zn−1, v), (z̄1, . . . , z̄n−1, v̄)⟩γ :=
n−1∑

i=1

⟨zi, z̄i⟩H +
1

γ
⟨v, v̄⟩G, (7.5)

for (z1, . . . , zn−1, v), (z̄1, . . . , z̄n−1, v̄) ∈ Hn−1 × G and γ > 0.

Lemma 7.3. For all (z, v) = (z1, . . . , zn−1, v) ∈ Hn−1×G and (z̄, v̄) = (z̄1, . . . , z̄n−1, v̄) ∈
Hn−1 × G,

∥∥TPD(z, v) − TPD(z̄, v̄)
∥∥2
γ

+
1 − λ

λ

∥∥ (Id−TPD) (z, v) − (Id−TPD) (z̄, v̄)
∥∥2
γ

+
1 − γ∥L∥2

λ

∥∥∥∥∥
n−1∑

i=1

(Id−TPD) (z, v)i −
n−1∑

i=1

(Id−TPD) (z̄, v̄)i

∥∥∥∥∥

2

≤ ∥(z, v) − (z̄, v̄)∥2γ,

(7.6)

where ∥·∥γ denotes the norm induced by the scalar product (7.5). In particular, if λ ∈ ]0, 1[

and γ ∈
]
0, 1

∥L∥2

]
, the operator TPD is λ-averaged nonexpansive.

Proof. Let (x1, . . . , xn, y) ∈ Hn × G and (x̄1, . . . , x̄n, ȳ) ∈ Hn × G be given by (7.4)

from (z, v) and (z̄, v̄), respectively. For simplicity, we denote (z+, v+) = TPD(z, v) and

(z̄+, v̄+) = TPD(z̄, v̄). Since z1 − x1 ∈ A1(x1) and z̄1 − x̄1 ∈ A1(x̄1), by monotonicity of A1

0 ≤ ⟨(z1 − x1) − (z̄1 − x̄1), x1 − x̄1⟩
= ⟨(z1 − x1) − (z̄1 − x̄1), x1 − x2⟩ + ⟨(z1 − x1) − (z̄1 − x̄1), x2 − x̄1⟩.

(7.7)
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For every i ∈ J2, n− 1K, we have zi+xi−1−zi−1−xi ∈ Ai(xi) and z̄i+x̄i−1−z̄i−1−x̄i ∈ Ai(x̄i)

and thus, by monotonicity of Ai

0 ≤ ⟨(zi + xi−1 − zi−1 − xi) − (z̄i + x̄i−1 − z̄i−1 − x̄i), xi − x̄i⟩
= ⟨(zi − xi) − (z̄i − x̄i), xi − x̄i⟩ − ⟨(zi−1 − xi−1) − (z̄i−1 − x̄i−1), xi − x̄i⟩
= ⟨(zi − xi) − (z̄i − x̄i), xi − xi+1⟩ + ⟨(zi − xi) − (z̄i − x̄i), xi+1 − x̄i⟩
− ⟨(zi−1 − xi−1) − (z̄i−1 − x̄i−1), xi − x̄i−1⟩
− ⟨(zi−1 − xi−1) − (z̄i−1 − x̄i−1), x̄i−1 − x̄i⟩.

(7.8)

Now, since x1 + xn−1 − zn−1 − xn − L∗ (γLx1 − v) ∈ An(xn) and x̄1 + x̄n−1 − z̄n−1 − x̄n −
L∗ (γLx̄1 − v̄) ∈ An(x̄n), again monotonicity of An results in the inequality

0 ≤ ⟨x1 + xn−1 − zn−1 − xn − L∗ (γLx1 − v) , xn − x̄n⟩
− ⟨x̄1 + x̄n−1 − z̄n−1 − x̄n − L∗ (γLx̄1 − v̄) , xn − x̄n⟩

= ⟨(xn−1 − zn−1) − (x̄n−1 − z̄n−1), xn − x̄n⟩ + ⟨(x1 − x̄1) − (xn − x̄n), xn − x̄n⟩
− ⟨γ (Lx1 − Lx̄1) − (v − v̄), Lxn − Lx̄n⟩

= ⟨(xn−1 − zn−1) − (x̄n−1 − z̄n−1), xn − x̄n−1⟩
+ ⟨(x1 − x̄1) − (xn − x̄n), xn − x̄n⟩
+ ⟨(xn−1 − zn−1) − (x̄n−1 − z̄n−1), x̄n−1 − x̄n⟩
− ⟨γ (Lx1 − Lx̄1) − (v − v̄), Lxn − Lx̄n⟩.

(7.9)

Finally, we have γL(x1 + xn) − v − γy ∈ B(y) and γL(x̄1 + x̄n) − v̄ − γȳ ∈ B(ȳ), so by

monotonicity of B, we get

0 ≤ ⟨(γL(x1 + xn) − v − γ y) − (γL(x̄1 + x̄n) − v̄ − γ ȳ), y − ȳ⟩. (7.10)

Summing together (7.7)-(7.10) and rearranging, yields

0 ≤
n−1∑

i=1

⟨(xi − xi+1) − (x̄i − x̄i+1), zi − z̄i⟩

+
n−1∑

i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi⟩

+ ⟨(x1 − x̄1) − (xn − x̄n), xn − x̄n⟩ + ⟨(Lxn − Lx̄n) − (y − ȳ), v − v̄⟩
+ γ⟨

(
L(x1 + xn) − L(x̄1 + x̄n)

)
− (y − ȳ), y − ȳ⟩

− γ⟨Lx1 − Lx̄1, Lxn − Lx̄n⟩.

(7.11)
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The sums in (7.11) can be written, respectively, as

n−1∑

i=1

⟨(xi − xi+1) − (x̄i − x̄i+1), zi − z̄i⟩

=
1

λ

n−1∑

i=1

⟨(zi − z+i ) − (z̄i − z̄+i ), zi − z̄i⟩

=
1

λ
⟨(z− z+) − (z̄− z̄+), z− z̄⟩

=
1

2λ

(
∥(z− z+) − (z̄− z̄+)∥2 − ∥z+ − z̄+∥2 + ∥z− z̄∥2

)
,

(7.12)

and

n−1∑

i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi⟩

=
1

2

n−1∑

i=1

(
∥xi+1 − x̄i+1∥2 − ∥xi − x̄i∥2 − ∥(xi − xi+1) − (x̄i − x̄i+1)∥2

)

=
1

2

(
∥xn − x̄n∥2 − ∥x1 − x̄1∥2 −

1

λ2

n−1∑

i=1

∥(zi − z+i ) − (z̄i − z̄+i )∥2
)

=
1

2

(
∥xn − x̄n∥2 − ∥x1 − x̄1∥2 −

1

λ2
∥(z− z+) − (z̄− z̄+)∥2

)
.

(7.13)

The third term in (7.11), becomes

⟨(x1 − x̄1) − (xn − x̄n), xn − x̄n⟩

=
1

2

(
∥x1 − x̄1∥2 − ∥xn − x̄n∥2 − ∥(x1 − x̄1) − (xn − x̄n)∥2

)
,

(7.14)

while the fourth term yields

⟨(Lxn−Lx̄n) − (y − ȳ), v − v̄⟩

=
1

γλ
⟨(v − v+) − (v̄ − v̄+), v − v̄⟩

=
1

2γλ

(
∥(v − v+) − (v̄ − v̄+)∥2 − ∥v+ − v̄+∥2 + ∥v − v̄∥2

)
.

(7.15)
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Lastly, making use of the Cauchy–Schwarz and Young’s inequalities, the second last term

of (7.11) gives

γ⟨
(
L(x1 + xn) − L(x̄1 + x̄n)

)
− (y − ȳ), y − ȳ

〉

= γ (⟨Lx1 − Lx̄1, y − ȳ⟩ + ⟨(Lxn − Lx̄n) − (y − ȳ), y − ȳ⟩)
=
γ

2

(
∥Lxn − Lx̄n∥2 − ∥ (Lxn − Lx̄n) − (y − ȳ)∥2 − ∥y − ȳ∥2

)

+ γ⟨Lx1 − Lx̄1, y − ȳ⟩

≤ γ

2

(
∥Lxn − Lx̄n∥2 −

1

γ2λ2
∥(v − v+) − (v̄ − v̄+)∥2 − ∥y − ȳ∥2

)

+
γ

2
∥Lx1 − Lx̄1∥2 +

γ

2
∥y − ȳ∥2

=
γ

2
∥Lx1 − Lx̄1∥2 +

γ

2
∥Lxn − Lx̄n∥2 −

1

2γλ2
∥(v − v+) − (v̄ − v̄+)∥2,

(7.16)

while the last term can be rearranged as follows

−γ⟨Lx1 − Lx̄1, Lxn − Lx̄n⟩
=
γ

2

(
∥L(x1 − xn) − L(x̄1 − x̄n)∥2 − ∥Lx1 − Lx̄1∥2 − ∥Lxn − Lx̄n∥2

)
.

(7.17)

Summing together (7.16) and (7.17) and using the Lipschitz continuity of L, we get

γ⟨
(
L(x1 + xn) − L(x̄1 + x̄n)

)
− (y − ȳ), y − ȳ⟩ − γ⟨Lx1 − Lx̄1, Lxn − Lx̄n⟩

=
γ

2
∥L(x1 − xn) − L(x̄1 − x̄n)∥2 − 1

2γλ2
∥(v − v+) − (v̄ − v̄+)∥2

≤ γ∥L∥2
2

∥(x1 − xn) − (x̄1 − x̄n)∥2 − 1

2γλ2
∥(v − v+) − (v̄ − v̄+)∥2.

(7.18)

Multiplying (7.11) by 2λ and substituting equations (7.12)-(7.18), we obtain the final

inequality

∥z+ − z̄+∥2 +

(
1

λ
− 1

)(
∥(z− z+) − (z̄− z̄+)∥2 +

1

γ
∥(v − v+) − (v̄ − v̄+)∥2

)

+
1

γ
∥v+ − v̄+∥2 + λ

(
1 − γ∥L∥2

)
∥(x1 − xn) − (x̄1 − x̄n)∥2

≤ ∥z− z̄∥2 +
1

γ
∥v − v̄∥2.
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To complete the proof, just note that

λ(x1 − xn) − λ(x̄1 − x̄n) = λ

n−1∑

i=1

(xi − xi+1) − λ

n−1∑

i=1

(x̄i − x̄i+1)

=
n−1∑

i=1

(zi − z+i ) −
n−1∑

i=1

(z̄i − z̄+i ),

from where (7.6) finally follows.

Next, we state the main result of this section, which establishes the convergence of the

iterative algorithm defined by the operator TPD.

Theorem 7.4. Let n ≥ 2, let L : H → G be a bounded linear operator and assume

A1, . . . , An : H ⇒ H and B : G ⇒ G are maximally monotone operators verifying

zer (
∑n

i=1Ai + L∗BL) ̸= ∅. Further, let λ ∈ ]0, 1[ and γ ∈
]
0, 1

∥L∥2

]
. Given an initial

point (z0, v0) = (z01 , . . . , z
0
n−1, v

0) ∈ Hn−1 × G, consider the sequences defined by

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ




xk2 − xk1

xk3 − xk2
...

xkn − xkn−1

γ(yk − Lxkn)



, ∀k ∈ N, (7.19)

with 



xk1 = JA1(z
k
1 ),

xki = JAi
(zki + xki−1 − zki−1), ∀i ∈ J2, n− 1K,

xkn = JAn

(
xk1 + xkn−1 − zkn−1 − L∗(γLxk1 − vk)

)
,

yk = JB/γ

(
L(xk1 + xkn) − vk

γ

)
.

(7.20)

Then the following statements hold.

(i) The sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ Fix TPD.

(ii) The sequence (xk1, . . . , x
k
n, y

k)k∈N converges weakly to (x̄, . . . , x̄, Lx̄) with x̄ ∈ P.

(iii) The sequence
(
γLxki − vk

)
k∈N converges weakly to γLx̄− v̄ ∈ D, for all i ∈ J1, nK.
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Proof. (i) The sequence in (7.19) is the fixed point iteration generated as

(
zk+1

vk+1

)
= TPD

(
zk

vk

)
, ∀k ∈ N.

Since λ ∈ ]0, 1[ and γ ∈ ]0, ∥L∥−2], TPD is averaged nonexpansive by Lemma 7.3 and,

moreover, Fix TPD = ∅, due to Z ̸= ∅ and Lemma 7.1(i). Then, by Theorem 2.7, we

conclude that the sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ Fix TPD and

limk→∞ ∥(zk+1, vk+1) − (zk, vk)∥γ = 0.

(ii) Due to the weak convergence proved in (i), the sequence (zk, vk)k∈N is bounded.

Then, nonexpansiveness of the resolvents and boundedness of the linear operator L imply

that the sequence (xk, yk)k∈N = (xk1, . . . , x
k
n, y

k)k∈N is also bounded. Further, the fact that

(zk+1, vk+1)k∈N − (zk, vk)k∈N → 0, as k → ∞, implies by (7.19) that

yk − Lxkn → 0 and xki+1 − xki → 0, for all i ∈ J1, n− 2K. (7.21)

Next, by making use of the definition of resolvents and (7.20), we can write

C




zk1 − xk1

(zk2 − xk2) − (zk1 − xk1)
...

(zkn−1 − xkn−1) − (zkn−2 − xkn−2)

xkn

γ
(
L(xk1 + xkn) − yk

)
− vk




∋




xk1 − xkn

xk2 − xkn
...

xkn−1 − xkn

xk1 − xkn + γL∗ (Lxkn − yk
)

yk − Lxkn




, (7.22)

where the operator C : Hn × G ⇒ Hn × G is given by

C :=




A−1
1

A−1
2
...

A−1
n−1

An

B−1




+




0 0 . . . 0 − Id 0

0 0 . . . 0 − Id 0
...

...
. . .

...
...

...

0 0 . . . 0 − Id 0

Id Id . . . Id 0 L∗

0 0 . . . 0 −L 0




. (7.23)

The operator C is maximally monotone as the sum of a maximally monotone operator

and a skew symmetric linear operator (see Example 2.13 and Proposition 2.15). By Propo-

sition 2.23, the graph of C is sequentially closed in the weak-strong topology, by demi-

closedness of maximally monotone operators.
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Now, let (x̄, ȳ) be a weak sequential cluster point of (xk, yk)k∈N. Due to (7.21), x̄ is

of the form x̄ = (x̄, . . . , x̄) ∈ Hn and ȳ = Lx̄. Taking the limit along a subsequence

of (xk, yk)k∈N which converges weakly to (x̄, ȳ) and using demiclosedness of C, equa-

tions (7.22) and (7.23) yield the expression





z̄1 − x̄ ∈ A1(x̄),

z̄i − z̄i−1 ∈ Ai(x̄), ∀i ∈ J2, n− 1K,
x̄− z̄n−1 − L∗(γLx̄− v̄) ∈ An(x̄),

γLx̄− v̄ ∈ B(Lx̄),

which, by summing the first n equations, implies that (x̄, γLx̄− v̄) ∈ Z with x̄ = JA1(z̄1).

In particular, we have shown that (x̄, ȳ) is directly obtained from z̄, implying that it is

the unique weak sequential cluster point of the bounded sequence (xk, yk)k∈N. Thus, the

full sequence converges weakly to this point.

(iii) From (i)-(ii), for all i ∈ J1, nK, we deduce that the sequence (γLxki −vk)k∈N weakly

converges to γLx̄− v̄, which belongs to D since (x̄, γLx̄− v̄) ∈ Z.

Remark 7.5 (Malitsky–Tam resolvent splitting [173] as a special case). Consider Prob-

lem (7.1)-(7.2) in the particular case in which L = Id. Then,B : H ⇒ H and equation (7.1)

becomes the classical monotone inclusion problem with (n+1)-operators. Furthermore, by

setting γ = 1 in Theorem 7.4, it is straightforward to see that the sequences in (7.19)-(7.20)

yield the Malitsky–Tam resolvent splitting with minimal lifting for (n+ 1)-operators.

Remark 7.6. In the case in which n = m = 1, making use of Proposition 2.20 and

considering the change of variable uk := γLzk − vk, for all k ∈ N, the iteration in (7.19)

takes the form 



xk = JA(zk − L∗uk),

wk = JγB−1

(
uk + γLxk

)
,

zk+1 = zk + λ(xk − zk),

uk+1 = uk − γL(zk+1 − zk) + λ(wk − uk).

(7.24)

The scheme (7.24) resembles that of the Chambolle–Pock algorithm, but does not recover

it, as the update of the dual variable differs. It is not clear to us whether Chambolle–Pock

splitting can be obtained as a particular case of (7.19)-(7.20).

Remark 7.7 (On the parameter γ in the definition of the norm ∥ · ∥γ). In Lemma 7.3, we

proved that the operator T is λ-averaged nonexpansive with respect to the norm ∥ · ∥γ in-

duced by the scalar product defined in (7.5). Although the use of this norm did not require
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detours from the usual procedure to prove convergence of the fixed point iteration in The-

orem 7.4, it may numerically affect the performance of the algorithm. To give an intuition

about this, consider the norm of the sequence of residuals
(
∥(zk+1, vk+1) − (zk, vk)∥γ

)
k∈N,

which converges to 0 as the algorithm reaches a fixed point, and note that we have

∥∥(zk+1, vk+1) − (zk, vk)
∥∥2
γ

= ∥zk+1 − zk∥2 +
1

γ
∥vk+1 − vk∥2, ∀k ∈ N.

Lemma 7.3 implies that this sequence is monotone decreasing, but if γ is very small, the

weight of the sequence of dual variables (vk+1 − vk)k∈N in the norm would be much larger

than the one of the sequence of primal variables (zk+1− zk)k∈N, so a small decrease in the

value of ∥vk+1− vk∥ will readily imply a decrease of the norm of the sequence of residuals

even if ∥zk+1−zk∥ does not diminish much. Because of that, a larger number of iterations

might be needed to achieve convergence of the primal sequence, which can slow down the

overall convergence of the algorithm. Nonetheless, it is possible to perform some sort of

preconditioning to prevent from having a large constant in the definition of the norm. We

will further comment on this in the numerical experiment in Section 7.4.

7.2 Extension to multiple linear compositions

A standard product space reformulation permits to extend our method to the more general

inclusion Problem 3.12, which has finitely many linearly composed maximally monotone

operators. We detail this in Corollary 7.9, while the resulting scheme is displayed in Al-

gorithm 7.8.

Corollary 7.9. Let n ≥ 2 and assume that Problem 3.12 has a solution. Let λ ∈ ]0, 1[

and γ ∈
]
0, 1/

∑m
j=1 ∥Lj∥2

]
. Given some initial points z0 = (z1, . . . , zn−1) ∈ Hn−1 and

v0 = (v01, . . . , v
0
m) ∈ G1 × · · · × Gm, consider the sequences (zk,vk)k∈N and (xk,yk)k∈N

generated by Algorithm 7.8. Then the following assertions hold.

(i) The sequence (zk,vk)k∈N converges weakly to a point (z̄, v̄) ∈ Hn−1 ×G1 × · · · × Gm.

(ii) The sequence (xk1, . . . , x
k
n, y

k
1 , . . . , y

k
m)k∈N converges weakly to (x̄, . . . , x̄, L1x̄, . . . , Lmx̄)

with x̄ ∈ H solving the primal inclusion (3.23).

(iii) For all i ∈ J1, nK, the sequence (γL1x
k
i − vk1 , . . . , γLmx

k
i − vkm)k∈N converges weakly

to (γL1x̄− v̄1, . . . , γLmx̄− v̄m), which solves the dual inclusion (3.24).
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Algorithm 7.8 Primal-dual splitting for Problem 3.12 with minimal lifting.

Require: λ ∈ ]0, 1[ and γ ∈
]
0, 1/

∑m
j=1 ∥Lj∥2

]
.

1: Choose z0 = (z01 , . . . , z
0
n−1) ∈ Hn−1 and v0 = (v01, . . . , v

0
m) ∈ G1 × · · · × Gm.

2: for k = 0, 1, . . . do
3: Compute

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ




xk2 − xk1
xk3 − xk2

...
xkn − xkn−1

γ(yk1 − L1x
k
n)

...
γ(ykm − Lmx

k
n)




, (7.25)

with xk = (xk1, . . . , x
k
n) ∈ Hn and yk = (yk1 , . . . , y

k
m) ∈ G1 × · · · × Gm computed as





xk1 = JA1(z
k
1 ),

xki = JAi
(zki + xki−1 − zki−1), ∀i ∈ J2, n− 1K,

xkn = JAn

(
xk1 + xkn−1 − zkn−1 −

m∑

j=1

L∗
j(γLjx

k
1 − vkj )

)
,

ykj = JBj/γ

(
Lj(x

k
1 + xkn) − vkj

γ

)
, ∀j ∈ J1,mK.

(7.26)

4: end for

Proof. Just note that Problem 3.12 can be reformulated as an instance of Problem (7.1)-

(7.2) by replacing B by the operator B : G1 × · · · × Gm ⇒ G1 × · · · × Gm defined as the

Cartesian product B :=×m

j=1
Bj and L by L : H → G1 × · · · × Gm : x 7→ (Ljx)mj=1.

In particular, it holds that ∥L∥2 =
∑n

j=1 ∥Lj∥2 and that its linear adjoint operator is

L∗ : G1×· · ·×Gm → H : (v1, . . . , vm) 7→∑m
j=1 L

∗
jvj. Hence, the result follows by considering

the averaged nonexpansive operator TPD in (7.3) for this choice of operators and applying

Theorem 7.4.

7.2.1 Discussion on minimal lifting

The fixed point encoding for the case m = 1 in Remark 7.2 can easily be extended

to the more general Problem 3.12 with m ≥ 1. For this, let n ≥ 2 in Problem 3.12. Let

TPD : Hn−1×G1×· · ·×Gm → Hn−1×G1×· · ·×Gm be the operator defined in (7.3) by setting

B :=×m

j=1
Bj and letting L be the operator L described in the proof of Corollary 7.9.
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Define the solution operator SPD : Hn−1 × G1 × · · · × Gm → H× G1 × · · · × Gm as

SPD

(
z

v

)
:=




JA1(z1)

γL1JA1(z1) − v1
...

γLmJA1(z1) − vm



.

Then, by Lemma 7.1 and Corollary 7.9, the pair (TPD,SPD) is a frugal resolvent splitting

with (n− 1,m)-fold lifting.

As a consequence, it follows from Theorem 4.21 that the lifting of Algorithm 7.8 is

minimal among frugal primal-dual resolvent splitting algorithms with m dual variables.

To the best of the author’s knowledge, Algorithm 7.8 is the only primal-dual method with

minimal lifting devised so far.

Finally, we conclude this section by highlighting that Algorithm 7.8 can be applied

with n < 2, by setting Ai = 0 if required. However, a reduction in the lifting is not

obtained in this case.

Remark 7.10 (Algorithm 7.8 when n ≤ 1). Consider Algorithm 7.8 applied to Prob-

lem 3.12 with n ≤ 1. We distinguish the two cases:

(i) If n = 1, then Algorithm 7.8 has (1,m)-fold lifting. Indeed, equations (7.25) and (7.26)

become

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ




xk − zk

γ(yk1 − L1x
k)

...

γ(ykm − Lmx
k)



, ∀k ∈ N,

and 



xk = JA

(
zk −

m∑

j=1

L∗
j(γLjz

k − vkj )

)
,

ykj = JBj/γ

(
Lj(z

k + xk) − vkj
γ

)
, ∀j ∈ J1,mK,

(7.27)

respectively. This means that, in contrast with what happens when n ≥ 2, there is

no reduction in the lifting with respect to the number of operators involved.

(ii) If n = 0, the scheme also has (1,m)-fold lifting. In fact, the scheme is the same as

in the previous case but substituting JA by Id in (7.27). Note that this is also the

lifting obtained by the already known algorithms in the literature applied to this

case (see, e.g., [59, 75, 116, 239]).
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7.3 A unified splitting for mixtures of monotone inclusions

Many methods developed in the literature are suited for solving monotone inclusions

resulting from a mixture of Problems 3.9 and 3.12 (see, e.g., [59, 65, 109, 239]). We now

illustrate how to combine the algorithms in Chapter 6 and Section 7.1 to achieve the same

goal.

Let A1, . . . , An : H ⇒ H and B : G ⇒ G be maximally monotone operators, let

T1, . . . , Tn−1 : H → H be 1
β
-cocoercive operators, with β > 0, and L : H → G be a

bounded linear operator. We consider the primal inclusion

find x ∈ H such that 0 ∈
n∑

i=1

Ai(x) +
n−1∑

i=1

Ti(x) + L∗B(Lx), (7.28)

together with its associated dual inclusion

find u ∈ G such that 0 ∈ −L
(

n∑

i=1

Ai +
n−1∑

i=1

Ti

)−1

(−L∗u) +B−1(u). (7.29)

It is not difficult to check that both inclusions are equivalent in the same way as (7.1)-(7.2).

For simplicity, we are limiting the number of linearly composed operators in (7.28)-(7.29)

to one. The case with an arbitrary finite number of linear compositions can be addressed

by resorting to the same trick as in Section 7.2.1. In order to tackle (7.28)-(7.29), we

propose the following algorithm which merges the iterations in (6.6) and (7.8).

Algorithm 7.11 Splitting for (7.28)-(7.29) with (n− 1, 1)-fold lifting.

Require: δ ∈ ]0, 2/β[, λ ∈
]
0, 1 − δβ

2

[
and γ ∈

]
0, 1

∥L∥2
]
.

1: Choose z0 = (z01 , . . . , z
0
n−1) ∈ Hn−1 and v0 ∈ G.

2: for k = 0, 1, . . . do
3: Compute

(
zk+1

vk+1

)
=

(
zk

vk

)
+ λ




xk2 − xk1
xk3 − xk2

...
xkn − xkn−1

γ(yk − Lxkn)



, (7.30)

with xk = (xk1, . . . , x
k
n) ∈ Hn and yk ∈ G computed as





xk1 = JδA1
(zk1 ),

xki = JδAi

(
zki + xki−1 − zki−1 − δTi−1(x

k
i−1)

)
, ∀i ∈ J2, n− 1K,

xkn = JδAn

(
xk1 + xkn−1 − zkn−1 − δTn−1(x

k
n−1)− L∗(γLxk1 − vk)

)
,

yk = J δ
γ B

(
L(xk1 + xkn)−

vk

γ

)
.

(7.31)

4: end for
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The sequence (zk, vk)k∈N in (7.30) is obtained as the fixed point iteration of the oper-

ator T̃ : Hn−1 × G → Hn−1 × G given by

T̃
(
z

v

)
:=

(
z

v

)
+ λ




x2 − x1

x3 − x2
...

xn − xn−1

γ(y − Lxn)



, (7.32)

with 



x1 = JδA1(z1),

xi = JδAi

(
zi + xi−1 − zi−1 − δTi−1(xi−1)

)
, ∀i ∈ J2, n− 1K,

xn = JδAn

(
x1 + xn−1 − zn−1 − δTn−1(xn−1) − L∗(γLx1 − v)

)
,

y = J δ
γ
B

(
L(x1 + xn) − v

γ

)
.

(7.33)

This operator will be used in the convergence theorem of Algorithm 7.11 that comes next.

Theorem 7.12. Let n ≥ 2. Let A1, . . . , An : H ⇒ H and B : G ⇒ G be maximally

monotone operators, T1, . . . , Tn−1 : H → H be 1
β

-cocoercive operators and L : H → G
be a bounded linear operator. Assume that zer

(∑n
i=1Ai +

∑n−1
i=1 Ti + L∗BL

)
̸= ∅. Fur-

ther, set δ ∈ ]0, 2/β[ and take λ ∈
]
0, 1 − δβ

2

[
and γ ∈

]
0, 1

∥L∥2
]
. Given an initial guess

(z0, v0) ∈ Hn−1 ×G, consider the sequence (zk, vk)k∈N generated by Algorithm 7.11. Then

the following assertions hold.

(i) The sequence (zk, vk)k∈N converges weakly to a point (z̄, v̄) ∈ Fix T̃ , where T̃ is the

fixed point operator defined by (7.32)-(7.33).

(ii) The sequence (xk1, . . . , x
k
n, y

k)k∈N converges weakly to (x̄, . . . , x̄, Lx̄) with x̄ solving

the primal inclusion (7.28).

(iii) For all i ∈ J1, nK, the sequence (γLxki − vk)k∈N converges weakly to a point γLx̄− v̄

solving the dual inclusion (7.29).

(iv) The sequence
(
Ti(x

k
i )
)
k∈N converges strongly to Ti(x̄) for all i ∈ J1, n− 1K.

We briefly sketch the proof of Theorem 7.12, which follows in an analogous manner to

some of the results already presented.
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Proof. By an argument similar to that in Lemmas 6.4 and 7.1, we can prove that

Fix T̃ ̸= ∅ ⇐⇒ zer

(
n∑

i=1

Ai +
n−1∑

i=1

Ti + L∗BL

)
̸= ∅.

Next, let (z, v) ∈ Hn−1 × G and (z̄, v̄) ∈ Fix T̃ . Combining the proofs of Lemmas 6.5

and 7.3 yields the inequality

∥∥T̃ (z, v)− (z̄, v̄)
∥∥2
γ
+

(
1− λ

λ
− δβ

2λ

)∥∥((Id−T̃ )(z, v)
)n−1

i=1

∥∥2 + 1

γ

(
1− λ

λ

)∥∥(Id−T̃ )(z, v)n
∥∥2

+
1− γ∥L∥2

λ

∥∥∥∥
n−1∑

i=1

(Id−T̃ )(z, v)i

∥∥∥∥
2

≤
∥∥(z, v)− (z̄, v̄)

∥∥2
γ
.

Thus, the sequence (zk, vk)k∈N is Fejér monotone with respect to Fix T̃ and (xk, yk)k∈N is

bounded. Further, zk+1 − zk → 0 and vk+1 − vk → 0, which in turn imply Lxkn − yk → 0

and xki − xki−1 → 0, for all i ∈ J1, n− 1K.

Now, consider the maximally monotone operator C : Hn−1 × G ⇒ Hn−1 × G defined

as

C :=




(δA1)
−1

(
δ(A2 + T1)

)−1

...(
δ(An−1 + Tn−2)

)−1

δ(An + Tn−1)

(δB)−1




+




0 0 . . . 0 − Id 0

0 0 . . . 0 − Id 0
...

...
. . .

...
...

...

0 0 . . . 0 − Id 0

Id Id . . . Id 0 L∗

0 0 . . . 0 −L 0




.

Then, (i)-(iii) follow from taking the limit along a subsequence weakly convergent to

a weak cluster point of (zk, vk,xk, yk)k∈N, using β-Lipschitz continuity of T1, . . . , Tn−1,

demiclosedness of C and noting that (7.31) can be written as

C




zk1 − xk1

(zk2 − xk2)− (zk1 − xk1) + δtk2
...

(zkn−1 − xkn−1)− (zkn−2 − xkn−2) + δtkn−1

xkn

γ
(
L(xk1 + xkn)− yk

)
− vk




∋




xk1 − xkn

xk2 − xkn
...

xkn−1 − xkn

xk1 − xkn + δ
∑n−1

i=1 t
k
i+1 + γL∗ (Lxkn − yk

)

yk − Lxkn




,

where tki := Ti−1(x
k
i ) − Ti−1(x

k
i−1).

It only remains to prove (iv). Proceeding in the same fashion as in Theorem 6.7 (iii),

firm nonexpansiveness of the resolvents JδA1 , . . . , JδAn and 1
β
-cocoercivity of T1, . . . , Tn−1
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yield the inequality

δ

β

n−1∑

i=1

∥Ti(xki )− Ti(x̄)∥2

≤ ⟨xkn − x̄, xk1 − xkn⟩+ ⟨xk1 − xkn, (z
k
i − xki )− (z̄i − x̄)⟩

+
n−1∑

i=2

⟨xki − xkn, (z
k
i − xki )− (zki−1 − xki−1)− (z̄i − z̄i−1)⟩

− δ
n−1∑

i=1

⟨xki+1 − xki , Ti(x
k
i )− Ti(x̄)⟩ − ⟨Lxkn − Lx̄, γL(xk1 − x̄)− (vk − v̄)⟩.

(7.34)

Further, resorting to the monotonicity of δB we get

0 ≤ ⟨yk − Lx̄, γL(xk1 − x̄) − (vk − v̄)⟩ + γ⟨yk − Lx̄, Lxkn − yk⟩. (7.35)

Combining (7.34) and (7.35) and taking limits, the claim follows.

Remark 7.13. Determining whether Theorem 7.12 has minimal lifting would require to

rigorously establish a minimal lifting result for the monotone inclusion problem (7.28)-

(7.29), which is out of the scope of this thesis. Nevertheless, from the above it is clear

that Theorem 7.12 results in a method with (n−1,m)-fold lifting when applied to (7.28)-

(7.29) with n ≥ 2 and m linearly composed maximally monotone operators. Therefore, it

also reduces the dimension of the underlying space of the algorithm with respect to other

existing methods in the literature, see [59, 65, 109, 239].

In addition, if some of the operators T1, . . . , Tn−2 are not cocoercive but monotone and

Lipschitz continuous, we can modify Algorithm 7.11 in the way described in Remark 6.21.

In this context, the proof of Theorem 7.12 can be tailored to obtain (i)-(iii) with a smaller

range of admissible parameters.

7.4 A numerical experiment in image recovery

In this section, we test our algorithm for solving an ill-conditioned linear inverse problem

which arises in image deblurring and denoising. Let b ∈ Rn be an observed blurred and

noisy image of size N1×N2, with n = N1N2 for grayscale and n = 3N1N2 for color images,

and denote by M ∈ Rn×n the blur operator. The model considered on this occasion is
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given by the following regularized convex non-differentiable problem

inf
s∈Rn

{
∥Ms− b∥1 + α1∥Ws∥1 + α2TV (s) + ι[0,1]n(s)

}
, (7.36)

where α1, α2 > 0 are regularization parameters, ι[0,1]n denotes the indicator function of

the set [0, 1]n, TV : Rn → R is the isotropic total variation function and W is the linear

operator given by the normalized nonstandard Haar transform, which is orthogonal (see,

e.g., [228]).

Recalling Remark 7.7, it is of interest to consider a mechanism which allows tuning the

parameter γ appearing in the definition of the norm given by the inner product in (7.5) to

an appropriate value. To this aim, we perform in (7.36) a change of variable of the form

s = µx, with µ > 0, and instead handle the problem

inf
x∈Rn

{
µ

∥∥∥∥Mx− b

µ

∥∥∥∥
1

+ α1µ∥Wx∥1 + α2TV (µx) + ι[0,1/µ]n(x)

}
. (7.37)

Below we shall see the way in which the choice of µ can help setting a suitable parameter γ.

First, note that the parametrized total variation can be written as TV (µ ·) = ∥L(·)∥×,

with L = D/µ and D the discrete gradient operator in (2.8). As a consequence, an upper

bound of the squared Lipschitz constant of L is given by ∥L∥2 ≤ 8µ2.

By [44, Proposition 27.5], solving (7.37) is equivalent to obtaining a solution to the

composite inclusion

find x ∈ zer
(
N[0,1/µ]n +W ∗ ◦ ∂g1 ◦W +MT ◦ ∂g2 ◦M + L∗ ◦ ∂g3 ◦ L

)
, (7.38)

with g1 : Rn → R, g1(y) = α1µ∥y∥1, g2 : Rn → R, g2(y) = µ∥y− b/µ∥1, g3 : Rn×Rn → R,

g3(p, q) = α2∥(p, q)∥×, and N[0,1/µ]n the normal cone operator to the set [0, 1/µ]n. In order

to implement Algorithm 7.8 for solving (7.38), we need the expression of the following

resolvents and proximity operators. The orthogonality of W and Proposition 2.22 imply

that the second term in (7.38) is a maximally monotone operator with resolvent

JW ∗◦∂g1◦W = Id−W ∗ ◦
(
Id− proxg1

)
◦W = Id−W ∗ ◦ proxg∗1

◦W,

where the conjugate function to g1 is equal to the indicator function ι[−α1µ,α1µ]n , and thus

proxg∗1
= P[−α1µ,α1µ]n . Given σ > 0, the proximity operators of g2 and g3 are, respectively,

proxσg2(x) =
b

µ
+ proxσµ∥·∥1

(
x− b

µ

)
=
b

µ
+ sign

(
x− b

µ

)
⊙
[∣∣∣∣x−

b

µ

∣∣∣∣− σµ

]

+

,
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where ⊙ denotes element-wise product and [ · ]+ and | · | are applied element-wise, and

proxσg3 = Id−σ prox 1
σ
g∗3
◦ 1

σ
Id = Id−σPS ◦ 1

σ
Id,

since the conjugate function of g3 is g∗3 = ιS, where S is defined likewise to (2.7) and

whose projection is given in Proposition 2.37.

Hence, when choosing z0 ∈ Rn, v01 ∈ Rn and v02 ∈ Rn × Rn as starting values, and

letting λ ∈ ]0, 1[ and γ ∈ ]0, 1/(∥M∥2 + ∥L∥2)], the iterative scheme in Algorithm 7.8

becomes 

xk1 =P[0,1/µ]n(zk),

xk2 =
(
Id−W ∗ ◦ P[−α1µ,α1µ]n ◦W

)
(
2xk1 − zk −MT (γMxk1 − vk1) − L∗(γLxk1 − vk2)

)
,

yk1 =
b

µ
+ proxµ

γ
∥·∥1

(
M(xk1 + xk2) − vk1

γ
− b

µ

)
,

yk2 =

(
Id−1

γ
PS

)(
γL(xk1 + xk2) − vk2

)
,

zk+1 =zk + λ(xk2 − xk1),

vk+1
1 =vk1 + λγ(yk1 −Mxk2),

vk+1
2 =vk2 + λγ(yk2 − Lxk2).

In our experiment, we replicate the problem in the survey [60, Section 4.2], where an

extensive comparison between different primal-dual algorithms is presented. Since the

best performing algorithm is the Douglas–Rachford type primal-dual method in [60, Al-

gorithm 11], we limit our comparison to this algorithm, whose detailed implementation

is given in the cited work. The method has (2, 2)-fold lifting for this problem. We ran

our experiments in Matlab, making use of the inbuilt functions fspecial and imfilter

to define an operator M which is a Gaussian blur operator of size 9 × 9 with standard

deviation 4 and reflexive boundary conditions. In particular, M verifies ∥M∥ = 1 and

MT = M . We employed as observed image b a picture taken at the Schönbrunn Palace

Gardens (Vienna) subjected to the already specified blur followed by the addition of a

zero-mean Gaussian noise with standard deviation 10−3 (see Figure 7.2). To test the in-

fluence on the performance of the picture size, we resized the original picture to different

pixel resolutions (see Table 7.1).



7.4. A numerical experiment in image recovery 129

When measuring the quality of the restored images, we use the improvement in signal-

to-noise-ratio (ISNR), which is given by

ISNRk = 10 log10

( ∥x− b∥2
∥x− xk∥2

)
,

where x and xk are the original and the reconstructed image at iteration k, respectively.

We tuned the regularization parameters in order to guarantee an adequate ISNR value

for the restored images, setting α1 := 0.005 and α2 := 0.009.

We recall that the stepsize parameter γ of Algorithm 7.8 must be taken in the interval

γ ∈ ]0, 1/(∥M∥2 + ∥L∥2)] ⊇ ]0, 1/(1 + 8µ2)]. When µ = 1 (i.e., we solve (7.36)), the

latter interval is ]0, 0.111]. In our numerical experiments we empirically observed that

a very small stepsize negatively affects the performance of the algorithm, as mentioned

in Remark 7.7. After testing different options, the most convenient one seems to be µ =

1/
√

8, which implies making the Lipschitz constant of both linear operators in the problem

equal to 1.

The initialization of each of the methods was the following:

� DR1([60, Algorithm 3.1]): starting points x0 = b and (v1,0, v2,0, v3,0) = (0, 0, 0),

σ1 = 1, σ2 = 0.05, σ3 = 0.05, τ = 1(σ1 + σ2 + 8σ3)
−1 − 0.01, λn = 1.5 for all n ∈ N.

� Algorithm 7.8 with µ = 1: starting points z0 = b and (v01, v
0
2) = (0, 0), λ = 0.99 and

γ = 1/9.

� Algorithm 7.8 with µ = 1/
√

8: starting points z0 = b/µ and (v01, v
0
2) = (0, 0),

λ = 0.99 and γ = 1/2.

We performed 400 iterations of each of the algorithms and compared the values of the

objective function in (7.37) and the ISNR with respect to the CPU time, which provides

a more realistic comparison than iteration count, since DR1 has a higher computational

cost per iteration than Algorithm 7.8. The tests were ran on a computer of Intel Core i7-

12700H 2.30 GHz with 16GB RAM, under Windows 11 (64-bit). The algorithms were ran

3 times, once for each of the RGB components of the picture. The evolution in CPU time

of adding these 3 values of the objective function and those of the ISNR for the 640×768-

sized picture are represented in Figure 7.1, where we observe that Algorithm 7.8 with

µ = 1/
√

8 obtains slightly better values than those returned by DR1, but in significantly

less time.
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Figure 7.1: The evolution of the values of the objective function and of the ISNR in CPU time
for 400 iterations of Algorithm 7.8 with µ = 1 and µ = 1

√
8 and DR1, using the 640×768 pixels

image displayed in Figure 7.2.

The restored images are presented in Figure 7.2. There is no much difference be-

tween the ones corresponding to Algorithm 7.8 with µ = 1/
√

8 (bottom-middle) and DR1

(bottom-right), but a close look at the image obtained with Algorithm 7.8 with µ = 1

permits to observe its worse quality. To show that this trend in the performance of the

algorithms is not affected by the image size, we present in Table 7.1 the results from

running the algorithms on the same picture for five different pixel resolutions. Overall,

we notice that the CPU time required for computing the 400 iterations is significantly

lower for Algorithm 7.8, as expected. On average, DR1 required 50% more time than

Algorithm 7.8 to compute the 400 iterations, independently of the size of the image. Re-

garding the parameter µ, Algorithm 7.8 with µ = 1 is notably outperformed by the other

two methods, making thus clear the influence that this parameter has on it. The function

values obtained were slightly lower for DR1, while the ISNR was slightly lower for Algo-

rithm 7.8 with µ = 1/
√

8, which implies that both algorithms performed similarly with

respect to the restored image quality.

Interpretation of the results of the experiments The experimental results show

that, after performing the same number of iterations, Algorithm 7.8 with µ = 1/
√

8

obtains similar results in the function values and the measurement in the quality of the

image recovery than those obtained by DR1, but in considerably less time. This decrease

in the running time can be attributed to the reduction in the lifting of the operator.

Although in the first iterations DR1 achieves a larger reduction of the objective function,
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the quality of the restored image is not sufficient, as assessed by the low ISNR values. On

the other hand, Algorithm 7.8 with µ = 1 can be discarded, as it obtains higher objective

and lower ISNR values. Consequently, Algorithm 7.8 with µ = 1/
√

8 is the preferable

choice to address problem (7.36).

Figure 7.2: On the top, the original 640× 768 pixels image and the blurred and noisy image.
On the bottom the images restored after computing 400 iterations of Algorithm 7.8 with µ = 1
(left) and µ = 1/

√
8 (middle), and DR1 (right).
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Resolution 80 × 96 160 × 192 320 × 384 640 × 768 1280 × 1536

Function µ = 1 55.4 226.3 919.4 3630.3 13 177.5

values
µ = 1/

√
8 43.1 174.3 710.6 2825.2 10 410.6

DR1 42.9 173.4 705.2 2804.5 10 377.4

ISNR
µ = 1 9.7 8.4 8.7 9.8 12.8

µ = 1/
√
8 15.8 14.3 14.9 16.5 21.0

DR1 15.8 14.2 14.8 16.4 21.0

CPU µ = 1 1.8 7.6 27.9 209.1 1453.3

time
µ = 1/

√
8 4.5 10.1 44.8 218.1 1476.9

DR1 6.7 12.0 120.2 338.2 2561.3

Table 7.1: Results from running on the picture displayed in Figure 7.2 (for various pixel
resolutions) 400 iterations of Algorithm 7.8 with µ = 1 and µ = 1/

√
8, and DR1.
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Chapter 8

The Boosted Double-proximal Subgradient

Algorithm for nonconvex optimization

In this chapter we leave the convex world and delve into the field of nonconvex opti-

mization, ruled by completely different principles. Quoting Tyrrel Rockafellar, one of the

fathers of modern optimization, “...in fact, the great watershed in optimization isn’t be-

tween linearity and nonlinearity, but convexity and nonconvexity”. In the following, we

shall observe that the machinery employed for analyzing nonconvex problems immensely

differs from the one presented in Part I of this thesis. Nevertheless, the search for numerical

methods adept at harnessing the inherent structure of the optimization problem prevails.

Being able to duly split the original problem into simpler tasks becomes imperative, as

an appropriate choice of “splitting” crucially influences the quality of the solution.

In this context, splitting methods have risen as a preferable option for structured

nonconvex minimization. The Douglas–Rachford algorithm performs exceptionally well for

the resolution of combinatorial problems [12, 15, 18, 164]. However, it is usually employed

as a heuristic, as very few is known about its convergence in the nonconvex setting besides

some particular cases (see, e.g., [11, 13, 47]). The so-called Difference of Convex functions

Algorithm (DCA), initially introduced by Pham Dinh and El Bernoussi [233], pioneered

the development of methods for the minimization of differences of convex functions [24,

129, 205, 227, 234].

One of the cornerstones in the understanding of the minimization of a nonsmooth

nonconvex function was the abstract convergence theorem devised by Attouch, Bolte

and Svaiter [31]. The theory there developed relies on the verification of the Kurdyka–

 Lojasiewicz property [157, 166] and is suitable for descent methods, namely, those algo-

rithms that generate a nonincreasing sequence with respect to the objective function.

This framework furnished the necessary tools for the convergence analysis of well-known

135
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methods applied to nonconvex problems (for instance, the proximal point algorithm and

the forward-backward method [31]), and propitiated the development of new schemes, see,

e.g., [7, 38, 66, 139].

In this chapter, we propose a novel descent method for the structured nonconvex

optimization problem

min
x∈Rn

f(x) + g(x) −
p∑

i=1

hi(Ψi(x)), (P)

where the function f : Rn → R is locally Lipschitz and satisfies the descent lemma,

g : Rn → ] −∞,+∞] is lower-semicontinuous and prox-bounded, hi : Rmi → R are

convex continuous functions and Ψi : Rn → Rmi are differentiable functions with Lipschitz

continuous gradients, for i = 1, . . . , p (see Assumption 8.14 for more specific details).

Problems in this form appear in a broad variety of fields such as machine learning,

image recovery or signal processing [169, 243, 248]. Numerous algorithms have been de-

veloped to handle simpler instances of (P) (see, e.g., [7, 38, 171, 229]), but as far as we

are aware of, not for the more general problem that we address here.

We present a new splitting algorithm, named Boosted Double-proximal Subgradient

Algorithm (BDSA), that makes use of the inherent structure of problem (P). The in-

spiration of the underlying scheme comes from the Double-proximal Gradient Algorithm

(DGA) proposed by Banert and Boţ [38]. More specifically, the method employs the sub-

differential of f , the gradients of Ψi and the proximal point operators of the functions g

and hi, for i = 1, . . . , p. Subsequently, an optional linesearch, not included in DGA, can

be performed to obtain the final update, which intends to steer (or “boost”) the iteration

to a point with a reduced value of the objective function, in a similar manner than the

linesearch introduced in [24, 27] permits to accelerate the DCA.

In our numerical tests, the addition of the linesearch is observed to provide substantial

improvements in the performance of the method. On the one hand, it accelerates the

algorithm, significantly reducing both the number of iterations and the time that it needs

to converge. On the other hand, it may help the sequence to converge to better solutions.

Indeed, note that the algorithms employed for tackling this class of nonconvex problems

usually converge to critical points (see Section 8.2). Being a critical point is a necessary

condition for local optimality, but not sufficient. Therefore, the algorithms often converge

to critical points which are not even local minima. The linesearch introduced in our scheme

seems to help the method to converge to critical points with lower value of the objective

function.

The main contributions of this chapter are the following.
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� In Section 8.1.2, we develop the framework for allowing f to be taken in the class of

upper-C2 functions. This family of functions increases the possibilities of distribution

of the elements for splitting the problem and seems to not have been integrated into

numerical schemes before our work.

� The convergence of BDSA is analyzed in Section 8.2.1. In addition, in Section 8.2.2,

we make use of the Kurdyka– Lojasiewicz property to prove in Theorems 8.28 and 8.30

its global convergence and deduce some convergence rates, respectively.

� Section 8.3 contains multiple numerical experiments showing the good performance

of BDSA in comparison with “non-boosted” methods and some inertial algorithms.

� The benefit of the linesearch for escaping non-optimal critical points is illustrated

with the introduction of two new challenging test functions in Section 8.3.1.

� The reduction in time and iterations is exemplified with an application of the min-

imum sum-of-squares clustering problem and a generalization of the classical Heron

problem in Sections 8.3.2 and 8.3.3, respectively.

Unless otherwise stated, the results in this chapter first appeared in [29].

8.1 Some further notions of variational analysis

We start by presenting the essential concepts for the analysis of nonconvex optimization

problems. All the results in Section 8.1.1 can be found in the fundamental books of

Rockafellar and Wets [218], and Mordukhovich [183].

8.1.1 Notational conventions

Throughout this chapter, the notations ∥ · ∥ and ⟨·, ·⟩ represent the Euclidean norm and

inner product in Rn, respectively. Given p positive integers m1, . . . ,mp, the inner product

of the product space Rm1 × · · · × Rmp is defined by

⟨(x1, . . . , xp), (y1, . . . , yp)⟩ :=

p∑

i=1

⟨xi, yi⟩, for all (x1, . . . , xp), (y1, . . . , yp) ∈ Rm,

with m :=
∑p

i=1mi, and its induced norm is denoted by ∥(x1, . . . , xp)∥. Again, vectors in

product spaces will be marked with bold, e.g., x = (x1, . . . , xp) ∈ Rm.



138 Chapter 8. The Boosted Double-proximal Subgradient Algorithm for nonconvex optimization

Given some constant L ≥ 0, a vector-valued function F : C ⊆ Rn → Rm is said to be

L-Lipschitz continuous on C if

∥F (x) − F (y)∥ ≤ L∥x− y∥, for all x, y ∈ C,

and locally Lipschitz continuous around x̄ ∈ C if it is Lipschitz continuous in some neigh-

borhood of x̄. Observe that, in contrast to the definition of Lipschitz continuous operator

in Definition 2.1, here we are allowing L = 0. Constant functions are 0-Lipschitz contin-

uous.

A function f : Rn → R is strictly differentiable at a point x̄ ∈ Rn if f(x̄) is finite and

there exists a vector v ∈ Rn such that

lim
x,x′→x̄

f(x′) − f(x) − ⟨v, x′ − x⟩
∥x′ − x∥ = 0, with x′ ̸= x.

In this case, v coincides with the gradient of f at x̄, denoted as ∇f(x̄). In the following, we

also use the same symbol to denote the transpose of the Jacobian matrix of a multivariable

function F = (F1, . . . , Fm) : Rn → Rm, namely, the matrix of gradients given by ∇F (x) =

(∇F1(x), . . . ,∇Fm(x)). We say that a function is of class C1 if it is differentiable with

continuous gradient. Furthermore, if its gradient is L-Lipschitz continuous we say f is

L-smooth .

The upper Dini directional derivative of f at some point x̄ ∈ dom f in the direction

d ∈ Rn is defined as

d+f(x̄; d) := lim sup
t↓0

f(x̄+ td) − f(x̄)

t
.

Finally, given a set-valued mapping F : Rn ⇒ Rm, the Painlevé–Kuratowski upper limit

of F at x̄ is defined as

Lim sup
x→x̄

F (x) :=
{
y ∈ Rm

∣∣ ∃xk → x̄, yk → y with yk ∈ F (xk), ∀k ∈ N
}
.

8.1.1.1 Generalized subdifferentials

We devote this section to briefly motivate the use of generalized subdifferentials, which

are essential for deriving optimality conditions for the minimization of (nonsmooth) non-

convex functions.
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Definition 8.1 (Generalized subdifferentials). Let f : Rn → R and x̄ ∈ dom f .

(i) The regular (or Fréchet) subdifferential of f at x̄ ∈ Rn is the closed and convex

set of regular subgradients

∂̂f(x̄) := {v ∈ Rn : f(x) ≥ f(x̄) + ⟨v, x− x̄⟩ + o(∥x− x̄∥)} .

(ii) We say that v ∈ Rn is a ( basic, or limiting, or Mordukhovich) subgradient of f at

x̄ if there exist sequences (xk)k∈N and (vk)k∈N, with vk ∈ ∂̂f(xk) for all k ∈ N, such

that xk → x̄, f(xk) → f(x̄) and vk → v, as k → ∞.

(iii) The ( basic, or limiting, or Mordukhovich) subdifferential of f is the set of all

(basic) subgradients of f at x̄, denoted by ∂f(x̄).

We use the convention ∂̂f(x̄) = ∂f(x̄) := ∅ if |f(x̄)| = +∞. We say that f is lower

regular at x̄ ∈ dom f if ∂f(x̄) = ∂̂f(x̄).

Note that we are allowing ourselves to an abuse of notation in the nomenclature of the

basic subdifferential, as ∂f was also employed for the convex subdifferential (2.4). The

reason behind this will be clear soon.

The calculus rules for the regular and basic subdifferentials are limited. Therefore, it

is often useful to consider the following convexification of the basic subdifferential. Let

f : Rn → R be a locally Lipschitz continuous function around a point x̄ ∈ dom f , Clarke’s

generalized gradient or Clarke’s subdifferential of f at x̄ is defined as

∂Cf(x̄) := co ∂f(x̄).

Rademacher’s theorem [218, Theorem 9.60] states that f is almost everywhere differen-

tiable in some neighborhood of x̄, which yields the equivalent representation

∂Cf(x̄) = co

{
lim
xk→x̄

∇f(xk)

}
. (8.1)

Let f : R → R be locally Lipschitz continuous and x̄ ∈ dom f . We have the following

relationships between the regular, the basic and Clarke’s subdifferentials:

∂̂f(x̄) ⊆ ∂f(x̄) ⊆ ∂Cf(x̄). (8.2)
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If in addition f is convex, the above inclusions become equalities and all three subdiffer-

entials coincide with the convex subdifferential in (2.4). If f is strictly differentiable at x̄,

then all its subdifferentials are singletons and coincide with its gradient.

Proposition 8.2 (Generalized Fermat’s rule, [183, Proposition 1.30]). Consider

f : Rn → R and let x̄ ∈ dom f . If x̄ is a local minimizer of f , then

0 ∈ ∂̂f(x̄) and 0 ∈ ∂f(x̄).

Obviously, if f is convex the above inclusions become a necessary and sufficient con-

dition for global optimality.

Remark 8.3. In view of (8.2), the subdifferential inclusion

0 ∈ ∂Cf(x̄),

also constitutes a necessary condition for x̄ to be a local minimizer of the locally Lipschitz

continuous function f . Nevertheless, it is well recognized that Clarke’s generalized gradient

is less suited for optimization purposes. For a simple motivating example, let f : R → R
be the opposite of the absolute value, i.e., f(·) = −| · |. Then Clarke’s generalized gradient

of f at the local maximum given by x̄ = 0 takes the form

∂f (0) = [−1, 1],

and hence satisfies the necessary optimality condition. In turn, we have

0 /∈ ∂̂f(0) = ∅ and 0 /∈ ∂f(0) = {−1, 1},

which do not verify the generalized Fermat rule.

Proposition 8.4 (Sum rules for regular subgradients). Let f, g : Rn → R be such

that x̄ ∈ dom f ∩ dom g.

(i) If f is of class C1 around x̄, then

∂(f + g)(x̄) = ∇f(x̄) + ∂g(x̄).

(ii) If f is locally Lipschitz continuous around x̄ and g is l.s.c. at this point, then

∂(f + g)(x̄) ⊆ ∂f(x̄) + ∂g(x̄). (8.3)
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If in addition, both f and g are lower regular, (8.3) holds as an equality.

Proof. (i) [183, Proposition 1.30]. (ii) [183, Corollary 2.20].

8.1.1.2 Prox-bounded functions

We now extend the definition of proximity operator applied to functions which are not

necessarily convex.

We define the proximal point mapping of a proper l.s.c. function f : Rn → R as

the multifunction proxγf : Rn ⇒ Rn which maps a point x to the solution set of the

optimization problem

proxγf (x) := argmin
u∈Rn

{
f(u) +

1

2γ
∥u− x∥2

}
. (8.4)

A function f : Rn → R is said to be prox-bounded if there exists some γ > 0 such that

f(·) + 1
2γ
∥ · −x∥2 is bounded from below for all x ∈ Rn. The supremum of the set of all

such constants γ is called the prox-boundedness threshold of f and is denoted by γf .

Proposition 8.5 ([218, Theorem 1.25]). Let f : Rn → R be proper, l.s.c. and prox-

bounded with threshold γf . The following assertions hold.

(i) The proximal mapping proxγf has full domain for any γ ∈ ]0, γf [.

(ii) Let (xk)k∈N, (υk)k∈N ⊆ Rn and (γk)k∈N ⊆]0, γf [ be such that xk → x̄, γk → γ̄ ∈ ]0, γf [

and

υk ∈ proxγkf
(xk), for all k ∈ N.

Then (υk)k∈N is bounded and all its cluster points lie in proxγ̄f (x̄).

All proper l.s.c. convex functions are prox-bounded, and in this case (8.4) is single-

valued. Nonetheless, the class is much larger. Any proper l.s.c. function f : Rn → R
that is bounded from below by an affine function has a threshold of prox-boundedness

γf = +∞ (see [218, Example 3.28]). For example, the indicator function ιC of a nonempty

and closed set C ⊆ Rn is prox-bounded with threshold γιC = +∞.

The following examples provide formulas for the proximity operators of some noncon-

vex functions that will be needed in the sequel.
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Example 8.6. For all i = 1, . . . , p, let Ci ⊆ Rn be a nonempty closed convex set and

define the union C :=
⋃p

i=1Ci. Since C is closed, the indicator ιC is prox-bounded with

proximity operator given by the set-valued projection operator

proxγιC
(x) = PC(x) :=

{
PCi

(x) : d(x,C) = ∥x− PCi
(x)∥, i = 1, . . . , p

}
,

for all γ > 0 and x ∈ Rn, and where d(·, C) stands for the distance function to C and

PCi
is the single-valued projection on the closed convex set Ci. See Figure 8.1 for an

illustration.

A
B

x

PA(x)

PB(x)

Figure 8.1: Set-valued projection onto the union of convex sets C := A∪B. The projection of
x is multi-valued, given by PC(x) =

{
PA(x), PB(x)

}
.

Example 8.7. The opposite of the ℓ1-norm is prox-bounded with threshold +∞. More-

over, its proximity operator, for any γ > 0, at a point x ∈ Rn is given component-wise,

for i ∈ {1, . . . , n}, by

proxγ(−∥·∥1)(x)i =

{
{γ,−γ}, if xi = 0,

xi + sign (xi) γ, otherwise.

8.1.2 The family of upper-C2 functions

The class of functions with a Lipschitz continuous gradient is very important in optimiza-

tion. Its relevance relies on the fact that these functions verify the so-called descent lemma

(see, e.g., [149, Lemma A.11]). Namely, given a differentiable function f : Rn → R with
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Lf -Lipschitz continuous gradient, then the following inequality holds

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
Lf

2
∥y − x∥2, for all x, y ∈ Rn. (8.5)

Different authors have identified a larger family of functions that also satisfies an

inequality similar to (8.5), preserving thus the same nice properties for optimization (see,

e.g., [105, Theorem 5.1] and [218, Definition 10.29]). We extend our analysis to this broader

class of functions, which we present next.

Definition 8.8. Let V ⊆ Rn be an open, convex and bounded set and let f : Rn → R be

Lipschitz continuous on V . We say that f is κ-upper-C2 on V for some κ ≥ 0 if there exist

a compact set S (in some topological space) and some continuous functions b : S → Rn

and c : S → R such that

f(x) = min
s∈S

{
κ∥x∥2 − ⟨b(s), x⟩ − c(s)

}
, for all x ∈ V. (8.6)

From (8.6) it directly follows that κ-upper-C2 functions are DC (difference of convex)

functions with the specific DC decomposition

f(x) = κ∥x∥2 − max
s∈S

{⟨b(s), x⟩ + c(s)} , (8.7)

since x 7→ maxs∈S {⟨b(s), x⟩ + c(s)} is a convex continuous function.

The following result, based on [105, Theorem 5.1], establishes the relationship between

upper-C2 functions and the descent lemma. This permits to relax the Lipschitz continuous

gradient assumption on f in [38] to nonsmooth functions while preserving the useful

inequality.

Proposition 8.9. Let U be an open and convex set such that f : Rn → R is locally

Lipschitz on U . Then the following assertions are equivalent for a parameter κ ≥ 0:

(i) f is κ-upper-C2 on every open bounded subset of U ;

(ii) for all x ∈ U and ξ ∈ co ∂f(x), it holds

f(y) ≤ f(x) + ⟨ξ, y − x⟩ + κ∥y − x∥2, for all y ∈ U ; (8.8)

(iii) for each x ∈ U , there exits ξ ∈ Rn such that (8.8) holds.
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Proof. The case κ = 0 can be straightforwardly established. Therefore, for the remainder

of the proof, we assume κ > 0.

(i)⇒(ii) Let x, y ∈ U and ξ ∈ co ∂f(x). Let V be an open, convex and bounded subset

of U that contains both x and y. By [105, Theorem 5.1 (a)⇒(c) & Theorem 5.2] applied

to −f and V , it holds

f(w) ≤ f(x) + ⟨−ζ, w − x⟩ + κ∥w − x∥2, ∀w ∈ V, (8.9)

for all ζ ∈ ∂(−f)(x) = ∂̂(−f)(x). By convexity of the regular subdifferential and (8.1),

∂(−f)(x) = co ∂(−f)(x) = − co ∂f(x). (8.10)

Since −ξ ∈ − co ∂f(x) = ∂(−f)(x), we can conclude that (8.9) holds for ζ := −ξ and

w := y ∈ V , which implies (8.8).

(ii)⇒(iii) This is straightforward: ∂f(x) ̸= ∅ since f is locally Lipschitz around x (see,

e.g., [183, Theorem 1.22]).

(iii)⇒(i) If V is an open, convex and bounded subset of U , then (8.8) holds on V ,

so [105, Theorem 5.1 (b)⇒(a)] implies that f is κ-upper-C2 on V. This completes the

proof.

We conclude this section by providing some examples of upper-C2 functions, which

are motivated by our subsequent numerical applications. The first such example was

considered in [138, Lemma 5.2]. A local variation of this result can be found in [28,

Lemma 3.6].

Example 8.10 (Difference of an L-smooth function and a convex function).

First, notice that by (8.7) any κ-upper-C2 function can be expressed as a difference of

a smooth convex function and a continuous convex function. Now, let f1 : Rn → R be a

differentiable function whose gradient is Lf1-Lipschitz continuous and let f2 : Rn → R be a

l.s.c. convex function. Then the function f := f1− f2 is Lf1/2-upper-C2 on every bounded

set of Rn. Indeed, observe first that (8.5) holds for f1. Moreover, for any v ∈ ∂f2(x), by

definition of the convex subdifferential, we have

−f2(y) ≤ −f2(x) + ⟨−v, y − x⟩, for all y ∈ Rn.
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Adding together (8.5) for f1 and the above inequality, we get that

f(y) ≤ f(x) + ⟨∇f1(x) − v, y − x⟩ +
Lf1

2
∥y − x∥2.

Hence, the assertion follows by Proposition 8.9.

Example 8.11 (Clustering problems). An interesting problem where the collection of

κ-upper-C2 functions naturally appears is the minimum sum-of-squares clustering problem.

The task is to minimize an objective function of the form

f(X) :=
1

q

q∑

i=1

ωi(X), with ωi(X) := min
{
∥xj − ai∥2 : j = 1, . . . , ℓ

}
,

where X := (x1, . . . , xℓ) ∈ Rs×ℓ, and {a1, . . . , aq} represents a set of data points. It is

important to emphasize that the function f is nonsmooth. Therefore, the classical descent

lemma cannot be applied. Nevertheless, f is 1-upper-C2 since each of the functions ωi is

1-upper-C2 (simply by definition). According to Proposition 8.9, the function f satisfies

the subgradient descent inequality (8.8).

Example 8.12 (Squared distance to a nonconvex set). Consider a nonempty closed

set C ⊆ Rs and a matrix Q ∈ Rs×n. Then the mapping x→ 1
2
d2(Qx,C) is upper-C2 on Rn.

Indeed, let us notice that

1

2
d2(Qx,C) =

1

2
∥Qx∥2 − AC(Qx), (8.11)

where AC is the Asplund function associated to the set C given by

AC(w) := sup
y∈C

{
⟨y, w⟩ − 1

2
∥y∥2

}
=

(
ιC +

1

2
∥ · ∥2

)∗

(w).

By representation (8.11) and Example 8.10, we have that x 7→ 1
2
d2(Qx,C) is ∥Q∥2

2
-upper-C2

on Rn.

Remark 8.13. In view of (8.7), it is always possible to decompose a κ-upper-C2 function

f as f = f1 − f2, with f1 smooth and convex and f2 continuous and convex. However,

considering this DC decomposition may not be desirable in practice as it could enlarge

the set of critical points of the problem (see equation (8.18)). This is essentially due to

the fact that the basic subdifferential is not homogeneous with respect to the minus sign,

which causes the equality

∂f(x) = ∂f1(x) − ∂f2(x) (8.12)
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to not necessarily hold at every point x. For instance, let Q = Id in Example 8.12 (for

simplicity of the explanation), and consider the DC decomposition of f(x) = 1
2
d(x,C)2

given in (8.11). By [28, Theorem 5.3 & Proposition 2.7] one has that

∂f(x) = x− PC(x) while ∂AC(x) = coPC(x),

where PC stands for the (set-valued) projection operator onto C. Therefore, if the set C

is nonconvex, the right hand side of (8.12) might be a larger set, resulting in the strict

inclusion ∂f(x) ⊊ ∂f1(x) − ∂f2(x).

8.2 The Boosted Double-proximal Subgradient Algorithm

In this section, we design an algorithm for solving the nonconvex optimization prob-

lem (P). The algorithm utilizes subgradients of f , the gradients of Ψi, and proximal steps

of g and h∗i , for i ∈ J1, pK. Additionally, it incorporates a linesearch step, leading us to

name it the Boosted Double-proximal Subgradient Algorithm (in short BDSA).

Le us define the function φ : Rn → R as follows:

φ(x) := f(x) + g(x) −
p∑

i=1

hi(Ψi(x)). (8.13)

The following assumptions are made throughout the rest of this chapter.

Assumption 8.14. Let U ⊆ Rn be an open convex set such that dom g ⊆ U . Suppose that

infx∈Rn φ(x) > −∞ and that the functions in (P) satisfy:

(i) f : Rn → R is locally Lipschitz on U and κ-upper-C2 on every open bounded subset

of U ;

(ii) g : Rn → R is proper, l.s.c. and prox-bounded for some γg > 0;

(iii) hi : Rmi → R are convex and continuous functions for all i ∈ J1, pK;

(iv) Ψi : Rn → Rmi are differentiable functions with Li-Lipschitz continuous gradients

on U for all i ∈ J1, pK.

Remark 8.15. Despite the fact that the class of upper-C2 functions is large, as demon-

strated by the examples presented in Section 8.1.2, it is worth noting that, in general,

one cannot subsume the function −∑p
i=1 hi(Ψi(x)) into the function f in (8.13), since
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−hi(Ψi(x)) may not belong to the upper-C2 family (e.g., if hi(y) = y2 and Ψi(x) = x2,

then −hi(Ψi(x)) = −x4 does not satisfy (8.8) on U = R for any fixed κ ≥ 0).

Instead of directly addressing problem (P), which consists in the minimization of the

function φ in (8.13), we consider the primal-dual formulation

min
(x,y)∈Rn×Rm

Φ(x,y), (PD)

where Φ : Rn × Rm → R is given by

Φ(x,y) := f(x) + g(x) +

p∑

i=1

(h∗i (yi) − ⟨Ψi(x), yi⟩) , (8.14)

with y = (y1, . . . , yp) ∈ Rm1 ×· · ·×Rmp = Rm. It is easy to check that the optimal values

of both problems coincide, that is,

inf
x∈Rn

φ(x) = inf
(x,y)∈Rn×Rm

Φ(x,y). (8.15)

Indeed, by the Fenchel–Moreau theorem,

inf
x∈Rn

φ(x) = inf
x∈Rn

{
f(x) + g(x) −

p∑

i=1

hi(Ψi(x))

}

= inf
x∈Rn

{
f(x) + g(x) −

p∑

i=1

sup
yi∈Rmi

{⟨Ψi(x), yi⟩ − h∗i (yi)}
}

= inf
x∈Rn

inf
y∈Rm

{
f(x) + g(x) +

p∑

i=1

(h∗i (yi) − ⟨Ψi(x), yi⟩)
}

= inf
(x,y)∈Rn×Rm

Φ(x,y).

By the generalized Fermat rule, a necessary condition for a point (x̄, ȳ) ∈ Rn ×Rm to

be a local minimum of Φ is that 0 ∈ ∂Φ(x̄, ȳ). Observe that we can express Φ = Φ1 + Φ2,

with Φ1(x,y) := f(x) + g(x) +
∑p

i=1 h
∗
i (yi) and Φ2(x,y) :=

∑p
i=1⟨Ψi(x), yi⟩. Since Φ2

is C1, by the sum rule in Proposition 8.4 (i),

∂Φ(x,y) = ∂Φ1(x,y) −∇Φ2(x,y)

= ∂(f + g)(x) ×
(

p×
i=1

∂h∗i (yi)

)
−
(

p∑

i=1

∇Ψi(x)yi,Ψ1(x), . . . ,Ψp(x)

)
,

(8.16)
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where the second equality holds because Φ1 has separate variables. Therefore, the neces-

sary condition 0 ∈ ∂Φ(x̄, ȳ) is equivalent to





p∑

i=1

∇Ψi(x̄)ȳi ∈ ∂(f + g)(x̄),

Ψi(x̄) ∈ ∂h∗i (ȳi), ∀i ∈ J1, pK.

(8.17)

By Proposition 8.4 (ii), we have ∂(f + g)(x̄) ⊆ ∂f(x̄) + ∂g(x̄). Thus, the inclusions (8.17)

imply 



p∑

i=1

∇Ψi(x̄)ȳi ∈ ∂f(x̄) + ∂g(x̄),

ȳi ∈ ∂hi
(
Ψi(x̄)

)
, ∀i ∈ J1, pK.

(8.18)

We refer to a point (x̄, ȳ) ∈ Rn × Rm that satisfies (8.18) as a critical point of (PD).

On the other hand, given a point x̄ ∈ domφ, it is well-known (see, e.g., [6, 119, 120])

that the subdifferential inclusion

∂

(
p∑

i=1

hi ◦ Ψi

)
(x̄) ⊂ ∂(f + g)(x̄). (8.19)

constitutes a necessary condition for local optimality of problem (P). A point verify-

ing (8.19) is called a stationary point of (P). In general, finding stationary points is highly

challenging, so it is useful to consider relaxed notions. We say that a point x̄ ∈ domφ is a

critical point of (P) if there exists ȳ ∈ Rm such that (8.18) holds. By [218, Theorem 10.6]

and [183, Corollary 2.21], it easily follows that every stationary point of (P) is a critical

point, but the converse is not true in general.

Therefore, if (x̄, ȳ) ∈ Rn × Rm is a critical point of (PD), then x̄ is a critical point

of (P). Conversely, if x̄ ∈ Rn is a critical point of (P), then there exists ȳ ∈ Rm such that

(x̄, ȳ) is a critical point of (PD). The next result establishes further connections between

critical points and solutions of the two minimization problems (P) and (PD) presented

above.

Proposition 8.16. Let (x̄, ȳ) ∈ Rn × Rm. Then the following claims hold.

(i) If (x̄, ȳ) is a critical point of (PD), then Φ(x̄, ȳ) = φ(x̄).

(ii) If (x̄, ȳ) is a solution of (PD), then x̄ is a solution of (P).
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(iii) If x̄ is a solution of (P), then there exists ȳ ∈ Rm such that (x̄, ȳ) is a solution

of (PD).

Proof. (i) Let (x̄, ȳ) = (x̄, ȳ1, . . . , ȳp) be a critical point of (PD). This implies that

ȳi ∈ ∂hi(Ψi(x̄)) for all i ∈ J1, pK, so for these points the Fenchel–Young inequality in

Proposition 2.29 becomes an equality, and we obtain the following expressions

hi(Ψi(x̄)) + h∗i (ȳi) = ⟨Ψi(x̄), ȳi⟩, ∀i ∈ J1, pK. (8.20)

This yields the equality

φ(x̄) = f(x̄) + g(x̄) −
p∑

i=1

hi(Ψi(x̄))

= f(x̄) + g(x̄) +

p∑

i=1

(h∗i (ȳi) − ⟨Ψi(x̄), ȳi⟩) = Φ(x̄, ȳ1, . . . , ȳp).

(ii) If (x̄, ȳ) is a solution of (PD), as argued above, it must be a critical point. Then,

by (i), we have that Φ(x̄, ȳ) = φ(x̄). Since the optimal values of problems (P) and (PD)

coincide (recall (8.15)), the above expression implies that x̄ is a solution to (P).

(iii) Finally, let us suppose that x̄ is a solution of (P). Then x̄ is necessarily a critical

point of (P), and thus there exists ȳi ∈ ∂hi(Ψi(x̄)) such that (8.20) holds. Once more,

this implies that φ(x̄) = Φ(x̄, ȳ), where ȳ := (ȳ1, . . . , ȳp). Therefore, using again the fact

that optimal values of problems (P) and (PD) coincide, we get that (x̄, ȳ) is a solution

of problem (PD).

Now, we present in Algorithm 8.17 the pseudo-code of the Boosted Double-proximal

Subgradient Algorithm. Steps 2 and 3 are motivated by the Double-proximal Gradient Al-

gorithm proposed by Banert and Boţ [38], which can be derived as an application of Bolte–

Sabach–Teboulle’s Proximal Alternating Linearized Minimization [66] to the primal-dual

formulation (PD) when f is L-smooth, g is convex and the Ψi’s are linear. In addition,

Steps 4-8 in BDSA allow an optional linesearch procedure that permits to enhance the

performance of the method.
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Algorithm 8.17 Boosted Double-proximal Subgradient Algorithm for problem (P).

Require: (x0,y0) = (x0, y01, . . . , y
0
p) ∈ Rn × Rm, R ≥ 0, ρ ∈ ]0, 1[ and α ≥ 0. Set k := 0.

1: Choose vk ∈ ∂f(xk).

2: Take some positive γk < min
{
γg,
(
2κ+

∑p
i=1 Li

∥∥yki
∥∥)−1

}
and compute

x̂k ∈ proxγkg

(
xk + γk

p∑

i=1

∇Ψi(x
k)yki − γkv

k

)
. (8.21)

3: For each i ∈ J1, pK, take µk
i > 0 and compute

ŷki = proxµk
i h

∗
i

(
yki + µk

i Ψi(x̂
k)
)
. (8.22)

4: Choose any λk ≥ 0. Set λk := λk, r := 0 and (dk, ek) := (x̂k, ŷk) − (xk,yk).
5: if (dk, ek) = 0 then STOP and return xk.
6: while r < R and

Φ
(
(x̂k, ŷk) + λk(dk, ek)

)
> Φ(x̂k, ŷk) − αλ2k∥(dk, ek)∥2 (8.23)

do r := r + 1 and λk := ρrλk.
7: if r = R then λk := 0.
8: Set (xk+1,yk+1) := (x̂k, ŷk) + λk(dk, ek), k := k + 1 and go to Step 1.

Remark 8.18. From the definition of the proximity operator, (8.21) and (8.22) imply

that the sequences generated by Algorithm 8.17 verify

xk − x̂k

γk
+

p∑

i=1

∇Ψi(x
k)yki − vk ∈ ∂g(x̂k),

yki − ŷki
µk
i

+ Ψi(x̂
k) ∈ ∂h∗i (ŷ

k
i ), ∀i ∈ J1, pK.

(8.24)

In particular, if (dk, ek) = 0, the above inclusions become (8.18) for (x̄, ȳ) := (xk,yk) and

hence x̄ is a critical point of problem (P).

Remark 8.19. It is possible to replace vk ∈ ∂f(xk) by vk ∈ co ∂f(xk) in Algorithm 8.17.

This is justified by Proposition 8.9, which shows that such subgradients satisfy the descent

inequality (8.8). This straightforward modification in Step 1 of Algorithm 8.17 can be

advantageous in numerical applications, particularly when the calculus rules for the basic

subdifferential only provide an upper estimate rather than an equality. For example, if

the objective function φ(x) contains a term of the form −υ(x) and υ : Rn → R is convex,

it is natural to set f := −υ, which is upper-C2 by Example 8.10. Algorithm 8.17 requires
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choosing vk ∈ ∂f(xk) = ∂(−υ)(xk) ⊂ −∂υ(xk) (see [218, Corollary 9.21]), while the

modification vk ∈ co ∂f(xk) = −∂υ(xk) (see (8.10)) allows choosing vk from the possibly

larger set −∂υ(xk).

On the other hand, according to (8.24), allowing vk ∈ co ∂f(xk) = ∂Cf(xk) in Step 1

entails the notion of criticality





p∑

i=1

∇Ψi(x̄)ȳi ∈ ∂Cf(x̄) + ∂g(x̄),

ȳi ∈ ∂hi
(
Ψi(x̄)

)
, ∀i ∈ J1, pK,

when (dk, ek) = 0 and (x̄, ȳ) := (xk,yk), which in view of Remark 8.3 is weaker than

the one in (8.18). Thus, the price to pay for having more freedom in the choice of vk is

the possibility of having a larger set of non-optimal critical points to which the algorithm

might converge. Nonetheless, a more subtle analysis can be performed to derive stronger

notions of criticality, see Remark 8.26 and Section 8.3.2 for a numerical example.

Remark 8.20 (Particular cases of Algorithm 8.17). Different known algorithms can be

obtained as particular cases of Algorithm 8.17.

(i) Consider the problem of minimizing φ(x) := g1(x) − g2(x), with g1 and g2 being

convex. If we let f := −g2, g := g1 and Ψi := 0 =: hi for all i ∈ J1, pK, then

Step 1 of Algorithm 8.17 becomes vk ∈ ∂(−g2)(xk). Since ∂(−g2)(xk) ⊆ −∂g2(xk),

when R = 0 one recovers a specific choice for the Proximal DC Algorithm of [229]

in which vk is chosen from a smaller set of subgradients. If xk+1 = xk =: x̄, one

gets −vk ∈ ∂g1(x̄) ∩ (−∂(−g2)(x̄)). Observe that the more restrictive condition

∂g1(x̄) ∩ (−∂(−g2)(x̄)) ̸= ∅ can serve to discard some points which are not local

minima (e.g., if g1(x) = x2 and g2(x) = |x|, then x̄ := 0 is a local maximum

which satisfies 0 ∈ ∇g1(x̄) ∩ ∂g2(x̄), but 0 ̸∈ ∇g1(x̄) ∩ (−∂(−g2)(x̄)). When taken

R = ∞, one obtains the Boosted Proximal DC Algorithm introduced in [4], which is

a modification of the Boosted Difference of Convex functions Algorithm from [24, 27]

that adds a proximal term.

(ii) Likewise, if φ(x) := f1(x) − f2(x) + g(x) with g being proper and l.s.c. with

infx∈Rn g(x) > −∞, f2 being convex and f1 being L-smooth, letting f := f1 − f2

and the rest of the functions as in the previous case with R = 0, we obtain a specific

choice for the Generalized Proximal Point Algorithm presented in [7].
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(iii) The Double-Proximal Gradient Algorithm proposed in [38] is also recovered by Al-

gorithm 8.17 in the case in which f is convex and L-smooth, g is convex, R = 0

and Ψi is a linear operator, for all i ∈ J1, pK. Also note that p is set to 1 in [38],

but this is sufficient to address the case p > 1 by considering the choice of functions

Ψ : Rn → Rm : x 7→ (Ψ1(x), . . . ,Ψp(x)) and h : Rm → R : y 7→ ∑p
i=1 hi(yi). The

larger upper bound on γk in the Double-Proximal Gradient Algorithm can also be

obtained for BDSA when g is assumed to be convex (see Remark 8.23 below).

For the reader’s convenience, we collect in Table 8.1 the main characteristics of the above-

mentioned algorithms.

f g hi Ψi γk bound

Proximal DC [229] −f l.s.c. convex l.s.c. convex 0 0 +∞

Generalized Proximal-Point [7]
f1-f2

f1 L-smooth
f2 convex

l.s.c.
inf
x∈Rn

g(x) > −∞ 0 0 1
L

Double-Proximal Gradient [38]
convex
L-smooth

l.s.c. convex
convex

continuous
linear 2

L

Table 8.1: Summary of particular cases of Algorithm 8.17.

Steps 6-7 of Algorithm 8.17 correspond to an optional linesearch step in the direction

(dk, ek) with a fixed number R of attempts. On the one hand, note that the computational

burden of these steps can be avoided if the user either chooses R = 0 or λk = 0, in which

case we refer to the resulting algorithm as Double-proximal Subgradient Algorithm (abbr.

DSA). On the other hand, if R > 0 and λk > 0, Step 6 allows to achieve a further decrease

of the primal-dual objective function Φ. Step 7 sets λk = 0 when the linesearch was not

successful.

For general problems satisfying Assumption 8.14 there is no guarantee that the vector

(dk, ek) defined in Step 4 of BDSA provides a descent direction for the function Φ. The

motivation for the linesearch step comes from the case in which the functions g and h∗i

are differentiable at the points x̂k and ŷki , respectively. In this case, (dk, ek) is a descent

direction for Φ at (x̂k, ŷk), since the upper Dini directional derivative of Φ at (x̂k, ŷk) in

the direction (dk, ek) is negative. This fact is proved in the next result.

Proposition 8.21. Suppose that Assumption 8.14 holds and consider the sequences gen-

erated by Algorithm 8.17 for problem (P). Assume also that

(i) g is differentiable at x̂k;
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(ii) h∗i is differentiable at ŷi
k for all i ∈ J1, pK;

(iii) γk ∈
]
0,
(
2κ+ p

2
+
∑p

i=1 Li∥yki ∥
)−1
[

and µk
i ∈

]
0, 2 ∥∇Ψi(x̂

k)∥−2
[

for all i ∈ J1, pK.

Then, for all k ≥ 0,

d+Φ
(
(x̂k, ŷk); (dk, ek)

)
≤

(
2κ+

p

2
+

p∑

i=1

Li∥yki ∥ −
1

γk

)
∥dk∥2 +

p∑

i=1

(
1

2
∥∇Ψi(x̂

k)∥2 − 1

µk
i

)
∥eki ∥2.

(8.25)

Consequently, if (dk, ek) ̸= 0, then for every α > 0 there is some δk > 0 such that

Φ
(
(x̂k, ŷk) + λ(dk, ek)

)
≤ Φ(x̂k, ŷk) − αλ2∥(dk, ek)∥2, for all λ ∈ [0, δk]. (8.26)

Proof. Indeed, for any v̂k ∈ ∂f(x̂k), we get

d+Φ
(
(x̂k, ŷk); (dk, ek)

)
≤ lim sup

t↓0

f(x̂k + tdk)− f(x̂k)

t
+ lim sup

t↓0

g(x̂k + tdk)− g(x̂k)

t

+

p∑

i=1

lim sup
t↓0

h∗i (ŷ
k
i + teki )− h∗i (ŷ

k
i )

t

−
p∑

i=1

lim inf
t↓0

⟨Ψi(x̂
k + tdk)−Ψi(x̂

k), ŷki ⟩+ t⟨Ψi(x̂
k + tdk), eki ⟩

t

≤ ⟨v̂k, dk⟩+ ⟨∇g(x̂k), dk⟩+
p∑

i=1

⟨∇h∗i (ŷki ), eki ⟩

−
p∑

i=1

(
⟨∇Ψi(x̂

k)ŷki , d
k⟩+ ⟨Ψi(x̂

k), eki ⟩
)
,

(8.27)

where the second inequality is due to Proposition 8.9. Now, since g and h∗i are assumed

to be differentiable at x̂k and ŷki , respectively, (8.24) yields

xk − x̂k

γk
+

p∑

i=1

∇Ψi(x
k)yki − vk = ∇g(x̂k),

yki − ŷki
µk
i

+ Ψi(x̂
k) = ∇h∗i (ŷki ), ∀i ∈ J1, . . . , pK.

(8.28)

On the other hand, again making use of Proposition 8.9, we get the following inequality

by setting y := x̂k, x := xk and ξ := vk in equation (8.8)

f(x̂k) − f(xk) − ⟨vk, x̂k − xk⟩ ≤ κ∥x̂k − xk∥2.
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Likewise, setting y := xk, x := x̂k and ξ := v̂k in (8.8) yields

f(xk) − f(x̂k) + ⟨v̂k, x̂k − xk⟩ ≤ κ∥x̂k − xk∥2.

Summing together these two equations, we get

⟨v̂k − vk, x̂k − xk⟩ ≤ 2κ∥x̂k − xk∥2, ∀vk ∈ ∂f(xk). (8.29)

Substituting (8.28) and (8.29) in (8.27), it becomes

d+Φ
(
(x̂k, ŷk); (dk, ek)

)
≤ ⟨v̂k − vk, dk⟩ − 1

γk
⟨x̂k − xk, dk⟩ +

p∑

i=1

⟨∇Ψi(x
k)yki , d

k⟩

−
p∑

i=1

1

µk
i

⟨ŷki − yki , e
k
i ⟩ +

p∑

i=1

⟨Ψi(x̂
k), eki ⟩

−
p∑

i=1

(
⟨∇Ψi(x̂

k)ŷki , d
k⟩ + ⟨Ψi(x̂

k), eki ⟩
)

≤
(

2κ− 1

γk

)
∥dk∥2 −

p∑

i=1

1

µk
i

∥eki ∥2

−
p∑

i=1

⟨∇Ψi(x̂
k)ŷki −∇Ψi(x

k)yki , d
k⟩.

(8.30)

Finally, using the Cauchy–Schwartz inequality and Young’s inequality, the terms in the

last summation can be upper bounded as

−⟨∇Ψi(x̂
k)ŷki −∇Ψi(x

k)yki , d
k⟩ = −⟨∇Ψi(x̂

k)eki , d
k⟩ + ⟨(∇Ψi(x

k) −∇Ψi(x̂
k))yki , d

k⟩
≤ ∥∇Ψi(x̂

k)∥∥eki ∥∥dk∥ + Li∥yki ∥∥dk∥2

≤ 1

2

(
∥∇Ψi(x̂

k)∥2∥eki ∥2 + ∥dk∥2
)

+ Li∥yki ∥∥dk∥2

=
1

2
∥∇Ψi(x̂

k)∥2∥eki ∥2 +

(
1

2
+ Li∥yki ∥

)
∥dk∥2,

for all i ∈ J1, pK. Putting this into (8.30), we deduce (8.25).

Thanks to assumption (iii), we have

K := min
i=1,...,p

{
1

γk
− 2κ+

p

2
−

p∑

j=1

Lj∥ykj ∥,
1

µk
i

− 1

2
∥∇Ψi(x̂

k)∥2
}
> 0.
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Thus, if (dk, ek) ̸= 0, one has

d+Φ
(
(x̂k, ŷk); (dk, ek)

)
≤ −K∥(dk, ek)∥2 < −K

2
∥(dk, ek)∥2,

so there exist τk > 0 such that

Φ
(
(x̂k, ŷk) + λ(dk, ek)

)
≤ Φ(x̂k, ŷk) − λ

K

2
∥(dk, ek)∥2, for all λ ∈ [0, τk].

Then, given any α > 0, letting δk := min{K/(2α), τk} > 0, we have that −K/2 ≤ −λα
for all λ ∈ [0, δk], so we obtain (8.26).

The differentiability of h∗i is guaranteed when hi is strictly convex. Actually, for proper

l.s.c. convex functions, essential strict convexity is equivalent to essential smoothness of

the conjugate function, cf. [215, Theorem 26.3].

Before moving to the convergence analysis in the next subsection, let us explain the

rationale behind Algorithm 8.17 in the simplest case in which hi = Ψi = 0. Thanks to the

κ-upper-C2 assumption on f , since vk ∈ ∂f(xk) (Step 1), it holds

f(z) ≤ f(xk) + ⟨vk, z − xk⟩ + κ∥z − xk∥2, ∀z ∈ Rn.

Thus, if γk ∈
]
0, 1

2κ

[
(as in Step 2), one gets

φ(z) = f(z) + g(z)

≤ g(z) + f(xk) + ⟨vk, z − xk⟩ +
1

2γk
∥z − xk∥2 =: φ̃k(z).

for all z ∈ Rn. Therefore, the function φ̃k provides an upper bound to φ, so it makes sense

to take

x̂k ∈ argmin
z∈Rn

φ̃k(z) = proxγkg

(
xk − γkv

k
)
,

which coincides with (8.21). Finally, when g is differentiable at x̂k, the linesearch condi-

tion (8.23) in Step 6 permits to further reduce the original function φ.

For illustration, consider the function φ(x) := x1 + x2 − ∥x∥1 + ∥x∥2, for x ∈ R2,

from [27, Example 2.4]. If we let f(x) := x1 + x2 − ∥x∥1 and g(x) := ∥x∥2, then f is

κ-upper-C2 for κ = 0, by Example 8.10. If we take x0 := (0, 1)T and γ0 := 1, we have

v0 := (2, 0)T ∈ ∂f(x0) =
{

(2, 0)T , (0, 0)T
}

and x̂0 = proxγ0g(x
0−γ0v0) = 1

3
(−2, 1)T , which

minimizes the function φ̃0. In Figure 8.2, we represent the sections of φ and φ̃ at x̂0 in

the direction d0 = x̂0 − x0 = −2
3
(1, 1)T . Taking for instance α = 0.1, we can observe how
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the linesearch step in the direction d0 can help to achieve an additional reduction of the

objective function.

−1 ≡ x0 0 ≡ x̂0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

λ
accepted
stepsizes

ϕ(x̂0 + λd0)

ϕ̃0(x̂0 + λd0)

ϕ(x̂0)− 0.1λ2‖d0‖2

Figure 8.2: Sections of the functions φ and φ̃0 at x̂0 in the direction d0. The point x0 corre-
sponds with the stepsize λ = −1.

We emphasize that the differentiability of g and h∗i is only required in Proposition 8.21,

and is not assumed in our subsequent results for analyzing the convergence of BDSA. The

fixed number R of attempts in BDSA’s linesearch works as a safeguard for the non-

differentiable case, in which the vector (dk, ek) may not define a descent direction for Φ,

stopping the linesearch if the decrease condition fails R times. Nonetheless, numerical

experience shows that this linesearch usually leads to an improved performance of the

method.

8.2.1 Convergence analysis

The following result shows that the primal-dual functional Φ of problem (PD) evaluated

at the sequence (xk,yk)k∈N generated by BDSA decreases after every iteration of the

algorithm.

Proposition 8.22. Let Φ be the function defined in (8.14) and suppose that Assump-

tion 8.14 holds. Given a starting point (x0,y0) = (x0, y01, . . . , y
0
p) ∈ Rn ×Rm, consider the
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sequence (xk,yk)k∈N generated by Algorithm 8.17. Then, for all k ≥ 1,

Φ(xk+1,yk+1) − Φ(xk,yk) ≤ −ak∥xk+1 − xk∥2 −
p∑

i=1

bki ∥yk+1
i − yki ∥2, (8.31)

where

ak :=
2αλ2k + γ−1

k − 2κ−∑p
i=1 Li∥yki ∥

2(1 + λk)2
> 0 and bki :=

1 + αλ2kµ
k
i

µk
i (1 + λk)2

> 0,

for i ∈ J1, pK.

Proof. First, note that for k ≥ 1 the vector (xk,yk) belongs to dom Φ. By the definition

of the proximal point operator, equation (8.21) yields the inequality

g(x̂k) +
1

2γk

∥∥∥∥∥x̂
k − xk − γk

( p∑

i=1

∇Ψi(x
k)yki − vk

)∥∥∥∥∥

2

≤ g(xk) +
γk
2

∥∥∥∥∥

p∑

i=1

∇Ψi(x
k)yki − vk

∥∥∥∥∥

2

.

Rearranging this expression and remembering that dk = x̂k − xk we get

g(x̂k) − g(xk) ≤
〈
dk,

p∑

i=1

∇Ψi(x
k)yki − vk

〉
− 1

2γk
∥dk∥2. (8.32)

Now, let us notice that since the function x 7→ −⟨Ψi(x), yki ⟩ is C1 with Li∥yki ∥-Lipschitz

gradient, then by (8.5) we have

⟨Ψi(x
k) − Ψi(x̂

k), yki ⟩ ≤ −⟨∇Ψi(x
k)yki , d

k⟩ +
Li∥yki ∥

2
∥dk∥2.

Using this expression and (8.32), we obtain

Φ(x̂k,yk)− Φ(xk,yk) =f(x̂k)− f(xk) + g(x̂k)− g(xk)

+

p∑

i=1

⟨Ψi(x
k)−Ψi(x̂

k), yki ⟩

≤f(x̂k)− f(xk) + g(x̂k)− g(xk)

+

p∑

i=1

(
−⟨∇Ψi(x

k)yki , d
k⟩+ Li∥yki ∥

2
∥dk∥2

)

≤f(x̂k)− f(xk)− 1

2γk
∥dk∥2 − ⟨vk, dk⟩+ 1

2

p∑

i=1

Li∥yki ∥∥dk∥2

≤
(
κ+

1

2

p∑

i=1

Li∥yki ∥ −
1

2γk

)
∥dk∥2,

(8.33)
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where the last inequality is due to Proposition 8.9. On the other hand, in equation (8.22)

we are computing the proximity operator of the convex function h∗i , which yields the

subgradient inequality

h∗i (ŷ
k) +

〈
yki − ŷki
µk
i

+ Ψi(x̂
k), yki − ŷki

〉
≤ h∗i (y

k
i ), ∀i ∈ J1, pK.

Making use of this expression and ek = ŷk − yk, we obtain

Φ(x̂k, ŷk) − Φ(x̂k,yk) =

p∑

i=1

(
h∗i (ŷ

k
i ) − h∗i (y

k) − ⟨Ψi(x̂
k), eki ⟩

)
≤ −

p∑

i=1

1

µk
i

∥eki ∥2. (8.34)

Then, (8.34) and (8.33) give

Φ(x̂k, ŷk) ≤ Φ(xk,yk) −
(

1

2γk
− κ− 1

2

p∑

i=1

Li∥yki ∥
)
∥dk∥2 −

p∑

i=1

1

µk
i

∥eki ∥2. (8.35)

Finally, using the linesearch (8.23) and (8.35), we get

Φ(xk+1,yk+1) ≤ Φ(x̂k, ŷk) − αλ2k∥(dk, ek)∥2

≤ Φ(xk,yk) −
(
αλ2k +

1

2γk
− κ− 1

2

p∑

i=1

Li∥yki ∥
)
∥dk∥2

−
p∑

i=1

(
αλ2k +

1

µk
i

)
∥eki ∥2

= Φ(xk,yk) − ak∥xk+1 − xk∥2 −
p∑

i=1

bki ∥yk+1
i − yki ∥2,

where we note that the first inequality trivially holds when the linesearch procedure was

not successful, as in that case λk = 0 by Step 7. Therefore, (8.31) holds.

Remark 8.23. In the case in which g is assumed to be convex, the convex subdifferen-

tial characterization of the proximity operator allows to replace (8.32) by the stronger

inequality

g(x̂k) − g(xk) ≤
〈
dk,

p∑

i=1

∇Ψi(x
k)yki − vk

〉
− 1

γk
∥dk∥2.
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This leads to the larger upper bound for the parameter γk given by

γk <

(
κ+

p∑

i=1

Li

∥∥yki
∥∥
)−1

.

Moreover, if f is L-smooth and Ψi is linear, for all i ∈ J1, pK, we recover the bound for

the Double-Proximal Gradient Algorithm presented in Table 8.1.

Finally, we present the main convergence result of Algorithm 8.17.

Theorem 8.24. Suppose that Assumption 8.14 holds. Let φ and Φ be the functions

in (8.13) and (8.14), respectively. Given (x0,y0) ∈ Rn × Rm and η ∈ ]0, 1[, consider

the pair of sequences (xk,yk)k∈N generated by Algorithm 8.17 with supk∈N,i=1,...,p µ
k
i < +∞

and γk ∈
]
0, ηmin

{
γg,
(
2κ+

∑p
i=1 Li

∥∥yki
∥∥)−1

}]
, for all k ∈ N, and chosen such that

infk∈N,i=1,...,p{γk, µk
i } > 0. Then either Algorithm 8.17 stops at a critical point of (PD)

after a finite number of iterations or it generates an infinite sequence (xk,yk)k∈N such

that the following assertions hold.

(i) The sequence
(
Φ(xk,yk)

)
k∈N monotonically (strictly) decreases and converges. More-

over, the sequences (xk)k∈N and (yk)k∈N verify that

∞∑

k=0

∥xk+1 − xk∥2 <∞ and
∞∑

k=0

∥yk+1 − yk∥2 <∞. (8.36)

(ii) If the sequence (xk,yk)k∈N is bounded, the set of its accumulation points is nonempty,

closed and connected.

(iii) If (x̄, ȳ) ∈ Rn×Rm is an accumulation point of the sequence (xk,yk)k∈N, then there

exists v̄ ∈ ∂f(x̄) such that (8.18) holds, i.e., x̄ is a critical point of (P). In addition,

φ(x̄) = infk∈N Φ(xk, yk).

(iv) If (xk,yk)k∈N has at least one isolated accumulation point, then the whole sequence

(xk,yk)k∈N converges to a critical point of (PD). Consequently, (xk)k∈N converges

to a critical point of problem (P).

Proof. If Algorithm 8.17 stops at some iteration k+1 with x∗ := xk+1 = xk and yk+1 = yk,

then x∗ is a critical point of (P), as shown in Remark 8.18. Otherwise, Algorithm 8.17

generates an infinite sequence (xk,yk)k∈N.
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(i) Again, observe that (xk,yk) ∈ dom Φ for all k ≥ 1. By Proposition 8.22, sum-

ming (8.31) for all k ≥ 1, we get

Φ(x1,y1) − inf
k∈N

Φ(xk,yk) ≥
∞∑

k=1

ak∥xk+1 − xk∥2 +
∞∑

k=1

p∑

i=1

bki ∥yk+1 − yk∥2

≥ C

(
∞∑

k=1

∥xk+1 − xk∥2 +
∞∑

k=1

∥yk+1 − yk∥2
)
,

(8.37)

where C := infk∈N,i=1,...,p

{
ak, b

k
i

}
. Let us see that C > 0. Indeed, minimizing the value of

ak with respect to λk, we deduce

ak =
2αλ2k + γ−1

k − 2κ−∑p
i=1 Li∥yki ∥

2(1 + λk)2
≥ (γ−1

k − 2κ−∑p
i=1 Li∥yki ∥)α

γ−1
k − 2κ−∑p

i=1 Li∥yki ∥ + 2α
,

whose right-hand side, as a function of γk, is strictly decreasing in the interval

]
0, η

(
2κ+

p∑

i=1

Li

∥∥yki
∥∥
)−1

]
.

Hence,

ak ≥
(1 − η)α

1 − η + 2αη/(2κ+
∑p

i=1 Li∥yki ∥)
≥ (1 − η)α

1 − η + αη/κ
> 0, ∀k ∈ N.

Likewise,

bki =
1 + αλ2kµ

k
i

µk
i (1 + λk)2

≥ α

1 + αµk
i

≥ α

1 + α supk∈N,i=1,...,p µ
k
i

> 0, ∀k ∈ N.

Therefore, C > 0 and we obtain from (8.37) that

∞∑

k=1

∥xk+1 − xk∥2 +
∞∑

k=1

∥yk+1 − yk∥2 ≤ C−1

(
Φ(x1,y1) − inf

k∈N
Φ(xk,yk)

)
.

By assumption, the right-hand side of the equation is bounded from above, so the sums

in the left-hand side are finite, which proves (8.36).

(ii) Equation (8.36) implies that the sequences (xk)k∈N and (yk)k∈N verify the so-called

Ostrowski’s condition, that is,

lim
k→∞

∥xk+1 − xk∥ = 0 and lim
k→∞

∥yk+1 − yk∥ = 0. (8.38)
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Now, the result directly follows from [137, Theorem 8.3.9].

(iii) Let (xkj ,ykj)j∈N be a subsequence of (xk,yk)k∈N such that (xkj ,ykj) → (x̄, ȳ).

By (8.36), since

(xkj+1 − xkj ,ykj+1 − ykj) = (1 + λkj)(x̂
kj − xkj , ŷkj − ykj),

the sequence (x̂kj , ŷkj)k∈N also converges to (x̄, ȳ). Now, we can assume without loss

of generality that γkj → γ̄ ∈ ]0,∞[. Consider the subsequence (vkj)j∈N of (vk)k∈N. In

particular, vkj ∈ ∂f(xkj) for all j ∈ N. Since f is locally Lipschitz continuous, vkj is

bounded for all sufficiently large j ∈ N (see, e.g., [218, Proposition 9.13]). Therefore, we

can also assume without loss of generality that (vkj)j∈N converges to some point v̄ ∈ ∂f(x̄).

Thus, the sequence

(
xkj + γkj

m∑

i=1

∇Ψi(x
kj)y

kj
i − γkjv

kj , x̂kj

)

j∈N

⊆ gra proxγkj g

converges to (x̄+ γ̄
∑p

i=1∇Ψi(x̄)ȳi − γ̄v̄, x̄) as j → ∞. Hence, by Proposition 8.5, we get

that

x̄ ∈ proxγ̄g

(
x̄+ γ̄

p∑

i=1

∇Ψi(x̄)ȳi − γ̄v̄

)
,

which implies that

p∑

i=1

∇Ψi(x̄)ȳi ∈ v̄ + ∂g(x̄) ⊆ ∂f(x̄) + ∂g(x̄). (8.39)

Further, using (8.24), we get

y
kj
i − ŷ

kj
i

µ
kj
i

+ Ψi(x̂
kj) ∈ ∂h∗i (ŷ

kj
i ), ∀i ∈ J1, pK.

Again, we can assume without loss of generality that µ
kj
i → µ̄i ∈ ]0,∞[ as j → ∞ for

all i ∈ J1, pK. Taking limits as j → ∞, the closedness of the subdifferential of convex

functions results in

Ψi(x̄) ∈ ∂h∗i (ȳi), ∀i ∈ J1, pK. (8.40)

Therefore, (8.39) and (8.40) imply that x̄ is a critical point of (P).
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Let us now prove that φ(x̄) = infk∈N Φ(xk, yk). On the one hand, due to (8.24), for all

i ∈ J1, pK, we have

h∗i (ŷ
kj
i ) +

〈
y
kj
i − ŷ

kj
i

µ
kj
i

+ Ψi(x̂
kj), ȳi − ŷ

kj
i

〉
≤ h∗i (ȳi), (8.41)

from the definition of the convex subdifferential. On the other hand, for all j ∈ N, we

have

g(x̂kj) +
1

2γkj

∥∥∥∥∥x̂
kj −

(
xkj + γkj

p∑

i=1

∇Ψi(x
kj)y

kj
i − γkjv

kj

)∥∥∥∥∥

2

≤ g(x̄) +
1

2γkj

∥∥∥∥∥x̄−
(
xkj + γkj

p∑

i=1

∇Ψi(x
kj)y

kj
i − γkjv

kj

)∥∥∥∥∥

2

,

(8.42)

Thus, we deduce from (8.41) and (8.42) that lim supj→∞ Φ(x̂kj , ŷkj) ≤ Φ(x̄, ȳ).

By (8.38), we have that (xkj+1,ykj+1)j∈N also converges to (x̄, ȳ), so by lower semi-

continuity of the functions defining Φ in (8.14), we have

lim inf
j→∞

Φ(xkj+1,ykj+1) ≥ Φ(x̄, ȳ)

≥ lim sup
j→∞

Φ(x̂kj , ŷkj)

≥ lim sup
j→∞

Φ(xkj+1,ykj+1),

where the last inequality is a consequence of the linesearch (8.23). Therefore, using Propo-

sition 8.16 (i) and item (i), we obtain

φ(x̄) = Φ(x̄, ȳ) = lim
j→∞

Φ(xkj+1,ykj+1) = inf
k∈N

Φ(xk,yk),

which proves the claim.

(iv) In this case, by [137, Proposition 8.3.10] the sequence (xk,yk)k∈N converges to

some point (x̄, ȳ), which is a critical point of problem (PD) by (iii).

Remark 8.25 (Possible modification of Algorithm 8.17). It is worth mentioning that it

would be possible to replace x̂k in (8.22) by some interpolation between the points xk and

x̂k of the form (1 − βk
i )x̂k + βk

i x
k, where βk

i ∈ R is arbitrarily chosen at each iteration. In

principle, this could allow to improve the overall performance of the algorithm. For ex-

ample, setting βi = 1 for all i ∈ J1, pK would permit to fully run the algorithm in parallel,
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since only xk and yki would be required to compute ŷki . This would allow to simultane-

ously compute x̂k and ŷki , which could improve the algorithm’s overall efficiency when

the computation of the proximal mappings is time-consuming. However, it is important

to note that the bounds obtained in the accordingly modified version of Proposition 8.22

would be considerably more technical and difficult to be satisfied in practical applications

when βi ̸= 0. As, in addition, in our experiments we did not find numerical evidence of

the benefits to justify the inclusion of such extra linear terms, for conciseness we only

consider the case where βk
i = 0.

Remark 8.26. As mentioned in Remark 8.19, one can allow choosing vk ∈ co ∂f(xk) in

Algorithm 8.17. The only modification in Theorem 8.24 is that if (xkj ,ykj)k∈N converges

to (x̄, ȳ), then there exists ȳi ∈ ∂hi(Ψi(x̄)) for all i ∈ J1, pK, such that

p∑

i=1

∇Ψi(x̄)ȳi ∈ Lim sup
j→+∞

{
vkj
}

+ ∂g(x̄), (8.43)

where here Lim sup refers to the Painlevé–Kuratowski upper-limit of the sequence (vkj)j∈N.

Furthermore, it is easy to prove that Lim supj→+∞
{
vkj
}
⊆ co ∂f(x̄).

8.2.2 Convergence under the Kurdyka– Lojasiewicz property

In this subsection, we establish the global convergence of Algorithm 8.17 and some con-

vergence rates. In addition to the assumptions required by Theorem 8.24, we assume that

the primal-dual function Φ satisfies the Kurdyka– Lojasiewicz property [157, 166] at some

accumulation point of the sequence generated by Algorithm 8.17.

Recall that the Kurdyka– Lojasiewicz property holds for Φ : Rn → R at x̄ ∈ Rn if there

exists β > 0 and a continuous concave function θ : [0, β] → [0,+∞[ such that θ(0) = 0, θ

is of class C1 on ]0, β[ with a strictly positive derivative θ′ and

θ′
(
Φ(x) − Φ(x̄)

)
d(0, ∂Φ(x)) ≥ 1, (8.44)

for all x ∈ Bβ(x̄) with Φ(x̄) < Φ(x) < Φ(x̄) + β, where d(·,Ω) stands for the distance

function to a set Ω. This property is shared by a vast spectrum of functions that arise in

a wide variety of applications (see, e.g., [66, Appendix 5]).

The Kurdyka– Lojasiewicz property has been extensively used for proving the con-

vergence of descent methods for nonconvex nonsmooth optimization after the seminal

works [30, 31, 66, 195], which are based on  Lojasiewicz’s original idea [166]. Our analysis,
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though, requires the use of some ad hoc techniques that do not directly follow the gen-

eral methodology described in [30, Section 3.2], mainly because of the boosting linesearch.

Further, unlike in [27], we do not require the strong Kurdyka– Lojasiewicz property (which

allows using Clarke’s subdifferential). Two of the three requirements in [30], namely the

sufficient decrease property and the subgradient lower bound for the iterates gap, must be

adapted to the sequence (x̂k, ŷk)k∈N. We begin with a lemma that permits us to derive a

modified subgradient lower bound for the iterates gap related to elements in ∂Φ(x̂k, ŷk).

Lemma 8.27. Consider a point (x̄, ȳ) ∈ Rn × Rm. In addition to the assumptions of

Theorem 8.24, suppose that f is L1-smooth around x̄. Then, there exists r > 0, ρ > 0 and

k̂ ∈ N such that, for all (xk,yk) ∈ Br(x̄, ȳ) with k ≥ k̂, there exists (uk,wk) ∈ ∂Φ(x̂k, ŷk)

verifying

∥(uk,wk)∥ ≤ ρ∥(xk+1,yk+1) − (xk,yk)∥. (8.45)

Proof. Let r > 0 be such that f is continuously differentiable with L1-Lipschitz gradient

on B2r(x̄, ȳ). Let k̂ ∈ N be such that ∥(xk+1,yk+1) − (xk,yk)∥ ≤ r for all k ≥ k̂. Now,

consider (xk,yk) ∈ Br(x̄, ȳ) with k ≥ k̂. It follows that (x̂k, ŷk) belongs to B2r(x̄, ȳ). Using

(8.24), we get that

xk − x̂k

γk
+

p∑

i=1

∇Ψi(x
k)yki −∇f(xk) ∈ ∂g(x̂k),

yki − ŷki
µk
i

+ Ψi(x̂
k) ∈ ∂h∗i (ŷ

k
i ), ∀i ∈ J1, pK.

Let us define (uk,wk) = (uk, wk
1 , . . . , w

k
p) by

uk :=
xk − x̂k

γk
+

p∑

i=1

(
∇Ψi(x

k)yki −∇Ψi(x̂
k)ŷki

)
+ ∇f(x̂k) −∇f(xk),

wk
i :=

yki − ŷki
µk
i

, ∀i ∈ J1, pK.

It follows from (8.16) that (uk,wk) ∈ ∂Φ(x̂k, ŷk). Furthermore, (x,y) 7→ ∑p
i=1∇Ψi(x)yi

is Lipschitz continuous on B2r(x̄), let us say L2-Lipschitz continuous, so we can make the
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following estimations

∥uk∥ ≤
(

1

γk
+ L1

)
∥xk − x̂k∥ + L2∥(xk − x̂k,yk − ŷk)∥,

∥wk
i ∥ ≤ 1

µk
i

∥yki − ŷki ∥, ∀i ∈ J1, pK.

Finally, let us notice that, by Step 8 of Algorithm 8.17, we have that

∥(xk+1,yk+1) − (xk,yk)∥ = (1 + λk)∥(x̂k, ŷk) − (xk,yk)∥
≥ ∥(x̂k, ŷk) − (xk,−yk)∥,

(8.46)

which yields (8.45) taking ρ > 0 sufficiently large.

Theorem 8.28. In addition to the assumptions of Theorem 8.24, suppose the sequence

(xk,yk)k∈N generated by Algorithm 8.17 has an accumulation point (x̄, ȳ) ∈ Rn × Rm at

which the Kurdyka– Lojasiewicz property (8.44) holds, assume that f is L1-smooth around

x̄, and supk∈N λk < +∞. Then (xk,yk)k∈N converges to (x̄, ȳ) as k → ∞.

Proof. If Algorithm 8.17 stops after a finite number of iterations, then the results clearly

holds. Otherwise, Algorithm 8.17 produces an infinite sequence (xk,yk)k∈N. Let r, ρ and

k̂ be the constants given by Lemma 8.27, let β and θ be the constant and function in the

definition of the Kurdyka– Lojasiewicz property, and let c0 := infk∈N,i=1,...,p

{
(1−η)κ

η
, 1
µk
i

}
,

λ∞ := supk∈N λk and σ := ρ(1 + λ∞)2/c0. Consider an arbitrary ε ∈ ]0,min{r, β/2}] and

pick k0 ≥ k̂ large enough such that the following conditions hold:

• ∥(xk0 ,yk0) − (x̄, ȳ)∥ ≤ ε/4,

• ∥(xk+1,yk+1) − (xk,yk)∥ ≤ ε/4, for all k ≥ k0,

• σθ(Φ(xk0 ,yk0) − Φ(x̄, ȳ)) ≤ ε/4,

• Φ(x̄, ȳ) < Φ(x̂k, ŷk) < Φ(x̄, ȳ) + β, for all k ≥ k0,

where in the last assertion we have used the fact that (Φ(x̂k, ŷk))k∈N also converges to

Φ(x̄, ȳ), since

Φ(xk+1,yk+1) ≤ Φ(x̂k, ŷk) ≤ Φ(xk,yk),

by the linesearch (8.23) and (8.35).

The rest of the proof is split into three claims.
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Claim 1: Let k ≥ k0 be such that (xk,yk) ∈ Bε(x̄, ȳ). Then, the following estimation

holds

∆k+1 ≤ (σ∆sk∆k)
1
2 , (8.47)

where ∆k := ∥(xk+1,yk+1)− (xk,yk)∥, ∆sk := sk − sk+1 and sk := θ(Φ(x̂k, ŷk)−Φ(x̄, ȳ)).

Indeed, let (uk,wk) ∈ ∂Φ(x̂k, ŷk) be the vector given by Lemma 8.27 (recall that (xk,yk) ∈
Br(x̄, ȳ)). Observe that (x̂k, ŷk) ∈ Bβ(x̄, ȳ), since by (8.46), it holds

∥(x̂k, ŷk) − (x̄, ȳ)∥ ≤ ∥(x̂k, ŷk) − (xk,yk)∥ + ∥(xk,yk) − (x̄, ȳ)∥
≤ ∥(xk+1,yk+1) − (xk,yk)∥ + ε ≤ 2ε ≤ β

Then, by the concavity of θ, the Kurdyka– Lojasiewicz property (8.44) applied to (x̂k, ŷk),

inequality (8.35), and the linesearch (8.23), we have that

∆sk∥(uk,wk)∥ ≥ θ′
(
Φ(x̂k, ŷk) − Φ(x̄, ȳ)

) (
Φ(x̂k, ŷk) − Φ(x̂k+1, ŷk+1)

)
∥(uk,wk)∥

≥ Φ(x̂k, ŷk) − Φ(x̂k+1, ŷk+1)

≥ Φ(x̂k, ŷk) − Φ(xk+1,yk+1)

+
1

2

(
1

γk+1

− 2κ−
p∑

i=1

Li∥yk+1
i ∥

)
∥dk+1∥2 +

p∑

i=1

1

µk+1
i

∥ek+1
i ∥2

≥ (1 − η)κ

η
∥dk+1∥2 +

p∑

i=1

1

µk+1
i

∥ek+1
i ∥2

≥ c0∥(x̂k+1, ŷk+1) − (xk+1,yk+1)∥2

=
c0

(1 + λk+1)2
∆2

k+1 ≥
c0

(1 + λ∞)2
∆2

k+1.

Hence,

∆k+1 ≤ (1 + λ∞)

√
∆sk∥(uk,wk)∥

c0
≤ (1 + λ∞)

√
ρ

c0
∆sk∆k =

√
σ∆sk∆k,

which proves the claim.

Claim 2: Let k ≥ k0 and assume that (xj,yj) ∈ Bε(x̄, ȳ), for all j ∈ {k0, . . . , k}. Then

∆k+1 ≤ σ

(
k−k0∑

j=0

1

2j+1
∆sk−j

)
+

1

2k+1−k0
∆k0 . (8.48)
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Using (8.47) inductively for j ∈ {k0, . . . , k}, we get

∆k+1 ≤
(

k−k0∏

j=0

(σ∆sk−j)
1

2j+1

)
∆

1

2k+1−k0

k0
.

Now, let us recall the (generalized) inequality of arithmetic and geometric means (see,

e.g., [9, Proposition 3.14]), which states that for any nonnegative numbers b0, . . . , bℓ+1,

ℓ+1∏

j=0

b
νj
j ≤

ℓ+1∑

j=0

νjbj, whenever νj ≥ 0, with
ℓ+1∑

j=0

νj = 1.

Using this inequality with bj := σ∆sk−j and νj := 1
2j+1 for j = 0, . . . , k − k0 =: ℓ, and

bℓ+1 := ∆k0 and νℓ+1 := 1
2k+1−k0

, we have that

(
k−k0∏

j=0

(σ∆sk−j)
1

2j+1

)
∆

1

2k+1−k0

k0
≤ σ

(
k−k0∑

j=0

1

2j+1
∆sk−j

)
+

1

2k+1−k0
∆k0 ,

which concludes the proof of (8.48).

Claim 3: For all k ≥ k0, (xk,yk) ∈ Bε(x̄, ȳ). Therefore, (xk,yk)k∈N converges to (x̄, ȳ).

We prove by induction that (xk,yk) ∈ Bε(x̄, ȳ) for all k ≥ k0. The assertion clearly
holds for k = k0 and k = k0 + 1, so we can assume that there is k1 > k0 + 1 such that
(xk,yk) ∈ Bε(x̄, ȳ) for all k ∈ {k0, . . . , k1}. Then (8.48) holds for all k ∈ {k0, . . . , k1}, so
we get that

k1∑

k=k0

∥(xk+1,yk+1)− (xk,yk)∥ = ∆k0 +

k1−1∑

k=k0

∆k+1

≤ ∆k0 +

k1−1∑

k=k0


σ




k−k0∑

j=0

1

2j+1
∆sk−j


+

1

2k+1−k0
∆k0




≤ ∆k0 + σ

k1−1∑

k=k0




k−k0∑

j=0

1

2j+1
∆sk−j


+

( ∞∑

k=1

1

2j

)
∆k0

≤ 2∆k0 + σ

k1−1∑

k=k0




k−k0∑

j=0

1

2j+1
∆sk−j




= 2∆k0
+ σ

k1−k0∑

j=1

1

2j

(
k1−j∑

k=k0

∆sk

)

≤ 2∆k0
+ σ

k1−k0∑

j=1

1

2j
sk0

≤ 2∆k0
+ σsk0

.
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Hence,

∥(xk1+1,yk1+1) − (x̄, ȳ)∥ ≤ ∥(xk0 ,yk0) − (x̄, ȳ)∥ +

k1∑

k=k0

∥(xk+1,yk+1) − (xk,yk)∥

≤ ε

4
+ 2∆k0 + σsk0 ≤

ε

4
+

2ε

4
+
ε

4
= ε,

which demonstrates the assertion for k = k1 + 1.

Therefore,
∞∑

k=k0

∥(xk+1,yk+1) − (xk,yk)∥ ≤ 2∆k0 + σsk0 , (8.49)

which proves that (xk,yk) is a Cauchy sequence, so it converges to (x̄, ȳ).

The next theorem allows to deduce convergence rates of the sequence generated by

Algorithm 8.17 when the Kurdyka– Lojasiewicz property holds for a specific choice of

function θ. We will make use of the following lemma.

Fact 8.29 ([24, Lemma 1]). Let (zk)k∈N be a nonnegative sequence in R and let ξ, ζ be

some positive constants. Suppose that zk → 0 and that the sequence satisfies

zξk ≤ ζ(zk − zk+1),

for all k sufficiently large. Then the following assertions hold.

(i) If ξ = 0, then the sequence (zk)k∈N converges to 0 in a finite number of steps.

(ii) If ξ ∈ ]0, 1], the sequence (zk)k∈N converges linearly to 0 with rate 1 − 1
ζ
.

(iii) If ξ > 1, there exists ϱ > 0 such that

zk ≤ ϱk−
1

ξ−1 ,

for all k sufficiently large.

Theorem 8.30 (Convergence rates). In addition to the assumptions of Theorem 8.28,

suppose that the function θ in the definition of the Kurdyka– Lojasiewicz property is given

by θ(t) := Mt1−ϑ for some M > 0 and 0 ≤ ϑ < 1. Then, we obtain the following

convergence rates.

(i) If ϑ = 0, the sequence (xk,yk)k∈N converges in a finite number of steps to (x̄, ȳ).
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(ii) If ϑ ∈
]
0, 1

2

]
, then the sequence (xk,yk)k∈N converges linearly to (x̄, ȳ).

(iii) If ϑ ∈
]
1
2
, 1
[
, then there exists a positive constant ϱ such that for all k large enough

∥(xk,yk) − (x̄, ȳ)∥ ≤ ϱk−
1−ϑ
2ϑ−1 .

Proof. For proving (i), let ϑ = 0. By (8.44), (8.45) and Claim 3 from previous theorem,

we have that

1 ≤M∥(uk,wk)∥ ≤ ρ∥(xk+1,yk+1) − (xk,yk)∥,

for all k sufficiently large. Therefore, Theorem 8.24 concludes that (xk,yk)k∈N stops after

a finite number of iterations, or otherwise we would enter into contradiction with (8.36).

For the remaining cases, consider the sequence Sk :=
∑∞

ℓ=k ∥(xℓ+1,yℓ+1) − (xℓ,yℓ)∥,

which is finite for any k ≥ 0 due to (8.49). The convergence of (xk,yk)k∈N to (x̄, ȳ) can

be studied by means of Sk, since ∥(xk,yk) − (x̄, ȳ)∥ ≤ Sk.

Recall that θ′(t) = (1 − ϑ)Mt−ϑ. Then, for any k large enough (8.49) implies

Sk =
∞∑

ℓ=k

∆ℓ ≤ 2∆k + σsk

= 2∆k + σM
(
Φ(x̂k, ŷk) − Φ(x̄, ȳ)

)1−ϑ

= 2∆k +
σM

1
ϑ (1 − ϑ)

1−ϑ
ϑ

θ′ (Φ(x̂k, ŷk) − Φ(x̄, ȳ))
1−ϑ
ϑ

≤ 2∆k + σM
1
ϑ (1 − ϑ)

1−ϑ
ϑ ρ

1−ϑ
ϑ ∆

1−ϑ
ϑ

k ,

(8.50)

where the last inequality is due to (8.44) and (8.45). If ϑ ∈
]
0, 1

2

]
, the dominant term

in the right hand side of the above equation is the first summand. Therefore, there exists

k1 > 0 and K1 > 0 such that

Sk ≤ K1∆k, for all k ≥ k1.

This implies (ii) by resorting to Fact 8.29 (ii). On the other hand, if ϑ ∈
]
1
2
, 1
[
, the second

term in the right hand side of (8.50) would be the dominant one. This yields the existence

of some k2 > 0 and K2 > 0 such that

S
ϑ

1−ϑ

k ≤ K2∆k, for all k ≥ k2.

Finally, the conclusion of (iii) similarly follows from Fact 8.29 (iii).
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8.3 Numerical experiments

In this section, we present some computational experiments where we evaluate the per-

formance of Algorithm 8.17. We recall that when R > 0, so the linesearch in Steps 6-7

is performed, the resulting algorithm is referred to as BDSA; otherwise, Algorithm 8.17

without linesearch is named as DSA.

The linesearch of BDSA requires the selection of a number of hyperparameters, namely,

the initial stepsize λk, the backtracking constant ρ and the number of trials R. This may

seem to be a drawback, as each particular problem could require of a specific tuning of

all these parameters in order to obtain a good performance of the linesearch. Quite the

opposite, the next numerical experiments on very different applications evidence that this

is not the case: we ran all instances of BDSA with the same choice of parameters specified

below and this general tuning was good enough for BDSA to significantly outperform its

counterpart DSA with no linesearch, as well as some inertial methods.

Parameter tuning for Algorithm 8.17 linesearch All the linesearches for BDSA in

our numerical experiments were performed with the following choice of parameters: R = 2,

ρ = 0.5 and α = 0.1. The initial stepsize λk was chosen according to the self-adaptive

trial stepsize scheme presented in Algorithm 8.31 with λ0 = 2 and δ = 2.

Algorithm 8.31 Self-adaptive trial stepsize.

Require: δ > 1 and λ0 > 0. Obtain λk from λk by Steps 4-7 of BDSA (Algorithm 8.17).

1: if r = 0 then

2: set λk+1 := δλk;

3: else

4: set λk+1 := max {λ0, ρr λk}.

5: end if

The self-adaptive trial stepsize given by Algorithm 8.31 is based on the one proposed

in [27] for the Boosted Difference of Convex functions Algorithm (BDCA). We note that a

similar adaptive scheme for the gradient descend method was recently introduced in [235].

The procedure works as follows. Algorithm 8.31 determines how to choose the starting

stepsize λk+1 of the next iteration of the method. If in the current iteration a decrease of

Φ was achieved in the first attempt of the linesearch (i.e., when r = 0), then the starting

stepsize for the next iteration of the main algorithm is increased by setting λk+1 := δλk,

with δ > 1. Otherwise, λk+1 is set as the maximum between the default initial stepsize
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and the smallest stepsize tested in the previous iteration, i.e., λk+1 := max {λ0, ρr λk}
(observe that λk could be zero if the linesearch was not successful).

This section is divided into three subsections, each containing a different application.

The purpose of the experiments in the first subsection is twofold. First, to illustrate how

the linesearch from the boosting step can help reaching better critical points. Second, to

show that the assignment of the terms of the objective function of (P) to each of the func-

tions f , g, hi and Ψi has a big impact in the success of the resulting scheme derived from

Algorithm 8.17. In Section 8.3.2, we consider an application with real-data for clustering

cities in a region and show how the linesearch of BDSA helps finding better solutions in

considerably less time than DSA (which, in this context, coincides with the Generalized

Proximal Point Algorithm (GPPA) [7]). Lastly, Section 8.3.3 contains a nonconvex gen-

eralization of Heron’s problem that can be addressed with BDSA. In this case, BDSA is

not a particular instance of any other known algorithm.

All the experiments were ran in a computer of Intel Core i7-12700H 2.30 GHz with

16GB RAM, under Windows 11 (64-bit).

8.3.1 Avoiding non-optimal critical points

Theorems 8.24 and 8.28 prove the convergence of Algorithm 8.17 to some critical point

of (P). We recall that being a critical point is a necessary (but not sufficient) condition for

local optimality of problem (P). In [27, Example 3.3] it was shown how the linesearch per-

formed by the BDCA helps prevent the algorithm from being trapped by critical points

which are not local minima. In this subsection we illustrate the same phenomenon by

considering different known algorithms that can be obtained as particular cases of Algo-

rithm 8.17. We show that its boosted version, with the additional linesearch, outperforms

the basic methods in avoiding these non-desirable critical points. To this aim, we introduce

two novel types of test functions which entail a challenge to this class of methods.

We first consider a family of test functions that have a large number of critical points

where the algorithm can easily get stuck, but a unique global minimum. Specifically, for

any q ∈ N, we define the functions φq : Rn → R as

φq(x) := ∥x∥2 − ∥x∥1 −
q∑

j=1

(∥x− je∥1 + ∥x+ je∥1) − ∥x− (q + 1)e∥1, (8.51)

where e is the vector of ones in Rn. It is a simple task to check that the function φq

possesses (2q+3)n critical points, given by the set {−(q + 1),−q, . . . , 0, . . . , q, q + 1}n, and



172 Chapter 8. The Boosted Double-proximal Subgradient Algorithm for nonconvex optimization

a unique local minimum at x∗ := (−(q + 1),−(q + 1), . . . ,−(q + 1))T , which corresponds

to its global optimum, with optimal value φq(x
∗) = −n(q2 + 3q + 2).

Note that the function φq admits diverse representations as an instance of (P), and

different algorithms are derived from BDSA depending on which terms one assigns to

each of the functions f , g and hi (recall Remark 8.20):

� Setting f(x) := 0, g(x) := ∥x∥2 and hi, for i = 1, . . . , 2q + 2, to be the remaining

terms involving the ℓ1-norm, the Double-proximal Gradient Algorithm (DGA) by

Banert–Boţ [38] is obtained.

� If instead we take f(x) := −∥x∥1−
∑q

j=1 (∥x− je∥1 + ∥x+ je∥1)−∥x− (q+ 1)e∥1,
g(x) := ∥x∥2 and h(x) := 0, we recover the particular case of the Proximal DC

Algorithm (PDCA) discussed in Remark 8.20 (i), which would become the Boosted

Proximal DC Algorithm (BPDCA) from [4] when R = ∞ (but recall that we take

R = 2 in our experiments). Due to variable separability of the ℓ1-norm, it can be

proved that the subdifferential of f coincides with the sum of subdifferentials of

the ℓ1-norm terms. Therefore, for every k ≥ 0, we take vk ∈ ∂f(xk) as a sum of

subgradients of the form

vk =
∑

s∈I

vks , where vks ∈ ∂ (−∥ · −se∥1) (xk),

where I := {0, 1,−1, . . . , q,−q, q + 1} and every subgradient is component-wise

chosen as

(vks )i =

{
1 if xki ≤ s,

−1 if xki > s,
for all i ∈ J1, nK.

� Finally, we can set f(x) := ∥x∥2 −∑q
j=1 (∥x− je∥1 + ∥x+ je∥1) − ∥x− (q + 1)e∥1,

g(x) := −∥x∥1 and h(x) := 0. The resulting scheme coincides with the one from

the Generalized Proximal Point Algorithm [7]. However, in [7] it is required that

infx∈Rn g(x) > −∞, which does not hold in this case. This assumption is not needed

by Algorithm 8.17 and therefore we use DSA as an abbreviation for the resulting

scheme here.

The use of inertial techniques has also been reported to help algorithms avoid non-

optimal critical points (see, e.g., [27, 62, 130]). Here, we consider the Oliveira–Tcheou’s

inertial DC Algorithm (iDCA) [130]. For our problem at hand, iDCA can be written as

the linearized proximal method with inertial term in [130, Section 3.1.2], given by the
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iteration

xk+1 = prox ∥·∥2
σ

(
xk +

1

σ
vk +

β

σ
(xk − xk−1)

)
, (8.52)

where vk ∈ ∂f(xk), with f(x) := ∥x∥1 +
∑q

j=1 (∥x− je∥1 + ∥x+ je∥1) + ∥x− (q + 1)e∥1,
σ > 0 and β ∈ [0, σ/2[. Observe that the iteration (8.52) coincides with that of PDCA

except for the addition of the inertial term β
σ
(xk − xk−1).

For illustration, we display in Figure 8.3 for n = 2 and q = 3 the sequences generated

by DGA (with µ = γ = 1), PDCA (with γ = 1), DSA (with γ = 0.49, as one must

take γ < (2κ)−1 for κ = 1), their boosted counterparts with linesearch (abbr. as BDGA,

BPDCA and BDSA) and iDCA (with σ = 1 and β = 0.4995) from the starting point

x0 = (1.8, 0.3)T , using y0 = (0, 0)T as the dual initial point for DGA and BDGA. We

observe that PDCA got caught by (1, 0)T , which is the nearest critical point that it en-

countered, while DGA and DSA converged to the slightly better critical points (−1,−1)T

and (1,−1)T , respectively. On the other hand, BDSA, BPDCA, BDGA and iDGA, man-

aged to converge to x∗ = (−4,−4)T .

5 4 3 2 1 0 1 2 3
5

4

3

2

1

0

1

2
DSA
PDCA
DGA
iDCA

BDSA
BPDCA
BDGA

39.15

37.80

36.45

35.10

33.75

32.40

31.05

29.70

28.35

27.00

Figure 8.3: Sequence of iterates generated by DSA, PDCA, DGA, iDCA and the boosted
versions for the same starting point, marked with a black dot, when they were applied to the
function φ3 in (8.51) for n = 2. Only the boosted algorithms and iDCA managed to converge to
the global optimum x∗ = (−4,−4)T .

For different combinations of n and q, we performed 10 000 runs of the algorithms all

initialized at the same starting points randomly chosen in the interval [−q−2, q+2]n, and

[−1, 1]n for the dual variables (when necessary), using the same parameters as before. We
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note that the conjugate of the ℓ1-norm is the indicator function of [−1, 1]n, so this seems

a fair set in which to choose the initial dual variables. We stopped all the algorithms when

the norm of the difference between two consecutive iterates was smaller than n × 10−6

and counted how many times each of the methods converged to the optimal solution x∗.

The results are summarized in Table 8.2.

n q DGA BDGA PDCA BPDCA iDCA DSA BDSA

2 3 273 1202 410 10 000 10 000 410 10 000
2 5 72 774 201 10 000 10 000 201 10 000
2 10 10 440 71 10 000 10 000 71 10 000
2 20 0 253 21 10 000 10 000 21 10 000

10 3 0 2229 0 10 000 10 000 0 10 000
20 3 0 2076 0 10 000 10 000 0 10 000

Table 8.2: For different values of n and q, and 10 000 random starting points, we count
the number of instances that each of the algorithms converged to the global minimum x∗ =
(−q − 1, . . . ,−q − 1)T of the function φq in (8.51). All algorithms are particular instances of
Algorithm 8.17 except for iDCA.

The most remarkable fact is that BDSA, BPDCA and iDCA converged to the optimal

point x∗ in every single instance. By contrast, the non accelerated versions DSA and PDCA

very rarely managed to reach the optimum (1.17% of the overall instances). In fact, these

two methods only reached the global optimum when the initial points belonged to the

region [−q−2,−q]n in which the global minimum is located. Their iterates, though, do not

necessarily coincide (see Figure 8.3) and DSA attained a lower function value in 32.96%

of the instances (the values were the same in the rest). On the other side, DGA also got

trapped very often by non-optimal critical points, only converging to the global minimum

in 0.59% of the instances. Its accelerated version BDGA greatly improved this poor result

and converged 11.62% of the times to the optimal solution.

The fact that PDCA, DGA and DSA have such a low rate of success in reaching the

global minimum is an indicator of how challenging the proposed family of functions is for

this type of algorithms. The advantage of the boosted versions of the algorithms for this

family is clear. Even so, it is important to mention that, although the linesearch in BDGA

only succeeded in improving its success rate up to 11.62%, it consistently improved the

objective values. BDGA converged to a point with lower objective value than DGA in

46.61% of the instances, while both algorithms attained the same value in the remaining

53.39%. DGA did not surpass BDGA in any of the 60 000 instances.
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The complete success of BPDCA, iDCA and BDSA for finding the global optimum in

the previous experiment might be due to the lack of any local (non-global) minima. Let

us now consider the function ψ : Rn → R given by

ψ(x) = ∥x∥2 −
n∑

i=1

log
(
2 + e2xi

)
− ∥x∥1, (8.53)

which has a unique global minimum at x∗ := (a, a, . . . , a)T and 2n−1 local minima at the

points {a, b}n \{x∗}, with a ≈ 1.3895 and b ≈ −0.2767 (their values can be approximated

numerically by solving the necessary optimality condition).

If we let f(x) := −∑n
i=1 log (2 + e2xi) − ∥x∥1 and g(x) := ∥x∥2, we observe that

ψ = f + g is expressible as a difference of convex functions. To study how the most

successful methods in our previous experiment behave under the presence of multiple

local minima, we apply both BPDCA (with γ = 1) and iDCA (with β = 0.4995 and

σ = 1) to this decomposition, and BDSA (with γ = 0.49) to the splitting ψ = f + g with

f(x) := ||x||2 −∑n
i=1 log (2 + e2xi) and g(x) := −||x||1. For n = 2, we show in Figure 8.4

the sequences generated by these three algorithms from two starting points.
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Figure 8.4: Iterates of BDSA, BPDCA and iDCA for the minimization of the function ψ
in (8.53) with two different starting points, represented with black dots.

Figure 8.4 suggests that the inertial algorithm could be less likely to escape from a

local minimum. BDSA and BPDCA managed to avoid these critical points and converged

to the global optimum for the starting point shown in the right, but this clearly depends

on the stepsize considered. In general there is no guarantee that any of these techniques

(the inertial nor the boosting linesearch) will succeed in making the algorithms converge to

global minima. However, the inertial term seems to be more influenced by the geometry of
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the function, while the freedom in the choice of the stepsize in the linesearch could provide

better chances of not getting stuck. To test if this was the case, for different values of n,

we ran the three algorithms from the same 10 000 starting points randomly chosen in

the box [−2.5, 3.5]n, stopping them when the difference between two consecutive iterates

was smaller than n × 10−6. In Table 8.3, we display the number of instances that each

method converged to the global optimum. BDSA managed to attain the global minimum

in every single instance, but the other two algorithms never succeeded when n ≥ 100 for

any starting point. To compare the performance of iDCA and BPDCA, we also counted

the number of times that each of these algorithms achieved a strictly lower objective value

than the other.

Global minimum Lowest value

n iDCA BPDCA BDSA iDCA BPDCA

2 3374 6764 10 000 0 4129
5 647 2939 10 000 0 5847

10 48 798 10 000 0 7251
20 0 54 10 000 0 8818

100 0 0 10 000 0 9998
1000 0 0 10 000 0 10 000
5000 0 0 10 000 0 10 000

10 000 0 0 10 000 0 10 000

Table 8.3: For different values of n and 10 000 random starting points, we count the number
of instances that each of the algorithms converged to the global minimum x∗ of the function ψ
in (8.53). In the last two columns we only compare iDCA with BPDCA and count the number
of times that each method attains a strictly lower objective value than the other.

8.3.2 Minimum sum-of-squares constrained clustering problem

Clustering analysis is a widely-employed technique in data science for classifying a collec-

tion of objects into groups, called clusters, whose elements share similar characteristics.

In order to mathematically describe the clustering problem, we can think of our data as

a finite set of points A = {a1, . . . , aq} in Rs. Our goal is to group A into ℓ disjoint subsets

A1, . . . , Aℓ, based on the minimization of some clustering measure.

In the minimum sum-of-squares clustering problem, the groups are determined by the

minimization of the squared Euclidean distance of each data to the centroid of its cluster.

In this way, each cluster Aj is identified by its centroid, which we denote by xj ∈ Rs, for

j = 1, . . . , ℓ. Letting X := (x1, . . . , xℓ) ∈ Rs×ℓ, this clustering problem can be reformulated
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as the optimization problem

min
X∈Rs×ℓ

f(X) :=
1

q

q∑

i=1

ωi(X), (8.54)

where ωi(X) := min {∥xj − ai∥2 : j = 1, . . . , ℓ} . The function f is 1-upper-C2 (recall Ex-

ample 8.11).

In [27], the authors considered the clustering problem (8.54) with the aim of grouping

the 4001 Spanish cities in the peninsula with more than 500 residents. In this work, we

consider a more challenging version of the above problem in which we add a nonconvex

constraint on X. This is useful for example when the centroids represent facilities (e.g.,

hospitals or government administrations). In this case, the centroids cannot be located in

the sea, or even in certain areas that should be avoided. Therefore, we are interested in

solving the problem

min
X∈C

f(X), (8.55)

where C ⊆ Rs×ℓ is the newly introduced (not necessarily convex) constraint. This allows

us to make the experiment in [27] more challenging, in the following way:

� We consider the cities with more than 500 residents in the Spanish peninsula, but

also those in the Balearic Islands, which is an archipelago in the Mediterranean Sea.

They sum a total of 4049 cities.

� We exclude a region in the center of Spain as a possible location for centroids, which

would be useful if decentralization policies were aimed.

� We exclude Portugal, which is also contained in the same peninsula as Spain.

The resulting closed nonconvex constraint is depicted in Figure 8.5.

Now, considering the objective function of problem (8.55) as a large sum of nonsmooth

functions, the sum rule for the basic subdifferential only offers an upper estimation rather

than an equality. Consequently, it becomes more convenient to compute subgradients

of individual functions ωi instead of examining the entire function f . In this context,

the following proposition formally provides the computation of the subdifferential of the

functions ωi, for i = 1, . . . , q.
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Figure 8.5: The blue squares represent the 4049 cities of Spain peninsula and Balearic Islands
with more than 500 inhabitants. In order to accurately gather all the area of Spain including
these cities, we build our constraint C as the union of a finite number of shaded polyhedral sets.
Note that the rectangle in the center of Spain is excluded.

Proposition 8.32. Given a ∈ Rs, consider the function ω : Rs×ℓ → R given by

ω(X) := min
{
∥xj − a∥2 : j = 1, . . . , ℓ

}
,

with X = (x1, . . . , xℓ) ∈ Rs×ℓ. Then, for all X ∈ Rs×ℓ, the following formula holds

∂ω(X) =



(0, . . . , 0, 2(xj − a)︸ ︷︷ ︸

j-th position

, 0, . . . , 0) : ω(X) = ∥xj − a∥2


 . (8.56)

Proof. To prove (8.56) let us notice that the inclusion ⊆ follows from the calculus rule for

the minimum function (see, e.g., [182, Proposition 1.113]). To prove the opposite inclusion,

we recall that by (8.10) the following equality holds

co ∂ω(X) = −∂(−ω)(X). (8.57)

Now, since −ω is a maximum of quadratic forms, we can apply [182, Theorem 3.46] to

−ω to conclude that

−∂(−ω)(X) = coB(X),
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where B(X) is the set in the right-hand side of (8.56). Finally, since all the points in the

set B(X) are linearly independent, we get that ⊇ must hold in (8.56), as otherwise it

would contradict (8.57).

Based on the aforementioned observation, we are motivated to present Algorithm 8.33

as a well-suited variant of the Boosted Double-proximal Subgradient Algorithm for effec-

tively addressing the constrained clustering problem (8.54). When C is defined by linear

inequality constraints, observe that feasibility of the direction Dk defined in Step 3 can

be checked as in [21, Algorithm 1] (see also Lemma 3.1 there), so the boosting in Step 5

is only run when Dk is in the cone of feasible directions.

Algorithm 8.33 Boosted proximal Subgradient Algorithm for constrained clustering.

Require: X0 ∈ Rs×ℓ, R ≥ 0, ρ ∈ ]0, 1[ and α ≥ 0. Set k := 0.
1: Choose vki ∈ ∂ωi(X

k) for i = 1, . . . , q and set V k = 1
q

∑q
i=1 v

k
i .

2: Take some positive γk <
1
2

and compute

X̂k ∈ PC

(
Xk − γkV

k
)
.

3: Choose any λk ≥ 0. Set λk := λk, r := 0 and Dk := X̂k −Xk.
4: if Dk = 0 then STOP and return xk.
5: while r < R and

X̂k + λkD
k /∈ C or f

(
X̂k + λkD

k
)
> f(X̂k) − αλ2k∥Dk∥2,

do r := r + 1 and λk := ρrλk.
6: if r = R then λk := 0.
7: Set Xk+1 := X̂k + λkD

k, k := k + 1 and go to Step 1.

Now, in order to present our convergence result for Algorithm 8.33, we define a suitable

notion of critical point: we say that X̄ is a critical point of the constrained clustering

problem (8.55) if

0 ∈ 1

q

q∑

i=1

∂ωi(X̄) +NC(X̄),

where NC denotes the (basic) normal cone to C, which coincides with ∂ιC (see, e.g.,[182,

Proposition 1.79]).
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Finally, the following corollary gathers the convergence result of Algorithm 8.33.

Corollary 8.34. Given X0 ∈ Rs×ℓ and η ∈ ]0, 1[, consider the sequence (Xk)k∈N gener-

ated by Algorithm 8.33 with γk ∈
]
0, η

2

]
for all k ∈ N. Then either Algorithm 8.33 stops

at a critical point of (8.55) after a finite number of iterations or it generates an infinite

sequence (Xk)k∈N such that the following assertions hold.

(i) The sequence
(
f(Xk)

)
k∈N monotonically (strictly) decreases and converges, and

Xk ∈ C for all k ≥ 1. Moreover, the sequences (Xk)k∈N verifies that

∞∑

k=0

∥Xk+1 −Xk∥2 <∞.

(ii) If the sequence (Xk)k∈N is bounded, the set of its accumulation points is nonempty,

closed and connected.

(iii) If X̄ ∈ Rs×ℓ is an accumulation point of the sequence (Xk)k∈N, then X̄ is a critical

point of (8.55). In addition, f(X̄) = infk∈N f(Xk).

(iv) If (Xk)k∈N has at least one isolated accumulation point, then the whole sequence

(Xk)k∈N converges to a critical point of (8.55).

Proof. To prove this corollary, let us first notice that every subgradient V k belongs to

co ∂f(Xk). Indeed, by [182, Theorem 3.46 (ii)], we have that each function −ωi is lower

regular at any point. Hence, by resorting to (8.10) and the sum rule for the basic subdif-

ferential, we get that

co ∂f(X) = −∂(−f)(X) = −1

q

q∑

i=1

∂(−ωi)(X) =
1

q

q∑

i=1

co ∂ωi(X) ⊇ 1

q

q∑

i=1

∂ωi(X).

Therefore, we obtain the result by using Remark 8.26, where the justification that X̄ is a

critical point of (8.55) follows from (8.43).
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In this setting, we performed various experiments in which we compared BDSA with

GPPA (i.e., Algorithm 8.33 without linesearch) and the recently proposed Proximal Sub-

gradient Algorithm with extrapolation (ePSA) of [204]. The latter method is a generaliza-

tion of GPPA which includes two inertial terms: one in the evaluation of the proximity

operator and one in the evaluation of the gradient. The algorithm also extends the prox-

imal linearized algorithm [130, 227] and the proximal DC algorithm with extrapolation

of [242]. In particular, it allows the extrapolation parameters to vary in a similar fashion

to the parameter used in FISTA. In our experiments, we set γ := 0.45 for both GPPA and

BDSA. We note that ePSA has a large number of parameters and determining the best

combination is out of the scope of this work. We initially tuned the algorithm according

to [204, Section 4.2.], but it did not show any advantage with respect to GPPA. Increasing

the extrapolation parameter µ̄ reported some clear benefits, so we set it to 1 and kept the

remaining parameters as in [204, Section 4.2.].

In our first experiment, we aim to find a partition into 9 clusters of the 4049 cities in

consideration. We ran the three methods starting from the same random initial point, until

they reached a relative error in the objective function (i.e., |f(Xk+1) − f(Xk)|/f(Xk+1))

smaller than 10−4. This stopping criterion was achieved by BDSA after 46 iterations,

see Figure 8.6a. In particular, in the left figure we observe that BDSA progresses faster

towards regions with a higher concentration of cities. Both GPPA and ePSA converged

to the same critical point than BDSA, but needed 179 and 142 iterations to reach it,

respectively. Figure 8.6b presents an illustrative example where the algorithms converge

to distinct critical points. In this occasion, GPPA and ePSA reached the same critical

point after 146 and 101 iterations, respectively, while BDSA only needed 20 iterations to

converge to a better point with a lower function value. The plots on both Figure 8.6a

and 8.6b give more insight into how the linesearch helps the boosted algorithm to achieve

a more significant decrease in the objective value.

To show that this is the general trend, we solved the same problem with the Spanish

cities for a different number of clusters ℓ ∈ {3, 5, 10, 15, 20, 30, 40, 50}. The results are

summarized in Figure 8.7. For each of these values and for 10 different random starting

points, we ran BDSA until the relative error in the objective function was smaller than

10−4. Then, GPPA and ePSA were run from the same starting point until they reached

the same objective value than BDSA or until the relative error in the objective function

was smaller than 10−4. In particular, GPPA failed to reach the same value than BDSA in

62 out of the 80 runs, while ePSA failed to do so in 44 of the instances. Nevertheless, both

methods were considerably slower. In Figure 8.7, we present the iterations ratio (left) and
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Figure 8.6: We ran GPPA, BDSA and ePSA from the same initial random point, for finding
centroids satisfying the constraints shown in Figure 8.5. On the left, the iterations are drawn
on the map. On the right, we compare the value of f for GPPA, BDSA and ePSA along the
iterations. The figure has two vertical axes, the right one corresponds with the stepsize taken
by BDSA in every iteration, represented with a dotted line.

time ratio (right) of the algorithms for all the instances. On average, BDSA was more

than 3 and 2.5 times faster in iterations than GPPA and ePSA, respectively. With respect

to time, BDSA was more than 2 times faster than the other two methods. There was only

one instance where BDSA was slower than GPPA (only in time), for ℓ = 20, but the

values of objective function f at the stopping point for ePSA and BDSA were 0.503 and

0.478, respectively.
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Figure 8.7: Iteration and time ratios between GPPA and ePSA with respect to BDSA for
solving problem (8.55) with different number of clusters. The algorithms were run until they
reached the same relative error, or until they (GPPA and/or ePSA) attained the objective value
obtained by BDSA. The unfilled markers show the ratio for every particular instance, the filled
markers represent the ratio average for a fixed number of clusters and the lines the overall ratio
average.

8.3.3 A nonconvex generalization of the squared Heron problem

The original formulation of Heron’s problem consists in the following: given a straight line

in the plane, find a point x in it such that the sum of the distances from x to two given

points is minimal. A generalization of Heron’s problem to a Euclidean space of arbitrary

dimension Rn was introduced in [185], where the line was substituted by a closed convex

set C0 and the two given points by a finite family of closed convex sets {Ci}pi=1. This

convex problem was then solved by means of a projected subgradient algorithm. Lately,

different splitting methods have also been employed to tackle this generalization of Heron’s

problem [69, 81].

In this subsection, we go one step ahead and consider a more general version of the

problem. Specifically, we seek to minimize a weighted sum of the squared distance of the

images of x by certain differentiable functions Ψi : Rn → Rmi with Lipschitz continuous

gradients, for i = 1, . . . , p. Namely, given some closed (but not necessarily convex) sets

C0 ⊆ Rn and Ci ⊆ Rmi , for i = 1, . . . , p, we are interested in solving the following

nonconvex generalization of the squared Heron’s problem

min
x∈C0

p∑

i=1

wi

2
d2(Ψi(x), Ci), (8.58)

where wi > 0 represents a weight associated to the i-th constraint.
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Problem (8.58) can be easily reformulated as an instance of (P). Indeed, as shown in

Example 8.12, the squared distance function admits the following decomposition:

1

2
d2(Ψi(x), Ci) =

1

2
∥Ψi(x)∥2 − ACi

(Ψi(x)).

Hence, problem (8.58) is equivalent to the unconstrained problem

min
x∈Rn

ιC0(x) +

p∑

i=1

wi

(
1

2
∥Ψi(x)∥2 − ACi

(Ψi(x))

)
.

It is clear that this problem can be expressed in the form of (P) with the choice of

functions f :=
∑p

i=1
wi

2
∥Ψi(·)∥2, g = ιC0 and hi = wiACi

, for i = 1, . . . , p. Note that,

although the Asplund function ACi
is always convex, ACi

◦ Ψi may not be convex if Ψi is

not linear. Therefore, wi

2
d2(Ψi(x), Ci) is not necessarily upper-C2.

In the following, we analyze the performance of DSA and BDSA for the particular

instance of the problem in which wi := 1 for all i = 1, . . . , p, C0 is the closed ball of

radius rC0 := 5 in Rn, and the soft constraints Ci are hypercubes of edge length 2. To

avoid intersections with C0, the centroids of the hypercubes were randomly generated

with norm between 7 and 10. We set all Ψi := Ψ : Rn → Rm, with

Ψ(x) :=
(
xTQ1x, x

TQ2x, . . . , x
TQmx

)T
,

where, for simplicity, we chose Q1, . . . , Qm as diagonal matrices with randomly generated

entries in ] − 1, 1[. Note, that the gradient of Ψ is the linear transformation given by

∇Ψ(x) = 2(Q1x,Q2x, . . . , Qmx),

which is Lipschitz continuous with constant LΨ := 2ρ(Q), where ρ(Q) denotes the spectral

radius of Q := (Q1, Q2, . . . , Qm). On the other hand, note that ∇f is also Lf -Lipschitz in

the ball C0 for Lf := 6pr2C0
ρ(Q)

√∑m
i=1 ρ(Qi)2, since

∥∇f(x) −∇f(y)∥ = ∥p (∇Ψ(x)Ψ(x) −∇Ψ(y)Ψ(y)) ∥
≤ p∥∇Ψ(x)Ψ(x) −∇Ψ(x)Ψ(y)∥ + p∥∇Ψ(x)Ψ(y) −∇Ψ(y)Ψ(y)∥

≤ p∥∇Ψ(x)∥

√√√√
m∑

i=1

(xTQix− yTQiy)2 + p∥Ψ(y)∥LΨ∥x− y∥
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≤ 2ρ(Q)p


∥x∥

√√√√
m∑

i=1

4r2C0
ρ(Qi)2 + max

z∈C0

∥Ψ(z)∥


 ∥x− y∥

≤ 2ρ(Q)p


∥x∥2rC0

√√√√
m∑

i=1

ρ(Qi)2 + max
z∈C0

√√√√
m∑

i=1

∥z∥4 ρ(Qi)2


 ∥x− y∥

≤ 6ρ(Q)pr2C0

√√√√
m∑

i=1

ρ(Qi)2∥x− y∥ = Lf∥x− y∥.

Therefore, according to (8.5) and Proposition 8.9, the function f is Lf/2-upper-C2.

In order to fairly illustrate the advantages of the linesearch step in BDSA, we initially

perform an experiment to find some adequate performing parameters for DSA (i.e., when

no linesearch was performed). In all the experiments in this subsection, we stopped the

algorithms when

|Φ(xk+1, yk+1) − Φ(xk, yk)| < 10−6. (8.59)

Tuning the parameters for DSA We set n = 3, m = 4 and p = 3, and ran Algo-

rithm 8.17 with different choices of parameters for 5 randomly generated problems and

5 different starting points for each problem (i.e., 25 instances in total). Having in mind

the bounds for the parameters given in Theorem 8.24, we tested the algorithm for every

combination of the following choices:

γk := η

(
Lf + LΨ

p∑

i=1

∥yki ∥
)−1

, with η ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.99},

µk
i := µ ∈ {0.5, 1, 5}, for all k ≥ 0.

The algorithm always obtained the same value of Φ in the last iterate independently of the

combination of stepsize parameters chosen. However, there is a considerable variability

in the number of iterations needed for reaching the stopping criterion, which we show in

Table 8.4. Note that the parameter γk is the only one providing significant differences,

being η = 0.99 the best performing value. The parameter µ does not seem to have much

influence in the results obtained.
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η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9 η = 0.99

µ = 0.5 8 013.0 3 104.8 1 989.0 1 486.6 1 201.5 1 104.9
µ = 1 8 012.4 3 103.7 1 987.6 1 485.0 1 199.9 1 103.4
µ = 5 8 011.7 3 102.9 1 986.5 1 483.9 1 198.6 1 102.1

Table 8.4: Average number of iterations of DSA for 5 random problems (8.58) and 5 random
starting points for each problem, with n = 3,m = 4, p = 3 and different values of the parameters.

DSA vs. BDSA: Benefit of linesearches Now we compare both versions of Algo-

rithm 8.17 with the best choice parameter η = 0.99. Since µ does not have much effect,

we set a small value µk = 0.5, which is more likely to satisfy the bound in Proposi-

tion 8.21 (iii). We tested DSA and BDSA for different values of n, m and p. Both algo-

rithms obtained similar results regarding the objective function, showing only differences

after the second decimal, in favor of BDSA in all but one instance, so we only present the

results regarding number of iterations (without counting those needed for the linesearch)

and the running time. The results are summarized in Figures 8.8 and 8.9, where we ob-

serve that BDSA clearly outperformed DSA in each of the 120 instances. In particular,

BDSA was on average more than 2.5 times faster than DSA.
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Figure 8.8: For p = 3, each n ∈ {5, 10, 15, 20, 30, 50} and m = 1.2n, we randomly generated
10 different problems and ran DSA and BDSA initialized at the same random starting point.
We plot with circles the ratio of the number of iterations (left) and the running time (right).
The black dots represent the average ratio for a fixed n and the dashed line the overall average
ratio.

The generalized squared Heron Problem with nonconvex sets In our last ex-

periment, we consider examples of (8.58) in which the sets Ci are not necessarily convex.

Instances of the generalized Heron problem with nonconvex sets have already been stud-

ied, for example in [184]. In this experiment, we let Ψi be a linear mapping of the form
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Figure 8.9: For n = 20, m = 16 and each p ∈ {3, 5, 7, 10, 15, 20}, we randomly generated 10
different problems and ran DSA and BDSA initialized at the same random starting point. We
plot with circles the ratio of the number of iterations (left) and the running time (right). The
black dots represent the average ratio for a fixed n and the dashed line the overall average ratio.

Ψi(x) = Qx, with Q ∈ Rm×n, for all i = 1, . . . , p. We showed in Example 8.12 that

x 7→ 1
2
d2(Qx,C) is a κ-upper-C2 function with constant κ = ρ(Q)2/2. Moreover, note that

by [28, Theorem 5.3 (iii)] its subdifferential at a point x ∈ Rn is given by

∂

(
1

2
d2(Q(·), C)

)
(x) = QT

(
Qx− PC(Qx)

)
.

These two facts allow us to tackle (8.58) when Ci are not necessarily convex as an instance

of problem (P) by setting f :=
∑p

i=1
wi

2
d2(Q(·), Ci), g = ιC0 and h = 0.

We work with the particular instance of (8.58) in which p = 1, w1 = 1 and C1 is given

as the union of 5 hypercubes which were generated in the same way as in the previous

experiment. The entries of Q were randomly generated in the interval ] − 1, 1[. As in

the previous experiment, up to the authors’ knowledge, in this setting BDSA does not

recover any method already proposed in the literature. In Figure 8.10 we show the results

of running both DSA and BDSA for 8 different dimensions and 10 different randomly

generated problems for each dimension. In this case, BDSA reached a better value of the

objective function than DSA in every instance. Regarding the comparison in iterations and

time, BDSA was again significantly faster: on average, DSA needed around 5 times more

iterations and 2.5 more running time than BDSA to satisfy the stopping criterion (8.59).
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Figure 8.10: Let n ∈ {50, 100, 200, 300, 500, 1 000, 2 000, 3 000} and m = 1.2n. For every choice
of dimensions we run both algorithms for 10 different randomly generated problems and initial-
ized at the same random starting point. The unfilled markers show the ratio in iterations and
CPU time of DSA over BDSA for every particular instance, the black dots represent the ratio
average for a fixed n and the dashed line the overall ratio average.



Chapter 9

The superiorization method with restarted

perturbations for split minimization problems

with an application to radiotherapy treatment

planning

In a fair number of applications the nature and size of the arising constrained optimiza-

tion problems make it computationally difficult, or sometimes even impossible, to obtain

exact solutions and alternative ways of handling the data of the optimization problem

should be considered. A common approach is the regularization technique that replaces

the constrained optimization problem by an unconstrained optimization one wherein the

objective function is a linear combination of the original objective and a regularization

term that “measures” in some way the constraint violations.

This approach is used for constrained minimization problems appearing in image pro-

cessing, where the celebrated Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

method was pioneered by Beck and Teboulle [55]. In situations when there are some

constraints whose satisfaction is imperative (“hard constraints”) the problem can be con-

sidered as being composed of two goals: a major goal of satisfying the constraints and a

secondary, but desirable, goal of target (a.k.a. objective, merit, cost) function reduction.

In this setting, the Superiorization Methodology (SM) has proven capable of efficiently

handling the data of very large constrained optimization problems. The idea behind supe-

riorization is to apply a feasibility-seeking algorithm and introduce in each of its iterations

a certain change, referred to as a perturbation, whose aim is to reduce the value of the

target function. When the feasibility-seeking iterative method is bounded perturbation

189
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resilient (see Definition 9.4 below), the superiorized version of the feasibility-seeking al-

gorithm will converge to a feasible solution which is expected to have a reduced, not

necessarily minimal, target function value.

In this chapter, we propose a novel superiorized algorithm for dealing with the data

of the following split minimization problem:

Problem 9.1 (The Split Minimization Problem (SMP)). Given two nonempty,

closed and convex subsets C ⊆ Rn and Q ⊆ Rm, an m × n real matrix A, and convex

functions f : Rn → R and g : Rm → R, find

x∗ ∈ C such that x∗ ∈ argmin{f(x) | x ∈ C}, and such that (9.1)

y∗ := Ax∗ ∈ Q and y∗ ∈ argmin{g(y) | y ∈ Q}. (9.2)

It is important to observe that the two objective functions f and g in (9.1) and (9.2)

may conflict with each other, and thus the existence of a solution to Problem 9.1 is not

guaranteed even if Ax ∈ Q for all x ∈ C. This is a new genre of problems which are

not considered as multi-objective but rather split between two spaces. Problem 9.1 is a

particular instance of the Split Variational Inequality Problem (SVIP), which employs, in-

stead of the minimization problems in (9.1) and (9.2), variational inequalities. The SVIP,

see [91], entails finding a solution of one Variational Inequality Problem (VIP), the image

of which under a given bounded linear transformation is a solution of another VIP. Al-

gorithms for solving the SVIP require computing the projections onto the corresponding

constraint sets at every step, see [91]. In the case when C and Q are each given by an

intersection of nonempty, closed and convex sets, auxiliary algorithms, such as Dykstra’s

algorithm [71] (see also [44, Subsection 30.2]), the Halpern–Lions–Wittmann–Bauschke

algorithm [40] (see also [44, Subsection 30.1]) or the averaged alternating modified reflec-

tions method [14, 80] are needed for computing/approximating these projections, which

will considerably increase the running time and the numerical errors of the algorithms. In

this work, we do not aim to find an exact solution of the SMP, but rather obtain a feasible

solution with reduced values of the objective functions f and g. This allows us to drop

the usual assumption on the existence of a solution to the minimization problem, and

instead we will only require that the set of solutions to the associated feasibility problem

(see, Problem 9.11) is nonempty.

Our main findings are the following:

� In Section 9.2, we introduce a new technique for setting up the stepsizes in the

perturbations of the SM, which results in a new version of the general structure of the
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superiorized algorithm. This new scheme increases the efficiency of the superiorized

algorithm by allowing restarts of stepsizes.

� Section 9.3 contains a new algorithm for dealing with the data of the split mini-

mization problem that has the ability to superiorize independently over subvectors.

� Our contributions cater to real-world situations, as we illustrate in Section 9.4.3

for a nontrivial realistic problem arising in intensity-modulated radiation therapy

treatment planning.

This chapter is based on the published work [23].

9.1 The superiorization methodology

In this section we present a brief introduction to the superiorization methodology (SM),

which is a simplified version of the presentation in [86]. The SM has been shown to be

a useful tool for handling the data of difficult constrained minimization problems of the

form

min ϕ(x) s.t. x ∈ C,

where ϕ : Rn → R is a target function and C ⊆ Rn is a nonempty feasible set, generally

presented as an intersection of a finite family of constraint sets C :=
⋂p

s=1Cs. When

{Cs}ps=1 is a collection of nonempty, closed and convex sets in Rn, there is a wide range

of projection methods (see, e.g., [44, 80, 83]) that can be employed for solving the convex

feasibility-seeking problem

find x∗ ∈ C :=

p⋂

s=1

Cs. (9.3)

The first building brick of the SM is an iterative feasibility-seeking algorithm, often a

projection method, which is referred to as the basic algorithm, capable of (asymptotically)

finding a solution to (9.3). This algorithm employs an algorithmic operator TC : Rn → Rn

in the following iterative process.

Algorithm 9.2 The basic algorithm.

1: Initialization: Choose an arbitrary initialization point x0 ∈ Rn.
2: Iterative Step: Given the current iterate xk, calculate the next iterate xk+1 by

xk+1 = TC(xk).
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Example 9.3. A well-known feasibility-seeking algorithm for the set C given in (9.3) is

the method of sequential alternating projections [240], whose algorithmic operator is given

by

TC := PCpPCp−1 · · ·PC2PC1 . (9.4)

Many other iterative feasibility-seeking projection methods are available, see, e.g.,

the excellent review paper of Bauschke and Borwein [42] and [135]. Such methods have

general algorithmic structures of Block-Iterative Projection (BIP), see, e.g., [2, 3] or String-

Averaging Projections (SAP), see, e.g., [89, 93, 192].

In the SM one constructs from the basic algorithm a “superiorized version of the

basic algorithm” which includes perturbations of the iterates of the basic algorithm. This

requires the basic algorithm to be resilient to certain perturbations. The definition is given

next with respect to the feasibility-seeking operator (9.4), but is phrased in the literature

with algorithmic operators of any basic algorithm.

Definition 9.4 (Bounded perturbation resilience). Let {Cs}ps=1 be a family of closed

and convex sets in Rn such that C =
⋂p

s=1Cs is nonempty. An algorithmic operator

TC : Rn → Rn for solving the feasibility-seeking problem associated with C is said to

be bounded perturbation resilient if the following holds: for all x0 ∈ Rn, if the sequence

{xk}∞k=0 generated by Algorithm 1 converges to a solution of the feasibility-seeking problem,

then any sequence {yk}∞k=0 generated by

yk+1 = TC

(
yk + ηkv

k
)
, ∀k ∈ N, (9.5)

for any y0 ∈ Rn, where the vector sequence (vk)k∈N is bounded and the scalars (ηk)k∈N

are nonnegative and summable, i.e.,
∑∞

k=0 ηk <∞, also converges to a solution of the

feasibility-seeking problem.

The property of bounded perturbation resilience has been validated for two major pro-

totypical algorithmic operators that give rise to the string averaging projections method

and the block iterative projections method mentioned above, see [79] and [127], respec-

tively. These schemes include many well-known projection algorithms, such as the method

of alternating projections and Cimmino’s algorithm. The convexity and closedness of the

sets Cs is present in the results proving the bounded perturbation resilience of the BIP

algorithms and the SAP methods.

The importance of bounded perturbation resilience for the SM stems from the fact

that it allows to include perturbations in the iterative steps of the basic algorithm without
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compromising its convergence to a feasible solution, while steering the algorithm toward

a feasible point with a reduced (not necessarily minimal) value of the target function.

The fundamental idea underlying the SM is to use the bounded perturbations in (9.5)

in order to induce convergence to a feasible point which is superior, meaning that the

value of the target function ϕ is smaller or equal than that of a point obtained by apply-

ing the basic algorithm alone without perturbations. To achieve this aim, the bounded

perturbations in (9.5) should imply that

ϕ(yk + ηkv
k) ≤ ϕ(yk), for all k ∈ N. (9.6)

To do so, the sequence (vk)k∈N is chosen according to the next definition, which is closely

related to the concept of descent direction.

Definition 9.5. Given a function ϕ : Rn → R and a point y ∈ Rn, we say that a direction

v ∈ Rn is nonascending for ϕ at y if ∥v∥ ≤ 1 and there is some δ > 0 such that

ϕ(y + λv) ≤ ϕ(y), for all λ ∈ [0, δ].

Obviously, the zero vector is a nonascending direction. However, it would not provide

any perturbation of the sequence in (9.5). Denoting by ∂ϕ
∂xi

(x) the partial derivatives, the

next result provides a formula for obtaining nonascending vectors of convex functions.

Fact 9.6 ([148, Theorem 2]). Let ϕ : Rn → R be a convex function and let x ∈ Rn.

Let u = (ui)
n
i=1 ∈ Rn be defined, by

ui :=

{
∂ϕ
∂xi

(x), if ∂ϕ
∂xi

(x) exists,

0, otherwise,

and define

v :=

{
0, if ∥u∥ = 0,

−u/∥u∥, otherwise.

Then v is a nonascending vector for ϕ at the point x.

Next we present the pseudo-code of the iterative process governing the superiorized

version of the basic algorithm.
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Algorithm 9.7 The superiorized version of the basic algorithm.

1: Initialization: Choose an arbitrary initialization point y0 ∈ Rn, a summable non-
negative sequence (ηℓ)ℓ∈N and a positive integer N .

2: Set k := 0 and ℓ := −1.
3: repeat
4: Set yk,0 = yk.
5: for j = 0 to N − 1 do
6: Choose a nonascending vector vk,j for ϕ at yk,j.
7: Set ℓ := ℓ+ 1.
8: while ϕ(yk,j + ηℓv

k,j) > ϕ(yk) do
9: Set ℓ := ℓ+ 1.
10: end while
11: Set yk,j+1 = yk,j + ηℓv

k,j.
12: end for
13: Update yk+1 = TC

(
yk,N

)
and set k := k + 1.

The choice of nonascending vectors guarantees that the while loop in lines 8–10 is

finite (see [148] for a complete proof on the termination of the algorithm). When a bounded

perturbation resilient operator TC is chosen as the basic algorithm, Algorithm 9.7 will

converge to a solution of the feasibility-seeking problem. Moreover, it is expected that

the perturbations in line 11, which reduce at each inner-loop step the value of the target

function ϕ (line 8), will drive the iterates of Algorithm 9.7 to an output which will be

superior (from the point of view of its ϕ value) to the output that would have been

obtained by the original unperturbed basic algorithm.

9.1.1 The volatile nature of the superiorization methodology

In general, there is no theoretical guarantee that the point obtained by the superiorized

algorithm would be superior to the one reached with the basic algorithm. The performance

of the SM might be influenced on different factors. In what follows, we present a simple

example where the ability of the SM to improve the output from the basic algorithm

depends on the choice of the initialization point.

Consider the problem of finding the minimum norm point in the intersection of

two half-spaces A := {x ∈ R2 | x1 + x2 ≥ 1} and B := {x ∈ R2 | x1 − x2 ≤ 0}. If we

use the method of alternating projections as the basic algorithm with starting point

y0 := (3/10, 0)T , one obtains y1 = (1/2, 1/2)T , which is the solution to the problem.

In Figure 9.1 (left) we show 50 iterations of its superiorized version for the same start-

ing point with ϕ(y) := ∥y∥2, step-sizes in the sequence (2−ℓ)ℓ∈N, N = 1 and taking as
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nonascending direction vk := − ∇ϕ(yk)
∥∇ϕ(yk)∥ = − yk

∥yk∥ .

From this starting point the basic algorithm for feasibility-seeking alone without per-

turbations (i.e., the alternating projection method) converges in one iteration to the min-

imum norm point in the intersection of the two half-spaces, while its superiorized version

remains far from the solution after 50 iterations. This happens because the first perturba-

tion applied to this y0 results in a point on the horizontal axis inside the set A. If we were

to choose another y0 on the x-axis, but far enough to the right inside the set B, then after

one perturbation the next point will be outside both sets A and B on the positive x-axis

and this would lead, following a single iteration of feasibility-seeking, to the minimum

norm point whereas the feasibility-seeking-only from that y0 onward would lead to a less

“superior” feasible point, as shown in Figure 9.1 (right).

Figure 9.1: (Left) Taking y0 = (3/10, 0)T as starting point, the alternating projection method
converges in one iteration to the minimum norm point in the intersection of two half-spaces,
while its superiorized version remains far from the solution after 50 iterations. (Right) If we
take y0 = (11/10, 0)T , in one iteration, the superiorized version converges to the minimum norm
point while the alternating projection method converges to a feasible point which is not the
solution.

Observe that we only computed 50 iterations because after them the norm of the

perturbations is smaller than 2−50 ≈ 8.9 · 10−16. Hence, the effect of the perturbations

steering the basic algorithm to a superiorized solution vanishes, having no real effect on

it. This phenomenon is inherent in the SM and the purpose of the restarts, proposed in

the next section, is to improve this unwanted behavior.

Proving mathematically a guarantee of global function reduction of the SM will prob-

ably require some additional assumptions on the feasible set, the target function, the

parameters involved, or even on the initialization points. In [92, Section 3] the authors

gave a precise definition of the “guarantee problem” of the SM: “A mathematical guar-

antee has not been found to date that the overall process of the superiorized version of
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the basic algorithm will not only retain its feasibility-seeking nature but also accumulate

and preserve globally the target function reductions. We call this fundamental question of

the SM ‘the guarantee problem of the SM ’ which is: under which conditions one can guar-

antee that a superiorized version of a bounded perturbation resilient feasibility-seeking

algorithm converges to a feasible point that has target function value smaller or equal to

that of a point to which this algorithm would have converged if no perturbations were

applied – everything else being equal.”

Numerous works that are cited in [84] show that this global function reduction of the

SM occurs in practice in many real-world applications. In addition to a partial answer

in [92] with the aid of the “concentration of measure” principle there is also the partial

result of [96, Theorem 4.1] about strict Fejér monotonicity of sequences generated by an

SM algorithm.

9.2 The superiorization method with perturbations restarts

We offer here a modification of the SM, applied to the superiorized version of the basic

algorithm in Algorithm 9.7, by setting the perturbations stepsizes in a manner that al-

lows restarts. Commonly, the summable sequence (ηℓ)ℓ∈N employed in Algorithm 9.7 is

generated by taking a real number α ∈ ]0, 1[, referred to as kernel, and setting ηℓ := αℓ,

for ℓ ≥ 0. This strategy works well in practice, as witnessed by many works cited in [84],

but it has though the inconvenience that, as the iterations progress, the stepsizes in (9.5)

decrease toward zero quite fast, yielding insignificant perturbations.

In some applications, various methods have been studied for controlling the stepsizes,

see, e.g., [85, 158, 208], see also the software package SNARK14 [193] which is an updated

version of [155]. We propose here a new strategy which allows restarting the sequence of

stepsizes to a previous value while maintaining the summability of the series of stepsizes.

The restarting of stepsizes is a useful approach that allows to improve an algorithm’s

performance, see, e.g. [168, 197], where this technique is applied to the stochastic gradient

descent and FISTA, respectively.

Our proposed scheme for restarting the stepsizes is controlled by a sequence of positive

integers
(
Wr

)
r∈N, where we call the indices r = 1, 2, . . . restart indices. Bearing some

similarity to a backtracking scheme, the initial stepsize at the beginning of a new loop of

perturbations is reduced after each restart. Specifically, let α ∈ ]0, 1[ be any fixed kernel,

assume that r restarts have been already performed and let Wr denote the number of

consecutive stepsizes that must be taken before allowing the next restart.
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The algorithm begins with r = 0 and takes W0 decreasing stepsizes in the sequence

{1, α, α2, . . .}. After these W0 stepsizes, the algorithm performs a restart in the stepsizes

by setting r = 1 and taking anew W1 decreasing stepsizes in the sequence {α, α2, α3, . . .}.

Then the algorithm performs another restart with r = 2 and uses stepsizes in the sequence

{α2, α3, α4, . . .}, and so on.

This is accurately described in the pseudo-code of the superiorized version of the basic

algorithm with restarts presented below. Observe that there are no restrictions on how

the sequence
(
Wr

)
r∈N is chosen. A simple possible choice is to take a positive constant

value Wr := W , for all r ∈ N.

Note that, since the kernel α needs to lie in the interval ]0, 1[, despite performing

restarts, the perturbations may happen to yield an insignificant decrease in the objective

value, specially if the norm of the nonascending vectors is close to zero. This can be

controlled by considering a positive real number c and performing the restarts to the

sequence (c αℓ)ℓ∈N rather than to (αℓ)ℓ∈N. This parameter is also included in the pseudo-

code of Algorithm 9.8.

Algorithm 9.8 The superiorized version of the basic algorithm with restarts.

1: Initialization: Choose an arbitrary initialization point y0 ∈ Rn, α ∈ ]0, 1[, a positive
number c, a positive integer N and a sequence of positive integers

(
Wr

)
r∈N.

2: Set k := 0, ℓ := −1, w := 0 and r := 0.
3: repeat
4: Set yk,0 = yk.
5: for j = 0 to N − 1 do
6: Choose a nonascending vector vk,j for ϕ at yk,j.
7: Set ℓ := ℓ+ 1.
8: while ϕ(yk,j + c αℓvk,j) > ϕ(yk) do
9: Set ℓ := ℓ+ 1.
10: end while
11: Set yk,j+1 = yk,j + c αℓvk,j.
12: end for
13: Set w := w + 1.
14: if w = Wr then
15: Set r := r + 1, ℓ := r and w := 0.
16: end if
17: Update yk+1 = TC

(
yk,N

)
and set k := k + 1.

Remark 9.9. The strategy of restarts in Algorithm 9.8 preserves the summability of the

overall series of stepsizes. This is so because even if during the iterative process the largest
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stepsizes allowed in each of the sets Wr were taken, the infinite sequence of all stepsizes,

((
αr+ℓ

)Wr−1

ℓ=0

)∞
r=0

, (9.7)

would still form a bounded series. Indeed, since α ∈ ]0, 1[, we have that

∞∑

r=0

Wr−1∑

ℓ=0

αr+ℓ ≤
∞∑

r=0

αr

∞∑

ℓ=0

αℓ =
1

(1 − α)2
.

Hence, since only stepsizes leading to expected superior values of the target function are

allowed by (9.6) (line 8 of Algorithm 9.8), each of the stepsizes taken will be smaller

than the corresponding one in the sequence (9.7), so its sum will always be smaller than

1/(1 − α)2 and will, thus, define bounded perturbations.

For some applications, the SM with restarts is very useful, notably outperforming the

current SM without restarts (see Section 9.4.3).

9.3 A superiorized algorithm for subvectors in the split minimization

problem

We develop here a superiorized algorithm for tackling the data of the SMP in Problem 9.1

when C :=
⋂p

s=1Cs and Q :=
⋂q

t=1Qt, where p and q are two integers and {Cs}ps=1 and

{Qt}qt=1 are two families of closed and convex sets with nonempty intersections in Rn and

Rm, respectively. To ease the discussion we will refer here to Rn and Rm, as the “x-space”

and the “y-space”, respectively.

9.3.1 The SMP with subvectors

In some situations of practical interest, the minimization problem in (9.2) should be

independently applied to subvectors of the y-space. We discuss an instance in the field of

radiation therapy treatment planning where this is significant in Section 9.4 below.
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For simplicity and without loss of generality, we assume that the subvectors are in

consecutive order. The m × n real matrix A is divided into B blocks and is represented

by

A :=




A1

A2

...

AB



, (9.8)

where, for each b = 1, . . . , B, the matrices Ab ∈ Rmb×n are blocks of rows of the matrix A,

with
∑B

b=1mb = m. Thus, any vector y := Ax is of the form

y =




y1

y2

...

yB




=




A1

A2

...

AB



x,

where yb ∈ Rmb are subvectors of y ∈ Rm.

Problem 9.10 (The SMP with subvectors). Given two families of closed and convex

sets {Cs}ps=1 ⊆ Rn and {Qt}qt=1 ⊆ Rm such that C :=
⋂p

s=1Cs ̸= ∅ and Q :=
⋂q

t=1Qt ̸= ∅,

an m× n real matrix A in the form (9.8) for given positive integer B, a convex function

f : Rn → R and convex functions ϕb : Rmb → R, for b = 1, 2, . . . , B, find

x∗ ∈ C such that x∗ ∈ argmin{f(x) | x ∈ C}, and such that (9.9)

y∗ := Ax∗ ∈ Q and yb∗ ∈ argmin{ϕb(y
b) | y ∈ Q}, for all b ∈ {1, . . . , B}. (9.10)

Our algorithm, presented below, can also handle subvectors in the x-space, but for

simplicity we restrict ourselves here to subvectors in the y-space.

9.3.2 Reformulation in the product space

To work out a superiorization method for the data of the SMP with subvectors in Prob-

lem 9.10 we look at a Multiple Sets Split Feasibility Problem (MSSFP), see, e.g., [175], as

follows.
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Problem 9.11 (The Multiple Sets Split Feasibility Problem (MSSFP)). Given

C :=
⋂p

s=1Cs and Q :=
⋂q

t=1Qt, where p and q are two integers, and {Cs}ps=1 and {Qt}qt=1

are two families of closed and convex sets with nonempty intersections each in Rn and

Rm, respectively, and an m× n real matrix A, find

x∗ ∈ C =

p⋂

s=1

Cs such that y∗ := Ax∗ ∈ Q =

q⋂

t=1

Qt.

This is a generalization of the Split Feasibility Problem (SFP) that occurs when

p = q = 1 in the MSSFP. The SFP, which plays an important role in signal process-

ing, in medical image reconstruction and in many other applications, was introduced by

Censor and Elfving [88] in order to model certain inverse problems. Since then, many iter-

ative algorithms for solving the SFP have been proposed and analyzed. See, for instance,

the references given in [211] or consult the section “A brief review of ‘split problems’

formulations and solution methods” in [76].

Our proposed algorithm deals with an equivalent reformulation of Problem 9.11 in the

product space Rn×Rm. Adopting once more the notation that quantities in the product

space are denoted by boldface symbols, we define the sets

C :=

(
p⋂

s=1

Cs

)
×
(

q⋂

t=1

Qt

)
and V := {z = (x, y) ∈ Rn × Rm | Ax = y}.

By Proposition 2.35 the projection onto V is given by PV = Id−ZT (ZZT )−1Z, with

Z := [A,−I], where I denotes the m×m identity matrix. Then Problem 9.11 is equivalent

to the problem:

find a point z∗ ∈ C ∩V. (9.11)

Without loss of generality, we assume that p = q, since otherwise the whole space (or

one particular set) could be added repeatedly as a constraint until both indices are equal.

Since the projection of a Cartesian product is the Cartesian product of the projections

(see Proposition 2.21), the following implementation of the method of alternating projec-

tions can be employed to solve (9.11). We consider this as our basic algorithm for the

superiorization method for subvectors, and gather it in Algorithm 9.12.
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Algorithm 9.12 Basic algorithm for the MSSFP.

1: Initialization: Choose an arbitrary initialization point x0 ∈ Rn. Set y0 = Ax0.
2: Iterative Step: Given the current iterate zk = (xk, yk), calculate the next iterate

zk+1 by
zk+1 = PV

(
(PCp × PQp) · · · (PC1 × PQ1) (zk)

)
. (9.12)

In order to construct a superiorized version of Algorithm 9.12 that can cope with the

data of the SMP with subvectors in Problem 9.10, we need to establish at each iteration

some appropriate perturbations that will steer the algorithm to a superiorized solution.

For this, we note that the vector yk inside zk in (9.12) is expressed as

yk =




y1,k

y2,k

...

yB,k




=




A1x
k

A2x
k

...

ABx
k



.

Thus, we declare our perturbation vector to be
(
xk

yk

)
+ ηk

(
uk

vk

)
, for all k ∈ N, (9.13)

where {ηk}∞k=0 is a nonnegative summable sequence, uk is a nonascending vector for f at

xk and

vk =




v1,k

v2,k

...

vB,k



,

with each vb,k being a nonascending vector for ϕb at the point Abx
k, for all b = 1, 2, . . . , B.

The complete pseudo-code of the superiorized version of the basic Algorithm 9.12 with

perturbations of the form given by (9.13) is shown in Algorithm 9.13.

Since the method of alternating projections is bounded perturbation resilient [79],

Algorithm 9.13 will converge to a solution of the feasibility problem (9.11). Moreover, by

the nature of the SM, the algorithm is expected to converge to a point z∗ = (x∗, y∗) which

will be superior with respect to f for the component x in the x-space, and with respect

to ϕb for the b-th subvector in the y-space, for b = 1, 2, . . . , B.
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Algorithm 9.13 Superiorized Algorithm for the data of the SMP with subvectors.

1: Initialization: Choose x0 ∈ Rn, a summable nonnegative sequence {ηℓ}∞ℓ=0 and a
positive integer N .

2: Set yb,0 = Abx
0 for b ∈ J1, BK. Set k := 0 and ℓ := −1.

3: repeat
4: Set xk,0 = xk.
5: Set yb,k,0 = yb,k for b ∈ J1, BK.
6: for j = 0 to N − 1 do
7: Take vk,jx a nonascending vector for f at xk,j.
8: Take vb,k,jy a nonascending vector for ϕb at the point yb,k,j for all b.
9: Set ℓ := ℓ+ 1.
10: while f(xk,j + ηℓv

k,j
x ) > f(xk) or there exists b with

ϕb(y
b,k,j + ηℓv

b,k,j
y ) > ϕb(y

b,k) do
11: Set ℓ := ℓ+ 1.
12: end while
13: Set xk,j+1 = xk,j + ηℓv

k,j
x .

14: Set yb,k,j+1 = yb,k,j + ηℓv
b,k,j
y .

15: end for
16: Update

(xk+1, y1,k+1, . . . , yB,k+1) = PV

((
PCp

× PQp

)
· · ·
(
PC1

× PQ1

) (
xk,N , y1,k,N , . . . , yB,k,N

))
.

17: Set k := k + 1.

9.4 Numerical experiments

Our aim in this section is not to compare the superiorization method with constrained

optimization methods. The SM is not a method intended to solve exact constrained op-

timization problems, although such comparisons were done elsewhere, see, e.g., [145] or

[87]. Our goal is to show how the SM can be improved and this is achieved by compar-

ing the SM with and without restarts and with and without perturbations. We present

our results of numerical experiments performed on three different problems. The first

two problems are simple illustrative examples. The computational performance of the SM

with restart algorithms, proposed here, can be substantiated with exhaustive testing of

the possible specific variants permitted by the general framework and their various user-

chosen parameters. This should be done on larger problems, preferably within the context

of a significant real-world application. Therefore, our third problem addresses an actual

situation arising in the real-world application of Intensity-Modulated Radiation Therapy

(IMRT) treatment planning.



9.4. Numerical experiments 203

The purpose of the first example is to illustrate the potential benefits of superiorization

with restarts for finding a point with reduced norm in the intersection of two convex

sets. We first consider the case of two balls and then explore the case of two half-spaces

presented in Remark 9.1.1, in which superiorization did not achieve its purpose for a

particular setting.

In the second example, we illustrate the behavior of Algorithm 9.13 in a simple setting

with C,Q ⊂ R2, where each of the sets is an intersection of three half-spaces.

Finally, the last experiment shows the benefits of superiorization with restarts in a

difficult realistic setting in IMRT, where a large-scale multiobjective optimization problem

arises. All tests were run on a desktop of Intel Core i7-4770 CPU 3.40GHz with 32GB

RAM, under Windows 10 (64-bit).

9.4.1 The benefits of superiorization with restarts

Consider the problem of finding the minimum norm point in the intersection of two balls

A and B in the Euclidean 2-dimensional space, so ϕ : R2 → R is given by the squared

norm, i.e., ϕ(x) := 1
2
∥x∥2 for x ∈ R2. The underlying feasibility problem can be solved by

the method of alternating projections, which we chose as the basic algorithm. Hence, the

feasibility-seeking algorithmic operator used in our computations is

T = PBPA,

where PA and PB denote the projection operators onto the balls A and B, respectively. We

tested the method of alternating projections, its superiorized version (with two different

kernels α = 0.6 and α = 0.999) and its superiorized version with restarts (with α = 0.6

and Wr = 50, for all r ∈ N). We set N = 1 in all the superiorized algorithms. The

nonascending directions were taken as vk := − ∇ϕ(yk)
∥∇ϕ(yk)∥ = − yk

∥yk∥ .

The behavior of these algorithms is shown in Figure 9.2. On the left, we represent 500

iterations generated by each algorithm. On the right, we plot the sequence of perturbations

obtained before applying the algorithmic operator, that is, we draw the points
(
yk,N

)500
k=0

.

This sequence coincides with the sequence of iterates
(
yk
)500
k=0

in the case when no pertur-

bations are performed at all and only the basic algorithm works, while it coincides with

the sequence
(
yk + ηkv

k
)500
k=0

for the superiorized algorithms.

As expected, the method of alternating projections converges to a point in the in-

tersection which is not desirable according to the task of reducing the target function
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value (the squared norm). Superiorization with kernel α = 0.6 reaches a better point than

the output of the basic algorithm, but is yet far from the solution to the problem. This

might well be due to the step-sizes not being big enough for the perturbations to steer

the algorithm to a proper function reduction.

Taking α = 0.999 in the standard superiorized version of the algorithm results in a

very slow convergence of the sequence, as can be observed on the right figure in Figure 9.2.

These deficiencies are resolved by considering superiorization with restarts, which achieves

fast convergence to a solution with reduced norm in the intersection.

Figure 9.2: Behavior of the different algorithms considered applied to the data of the problem
of finding the minimum norm point in the intersection of the balls A and B. The figures show
the first 500 points in the sequence of iterates

(
yk
)500
k=0

(left) and the sequence of perturbed

iterations before applying the algorithmic operator
(
yk,N

)500
k=0

(right) of each algorithm.

The example presented in Section 9.1.1 is artificial in the sense that the vectors defining

the half-spaces are orthogonal and the starting point was chosen in a particular region

of the plane which was less favorable to the superiorized algorithm. Also, the value of

the kernel was chosen to be small (α = 0.5), to aggravate the vanishing effect of the

perturbations.

To study what happens with random data, we ran an experiment generating 1 million

pairs of half-spaces A := {x ∈ R2 | ⟨cA, x⟩ ≤ bA} and B := {x ∈ R2 | ⟨cB, x⟩ ≤ bB} where

the vectors cA, cB ∈ R2 were randomly chosen and then normalized, and bA, bB ∈ ] − 1, 0[

(to ensure that (0, 0)T ̸∈ A ∩ B). For each pair of half-spaces, we generated a random

starting point y0 ∈ [−1, 1]2 such that y0 ̸∈ A ∩B.

Then, we ran from y0 the basic algorithm (feasibility-seeking alternating projections),

its superiorized version with kernel α ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and its superiorized version



9.4. Numerical experiments 205

with restarts with Wr = 20 and N = 1. The results are summarized in Table 9.1. In

this table “AP” stands for “alternating projections”, “Sup” stands for “the superiorized

version”, and “Sup. Res.” stands for “the superiorized version with restarts”. We count

that one method is better than the other when the norm of its solution is smaller than the

norm of the second method’s output minus 10−3. With kernel α = 0.5, the superiorized

algorithm failed to obtain a solution with lower norm than the basic algorithm in 12 931

of the 1 million instances; with kernel α = 0.9, this number was reduced to 122. The

superiorized algorithm with restarts with kernel α = 0.7 only failed to get a better solution

than the basic algorithm in 21 instances. Remarkably, when the kernels α ∈ {0.8, 0.9} were

used, superiorization with restarts always reached the same or a better solution than both

the basic and the superiorized algorithms without restarts.

AP vs Sup. AP vs Sup. Res. Sup. vs Sup. Res.

Kernel AP Sup. AP Sup.Res. Sup. Sup.Res.

α = 0.5 1.29% 56.17% 0.08% 57.2% 0.01% 16.9%

α = 0.6 0.73% 56.63% 0.02% 57.26% 0.001% 10.78%

α = 0.7 0.32% 56.96% 0.002% 57.28% 0% 6.1%

α = 0.8 0.10% 57.17% 0% 57.29% 0% 2.86%

α = 0.9 0.01% 57.27% 0% 57.3% 0% 0.68%

Table 9.1: For each pair-wise comparative of methods and kernel choice, the numbers inside
the table are the percentage of the 1 million runs in which each method obtains a solution with
strictly lower norm than the other one with which it is compared.

9.4.2 Behavior of the superiorized algorithm for the data of the SMP

In this section, we present another illustrative example of the performance of Algo-

rithm 9.13. To be able to display the iterates, we let both the x-space and the y-space in

Problem (9.9)-(9.10) be the Euclidean 2-dimensional spaces. We take C as the intersection

of three half-spaces. More precisely, we define them as C1 := {(x1, x2) ∈ R2 | x1 + x2 ≤ 10},

C2 := {(x1, x2) ∈ R2 | −13x1 + 3x2 ≤ −26} and C3 := {(x1, x2) ∈ R2 | x2 ≥ 1}.

We let A be the rotation matrix by an angle of π/2 and Q be the image of C under

A (i.e., the intersection of the three half-spaces Q1 := {(y1, y2) ∈ R2 | y1 − y2 ≤ −10},

Q2 := {(y1, y2) ∈ R2 | −3y1 − 13y2 ≤ −26} and Q3 := {(y1, y2) ∈ R2 | y1 ≤ −1}). The

function to be reduced in the x-space is the value of the second component f(x1, x2) := x2,

whereas in the y-space, we aim to find a point with increased first and second components

(that is, B := 2, ϕ1(y1) := −y1 and ϕ2(y2) := −y2).
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In other words, we want to tackle with the SM the data of the split minimization

problem given by

find x∗ =

(
x∗1

x∗2

)
∈ C such that x∗ ∈ argmin

{
x2 :

(
x1

x2

)
∈ C

}
, (9.14)

and such that

(
−x∗2
x∗1

)
∈ Q, −x∗2 ≥ y1 and x∗1 ≥ y2 for all

(
y1

y2

)
∈ Q, (9.15)

with C :=
⋂3

i=1Ci and Q :=
⋂3

j=1Qj.

By looking at Figure 9.3, one easily identifies that the point (9, 1)T , obtained as the

intersection of the lines x1 + x2 = 10 and x2 = 1, is the unique solution to the SMP with

the above described data.

Again, for the SM we choose the method of alternating projections as the basic algo-

rithm. Consequently, the algorithmic operator that we use is

T := PV ◦ (PC3 × PQ3) ◦ (PC2 × PQ2) ◦ (PC1 × PQ1) ,

where we recall that V := {(x, y) ∈ R2 × R2 | Ax = y}. In our experiment, we performed

50 iterations of both the basic algorithm and its superiorized version, taking α = 0.9 as

the kernel for generating the step-sizes of the perturbations and N = 1. The nonascending

vectors were taken as vkx := (0, 1)T for the perturbations in the x-space, and v1,ky := 1 and

v2,ky := 1 in the y-space.

Figure 9.3 shows that, while the method of alternating projection converges to the

closest point to the starting point in the intersection in each of the spaces, the superiorized

algorithm converges to the solution of the SMP.

Figure 9.3: Performance of the method of alternating projections and its superiorized version
algorithm applied in the setting of problem (9.14)-(9.15). The left image displays the iterates in
the x-space, while the right one shows the iterates in the y-space.
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9.4.3 An illustrative example in IMRT

In this section, we test our SM with restarts algorithm in a sophisticated multiobjective

setting motivated from a split minimization problem in the field of Intensity-Modulated

Radiation Therapy (IMRT) treatment planning. IMRT is a radiation therapy that manip-

ulates particle beams (protons or photons or others) of varying directions and intensities

that are directed toward a human patient to achieve a goal of eradicating tumorous tissues,

henceforth called tumor structures, while keeping healthy tissues, called organs-at-risk be-

low certain thresholds of absorbed dose of radiation. The beams are projected onto the

region of interest from different angles. Many review papers in this field are available, see,

e.g., [94, 95, 103, 170, 238] and references therein.

9.4.3.1 The fully-discretized model of the inverse problem of IMRT

In the fully-discretized model of the inverse problem of IMRT each external radiation

beam is discretized into a finite number of beamlets (also called pencil-beams or rays)

along which the particles (i.e., their energies) are transmitted. Let all beamlets from all

directions be indexed by i = 1, 2, . . . , n, and denote the intensity irradiated along the i-th

beamlet by xi. The vector x = (xi)
n
i=1 ∈ Rn is called the intensities vector.

The 2-dimensional (2D) cross-section1 of the irradiated body is discretized. Assume

that the cross-section is covered by a square that is discretized into a finite number

of square pixels. This creates an M × M array of pixels. Let all pixels be indexed by

j = 1, 2, . . . ,m, with m = M2 and let yj denote the dose of radiation absorbed in the

j-th pixel. The vector y = (yj)
m
j=1 ∈ Rm is called the dose vector.

The intensities space Rn and the dose space Rm, defined above are the x-space and

the y-space, respectively, mentioned at the beginning of Section 9.3. The physics of the

model assumes that there exists an m × n real matrix A = (aij)
n,m
i=1,j=1(sometimes called

the dose matrix ) through which the intensities of the beamlets and the absorbed doses in

pixels are related via the equation

Ax = y.

Each element aij in A is the dose absorbed in pixel j due to a unit of intensity along the

i-th beamlet. This means that
n∑

i=1

aijxi

1Everything presented here can easily be extended to 3D wherein the pixels are replaced by voxels.
The choice of the 2D case just makes the presentation simpler.
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is the total dose absorbed in pixel j due to an intensity vector x. With these notions in

mind, we consider the following feasibility-seeking problem of the fully-discretized inverse

problem of IMRT.

Problem 9.14 (The feasibility-seeking problem of the fully-discretized inverse

problem of IMRT). Let Rn and Rm be the intensities space and the dose space (hence-

forth called the x-space and the y-space), respectively. Let A = (aij)
n,m
i=1,j=1 be the dose ma-

trix mapping the x-space onto the y-space. For ℓ = 1, 2, . . . , L, denote by Tℓ ⊆ {1, 2, . . . ,m}
the set of pixels corresponding to the ℓ-th tumor structure in the region of interest. For

r = 1, 2, . . . , R, denote by Sr ⊆ {1, 2, . . . ,m} the set of pixels corresponding to the r-th

organ-at-risk. Set e and e the lower and upper bounds for the available beamlets intensi-

ties. Let dr and dr, and cℓ and cℓ be the lower and upper bounds for the dose deposited in

each pixel of the r-th organ at risk and of the ℓ-th tumor, respectively.

The task is to find an intensities vector x such that

cℓ ≤
n∑

i=1

aijxi ≤ cℓ, for all j ∈ Tℓ, ℓ ∈ {1, 2, . . . , L},

dr ≤
n∑

i=1

aijxi ≤ dr, for all j ∈ Sr, r ∈ {1, 2, . . . , R},

e ≤ xi ≤ e, for all i ∈ {1, 2, . . . , n}.

Problem 9.14 is a linear feasibility problem. Usually, e = dr = 0 and the significant

bounds are cℓ for tumor structures and dr for organs-at-risk. A pair (x∗, y∗) such that x∗

is a solution of Problem 9.14 and y∗ = Ax∗ will be henceforth called “a treatment plan”

for the IMRT inverse planning problem.

9.4.3.2 The quest for smoothness and uniformness

In the IMRT inverse planning problem there is an advantage to generating treatment

plans with intensity vectors x∗ whose subvectors, related to parallel beamlets from the

same beam, will be as “smooth” as possible and with dose vectors y∗ whose subvectors,

related to specific organs (a.k.a. structures), that will be as “uniform” as possible.

For the intensity vectors x∗, “smoothness” of subvectors, related to parallel beamlets

from the same beam, means that the real numbers that are the individual intensities x∗i ,

in each subvector separately, would be as close to each other as possible, subject to the
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constraints of Problem 9.14. Such smoothness will allow for less extreme movements of

the multileaf collimator2 that modulates the parallel beamlets from the same beam.

For the dose vectors y∗, “uniformness” of subvectors, related to specific organs means

that the real numbers that are the individual doses y∗j , in each pixel of the subvector would

be as close to each other as possible, subject to the constraints of Problem 9.14. Thus, it

will guarantee uniformness of the dose deposited within each organ separately and help

to avoid the presence of hot- and cold-spots in the dose distribution in each organ, see,

e.g., [118].

Each of these aims can be achieved by attempting to minimize or just reduce the total

variation of the associated subvectors. Choosing the TV -norm (see (2.9)) as the objective

function in the x-space or the y-space, or both, and associating it with the feasibility-

seeking problem of the fully-discretized inverse problem of IMRT (Problem 9.14) leads

naturally to formulations of the SMP in Problem 9.1.

9.4.3.3 The experimental setup

For the purpose of our numerical experiment, we confine ourselves specifically to a case

of the feasibility-seeking problem of the fully-discretized inverse problem of IMRT (Prob-

lem 9.14) where there are L tumor structures and the whole rest of the cross-section

is considered as one single organ-at-risk, i.e., we let Sr = S ⊆ {1, 2, . . . ,m} for all

r = 1, 2, . . . , R. This leads to the next split problem of minimizing the TV -norm of the

dose subvectors so that uniformity of dose distribution will be achieved for each tumor

structure separately.

Problem 9.15. Let Rn be the x-space of intensity vectors, let Rm be the y-space of dose

vectors, and A be the dose matrix relating them to each other. For ℓ = 1, 2, . . . , L, denote

by Tℓ ⊆ {1, 2, . . . ,m} the sets of pixels corresponding to the ℓ-th tumor structure and let

S ⊆ {1, 2, . . . ,m} be the complementary set of pixels that do not belong to any of the target

structures and represent all organs at risk. Set e and e as the lower and upper bounds for

the beamlets intensities. Let d and d, and cℓ and cℓ be the dose bounds for pixels in an

organ-at-risk and at the tumor structures, respectively. We further assume that the dose

vector y = Ax comprises L + 1 subvectors y = (yℓ)L+1
ℓ=1 such that the first L subvectors

consist of the doses absorbed in pixels of the L tumor structures and yL+1 is the dose

absorbed in the complementary tissue S.

2A multileaf collimator is a beam-limiting device that is made of individual “leaves” of a high atomic
numbered material, usually tungsten, that can move independently in and out of the path of a radiother-
apy beam in order to shape (i.e., modulate) it and vary its intensity. See, e.g., [151].
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The task is to find an intensities vector x such that

cℓ ≤ yℓj =
n∑

i=1

aijxi ≤ cℓ, for all j ∈ Tℓ, ℓ ∈ {1, 2, . . . , L},

d ≤ yL+1
j =

n∑

i=1

aijxi ≤ d, for all j ∈ S,

e ≤ xi ≤ e, for all i ∈ {1, 2, . . . , n},

and yℓ ∈ argmin{TV (u) | u ∈ [cℓ, cℓ]
|Tℓ|} for all ℓ ∈ {1, 2, . . . , L},

where, for every ℓ ∈ {1, 2, . . . , L}, yℓ denotes the subvector of the vector y associated with

the ℓ-th tumor, and |Tℓ| is the cardinality of the set Tℓ.

This is the problem we worked on in our experiment. We do not use real data but

replicate a realistic situation. In particular, we consider a cross-section of 50 × 50 square

pixels, which translates into the dose vector in the y-space R2500. The number of external

radiation beamlets is n = 2840, meaning that the x-space is R2840. In the cross-section

we have two tumor structures of irregular shapes, whose location appears in Figure 9.5.

In order to guarantee the existence of a feasible point for Problem 9.15, we generated the

data as follows.

� We generate a vector y ∈ R2500 with components randomly distributed in the interval

[0, 15] for the pixels corresponding to organs-at-risk, and in the interval [10, 40] for

pixels of tumor structures.

� We randomly generated a matrix V ∈ R2840×2500 with entries in the interval [0, 1]

and defined the dose matrix A ∈ R2500×2840, mapping the x-space onto the y-space,

as the generalized left inverse of V , i.e., we took A := (V TV )−1V T .

� We defined x := V y, which implies that y = Ax.

� We set the bounds for the constraints of Problem 9.15 as





d = 0, d = max{yj | j ∈ S} + 5ε1,

c1 = min{yj | j ∈ T1} − 5ε2, c1 = max{yj | j ∈ T1} + 5ε3,

c2 = min{yj | j ∈ T2} − 5ε4, c2 = max{yj | j ∈ T2} + 5ε5,

e = (ε6 + 1)/2 min{xi | i ∈ {1, 2, . . . , n}},
e = (1 + ε7/2) max{xi | i ∈ {1, 2, . . . , n}},
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where the sub-indices in c and c refer to the first and second tumor structures and,

for i ∈ {1, 2, . . . , 7}, εi are randomly picked real numbers in the interval (0, 1].

These choices during the data generation guarantee that there exists a feasible point for

Problem 9.15 with these data, namely x.

In our experimental work, we ran the basic algorithm (Algorithm 9.12) and the supe-

riorized version of the basic algorithm (Algorithm 9.13) with and without restarts. For all

of them we took the algorithmic operator as

T := PV ◦
(
P[e,e] × PQ

)
,

with V := {(x, y) ∈ Rn × Rm | Ax = y} and PQ : Rm → Rm defined component-wise as

PQ(yj) :=





P[d,d](yj), if j ∈ S,

P[c1,c1]
(yj), if j ∈ T1,

P[c2,c2]
(yj), if j ∈ T2.

We tested the three algorithms with different choices of the parameters and present

here the most advantageous for each one. Specifically, in Algorithm 9.13 with or without

restart the step-sizes were taken in the sequence
(
c αℓ
)∞
ℓ=0

with a constant kernel α and

a positive number c, and we took N = 5. We performed some experiments in order to

determine the best choice of α and c for each method. The results are shown in Table 9.2.

We chose α = 0.999 and c = 100 000 for the superiorized algorithm, since these parame-

ters provide the best reduction in TV -norm values while performing the fastest. For the

superiorization with restarts, all of the combinations of parameters, except for the first

one, provide a great reduction in the TV -norm values with respect to superiorization with

no restarts. Among these combinations, α = 0.99 and c = 100 was the fastest, so we opted

for it.

The target functions ϕb were always the appropriate TV -norms. Since no smoothing

of the intensities vectors is included in the experiment, we took vk,jx = 0, for all k and j.

The final parameters of the two methods are the following:

� Superiorization: We took α = 0.999, c = 100 000 and N = 5, and vk,b,jy was defined

as the nonascending direction given by Theorem 9.6.

� Superiorization with restarts: We took α = 0.99, c = 100, Wr = 20 for all r and

N = 5, and vk,b,jy was defined as the nonascending direction given by Theorem 9.6.



212 Chapter 9. The superiorization method for split minimization with an application to IMRT

α = 0.99 α = 0.999
c = 10 c = 100 c = 1000 c = 10 000 c = 100 000 c = 10 c = 100 c = 1000 c = 10 000 c = 100 000

Sup.
TV 1 2433.38 2433.36 2432.93 2430.40 2430.40 2432.26 2423.20 2300.88 2167.01 2166.97
TV 2 3056.41 3056.34 3055.51 3052.28 3052.28 3054.67 3039.15 2899.47 2714.62 2714.58
Time 204.34 202.87 203.46 201.12 208.12 202.69 201.84 199.67 199.33 196.57

Sup. Restarts
TV 1 2078.81 368.81 397.35 381.65 371.03 249.96 361.70 386.13 381.51 382.51
TV 2 2689.98 707.2 598.24 579.47 568.02 585.33 583.39 534.21 528.54 528.56
Time 367.65 453.47 598.55 779.16 950.63 2362.15 3560.19 4426.75 6181.23 7174.09

Table 9.2: Average TV -norm values for the first and second subvectors and average time (in
seconds) obtained by running the superiorized and superiorized with restarts algorithm with
different choices of parameters for 10 random initial points. The algorithms were stopped when
a proximity of 0.01 was reached.

We performed multiple runs of the three algorithms. At each run, each of the algo-

rithms was initialized at the same starting point which was randomly generated in the

interval [e, e]. We define the proximity of an iterate as the distance to the feasible region,

i.e., for an iterate pair (xk, yk), we define its proximity as

proximity(xk, yk) := ∥xk − P[e,ē](x
k)∥ + ∥yk − PQ(yk)∥.

Note that, due to the definition of the algorithmic operator T, the distance of (xk, yk)

to V is 0. All three algorithms were terminated once the proximity became less than 0.01.

The obtained results for all different runs are summarized in Table 9.3. Our numerical ex-

periments showed that superiorization with restarts was considerably the best performing

algorithm regarding the target function reduction, while superiorization alone, without

restarts, did not achieve a significant reduction with respect to the basic algorithm.

This fact can be graphically observed in the heat maps of Figure 9.5, where we repre-

sent the dose in the pixels of the cross-section at the last iteration of each algorithm. The

uniformity of the heat distribution in a tumor structure represents the dose distribution

in that structure. Clearly, superiorization with restarts provided a more homogeneous

dose distribution in the tumorous pixels. We observed the increased uniformity of dose

distributions in the tumors in all our algorithmic runs of the superiorization with restarts

method. However, depending on the datasets and the allowable parameters the level of

the uniformity may vary.

The evolution throughout the iterations of the proximity and the total variation of the

algorithms is shown in Figure 9.4 with “proximity-target function curves” (which were

introduced in [90]), where the iteration indices k increase from right to left in each of the

plots. Finally, we note that superiorization with restarts needed more time and a larger

number of iterations to reach the desired proximity.
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Run 1 2 3 4 5

TV for subvector 1
Basic 2405.3 2498.4 2289.3 2624.74 2474.9

Superiorized 2072.8 2230.1 2089.6 2362.7 227.2
Sup. Restarts 421.9 315.6 404.3 349.3 301.1

TV for subvector 2
Basic 3019.1 3252.8 3002.5 3076.6 3096.3

Superiorized 2703.3 2837.4 2558.9 2744.3 2848.2
Sup. Restarts 817.7 759.7 688.1 709.2 531.2

Run time (sec.)
Basic 96.1 94.6 91.6 93.6 95.4

Superiorized 261.6 263.3 253.8 269.4 267.3
Sup. Restarts 577.5 588.0 630.9 580.3 582.7

No. of iterations
Basic 7352 7265 7117 7400 7505

Superiorized 7327 7195 7095 7382 7478
Sup. Restarts 14880 14819 17140 15275 14778

Table 9.3: TV -norm values for the first and second subvector, run times and number of itera-
tions resulting from running the Basic, Superiorized and Superiorized with restarts algorithms
(for runs with 5 different random initial points) until a proximity of 0.01 was reached.

In our experiments we have observed that other choices of parameters for the superi-

orization with restarts runs can be employed to reduce its running times and make them

comparable to those of the superiorized algorithm without restarts and, at the same time,

still achieve a significant reduction of the target function when compared to the other

algorithms.
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Figure 9.4: The evolution of the total variation and the proximity of the iterations of the first
run of each of the algorithms for the subvector associated to the first tumor (left) and the second
tumor (right). In these “proximity-target function curves” the iteration indices k increase from
right to left in each of the plots.
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Figure 9.5: Heat maps of the solutions in the y-space of pixel doses for the first run of each
one of the studied algorithms. Represented is a 50 × 50 square grid of pixels, where the color
indicates the dose absorbed in each pixel.



Conclusions and future research

The material in this thesis is based on the author’s joint work that appeared in the

publications [10, 23, 25, 26], and the submitted manuscript [29].

Overview of Part I

In the first part of this thesis, we have contributed to the theory and development of mono-

tone operator splitting methods. As an introduction to this topic, we presented a survey of

monotone inclusion problems and introduced the foremost algorithms to tackle them. We

stressed the applications to numerous situations arising in mathematical optimization.

With the aim of improving the computational efficiency of splitting algorithms, we

studied the dimension of the underlying space, or lifting, of these methods, a concept that

is directly related to the memory requirements of an algorithm. In Chapter 4, we estab-

lished a unifying framework for presenting the existing results that analyze the minimal

lifting that can be achieved by different classes of splitting schemes. The new theoretical

contributions are the extension of the minimal lifting theorem of Malitsky and Tam [173]

to emcompass the use of resolvent parameters in resolvent splittings, as well as a new

characterization of the minimal lifting of primal-dual splitting algorithms for composite

monotone inclusions.

The first algorithm with minimal lifting we took into consideration was the Davis–Yin

splitting, first introduced in [128]. In Chapter 5, we have presented an alternative proof

of convergence without requiring the Davis–Yin operator to be averaged. The proof was

solely based on monotone operator theory and has the additional advantage of allowing

larger stepsizes, up to four times the cocoercivity constant of the single-valued operator,

doubling thus the range of values allowed in [128]. As a consequence, the same conclu-

sion applies to the forward-backward splitting algorithm and the generalized forward-

backward.

In Chapters 6 and 7, we analyze the convergence of four novel splitting schemes with

reduced lifting. The first method in Chapter 6 is a forward-backward type algorithm with

215
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minimal lifting for addressing monotone inclusions with cocoercive operators. One of the

advantages of this algorithm is that it does not rely on a product space reformulation,

which makes it suitable for distributed decentralized implementation on a ring network.

The second method is obtained as a modification of the previous one. The incorporation

of reflected-like terms allows to tackle inclusions involving monotone and Lipschitz con-

tinuous operators that are not cocoercive. The latter method cannot be guaranteed to

have minimal lifting as it requires more than one forward evaluation of the single-valued

operator, which is a necessary assumption for the application of the minimal lifting char-

acterization. Nonetheless, it does reduce the lifting with respect to the existing algorithms

in the literature.

Chapter 7 is devoted to composite monotone inclusions, those that include linear

compositions of maximally monotone operators. There, we present the first primal-dual

resolvent splitting method with minimal lifting for this problem. Further, we combine the

three previous algorithms to devise a scheme for addressing mixtures of the monotone

inclusions studied in the prequel. Our numerical experiments suggest that the lifting

reduction furnishes a decrease in the running time of the algorithms while preserving the

quality of the solution.

Overview of Part II

In the second part of the thesis, we provide advances in the theory of splitting methods

for nonconvex optimization and in the application of the superiorization methodology.

In Chapter 8, we developed a new splitting algorithm for structured nonconvex opti-

mization problems, which we named as Boosted Double-proximal Subgradient Algorithm

(BDSA). One of the main features of our method is the inclusion of a linesearch at the

end of each iteration. If the stepsizes in every iteration of the linesearch are set to 0,

then algorithms such as the proximal difference of convex functions algorithm [229], the

generalized proximal point algorithm [7] and the double-proximal gradient algorithm [38]

can be recovered as particular cases of BDSA. Nevertheless, BDSA can also be applied

to far more general problems and provides a wider range of possibilities to deal with the

different elements of the objective function.

The convergence of the sequence generated by BDSA is guaranteed under the usual as-

sumptions required for this class of nonconvex problems. In addition, when the Kurdyka–

 Lojasiewicz property holds, global convergence and convergence rates can be derived.
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We illustrated the advantages of the additional linesearch included in BDSA with

multiple experiments. By recurring to two new test functions, we showed that BDSA seems

to have bigger chances of avoiding non-optimal critical points and converging to global

minima than “non-boosted” and inertial methods. Indeed, in some of our test problems

BDSA was the only method to have a 100% rate of success in doing so, for some adequate

splittings of the objective function. Further, the boosting step significantly reduced the

running time and the number of iterations employed by the algorithm. For example, BDSA

was twice faster in reaching the same accuracy than the algorithm with extrapolation

recently proposed in [204] for an application of the minimum sum-of-squares clustering

problem. For different generalizations of the Heron problem, BDSA also managed to be

much faster than its non-accelerated version, both in time and number of iterations.

Chapter 9 introduced a novel algorithm based on the superiorization methodology for

tackling the split minimization problem. Superiorization algorithms are a class of methods

that interlace feasibility seeking steps with the inclusion of certain perturbations which

aim to reduce (not minimize) a target function while ensuring constraint satisfiability. This

defines a “semi-heuristic” procedure, in the sense that a superiorized algorithm will always

converge to a feasible point, but there is no theoretical guarantee that the perturbations

will succeed in obtaining a point with objective function value smaller than the output of

the feasibility seeking method without perturbations.

Two novel elements were included in our superiorization based scheme. The first is a

permission to restart the perturbations in the superiorized algorithm, which can increase

the computational efficiency. The second is the ability to superiorize independently over

subvectors. We illustrated our developments in a realistic situation arising in the field of

intensity-modulated radiation therapy treatment planning.

Future directions of research

The family of splitting algorithms with minimal or reduced lifting is quite recent. As

these methods do not usually rely on product space reformulations, it is not clear if the

developments in classical splitting algorithms can be immediately extended to them. The

determination of convergence rates, the development of acceleration techniques or the

convergence analysis in the presence of pathologies are some of the topics that yet have

to be explored. We now enumerate some of the open questions that we consider more

relevant for this class of methods.
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Obtaining a theoretical certification of the efficiency of reducing the lifting

of an algorithm Although there is sufficient numerical experience showing that split-

ting methods with reduced lifting usually outperform “higher dimensional” product space

reformulations (see, e.g., [81, 173, 250] and the numerical experiments presented in this

thesis), there exist no theoretical results supporting this phenomenon. One possible ap-

proach to this matter would be considering the Friedrichs angle of Pierra’s product space

reformulation. The cosine of the Friedrichs angle has been proven to determine the rate

of linear convergence of Douglas–Rachford applied to feasibility problems involving two

subspaces [46]. It would be interesting to examine whether the Friedrichs angle of Pierra’s

reformulation increases in correlation with the the number of subspaces. This would ex-

plain why the convergence of this product space technique slows down for large-scale

problems.

Does it exist a frugal forward-backward method for monotone and Lipschitz

continuous operators? Recall Problem 3.9, where we aim to find a zero in the sum

of n set-valued operators and m single-valued operators. Fact 4.13 states that the lifting

of frugal forward-backward splittings (see Definition 4.11) must be greater than or equal

to n− 1. When the single-valued operators are cocoercive, the minimal lifting problem is

unraveled, in the sense that there exist algorithms with (n− 1)-fold lifting that solve the

monotone inclusion (for instance, Algorithm 6.6). Nonetheless, this cannot be said when

the single-valued operators are just monotone and Lipschitz continuous. In this case, either

the methods capable of solving Problem 3.9 have n-fold lifting, or they are not frugal, as

more than one forward evaluation of the single-valued operators is needed per iteration.

Therefore, two natural alternative questions arise: (i) Are the assumptions in Fact 4.13

too restrictive and two evaluations of the single-valued operators should be allowed for

studying the lifting of this problem? (ii) Is n the lower bound for the algorithms’ lifting

in this case?

Achieving lifting reduction in the space of linearly composed operators The

minimal lifting characterization presented in Theorem 4.21 assumes that the dimension

of the space associated with the dual variables coincides with the number of linearly

composed operators. In this context, it states that the lifting of the space of primal

variables must be greater than or equal to the number of operators minus one, condition

that is satisfied by Algorithm 7.8. However, it remains open the question of whether it

is possible to reduce the dimension of the underlying space associated to the linearly
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composed operators. More precisely, if we consider the problem given by

find x ∈ H such that 0 ∈
m∑

j=1

L∗
jBj(Ljx),

is it possible to obtain an algorithm for solving this problem with (0,m − 1)-fold lifting

(according to Definition 4.15)? Or even with (1,m−1) or (0,m)-fold lifting? To the best of

the author’s knowledge, there exists no primal-dual resolvent splitting with these liftings.

Regarding the developments studied in Part II, we propose the following lines of re-

search. The first of them gathers a spectrum of applications where to continue testing the

performance of BDSA.

Applications to nonconvex formulations of combinatorial and geometric prob-

lems Some NP-hard combinatorial and geometric problems such as the max-cut, the

quadratic assignment problem or the Euclidean Distance Matrix Completion (EDMC)

problem can be formulated as a semidefinite optimization problem with a nonconvex

low-rank constraint (see [244] for more details). Recently, different works have addressed

these programs by considering their convex relaxations, obtained by just removing the

rank constraint, and applying first order splitting methods to tackle these simpler ver-

sions of the problem (see, e.g., [144, 163]). It is important to note that this approach

may fail to solve the original problem, as the solution of the convex relaxation might

not satisfy the low-rank condition. This is particularly problematic in applications such

as protein reconstruction, where neglecting the rank constraint might lead to obtaining a

protein structure not embeddable in the Euclidean space of dimension three. Nevertheless,

low-rank constraints have been proven to be tractable. Indeed, making use of the projec-

tion onto the set {A ∈ Rn×n : AT = A, rank(A) ≤ r}, the Douglas–Rachford method

has been successfully applied to heuristically tackle nonconvex matrix completion prob-

lems (see [12]). Studying the behavior of BDSA for EDMC as well as other combinatorial

problems seems an intriguing direction for future work.

Incorporating second order information The use of second order derivatives in

Newton and Quasi-Newton methods has been well-recognized in the literature for provid-

ing faster convergence compared to first order numerical methods (see, e.g., [149, 194]).

In the framework of nonsmooth structured optimization problems, the incorporation of

second order information has only recently gained attention (see, e.g., [28, 152, 153] and
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references therein). For some applications, it can be crucial to extend our results by incor-

porating Hessian information into the data. This becomes particularly significant when

dealing with data that is not twice continuously differentiable. Recent studies propose the

integration of generalized Hessians (see, e.g., [28] and the references therein) to enable

linesearches in Newton-like methods.

Application of the superiorization methodology to the inverse problem of in-

tensity-modulated radition therapy treatment planning with real data Besides

the investigation of the guarantee problem of the SM already detailed in Section 9.1.1,

we consider highly interesting to extend the experimental framework in Section 9.4.3.1 to

case studies with realistic data. This would be a first step towards achieving the ultimate

goal of translating our theoretical developments into real implementation in radiotherapy.

Finally we state what, in the author’s opinion, is the most intriguing unanswered

question about splitting algorithms for nonconvex problems.

Convergence analysis of the Douglas–Rachford splitting in the nonconvex set-

ting The convergence analysis of the Douglas–Rachford algorithm for the minimization

of two nonconvex functions is one of the most challenging open questions in the field of

splitting methods. The main difficulty to face in this context is the fact that Douglas–

Rachford is not a descent method. The sequences that it generates present an oscillatory

behavior, in the sense that they do not consistently decrease the objective function value

in every iteration. Some authors have resorted to the use of envelopes, auxiliary func-

tions that allow establishing some descent inequality and subsequently applying the usual

Kurdyka– Lojasiewicz property based approach, see, e.g., [162, 199]. However, stronger as-

sumptions on the initial functions are usually required, such as weak or strong convexity

and differentiability (see, e.g., [57, 104, 162]). As of today there are no theoretical results

that explain the good behavior of Douglas–Rachford for combinatorial problems.
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[60] Boţ, R. I., Csetnek, E. R., and Hendrich, C. Recent developments on primal-

dual splitting methods with applications to convex minimization. In Mathematics

without boundaries. Springer, New York, 2014, pp. 57–99.
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[120] Correa, R., López, M. A., and Pérez-Aros, P. Optimality conditions in DC-

constrained mathematical programming problems. J. Optim. Theory Appl. 198, 3

(2023), 1191–1225.

[121] Csetnek, E. R., Malitsky, Y., and Tam, M. K. Shadow Douglas–Rachford

splitting for monotone inclusions. Appl. Math. Optim. 80, 3 (2019), 665–678.

[122] Cui, F., Tang, Y., and Yang, Y. An inertial three-operator splitting algorithm

with applications to image inpainting. Appl. Set-Valued Anal. Optim. 1, 2 (2019),

113–134.

[123] Dao, M. N., Dizon, N. D., Hogan, J. A., and Tam, M. K. Constraint re-

duction reformulations for projection algorithms with applications to wavelet con-

struction. J. Optim. Theory Appl. 190, 1 (2021), 201–233.

[124] Dao, M. N., and Phan, H. M. Adaptive Douglas–Rachford splitting algorithm

for the sum of two operators. SIAM J. Optim. 29, 4 (2019), 2697–2724.

[125] Dao, M. N., and Phan, H. M. Computing the resolvent of the sum of operators

with application to best approximation problems. Optim. Lett. 14, 5 (2020), 1193–

1205.

[126] Dao, M. N., and Phan, H. M. An adaptive splitting algorithm for the sum

of two generalized operators and one cocoercive operator. Fixed Point Theory and

Algorithms Sci. Eng. 2021 (2021), 16.

[127] Davidi, R., Herman, G. T., and Censor, Y. Perturbation-resilient block-

iterative projection methods with application to image reconstruction from projec-

tions. Int. Trans. Oper. Res. 16, 4 (2009), 505–524.

[128] Davis, D., and Yin, W. A three-operator splitting scheme and its optimization

applications. Set-Valued Var. Anal. 25, 4 (2017), 829–858.

[129] de Oliveira, W. The ABC of DC programming. Set-Valued Var. Anal. 28, 4

(2020), 679–706.

[130] de Oliveira, W., and Tcheou, M. P. An inertial algorithm for DC program-

ming. Set-Valued Var. Anal. 27, 4 (2019), 895–919.



BIBLIOGRAPHY 233

[131] Douglas, J., and Rachford, H. H. J. On the numerical solution of heat

conduction problems in two and three space variables. Trans. Am. Math. Soc. 82

(1956), 421–439.

[132] Eckstein, J. Splitting methods for monotone operators with applications to parallel

optimization. PhD thesis, Massachusetts Institute of Technology, 1989.

[133] Eckstein, J., and Bertsekas, D. P. On the Douglas–Rachford splitting method

and the proximal point algorithm for maximal monotone operators. Math. Program.

55 (1992), 293–318.

[134] Eckstein, J., and Svaiter, B. F. A family of projective splitting methods for

the sum of two maximal monotone operators. Math. Program. 111 (2008), 173–199.

[135] Escalante, R., and Raydan, M. Alternating projection methods, vol. 8 of Fun-

damentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2011.

[136] Esser, E., Zhang, X., and Chan, T. F. A general framework for a class of first

order primal-dual algorithms for convex optimization in imaging science. SIAM J.

Imaging Sci. 3, 4 (2010), 1015–1046.

[137] Facchinei, F., and Pang, J.-S. Finite-Dimensional Variational Inequalities and

Complementarity Problems, Volume II. Springer-Verlag, New York, 2003.

[138] Ferreira, O. P., Santos, E. M., and Souza, J. C. O. A boosted DC algorithm

for non-differentiable DC components with non-monotone line search. Preprint,

arXiv:2111.01290v2 [math.OC], 2022 .

[139] Frankel, P., Garrigos, G., and Peypouquet, J. Splitting methods with

variable metric for Kurdyka– Lojasiewicz functions and general convergence rates.

J. Optim. Theory Appl. 165, 3 (2015), 874–900.

[140] Giselsson, P. Nonlinear forward-backward splitting with projection correction.

SIAM J. Optim. 31, 3 (2021), 2199–2226.

[141] Giselsson, P., and Moursi, W. M. On compositions of special cases of Lipschitz

continuous operators. Fixed Point Theory Algorithms Sci. Eng. (2021), Paper No.

25, 38.

https://arxiv.org/ab s/2111.01290


234 BIBLIOGRAPHY

[142] Glowinski, R., Osher, S. J., and Yin, W., Eds. Splitting methods in com-

munication, imaging, science, and engineering. Scientific Computation. Springer,

Cham, 2016.

[143] Goldstein, A. A. Convex programming in Hilbert space. Bull. Amer. Math. Soc.

70 (1964), 709–710.

[144] Graham, N., Hu, H., Im, J., Li, X., and Wolkowicz, H. A restricted dual

Peaceman–Rachford splitting method for a strengthened DNN relaxation for QAP.

INFORMS J. Comput. 34, 4 (2022), 2125–2143.

[145] Guenter, M., Collins, S., Ogilvy, A., and Hare, W. Superiorization versus

regularization: a comparison of algorithms for solving image reconstruction problems

with applications in computed tomography. Med. Phys. 49 (2022), 1065–1082.

[146] Haar, A. Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 3

(1910), 331–371.

[147] He, B., and Yuan, X. Convergence analysis of primal-dual algorithms for a

saddle-point problem: From contraction perspective. SIAM J. Imaging Sci. 5, 1

(2012), 119–149.

[148] Herman, G., Garduño, E., Davidi, R., and Censor, Y. Superiorization: an

optimization heuristic for a medical physics. Med. Phys. 39 (2012), 5532–5546.

[149] Izmailov, A. F., and Solodov, M. V. Newton-Type Methods for Optimization

and Variational Problems. Springer, Cham, 2014.

[150] Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. Proximal methods

for hierarchical sparse coding. J. Mach. Learn. Res. 12 (2011), 2297–2334.

[151] Jeraj, M., and Robar, V. Multileaf collimator in radiotherapy. Radiol. Oncol.

38, 3 (2004), 235–240.

[152] Khanh, P. D., Mordukhovich, B., and Phat, V. T. A generalized Newton

method for subgradient systems. Math. Oper. Res. 48, 4 (2023), 1811–1845.

[153] Khanh, P. D., Mordukhovich, B. S., Phat, V. T., and Tran, D. B. Gen-

eralized damped Newton algorithms in nonsmooth optimization via second-order

subdifferentials. J. Global Optim. 86, 1 (2023), 93–122.



BIBLIOGRAPHY 235

[154] Kim, D. Accelerated proximal point method for maximally monotone operators.

Math. Program. 190, 1-2 (2021), 57–87.

[155] Klukowska, J., Davidi, R., and Herman, G. SNARK09 a software package

for reconstruction of 2D images from 1D projections. Comput. Methods Programs

Biomed. 110 (2013), 424–440.

[156] Kruger, A. Y. Generalized differentials of nonsmooth functions and necessary

conditions for an extremum. Sibirsk. Mat. Zh. 26, 3 (1985), 78–90, 224.

[157] Kurdyka, K. On gradients of functions definable in o-minimal structures. Ann.

Inst. Fourier (Grenoble) 48, 3 (1998), 769–783.

[158] Langthaler, O. Incorporation of the superiorization methodology into biomedical

imaging software. Marshall Plan Scholarship Report, Salzburg University of Applied

Sciences, Salzburg, Austria, and The Graduate Center of the City University of New

York, NY, USA 76 (2014). https://www.marshallplan.at/images/All-Papers/MP-

2014/Langthaler.pdf.

[159] Latafat, P., and Patrinos, P. Asymmetric forward-backward-adjoint splitting

for solving monotone inclusions involving three operators. Comput. Optim. Appl.

68, 1 (2017), 57–93.

[160] Lee, J., Yi, S., and Ryu, E. K. Convergence analyses of Davis–Yin splitting via

scaled relative graphs. Preprint, arXiv:2207.04015 [math.OC], 2022 .

[161] Levitin, E., and Polyak, B. Constrained minimization methods. U.S.S.R.

Comput. Math. Math. Phys. 6, 5 (1966), 1–50.

[162] Li, G., and Pong, T. K. Douglas–Rachford splitting for nonconvex optimization

with application to nonconvex feasibility problems. Math. Program. 159, 1-2 (2016),

371–401.

[163] Li, X., Pong, T. K., Sun, H., and Wolkowicz, H. A strictly contractive

Peaceman–Rachford splitting method for the doubly nonnegative relaxation of the

minimum cut problem. Comput. Optim. Appl. 78, 3 (2021), 853–891.

[164] Lindstrom, S. B., and Sims, B. Survey: Sixty years of Douglas–Rachford. J.

Aust. Math. Soc. 110, 3 (2021), 333–370.

https://www.marshallplan.at/images/All-Papers/MP-2014/Langthaler.pdf
https://www.marshallplan.at/images/All-Papers/MP-2014/Langthaler.pdf
https://arxiv.org/abs/2207.04015


236 BIBLIOGRAPHY

[165] Lions, P. L., and Mercier, B. Splitting algorithms for the sum of two nonlinear

operators. SIAM J. Numer. Anal. 16, 6 (1979), 964–979.

[166]  Lojasiewicz, S. Ensembles semi-analytiques. Institut des Hautes Etudes Scien-

tifiques, Bures-sur-Yvette (Seine-et-Oise), France, 1965.

[167] Loris, I., and Verhoeven, C. On a generalization of the iterative soft-

thresholding algorithm for the case of non-separable penalty. Inverse Problems

27, 12 (2011), 125007, 15.

[168] Loshchilov, I., and Hutter, F. SGDR: stochastic gradient descent with warm

restarts. In 5th International Conference on Learning Representations, ICLR 2017,

Toulon, France, April 24-26, 2017, Conference Track Proceedings (2017), OpenRe-

view.net.

[169] Lou, Y., Zeng, T., Osher, S., and Xin, J. A weighted difference of anisotropic

and isotropic total variation model for image processing. SIAM J. Imaging Sci. 8,

3 (2015), 1798–1823.

[170] Maass, K., Kim, M., and Aravkin, A. A nonconvex optimization approach to

IMRT planning with dose-volume constraints. INFORMS J. Comput. 34, 3 (2022),

1366–1386.
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Notation and Symbols
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N := {0, 1, 2, . . .} set of nonnegative integers

R :=] −∞,∞[ real line

R := R ∪ {−∞,+∞} extended real line

Rn n-dimensional Euclidean space

R++ set of (strictly) positive real numbers

H, G real Hilbert space

Hn product Hilbert space, i.e., Hn = H× (n)· · · ×H
⟨x, y⟩ inner product of the vectors x and y

∥x∥ norm of x induced by the inner product, i.e., ∥x∥ =
√
⟨x, x⟩

∥x∥p p-norm of x ∈ Rn with p ∈ {1, 2, . . .} ∪ {∞}
|x| absolute value of x

[x]+ positive part of x, i.e., [x]+ = max{x, 0}
Bε(x̄) closed ball centered at x̄ with radius ε > 0

xk ⇀ x̄ the sequence (xk)k∈N converges weakly to the point x̄

xk → x̄ the sequence (xk)k∈N converges strongly to the point x̄

Jk, lK set of integers between two integer numbers k and l

⊙ component-wise product

⊗ Kronecker matrix product

Sets

C ×D Cartesian product of the sets C and D

H \ C complementary of the set C ⊆ H
aff C affine hull of the set C

coneC conical hull generated by the set C

coC convex hull of the set C

253



254 Notation and Symbols

d(·, C) distance function to the set C

iC indicator function of the set C

intC interior of the set C

PC projector onto the set C

RC reflector with respect to the set C

AC Asplund function associated to the set C

riC relative interior of the set C

spanC span of the set C

sriC strong relative interior of the set C

∆n diagonal subspace of Hn

dimU dimension of the linear subspace U

Functions

f : H → R extended real-valued function

f ∗ convex conjugate of a function f

dom f domain of the function f

∂f basic (resp, convex) subdifferential of the (resp, convex) function f

∂̂f regular subdifferential of the function f

∂Cf Clarke’s generalized gradient of the function f

proxγf proximity operator of the function f with parameter γ

d+f(·, ·) upper Dini directional derivative of the function f

Operators

A : H ⇒ H set-valued operator from in H
T : H → H single-valued operator in H
Id identity mapping

A−1 inverse operator of A

domA domain of the operator A

FixA set of fixed points of the operator A

graA graph of the operator A

ranA range of the operator A

zerA set of zeros of the operator A
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∥L∥ norm of a linear operator L

L∗ adjoint of a linear bounded operator L

JγA resolvent of the operator A with parameter γ > 0

RγA reflected resolvent of the operator A with parameter γ > 0

wA inner w-perturbation of the operator A

A(θ,σ) (θ, σ)-strengthening of the operator A

Matrices

Rn×m vector space of n×m real matrices

I identity matrix

MT transpose of the matrix M

M−1 inverse of the matrix M

kerM kernel of the matrix M

rankM rank of the matrix M

ρ(M) spectral radius of the matrix M

Fixed point encodings

TDR Douglas–Rachford splitting operator

TPR fixed point operator associated to Pierra’s product space reformulation

TFB fixed point operator of minimal lifting forward-backward algorithm

TPD fixed point operator of minimal lifting primal-dual algorithm

TFRB fixed point operator of the reduced lifting forward-reflected-backward
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