
International Journal of Applied Mathematics
————————————————————–
Volume 32 No. 4 2019, 677-719
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v32i4.10

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG

M.A. Cárdenas-Viedma1 §, F.M. Galindo-Navarro2

Department of Information and Communication Engineering
University of Murcia, Espinardo Campus

Murcia, 30071, SPAIN

Abstract: In this paper we present PROLogic, a logic programming lan-
guage based on a formal first-order fuzzy temporal logic: FTCLogic. FTCLogic
integrates the advantages of a formal system (a first-order logic based on Pos-
sibilistic Logic) and an efficient mechanism with which to reason about time:
the Fuzzy Temporal Constraints Networks or FTCN. PROLogic, therefore, is a
Fuzzy Temporal PROLOG, which is implemented in Haskell.

AMS Subject Classification: 03B44, 03B52, 03B70, 68N17, 97P40, 97R40,
68T15, 68T37, 68T35
Key Words: temporal logic; logic programming; constraint logic program-
ming; PROLOG; fuzzy constraint satisfaction; temporal reasoning; approxi-
mate reasoning; fuzzy inference systems; knowledge representation; fuzzy rela-
tions; non-classical logics

1. Introduction

The need to reason about the time in which events occur is very frequent within
the realm of expert systems and artificial intelligence and is done by following
two general approaches: either algebraic models or logic-based models. The
time is, on occasions, not precisely known and some of these proposals, there-
fore, include the possibility of handling temporal uncertainty and imprecision.
Possibility Theory [8] can be used for this purpose.

One of the most recent logic model proposals with temporal reasoning ca-
pabilities is FTCLogic (Fuzzy Temporal Constraint Logic) [5], which is a first-

Received: June 22, 2019 c© 2019 Academic Publications
§Correspondence author

678 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

order logic with the ability to manage fuzzy temporal constraints. This model
combines the expressiveness of the logic models as regards representing the
concepts of the domain with the efficiency of the FTCN (Fuzzy Temporal Con-
straint Networks) algebraic model [2, 13] in order to represent time. In [5] the
characteristics of FTCLogic are compared with those of other temporal models,
and its advantages are shown.

The logic models provide a framework for automatic reasoning with a guar-
antee of consistency and completeness. This makes it possible to work on
problem resolution with temporal elements such as medical diagnosis, atmo-
spheric phenomena prediction, criminal investigation, etc. On the other hand,
the FTCN (Fuzzy Temporal Constraint Network) model allows the represen-
tation of temporal constraints through the use of the arcs between nodes, in
which a node represents a fact.

FTCLogic integrates both formalisms into its syntax (first-order logic and
FTCN), while its semantics is based on Possibilistic Logic [9]. It is, therefore,
valid for any domain of application. FTCLogic additionally provides an efficient
PROLOG-like inference rule. All these features make it suitable for use as
the basis of a programming language. Finally, the refutation by resolution in
FTCLogic is sound and complete, which makes the reasoner reliable.

In FTCLogic the temporal relations are expressed directly with restrictions
in a temporal network in which the nodes represent the temporal variables.
This can be specified in a very simple syntax, and the FTCLogic clauses are,
therefore, composed of two elements: a disjunction of literals (more specifically,
a Horn clause), and a temporal network that is associated with it. This makes
FTCLogic efficient and simple. When it is necessary to solve a query, the SLD-
resolution method is used, by combining the temporal networks of the selected
clauses. If an inconsistent network is found, the resolution process must find
another way to resolve that query.

SLD-resolution is complete for Horn clauses, which is why this kind of
clauses is used in FTCLogic. Most PROLOG [3] implementations also use Horn
clauses and SLD-resolution, signifying that the combination of both FTCLogic
model and PROLOG makes sense.

The purpose of this paper is, therefore, to present a PROLOG-like system
that allows fuzzy temporal reasoning. The logic base used for it is FTCLogic and
the system has been built as an expansion of PROLOG. We consequently have
not only an automatic reasoner that allows fuzzy temporal constraints manag-
ing, but one that is also compatible with PROLOG programs. It is, therefore, a
friendly environment for people who are already familiar with PROLOG while
simultaneously taking advantage of the benefits of FTCLogic model, and this,

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 679

is the reason for its name, since it is a combination of PROLOG and FTCLogic:
PROLogic.

Extending PROLOG to deal with uncertain events [10] or mixing logic
programming and temporal constraints [17, 18] is not a new topic. However,
PROLogic is the first language that includes all the possibilities of the FTCN
model.

The syntax of the PROLogic programs is like that of PROLOG but with
FTCLogic clauses. This means that there are facts and rules with PROLOG
syntax, which are linked with temporal networks. The syntax for temporal
networks is original, representing all the restrictions between nodes. This tem-
poral networks syntax allows us to represent an origin node: it can be assigned
a date that automatically determines the dates of the other nodes. We can also
define uncertainty temporal relations with a semi-natural language that allows
the programmer to be ambiguous when the temporal restriction is not at all
clear.

Furthermore, the PROLOG classic interpreter has been replaced with a
more complex command interpreter, with a command that can be use to carry
out classical queries (with temporal elements added) and others that allow us
to extract more specific temporal information from the query results in order
to study them in greater depth. This is because, with FTCLogic as base, the
results are more complex than a PROLOG result. These results include a
temporal network, for those cases in which users would like to make inquiries
in order to extract temporal information regarding the problem on which they
are working. There are, therefore, commands with which to extract constraints
between a particular set of nodes, obtain the nodes before and after a given
one, estimate the date and time of all nodes given the date and time of one of
them, etc.

The fact that the tool is based on FTCLogic guarantees that none of the
deductions made will be inconsistent, and that any result that can be obtained
with a PROLOG implementation and that implies temporal relations that make
the query true can also be obtained with PROLogic. This is because FTCLogic
is consistent and complete.

This paper has been organized as follows. In Sections 2 and 3, we explain the
theoretical fundaments that allow the implementation of PROLogic system: the
FTCN and FTCLogic models, respectively. In Section 4 we show a description
of the tool that had been written as a user guide and explains how to use
it. This refers to both the language and the query interpreter, separated into
sections, one for each. The first explains the syntax of programs, with some
examples, while the second describes the different commands that are available,

680 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

along with providing some examples.
Section 5 briefly describes the modular design of PROLogic. These modules

are written in Haskell, the implementation language. We have also used Alex
[15] and Happy [14, 16], which are a lexer generator and a scanner generator,
respectively, to define the grammar of both the commands and the programs.
Haskell is an interpreted language and can, therefore, be used on many plat-
forms. Another reason for choosing it was the ease of a functional language
when implementing the definition and manipulation of the network. The mod-
ules are separated into two groups, one oriented toward the implementation of
the interface and the other toward the implementation of the model. It can
be viewed as a two-layer structure, in which the first group is the presentation
layer, and the second is the domain layer. In addition, in Section 5.1 we indicate
the order of complexity of the commands added to a classic PROLOG. This
analysis has been carried out by taking into account all the functions that are
used in the execution of each command.

In Section 6, we test PROLogic with a medic diagnosis problem concerning
aviar influenza. This example was obtained from [19]. In the last section
(Section 7), we show the conclusions of the work and propose some ways in
which PROLogic can be improved in the future.

2. Fuzzy Temporal Constraint Networks (FTCN)

We will summarize a few basic concepts of Fuzzy Temporal Constraint Networks
(or FTCN) introduced in other previous works [2, 13].

Definition 1. A fuzzy temporal constraint network (FTCN) N =< X,L >

is a pair made up of a finite set of n+1 temporal variables X = {X0,X1...Xn}
and a finite set of fuzzy temporal binary constraints among them L = {Lij | i, j ≤
n}

Each binary constraint Lij is defined by means of a possibility distribution
πij over the set of the real numbers R, that describes the possible values of the
difference between variables Xj and Xi. We will always assume that πij is a
convex possibility distribution, that is

πij(λ · x+ (1− λ) · y) ≥ min {πij(x), πij(y)} , x, y ∈ R, λ ∈ [0, 1].

The values of the variables are established by means of assignmentsXi := xi,
xi ∈ R. In the absence of constraints, each variable Xi could take any crisp

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 681

numerical value from the real domain R. The constraints limit the values that
may be assigned to the variables. In order to be able to perform the assignments
Xi := xi and Xj := xj it is necessary that πij(xj − xi) > 0, that is, their
difference must be one of the possible values established by the constraint Lij .
However, it is not a sufficient condition, as there may exist other constraints
acting over one of the two variables.

If variable X0 represents a precise origin, each one of the constraints with
respect to the origin, L0i, limits the domain of the possible values for variable
Xi. We will say that L0i defines the possible absolute values of Xi. On the
other hand, each one of the constraints Lij with i, j > 0 jointly limit the values
that may be assigned to Xi and Xj , that is, define the possible relative values
of each variable with respect to the other. We will assume that constraints Lij

and Lji are defined in a symmetric manner: πij(x) = πji(−x), ∀ x ∈ R. In
addition, to omit a constraint between two variables Xi and Xj corresponds to
introducing a universal constraint given by πU (x) = 1, ∀ x ∈ R. This means
that there is no knowledge about the temporal relation between them.

Definition 2. A Universal Network, denoted by ρU , is an FTCN that has
only universal constraints.

An FTCN may be represented by means of a directed graph in which each
node is associated with a variable and each arc corresponds to the binary con-
straint between the variables connected. As a convention, when drawing the
graph, we omit universal constraints and only indicate one of the two symmetric
constraints existing between each pair of variables.

Definition 3. A σ-possible solution of FTCN N is an n-tuple s =
(x1, ...xn) ∈ R

n that verifies πS(s) = σ, where πS is:

πS(s) = min
i,j≤n

πij(xj − xi).

The possibility distribution πS defines the fuzzy set S of the possible solu-
tions of the network, which are those that satisfy all the constraints to some
non null degree. S is a fuzzy n-ary relation that must be obtained from the
fuzzy binary relations that are explicitly known, that is, from the constraints
Lij.

Definition 4. An α-consistent FTCN N is a network whose set of possible
solutions S verifies:

682 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

sup
s∈Rn

πS(s) = α.

In particular, we will say that an FTCN N is consistent if it is 1-consistent.
We will say that N is inconsistent if there is no solution (α = 0). When an
FTCN is consistent, the possibility distribution πS is normalized, that is, there
is at least one absolutely possible solution, although there may also be solutions
with intermediate possibility degrees.

Definition 5. Two FTCN H and N with the same number of variables
are equivalent if and only if every σ-possible solution of one of them is also a
σ-possible solution of the other, that is:

πH
S (s) = πN

S (s), s ∈ R
n,

being πH
S and πN

S the possibility distributions associated to the fuzzy sets of
the possible solutions of the FTCN H and N , respectively.

All the equivalent networks define the same n-ary fuzzy relation. Observe
that there may exist networks that, corresponding to the same n-ary fuzzy
relation, have different binary constraints. For instance, although an FTCN
N contains a universal constraint Lij ≡ πU , there will be other constraints
acting over the variables Xi and Xj, that will limit their possible values. As
a consequence, there will be an implicit constraint over Xi and Xj , that has
been induced by the remaining constraints. We may construct a new network
H with the same constraints as N , except Lij , which we substitute by the
induced constraint. Both networks define exactly the same n-ary relation and
are equivalent, even though they differ in binary constraint Lij.

As we have defined constraints as convex possibility distributions, we can
manipulate them as fuzzy numbers. In particular, we may apply the basic
operations of fuzzy arithmetic, the addition of fuzzy numbers A = B ⊕ C and
the subtraction of fuzzy numbers A = B ⊖ C, defined as:

πA(x) = sup
x=s∗t

min{πB(s), πC(t)},

where * represents the crisp operand + and −, respectively. Given any three
variables Xi, Xk, Xj ∈ X, the addition of the fuzzy constraints Lik and Lkj

provides a new constraint between variables Xi and Xj which we call constraint
induced by constraints Lik and Lkj. We will represent it by L′

ij and its defini-
tion is L′

ij = Lik ⊕ Lkj. In the literature on constraint satisfaction problems
this operation is called constraint composition. The induced constraint L′

ij and

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 683

the direct constraint Lij introduced by the user are combined by means of
constraint intersection L′

ij

⋂
Lij , whose definition is that of a fuzzy set inter-

section. By means of the composition and the intersection of constraints, we
obtain an FTCN that is equivalent to the original one and whose constraints
are included in the corresponding constraints of the original FTCN. The new
FTCN, although containing the same fuzzy set of solutions S, describes the
differences between variables in a more precise manner.

The N equivalent network whose constraints are minimal with respect to
inclusion is called minimal network M associated to N . The constraints Mij

of the minimal network are obtained by means of an exhaustive propagation of
constraints. They may be calculated by means of expression:

Mij =
n⋂

k=1

Lk
ij ,

where Lk
ij is the constraint induced by all the paths of length k that connect

variables Xi and Xj:

Lk
ij =

⋂
Ck
i0,i1,...,ik

, i1...ik−1 ≤ n, i0 = i, ik = j;

Ck
i0,i1,...,ik

=
k∑

p=1
Lip−1,ip .

In these expressions we apply the addition and intersection operations defined
above.

It may be proven that network N is inconsistent if and only if a minimal
constraint is the empty possibility distribution, πØ(x) = 0, ∀x ∈ R. On the
other hand, network N is consistent, if and only if the constraints Mij thus
obtained are normalized. In any other case, network N has an intermediate
consistency degree, 0 < α < 1. In general, the degree of consistency of the
network is given by:

α = sup
s∈Rn

πS(s) = sup
s∈Rn

min
i,j≤n

πij(xj − xi),

where each πij is the possibility distribution of the minimal constraint between
variables Xi and Xj.

It is easy to see, therefore, that a network N is minimal if, and only if, it is
path-consistent, that is, for all k, and for all k-paths:

Lij ⊆ Ck
i0,i1,...,ik

, i0...ik−1 ≤ n, i0 = i, ik = j.

On the other hand, a network is path-consistent if, and only if, all paths of
length 2 are consistent.

So, the network M equivalent to N , and verifying

684 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

Mij ⊆ Mik ⊕Mkj, i, j, k ≤ n

is the minimal network associated to N . This means that a new constraint
propagation process would not provide any additional information on Mij .

This above condition is equivalent to

Mij = Mij ∩ (Mik ⊕Mkj), i, j, k ≤ n.

Therefore, the detection of inconsistencies and the production of a minimal
network are computationally implemented by means of the following version of
the path-consistency algorithm, which is a fuzzy generalization of the algorithm
proposed by Dechter et al. in [6]:

begin

for k := 0 to n do

for i := 0 to n do

for j := 0 to n do

Lij := Lij

⋂
(Lik ⊕ Lkj);

if Lij = πØ then exit ”inconsistent”

end

A network M equivalent to N is obtained in each step of the outermost
loop. Its constraints are given by

Mij = Lij

⋂

i1=0...k

C2
i,i1,j

⋂
...

⋂

i1=0...k;...;ik=0...k

Ck+1
i,i1,...,ik,j

Thus, the network obtained at the end of the process verifies

Mij =
n⋂

k=1

Lk
ij ,

that is, it is the minimal network associated with N .

The computation of expressions is significantly simplified by representing
the possibility distributions by means of normalized trapezoidal functions [12].
A possibility distribution π is normalized if and only if at least one element
x ∈ R exists such that π(x) = 1. A possibility distribution π that is normalized
and convex may be approximated through a trapezoidal distribution defined
by means of four parameters (α, β, γ, δ). The real interval [α, δ] corresponds to
the support of the distribution, that is, to the set of values x ∈ R such that
π(x) > 0. The real interval [β, γ] corresponds to the core of the distribution,
that is, the set of values x ∈ R such that π(x) = 1, which is non empty as
π is normalized. The arithmetic operations over trapezoidal distributions are
reduced to applying to the core and support the conventional operations of

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 685

real interval arithmetic. That is, the core and support are added or intersected
separately:

1) (α1, β1, γ1, δ1)⊕ (α2, β2, γ2, δ2) = (α1 + α2, β1 + β2, γ1 + γ2, δ1 + δ2),

2) (α1, β1, γ1, δ1)
⋂
(α2, β2, γ2, δ2) =

= (max{α1, α2},max{β1, β2},min{γ1, γ2},min{δ1, δ2}).

3) (α1, β1, γ1, δ1)
⋃
(α2, β2, γ2, δ2) =

= (min{α1, α2},min{β1, β2},max{γ1, γ2},max{δ1, δ2}).

As the user may introduce constraints whose support is not bounded (such
as “much later” or “more than approximately four hours later”), it is necessary
to apply the rules of real interval arithmetic, extended with infinite values. The
only non bounded intervals that are handled are of the form [α,∞), (−∞, α] and
(−∞,∞), and therefore the previous operations never lead to indeterminations
[12].

Using normalized trapezoidal distributions, it is evident that the minimiza-
tion algorithm described before is executed in polynomial time O(n3). Leaving
aside computational advantages, the normalization hypothesis does not limit
the usefulness of the FTCN as an imprecision model, although it does limit it
as an uncertainty model. If all the possibility distributions are normalized, then
there is no uncertainty in the occurrence of the events. On the other hand, a
non normalized possibility distribution, for instance M0i, means that variable
Xi could fail to take a value. We may interpret this as a lack of confidence
in the occurrence of the event associated to variable Xi, [7]. In general, an
α-consistent network, with 0 < α < 1, corresponds to a situation in which the
occurrence times of the events are imprecise, but in addition, the occurrence of
the events is uncertain. The uncertainty in the occurrence of the set of events
is given by the amount 1−α. In real temporal reasoning applications (medical
diagnosis, for instance) these situations are, however, infrequent. A patient
may present a symptom whose occurrence time is remembered in an imprecise
manner, but he will rarely express uncertainty about the real occurrence of his
symptom. In any case, both the normalization hypothesis, and the trapezoidal
approximations only affect the practical implementation of the model, and less
restrictive implementations of the model are always possible.

Finally, we give some definitions that will be useful in later sections.

Definition 6. Given two FTCN networks ρ and ρ′ defined on the same set
of nodes, we use ρ ∩ ρ′ to denote a new network obtained by making the fuzzy
intersection between πij and π′

ij for each pair of nodes ni and nj belonging to
both networks, with πij being the possibility distribution between ni and nj in
the network ρ and π′

ij is that corresponding to ρ′ for the same nodes.

686 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

Definition 7. Given several networks ρ1, ..., ρn, defined on the same set
of nodes, we give the name maximal network of them to a new network that
obtains the πij possibility distributions associated with each pair of nodes ni

and nj as the fuzzy union of π1
ij, π

2
ij, ... and πn

ij, where π1
ij , π

2
ij, ... and πn

ij are
the possibility distributions between ni and nj in the ρ1, ... and ρn networks,
respectively.

3. FTCLogic: Fuzzy Temporal Constraint Logic

We will summarize a few basic issues of FTCLogic. These concepts are essential
to understand PROLogic. The full definition of syntax, semantics and resolu-
tion principle of FTCLogic can be found in [5]. A proof of its soundness and
completeness can also be found there.

3.1. Syntax of FTCLogic

Let L a classic first-order language.

Definition 8. We define the set C of FTCClauses, as a set of tuples (ς, ρ),
where ς is a Horn clause of L, in which k temporal variables appear, and ρ is
the FTCN that relates them.

As we can see, each clause has an associated FTCN. This network can
correspond to the second component of a clause with multiples literals, but
it also allows for assertions about only temporal events. It is assumed that a
special predicate exists, which we call T ime. That is, an FTCClause without
non-temporal information will be written as (T ime, ρ). On the other hand, an
FTCClause without temporal information will be written as (ς, ρU), where ρU
corresponds to the Universal Network.

The following is a small example of the expressive capacity of FTCLogic.

Example 9. The patient arrives at the emergency room with a sharp
chest pain. Taking into account his past medical history, in which can be
found antecedents of a heart attack three years ago, the patient is admitted to
the ICCU. Approximately fifteen minutes later (after the patient’s arrival at
the emergency room), the physician proceeds with a physical examination and
detects a periferical cyanosis. At this point (approximately five minutes after

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 687

Figure 1: ρ1.

physical examination), the physician, by means of a pulmonary auscultation,
detects the presence of bilateral crepitants. Once the pulmonary auscultation
finishes (approximately two minutes later), the physician proceeds with a heart
auscultation which reveals a regular tachycardia.

All these manifestations would, according to the syntax of FTCLogic, cor-
respond to the following facts:

(pain(present,@pain), ρ1)

(cyanosis(present,@cyan), ρU)

(crepitants(present,@crep), ρU)

(tachycardia(present,@tach), ρU)

where ρU corresponds to the Universal Network and ρ1 to the network in Figure
1.

In FTCLogic, the temporal information associated with the statement of
example, would correspond to a new clause:

(T ime, ρT1)
where ρT1 would, in this case, take the form of the network that appears in
Figure 2 before minimization and in Figure 3 after minimization.

On the other hand, a possible pattern which confirms the Retrograde Car-
diac Insufficiency (RCI) hypothesis might be expressed as a rule clause:

(rci(present,@rci)∨

¬pain(present,@pain)∨

¬tachycardia(present,@tach)∨

¬crepitants(present,@crep)∨

¬cyanosis(present,@cyan), ρ2)

where ρ2 corresponds to the FTCN in Figure 4.

688 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

Figure 2: ρT1 no minimized.

Figure 3: ρT1 minimized.

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 689

Figure 4: ρ2.

3.2. Resolution Principle in FTCLogic

For the resolution principle for FTCLogic we consider only FTCLogic clauses
with the first component in the form of a Horn clause. In other words:

• Fact clauses: (p(...), ρi)

• Rules clauses: (p1(...) ∨ ¬p2(...) ∨ ... ∨ ¬pn, ρi)

• Goal clauses: (¬p1(...) ∨ ¬p2(...) ∨ ... ∨ ¬pn, ρi)

where ρi is the FTCN associated to each L-clause.

In the unification process, the formula below will be applied to calculate
the resolvent:

((p1(...) ∨ ¬p2(...) ∨ ... ∨ ¬pn(...)), ρi)

((¬p1(...) ∨ ¬pn+1(...) ∨ ... ∨ ¬pm(...)), ρj)

((¬p2(...) ∨ ... ∨ ¬pn(...) ∨ ¬pn+1(...) ∨ ... ∨ ¬pm(...))σ, ρij),

690 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

where σ is the MGU (Most General Unifier) and ρij is the FTCN network asso-
ciated with the resolvent clause. This network will be the result of minimizing
ρi ∩ ρj .

The resolution process will consist of:

1. To the set of starting clauses C, add the clause that is to be tested,
C = (ς, ρU) and call the resulting set C′.

2. Seek a deduction from (⊥, ρmax) by applying the resolution rule reitera-
tively to C′, such that ρmax will be the maximal network obtained with
each of the ρi networks, such that the (⊥, ρi) has been deduced in the
resolution.

3. Finally, V al(ς, C) will be NN ((⊥, ρmax)).

As stated earlier, whenever at least one fact clause is necessary to relate
two variables temporally, this will be included as a temporal constraint within
a ρT network that will be associated with a special clause with a unique literal
called T ime. In other words:

(T ime, ρT)
consists of a positive predicate without arguments and one FTCN that will
store true temporal relations.

For these relations to be taken into account in a resolution process, it will
be necessary to include in the goal clause a literal of the type ¬T ime. We will
also see this in the examples below.

Example 10. Continuing with Example 9, we suppose that we need to
know if the patient admitted to the ICCU suffered a retrograde cardiac in-
sufficiency. The diagnosis system will use the pattern specified in the same
example.

When applying the resolution principle the pattern will be considered as
a rule and the predicate associated to retrograde cardiac insufficiency must be
included as a negative clause, which will also contain the literal ¬T ime, as
mentioned above, so that the (T ime, ρT) clause is necessarily unified in the
resolution and, thus, the constraints of the network are updated, i.e.:

(¬rci(present,@rci) ∨ ¬T ime, ρU)
The resolution principle is used to check the consistency of the temporal

pattern of Example 9 and the set of manifestations of the same example.
The process of refutation by resolution is summarized in Figure 5.
ρU represents, as always, the Universal Network, ρ1 is the network of Figure

1, ρ2 is the network of Figure 4 and ρT1 would be the network represented in

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 691

Figure 5: Refutation by resolution to verify the hypothesis retrograde
cardiac insufficiency.

692 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

Figure 6: ρ12.

Figure 3. Elsewhere, ρ12 corresponds to the FTCN represented in Figure 6 and
ρλ1 to that in Figure 7. We avoid all the constraints between the node that
signals the start time (0:0:0 hours) and the remaining nodes, since their values
would obviously coincide with corresponding ones of @pain.

In FTCLogic the constraint propagation process is exhaustive, because it is
delegated to the FTCN and a path-consistency algorithm that ensures a minimal
network.

4. Description of PROLogic

PROLogic is a programming language that is similar to PROLOG [3], signifying
that, on the one hand, we can write programs with rules and facts, and on the
other, we have an interpreter that enables us to make queries about those
programs. In this chapter, we shall describe both the syntax of the programs
and the interpreter’s commands, also indicating the possibilities provided by
the latter. The first version of PROLogic can be found in [11].

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 693

Figure 7: ρλ1.

4.1. Programs

As in PROLOG, a program is a set of Horn clauses, rules and facts:

consequent :- antecedent1, antecedent2, ... antecedentN.

fact.

The syntax for PROLogic clauses, however, allows the programmer to as-
sociate an FTCN with each clause, as in FTCLogic. For example:

consequent :- antecedent ; (n1,n2,(1,2,3,4) minutes),

(n1,n3,(2,3,4,5) minutes),

(n2,n3,(3,4,5,6) minutes).

fact ; (n1,n2,(3,4,5,6) minutes).

The syntax is the following:

<cons> [:- <ant1>, <ant2>, <ant3>, ..., <antN>]

[; [(<originNode>, <date>)],

constr1,

...

constrM].

694 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

The second part of the clause, i.e., that which follows the symbol ’;’ specifies
an FTCN. If no FTCN appears, the Universal Network will be associated with
PROLogic-clause. In another case, the FTCN will be specified through the
constrX constraints. constrX can be given as a fuzzy number or as a relation:

constrX =

(<nodeX1>,<nodeX2>,(<double>,<double>,<double>,<double>),

<unit>)

| (<nodeX1>,<nodeX2>,relation)

<unit> can be one of the following words: ‘seconds ’,‘ minutes’, ‘days ’,‘
weeks’, ‘months ’, or ‘years’.

A relation specifies a constraint using pseudo-natural language. PROLogic
uses a parser to convert the relations into an equivalent fuzzy number.

PROLogicmakes it possible to instantiate a node of the FTCN, the <originNode>,
with a time. To do so, it is necessary to specify it before the constraints. For
example:

time ; (node1,(’2016-11-25T12:30:00’,

’2016-11-25T13:00:00’,

’2016-11-25T13:30:00’,

’2016-11-25T14:00:00’)),

(node1,node2,(12,14,16,18) minutes).

<originNode> indicates the name of a node that is associated with <date>.

<date> can be a fuzzy date or an absolute date:

<date> = (<dateISO1>,<dateISO2>,<dateISO3>,<dateISO4>)

| <dateISO>

<dateISO> indicates a date in ISO 8601 format, i.e., YYYY-MM-DDTHH:MM.

An FTCN can have only one node of origin, since more than one assignment
is not necessary to determine the rest of the values of the nodes in FTCN.
However, it may be the case that during the merging of two networks, they
have different, and perhaps incompatible, origin nodes. In this case, PROLogic
keeps the origin of one of the networks and discards the other. The programmer
is, therefore, advised to attempt to avoid these cases as much as possible.

If no origin node is specified, PROLogic assigns an unnamed origin node by
default, dated 0:00 on January 1 of year 1.

Finally, it is possible to include comments in two different ways:

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 695

• Single-line comments. Start with % and continue until the end of the
line.

%Single-line comment

• Multi-line comments. Start with /* and end with */ .

/* Multi-

line

comment. */

Example 11. The following PROLogic program encodes the RCI-rule
and the facts that are specified in Example 9 as FTCLogic-clauses for a patient
named Juan. Other facts are additionally specified for another patient named
Manolo:

/* RCI pattern */

rci(present,rci,X) :- pain(present,pain,X),

tachycardia(present,tach,X),

crepitants(present,crep,X),

cyanosis(present,cyan,X), time(X) ;

(pain,cyan,(-5,-5,40,40) minutes),

(pain,crep,(-10,-10,30,30) minutes),

(pain,tach,(-15,-15,20,20) minutes),

(crep,cyan,(-15,-15,30,30) minutes),

(tach,cyan,(-5,-5,35,35) minutes),

(tach,crep,(-10,-10,25,25) minutes),

(rci,pain,(0,0,20,20) minutes),

(rci,cyan,(15,15,40,40) minutes),

(rci,crep,(10,10,30,30) minutes),

(rci,tach,(5,5,20,20) minutes).

% Facts detected in patient Juan

pain(present,pain,juan).

cyanosis(present,cyan,juan).

crepitants(present,crep,juan).

tachycardia(present,tach,juan).

% Temporal constraints detected between

696 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

% the earlier facts

time(juan) ; (pain,(’2016-11-25T12:30:00’,

’2016-11-25T13:00:00’,

’2016-11-25T13:30:00’,

’2016-11-25T14:00:00’)),

(pain,cyan,(12,14,16,18) minutes),

(cyan,crep,(3,4,6,7) minutes),

(crep,tach,(0,1,3,4) minutes).

% Facts detected in patient Manolo

pain(present,pain,manolo).

cyanosis(present,cyan,manolo).

crepitants(present,crep,manolo).

tachycardia(present,tach,manolo).

% Temporal constraints detected between

% the earlier facts

time(manolo) ; (pain,(’2016-11-25T14:30:00’,

’2016-11-25T15:00:00’,

’2016-11-25T15:30:00’,

’2016-11-25T16:00:00’)),

(pain,cyan,(10,12,14,16) minutes),

(cyan,crep,(3,4,6,7) minutes),

(crep,tach,(0,1,3,4) minutes).

We can see that the time origin 0:0:0 of Example 1, has been replaced at the
origin given by the fuzzy date (2016-11-25T12:30:00, 2016-11-25T13:00:00,

2016-11-25T13:30:00,

2016-11-25T14:00:00).

4.2. Queries

With the addition of FTCNs, queries become more complex than in PROLOG.
That is why, in this case, the classic query interpreter becomes a somewhat
more complicated command console, which provides the possibility of accessing
many pieces of information related to the networks obtained as a result of a
classic query. In this section, we detail the general syntax of a command in the
interpreter, and then show, one by one, all the available commands.

The syntax of a command/query is as follows:

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 697

<command> [-<opt1> -<opt2> ... -<optN>]

[<arg1> <arg2> ... <argM>]

[: <goal> [; <FTCN>]].

Where each <optX> is a letter that corresponds to an option. Further-
more, every <argY> is an argument. At the syntax level, only the name of the
command is necessary, but each command may have its own requirements.

The syntax of <goal> is:

<atom1>, <atom2>, ..., <atomN>

Each <FTCN> is described as specified in the previous section.

4.2.1. Load a program

Use:

load <program_file>.

Description:
Load a PROLogic program from a file.

Example 12. We charge the program from Example 11:

?-load ’programRCI.txt’

Program ’programRCI.txt’ correctly loaded.

If the syntax of the program is correct, it indicates that it loads correctly.
If there were a lexical or syntactic error, the fault and the line and column in
which it was made would be indicated.

4.2.2. Make a query

Use:

c [-d|-h|-i] [node1 node2..nodeN] : <goal> [; <FTCN>].

Description:
Normal query of a goal. If no specific nodes are indicated, all will be displayed.
If nodes are indicated, only the temporal constraints between them will be
written. By default, infinite constraints are omitted.

698 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

If the goal FTCN is omitted, the universal network will be used by default.
That is, an empty FTCN.

Options:
-d: Defuzzified constraints.
-h: Hide the FTCN in the answer.
-i: This shows the infinite constraints.

Note that in order to simulate a query from PROLOG the -h option would
be necessary.

Example 13. If we are loading the program as in Example 12, then we
can do the following:

?-c : rci(present,rci,x).

X = Juan.

Temporal constraints:

(pain,pain,(-5mi,-1mi,1mi,5mi))

(pain,crep,(15mi,18mi,19mi,20mi))

(pain,tach,(15mi,19mi,20mi,20mi))

(pain,rci,(-5mi,-1mi,0sec,0sec))

(pain,cyan,(12mi,14mi,15mi,17mi))

(crep,crep,(-2mi,0sec,0sec,2mi))

(crep,tach,(0sec,1mi,1mi,2mi))

(crep,rci,(-20mi,-19mi,-19mi,-18mi))

(crep,cyan,(-5mi,-4mi,-4mi,-3mi))

(tach,tach,(-2mi,0sec,0sec,2mi))

(tach,rci,(-20mi,-20mi,-20mi,-18mi))

(tach,cyan,(-5mi,-5mi,-5mi,-3mi))

(rci,rci,(-2mi,0sec,0sec,2mi))

(rci,cyan,(15mi,15mi,15mi,17mi))

(cyan,cyan,(-2mi,0sec,0sec,2mi))

Note that the temporal constraints are the same as those of the ρλ1 network in
Example 10.

We can attain another answer, if any, with the n command.

Use:

n [-d|-h|-i] [node1 node2..nodeN].

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 699

Description:
Go to the next result of those obtained in the last query.

Options:
-d: Defuzzified constraints.
-h: Hide the FTCN in the answer.
-i: This shows the infinite constraints.

Example 14. We shall use this with the defuzzied network.

?-n -d.

X = manolo

Temporal constraints:

(pain,pain,0sec)

(pain,crep,17mi)

(pain,tach,18mi)

(pain,rci,-2mi)

(pain,cyan,13mi)

(crep,crep,0sec)

(crep,tach,1mi)

(crep,rci,-19mi)

(crep,cyan,-4mi)

(tach,tach,0sec)

(tach,rci,-20mi)

(tach,cyan,-5mi)

(rci,rci,0sec)

(rci,cyan,15mi)

(cyan,cyan,0sec)

On the other hand, the command last allows us to obtain information about
the last answer obtained.

Use:

last [-d|-h|-i] [node1 node2 .. nodeN].

Description:
Returns the current result.

Options:
-d: Defuzzified constraints.

700 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

-h: Hide the FTCN in the answer.
-i: This shows the infinite constraints.

This command allows us to modify the options we have used.

Example 15. If we wish to know the fuzzy values of constraints, we can
do the following:

?-last.

X = manolo

Temporal constraints:

(pain,pain,(-6mi,-2mi,2mi,6mi))

(pain,crep,(13mi,16mi,18mi,20mi))

(pain,tach,(13mi,17mi,19mi,20mi))

(pain,rci,(-7mi,-3mi,-1mi,0sec))

(pain,cyan,(10mi,12mi,14mi,16mi))

(crep,crep,(-2mi,0sec,0sec,2mi))

(crep,tach,(0sec,1mi,1mi,2mi))

(crep,rci,(-20mi,-19mi,-19mi,-18mi))

(crep,cyan,(-5mi,-4mi,-4mi,-3mi))

(tach,tach,(-2mi,0sec,0sec,2mi))

(tach,rci,(-20mi,-20mi,-20mi,-18mi))

(tach,cyan,(-5mi,-5mi,-5mi,-3mi))

(rci,rci,(-2mi,0sec,0sec,2mi))

(rci,cyan,(15mi,15mi,15mi,17mi))

(cyan,cyan,(-2mi,0sec,0sec,2mi))

We could also omit the network:

?-last -h.

X = manolo

or focus on the constraints of certain nodes:

?-last pain crep.

X = manolo

Temporal constraints:

(pain,pain,(-6mi,-2mi,2mi,6mi))

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 701

(pain,crep,(13mi,16mi,18mi,20mi))

(crep,crep,(-2mi,0sec,0sec,2mi))

Infinite constraints are omitted by default. This helps make the result more
readable. However, we use the -i option if necessary.

When there are no more answers, the command n warns of this and keeps
the last answer in context:

?-n.

There are no more answers.

?-last -h.

X = manolo

4.2.3. Basic information regarding networks

There is a set of commands that makes it possible to obtain additional infor-
mation about the network associated with the last answer. These commands
may be of interest if we wish to know which event occurred first or last, and
which occurred after or before another event.

firsts tells us which nodes occurred before all the others. There may be
several.

Use:

firsts.

Description:
Returns the nodes that represent the initial events of the result network. Re-
turns more than one if they occurred at approximately the same time.

lasts returns the end nodes in the network.
Use:

lasts.

Description:
Returns the nodes that represent the final events of the result network. Returns
more than one if they occurred at approximately the same time.

The commands pred and succ return all the nodes that precede and succeed
the indicated node, respectively.

Use:

pred <node>.

702 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

Description:
Returns the nodes that occurred approximately before <node> in the result
network.

Use:

succ <node>.

Description:
Returns the nodes that occurred approximately after <node> in the result net-
work.

Example 16.

?-n -d.

X = manolo

Temporal constraints:

(pain,pain,0sec)

(pain,crep,17mi)

(pain,tach,18mi)

(pain,rci,-2mi)

(pain,cyan,13mi)

(crep,crep,0sec)

(crep,tach,1mi)

(crep,rci,-19mi)

(crep,cyan,-4mi)

(tach,tach,0sec)

(tach,rci,-20mi)

(tach,cyan,-5mi)

(rci,rci,0sec)

(rci,cyan,15mi)

(cyan,cyan,0sec)

?-firsts.

rci

?-lasts.

tach

?-pred crep.

pain rci cyan

?-succ crep.

tach

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 703

4.2.4. Network resolution

There are commands with which to place each node in an absolute time using
an origin node. This can be done using the commands time and resolv.

Use:

time [-d] [<node1>...<nodeN>].

Description:
It returns an absolute time for each node in the answer network, taking into
account the origin node of the network, if it exists.

Options:
-d: Defuzzified constraints.

Example 17.

?-n -h.

X = manolo

?-time.

pain -> (2016-11-25 15:09:00 +0000,

2016-11-25 15:13:00 +0000,

2016-11-25 15:17:00 +0000,

2016-11-25 15:21:00 +0000)

crep -> (2016-11-25 15:28:00 +0000,

2016-11-25 15:31:00 +0000,

2016-11-25 15:33:00 +0000,

2016-11-25 15:35:00 +0000)

tach -> (2016-11-25 15:28:00 +0000,

2016-11-25 15:32:00 +0000,

2016-11-25 15:34:00 +0000,

2016-11-25 15:35:00 +0000)

rci -> (2016-11-25 15:08:00 +0000,

2016-11-25 15:12:00 +0000,

2016-11-25 15:14:00 +0000,

2016-11-25 15:15:00 +0000)

cyan -> (2016-11-25 15:25:00 +0000,

2016-11-25 15:27:00 +0000,

2016-11-25 15:29:00 +0000,

2016-11-25 15:31:00 +0000)

704 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

We can indicate any origin node with the resolv command.

Use:

resolv [-d] <origin_node> <time> [<node1>...<nodeN>].

Description:
It returns an absolute time for each node in the answer network, taking into
account the <origin node> argument.

Options:
-d: Defuzzified constraints.

Arguments:
<origin node>: node from which the network is resolved.
<time>: time assigned to <origin node>, in ISO-8601 format: YYYY-MM-
DDTHH:MM:SS.

Example 18.

?-n -h.

X = manolo

?-resolv -d crep ’1999-07-03T16:45:18’.

crep -> 1999-07-03 16:45:18 +0000

pain -> 1999-07-03 16:28:18 +0000

tach -> 1999-07-03 16:46:18 +0000

rci -> 1999-07-03 16:26:18 +0000

cyan -> 1999-07-03 16:41:18 +0000

4.2.5. Hypothetical queries

Previous queries allow the extraction of available information. PROLogic allows
a second type of queries in order to discover the compatibility between a certain
piece of information and the existing one. This can be done using the command
hypo.

Use:

hypo <node1> <relation> <node2>.

Description:
Compare a hypothetical constraint between two nodes and their real constraint,
returning the possibility and necessity values of the Possibilistic Logic.

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 705

Arguments:
<node1>: initial node of the constraint.
<relation>: relation between the nodes, written in a fuzzy temporal language
similar to natural language. This is the same language as that permitted in the
temporal relations of the programs.
<node2>: final node of the constraint.

The possibility degree is a measure between 0 and 1. A 0-value indicates
that the relation of the query is impossible, while a 1-value indicates that the
relation is totally possible. With respect to necessity degree, it measures the
certainty of a relation, signifying that a value greater than 0 would imply a
possibility of 1, while a possibility value of 0 would imply a necessity of 0. A
necessity value of 0 and a possibility of 1 mean that the relation is completely
possible but the certainty is unknown. This implies total ignorance.

Example 19. Let us check, for example, a relationship between the pain
and crep nodes shown in the previous examples.

?-last -d pain crep.

X = manolo

Temporal constraints:

(pain,pain,0sec)

(pain,crep,17mi)

(crep,crep,0sec)

?-hypo pain ’approximately 15 minutes before’ crep.

Possibility degree: 1.0

Necessity degree: 0.0

The result indicates that the relationship is perfectly possible, although without
certainty.

The following relation is, on the other hand, completely incompatible:

?-hypo pain ’approximately 40 minutes before’ crep.

Possibility degree: 0.0

Necessity degree: 0.0

4.2.6. Help command

PROLogic includes a help command with information concerning the syntax of

706 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

all the commands, with their description and the meaning of their options and
arguments. It is the command help.

Use:

help <command1> [<command2>...<comamndN>].

Description:
Describe the use of the commands-arguments.

4.2.7. End session

In order to close the application from the terminal, it is simply necessary to use
the command q.

Use:

q.

Description:
The running of the interpreter ends.

5. PROLogic Design

As mentioned previously, PROLogic has been implemented in Haskell. The
Alex and Happy tools have also been used as scanner and lexer generators,
respectively. They have been used for both the analysis of the programs and
the commands interpreter.

In this section we describe how the different modules interact. Relationships
are represented in the hierarchical model that appears in Figure 8. Note that
there are two main blocks: interface and implementation.

The interface block contains three main modules: Main, Interpreter and
CommandsImpl. The first is responsible for initializing some of the parameters
in the environment and for initiating the commands interpreter. This inter-
preter, in turn, executes an interactive and textual interface for the process-
ing of different commands: principally loading programs and consulting them.
The interpreter is responsible only for analyzing the syntax of the commands,
through a parser, whose execution passes to the module CommandsImpl. The
interpreter and the commands are, therefore, independent.

What CommandsImpl really does is verify that the syntax of the interpreter
command is correct in order to obtain the value of the parameters, call the

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 707

Figure 8: General structure of PROLogic.

708 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

appropriate functions of the implementation block and write the results. The
block consequently also belongs to the interface.

In the implementation block, the main module is PROLogic. The module
Relations appears at the same level, since both the commands and the programs
can include textual temporal relations between two nodes rather than numerical
restrictions. This module would be used to perform the translation (through a
parser) of that text to numerical restrictions.

The PROLogic module is that which contains the implementation of the
FTCLogic resolution process. This process produces a list of answers, consist-
ing of a substitution and a network, rather than the list of substitutions that
PROLOG would provide. The module also offers some functions with which
to perform basic queries on the answers and to obtain additional information
about networks or substitutions. This module uses two others: NetworkMan-
ager and PROLOG. The first is responsible for managing everything related to
networks, thus making the resolution engine and network implementations in-
dependent. NetworkManager ensures that the networks included in each clause
are always minimized and it is, therefore, always possible to know when we
have an inconsistent network. The second contains a basic implementation of
PROLOG [1]. In addition, PROLOG uses the Unification module, which con-
tains the most basic definitions of logic and allows the calculation of unifiers
(substitutions between variables).

The implementation of the main algorithms for network management, such
as the minimization and mixing algorithms, is found in the FTCN module. The
nodes are simple numerical values and the restrictions between them are defined
by fuzzy numbers, whose definition and functions are in the FuzzyNumbers
module.

The NetworkManager module also uses the TimeManager module, which
contains a series of definitions and functions that allow the use of temporal units
in the network constraints. It also allows NetworkManager to assign absolute
times to all nodes in the network, starting from the assignment for a particular
node.

5.1. Complexity analysis

In this section we discuss the complexity time order of temporal commands.
That is, we shall consider only the part of the code that is not included in any
of the PROLOG implementations. This must be added to the complexity of the
commands of any PROLOG interpreter. The most expensive are those related
to a basic query, since it requires a search tree that, in the worst case, could

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 709

be quite extensive. The rest of the commands are significantly less expensive,
although not too efficient. Some could improve their efficiency by means of
implementation in an imperative language.

It would also be possible to improve the efficiency of the commands by,
for example, replacing list structures (access with O(n)) with balanced trees
(access with O(log (n)) in order to reduce the impact of searches.

5.1.1. Query commands

We shall first study the complexity of the command c, after which we shall
show those of n and of last.

Let n be the number of rules in the program, m be the average number of
nodes per clause, r be the number of facts in the program, s be the number of
atoms in the goal clause, t be the number of nodes in the goal network, and k

be the average number of atoms in the consequent of a program rule.
Command c
Since PROLogic is implemented in Haskell, not all the possible answers are

calculated, but only the first one, which is that required by the command. This
is owing to the lazy evaluation. In the worst case, in order to obtain the answer
it is necessary to go completely through the search tree created by PROLogic.
The size of this tree is determined by the number of atoms in the goal (s), the
number of clauses in the program (n + r) and the number of atoms that have
the consequents of the rules (k).

Taking into account the number of times an intersection of two networks
must be made, the complexity of this operation, and the minimization that
must be carried out at the end, we have calculated an order of complexity of:

O(((n + r)s
kn+1

−1

k−1
−1)((n + r)m+ t)5)

Command n
The command n places us in a similar situation. The worst possible case

is the scenario of having found a first solution in exactly s steps, and that the
next one is at the end of the search tree. This would give us a complexity of

O(((n + r)s
kn+1

−1

k−1
−1 − s)((n+ r)m+ t)5)

Command last
The last command is the simplest of all. It does not calculate any solution,

but merely shows the last one obtained. Its complexity is

O(((n + r)m+ t)4)

710 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

5.1.2. Basic information commands

We assume that the size of the network, measured in nodes, is n.

The complexity of the commands pred and succ is the same, since their
implementation varies only in the check that the nodes of the network are
located before or after a given one. Both have O(n3).

Furthermore, the complexity of the firsts and lasts commands is O(n4).

5.1.3. Resolution network commands

The commands time and resolv are implemented in a similar way. As in the
previous section, we assume that the size of the network is n.

If no specific nodes are requested in these commands, it is assumed that the
solution for the entire network is required. The complexity of these commands
is O(n3)

5.1.4. Hypothetical query command

Finally, we have analyzed the command hypo, which is quite simple: process
the relation, attain the absolute constraint between the nodes and compare it
with the relation.

A relation can be a disjunction of subrelations. If r is the number of such
subrelations and s is the average number of words in each subrelation, the
complexity of this command is

O(n2 + rs).

6. Evaluation of PROLogic with an Example: Avian Influenza

Probable person-to-person transmission of H5N1

In this section we shall use PROLogic to formalize an example taken from
the field of medicine and shall refer to the avian influenza virus (H5N1). In
particular, we shall create a program that models a case of possible contagion
among humans. We have employed the example from [19], since the previous
study of the same case is very useful in the context of the FuzzyTIME temporal
reasoner [4].

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 711

The example studies the case of infection of a family with three members:
a girl, the aunt (with whom she lives) and the mother. Both the girl (index
patient) and the aunt, have been in contact with infected chickens. The mother,
who does not live with them, has not. The girl and the mother die, while the
aunt is discharged after a few days in hospital. For each of these women, we
have created a table that will describe the main events related to the disease
and its contagion. Each of the entries in the table corresponds to a PROLogic
fact. One of the terms of this fact is a node in the FTCN. This network will
temporarily relate some facts to others. Table 1 contains the most important
events related to the girl while Table 2 shows those of the aunt and Table 3
shows those of the mother. Those events that occur in a time interval have been
translated into two events corresponding to the beginning and the end of that
interval. This is done in order to enable them to be handled with an FTCN.

Relevant facts Corresponding node
regarding the girl in the network

Last exposure to dead chicken np1
Beginning of fever ni1b
End of fever ni1e
Admitted to local hospital np2
Admitted to prov. hospital np3
Died np4

Table 1: Temporal events associated with the girl.

The objective is to determine whether there is an infection between humans.
We achieve this goal by following three steps.

First, we consider the symptoms for each patient, and possible contacts with
infected subjects. These are the facts of the program. These facts are related
to each other through temporal constraints. Example 20 shows a fragment of a
PROLogic program that specifies the main facts corresponding to the girl, the
aunt and the mother. We can also observe the temporal constraints between
some of these events. All this is part of a complete PROLogic program.

By using the facts contained in the program, and choosing an appropriate
time origin, we could, for example, by means of the resolv command, assign a
date to each event of each patient. This corresponds to obtaining solutions for
the network associated with each one of them. That is, by using the command

resolv -d ’origin’ ’2004-09-02T00:00:00’.

we can verify that the timeline for the girl, the aunt and the mother is similar

712 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

Relevant facts Corresponding node
regarding the aunt in the network

Last exposure to dead chicken tp1
Start of niece’s bedside care ti1b
End of niece’s bedside care ti1e
Beginning of fever ti3b
End of fever ti3e
Beginning of pneumonia ti4b
End of pneumonia ti4e
Admitted to hospital tp2
Discharged tp3

Table 2: Temporal events associated with the aunt.

to that specified in [19].

Example 20. Some facts regarding the patients that are part of the pro-
gram employed to detect the person-to-person transmission of the H5N1 virus:
exposureChicken(yes,np1,girl).

begFever(yes,ni1b,girl).

endFever(yes,ni1e,girl).

admLocalHosp(yes,np2,girl).

admHosp(yes,np3,girl).

died(yes,np4,girl).

time(girl) ;

(origin,(’2004-09-02T00:00:00’,’2004-09-02T00:00:00’,

’2004-09-02T23:59:59’,’2004-09-02T23:59:59’)),

(CP=np1,CF=ni1b, (60,72,96,108) horas),

(CF=ni1b,origin,’approximately equal hours’),

(CF=ni1b,FF=ni1e,’before’),

(origin,IHL=np2, ’approximately 5 days before’),

(IHL=np2, CF=ni1b, ’after’),

(IHL=np2, FF=ni1e, ’before’),

(IHL=np2,IH=np3, ’approximately 1 day before’),

(IH=np3,M=np4, (2,3,3,4) hours).

exposureChicken(yes,tp1,aunt).

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 713

Relevant facts Corresponding node
regarding the mother in the network

Start of the trip mi1b
Start of daughter’s bedside care mi3b
End of daughter’s bedside care mi3e
Beginning of fever mi5b
End of fever mi5e
Beginning of pneumonia mi8b
End of pneumonia mi8e
Beginning of dyspnoea mi9b
End of dyspnoea mi9e
Admitted to hospital mp1
Died mp2

Table 3: Temporal events associated with the mother.

startCare(yes,ti1b,aunt).

endCare(yes,ti1e,aunt).

begFever(yes,ti3b,aunt).

endFever(yes,ti3e,aunt).

begPneumonia(yes,ti4b,aunt).

endPneumonia(yes,ti4e,aunt).

admHosp(yes,tp2,aunt).

discharged(yes,tp3,aunt).

time(aunt) ;

(origin,(’2004-09-02T00:00:00’,’2004-09-02T00:00:00’,

’2004-09-02T23:59:59’,’2004-09-02T23:59:59’)),

(CP=tp1,origin,(3,3,3,3) days),

(CC=ti1b,FC=ti1e, (12,12,13,13) hours),

(origin,CC=ti1b, ’approximately 5 days before’),

(origin,CF=ti3b,’approximately 14 days before’),

(CF=ti3b,FF=ti3e,’before’),

(CF=ti3b, CN=ti4b,’approximately 7 days before’),

(CN=ti4b,FN=ti4e,’before’),

(origin,IH=tp2,(21,21,21,21) days),

(CF=ti3b,IH=tp2,’before’),

(origin,AM=tp3,’35 days before’).

714 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

startTrip(yes,mi1b,mother).

startCare(yes,mi3b,mother).

endCare(yes,mi3e,mother).

begFever(yes,mi5b,mother).

endFever(yes,mi5e,mother).

begPneumonia(yes,mi8b,mother).

endPneumonia(yes,mi8e,mother).

begDyspnoea(yes,mi9b,mother).

endDyspnoea(yes,mi9e,mother).

admHosp(yes,mp1,mother).

died(yes,mp2,mother).

time(mother) ;

(origin,(’2004-09-02T00:00:00’,’2004-09-02T00:00:00’,

’2004-09-02T23:59:59’,’2004-09-02T23:59:59’)),

(origin,CVH=mi1b,’approximately 5 days before’),

(CC=mi3b, FC=mi3e, (16,16,18,18) hours),

(origin,CF=mi5b, (7,8,9,10) days),

(CF=mi5b,FF=mi5e, ’before’),

(origin, IH=mp1,’approximately 15 days before’),

(CN=mi8b,IH=mp1,’before’),

(FN=mi8e,IH=mp1,’after’),

(CN=mi8b,FN=mi8e,’before’),

(CD=mi9b,IH=mp1,’before’),

(FD=mi9e,IH=mp1,’after’),

(CD=mi9b,FD=mi9e,’before’),

(origin,M=mp2,’19 days before’).

time(aunt,mother);

(origin,(’2004-09-02T00:00:00’,’2004-09-02T00:00:00’,

’2004-09-02T23:59:59’,’2004-09-02T23:59:59’)),

(CC=ti1b, CC=mi3b,’before’),

(CC=ti1b, FC=mi3e, ’before’),

(FC=ti1e, CC=mi3b, ’after’),

(FC=ti1e, FC=mi3e, ’before’),

Secondly, the typical evolution of avian influenza, extracted from the ev-
idence available in medical literature, will be included in the program in the

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 715

form of a rule. In this evolution an episode of dyspnea usually appears in a
range of one to 16 days, the average being 5 days after the onset of the disease
(which is usually identified thanks to the onset of fever). Moreover, between
3 and 17 days after the onset of fever (an average of 7 days) pneumonia usu-
ally appears. Furthermore, in almost all cases the patient is hospitalized with
pneumonia. Finally, death occurs between 6 and 30 days after the onset of the
disease. This pattern can be represented with the PROLogic rule that appears
in Example 21. This rule will be part of the program to which the clauses of
Example 20 belong.

Example 21. PROLogic rule that represents the typical pattern of the
evolution of a patient with H5N1 virus.
avianInfluenza(yes,GA,X) :-

begFever(yes,CF,X),endFever(yes,FF,X),

begDyspnoea(yes,CD,X),endDyspnoea(yes,FD,X),

begPneumonia(yes,CN,X), endPneumonia(yes,FN,X),

admHosp(yes,IH,X),died(yes,M,X),

time(X);

(CF,CD,(1,5,5,16) days),

(CF,CN,(3,7,7,17) days),

(CN,IH,’before’),

(FN,IH,’after’),

(CF,M,(6,6,30,30) days).

Thirdly and finally (Example 22), we could use the complete program to
make interesting deductions that would allow us to conclude some aspects re-
lated to contagion. In particular, it would be interesting to verify whether this
contagion occurred person to person.

Example 22. We summarize the conclusions in the following queries:

• Could the aunt have been infected by the girl? To answer this, we com-
pared the time from the end of the care until the beginning of the fever
in the aunt, with the standard incubation period (approximately 2 to 10
days). We do this with the following query:

hypo ’FC=ti1e’ ’approximately (2,2,10,10) days

before’ ’CF=ti3b’.

and the degrees of possibility and necessity are 1 and 0.42, respectively.

716 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

In fact, if we check the elapsed time using the command

c ’FC=ti1e’ ’CF=ti3b’: time(aunt).

the result is (5d 11h,1week 11h,1week 2d 12h,1week 4d 12h) (defuzzi-
fied: 1week 1d 11h 30mi), that is, approximately 8 days.

• Could the aunt have been infected by the mother? This would be possible
if the time of care of the aunt and the mother had overlapped. We consult
this with the command:

c ’CC=mi3b’ ’FC=ti1e’: time(aunt,mother),time(aunt),

time(mother).

and the result is true: (0sec,0.1sec,12h 59mi 59sec,13h).

• Could the aunt have been infected by the chickens? If the incubation
period is considered to be 10 days maximum, the possibility degree is 0
(and necessity = 0):

hypo ’CP=tp1’ ’less than 10 days before’ ’CF=ti3b’.

We calculate the temporal distance with the command:

c ’CP=tp1’ ’CF=ti3b’: time(aunt).

and the result is (2week 3d,2week 3d,2week 3d,2week 3d)

• Finally, there is no contact between the mother and the chickens. Could
the mother have been infected by the girl? We checked whether the
incubation period (2-17 days) plus the evolution from symptoms to death
(6 to 30 days) was compatible with the time that had elapsed since the
mother began to care for the daughter until she died. The next query
returned a degree of possibility of 1 and a degree of necessity close to 1:

hypo ’CC=mi3b’ ’(8, 11, 20, 47) days before’ ’M=mp2’.

If we consult the time in the network:

c ’CC=mi3b’ ’M=mp2’: time (mother).

the result is (1week 3d 16h, 1week 5d 19h, 2week 21h, 2week 3d).

7. Conclusions

In this work we present PROLogic, a fuzzy temporal constraint PROLOG.
The PROLogic language implements the resolution mechanism of FTCLogic, a

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 717

logic that is capable of handling fuzzy temporal constraints, through the use of
FTCNs.

PROLogic also includes an interpreter that allows the user to load programs
and make queries about them. Like PROLOG, in PROLogic it is possible to
check whether a goal can be inferred from a program. The command returns
the first answer compatible with the goal, or warns that the response does not
exist. However, when following the model of FTCLogic, all the clauses have an
associated temporal network, signifying that the networks are merged during
the resolution process through the intersection of those constraints that relate
the same nodes. A final network will be part of the answer. In addition, a
temporal network, or “goal network”, can be added to a goal clause. This
network must be compatible with the answer network.

The interpreter also implements temporal commands and a help command.
We have analyzed the computational complexity associated with temporal

commands. This must be added to the complexity of the commands of any
PROLOG interpreter.

We have validated PROLogic with an example of the probable person-to-
person transmission of avian influenza [19] with very good results.

PROLogic is currently a proof of concept that should be improved and
evaluated until the final application is obtained. In this final application we
could consider including reasoning with time intervals by simply translating
these intervals into point-to-point relationships to operate in an FTCN network,
as occurs in the FuzzyTIME temporal reasoner [4].

Acknowledgements

This work was partially funded by the Spanish Ministry of Science, Innovation
and Universities under the SITSUS project (Ref: RTI2018-094832-B-I00), and
by the European Fund for Regional Development (EFRD, FEDER).

References

[1] J.A. Alonso Jiménez, Lógica en Haskell, In:
https://www.cs.us.es/˜jalonso/publicaciones/2007-Logica en Haskell.pdf
(2007), 113-134.

[2] S. Barro, R. Maŕın, J. Mira and A.R. Patón, A model and a language for
the fuzzy representation and handling of time, Fuzzy Sets and Systems, 61
(1994), 153-175.

718 M.A. Cárdenas-Viedma, F.M. Galindo-Navarro

[3] P. Blackburn, J. Bos and K. Striegnitz, Prolog Syntax, In:
http://www.learnprolognow.org/lpnpage.php?pagetype=html
&pageid=lpn-htmlse2 (2012).

[4] M. Campos, J.M. Juarez, J. Palma, R. Marn, and F. Palacios, Avian
Influenza: Temporal modeling of a human to human transmission case,
Expert Systems with Applications, 38 (2011), 8865-8885.

[5] M.A. Cárdenas-Viedma and R. Maŕın, FTCLogic: Fuzzy temporal
constraint logic, Fuzzy Set and Systems, 363 (2019), 84-112; DOI:
10.1016/j.fss.2018.05.014.

[6] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artificial
Intelligence, 49 (1991), 61-65.

[7] D. Dubois and H. Prade, Processing fuzzy temporal knowledge, IEEE
Trans. on Systems, Man and Cybernetics, 19, No 4 (1989), 729-744.

[8] D. Dubois and H. Prade, Possibility tTheory and its applications: Where
do we stand?, In: Springer Handbook Computational Intelligence, Eds.
Janusz Kacprzuk and Witold Pedrycz (2015), 31-60, Springer Berlin Hei-
delberg.

[9] D. Dubois and H. Prade, Possibilistic logic - An overview, In: Handbook of
the History of Logic. Volume 9: Computational Logic. J. Siekmann, Vol.
Eds.; D.M. Gabbay, J. Woods, Series Eds. (2015), 283-342.

[10] S. Dutta, A Temporal Logic for uncertain events and an outline of a pos-
sible implementation in an extension of PROLOG, Proc.s of the Fourth
Conf. on Uncertainty in Artificial Intelligence, UAI (1988).

[11] F.M. Galindo-Navarro and M.A. Cárdenas-Viedma, PROLogic, In:
https://webs.um.es/mariancv/PROLogic/PROLogic.exe (2017).

[12] A. Kaufmann and M. Gupta, Introduction to Fuzzy Arithmetic, Van Nos-
trand Reinhold, New York (1985).

[13] R. Marn, M.A. Cárdenas-Viedma, M. Balsa and J.L. Sánchez, Obtaining
solutions in fuzzy constraint networks, Intern. J. of Approximate Reason-
ing 16, No 3-4 (1997), 261-288.

[14] S. Marlow, Happy User Guide. In:
https://www.haskell.org/happy/doc/happy.pdf (2001).

PROLogic: A FUZZY TEMPORAL CONSTRAINT PROLOG 719

[15] S. Marlow, Alex: A lexical analyser generator for Haskell, In:
https://www.haskell.org/alex/ (2015).

[16] S. Marlow, Happy: The parser generator for haskell, In:
https://www.haskell.org/happy/ (2015).

[17] E. Lamma, M. Milano and P. Mello, Extending constraint logic program-
ming for temporal reasoning, Annals of Math. and Artificial Intelligence,
22, No 1-2 (1998), 139-158.

[18] E. Schwalb and L. Vila, Logic programming with temporal constraints,
Proc. Third Intern. Workshop on Temporal Representation and Reasoning
(TIME ’96), Key West, FL - USA (1996), 51-56.

[19] K. Ungchusak, P. Auewarakul, S. Dowell, R. Kiphati, W. Auwanit, P.
Puthavathana et al., Probable person-to-person transmission of avian in-
fluenza A (H5N1), The New England J. of Medicine, 352 (2005), 333-340.

720

