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A B S T R A C T   

The sedimentary infill of the Quibas karstic site (Early Pleistocene, southern Spain) represents the only 
continuous succession with remains of continental vertebrates in Europe from pre-Jaramillo to post-Jaramillo 
age. The Quibas site, with a significant paleontological record, is dated between 1.1 and 0.9 Ma and offers a 
unique opportunity to carry out a paleoclimatic reconstruction of the time period immediately after the arrival of 
the first humans to western Europe. For this reason, defining the dominant sedimentary processes in the different 
stratigraphic units and the associated paleoenvironment is essential. The Quibas site is made up of two karstic 
features with two stratigraphic sequences: Quibas-Cueva, containing six lithostratigraphic units, and Quibas- 
Sima, which contains seven lithostratigraphic units. The detailed description and analyses of the stratigraphic 
sections have allowed the characterization of various autochthonous and allochthonous facies of cave deposits. 
Paleoclimatic proxies, inferred from sedimentological analyses, reveal a record of several alternating humid and 
arid phases resulting from the Early Pleistocene glacial-interglacial cycles, allowing correlation to the marine 
oxygen isotope record. The lowermost units (pre-Jaramillo) were deposited during a long-lasting interglacial, 
correlated to MIS 33–31. It was followed by an increase in aridity in the intermediate units of Quibas-Sima and 
uppermost unit of Quibas-Cueva (Jaramillo), revealing the beginning of a glacial period at the start of the 
Jaramillo subchron (1 Ma), which can be correlated to MIS 30. The upper Jaramillo and post-Jaramillo units 
suggest these were deposited in alternating periods of aridity and humid conditions, although less humid than 
the pre-Jaramillo period, probably representing the MIS 29 interglacial, the MIS 28 glacial and the MIS 27 
interglacial.   

1. Introduction 

Understanding the climate backdrop of the Early Pleistocene 
(2.58–0.78 Ma) is pivotal for unravelling the climatic and ecological 
shifts that affected the diversity of European land mammals, including 

hominins, and the patterns of their migrations and extinctions. In this 
timeframe, the climate underwent cyclical variations influenced by 
Earth’s astronomical-obliquity forcings, leading to ‘glacial’ and ‘inter
glacial’ phases lasting approximately 41 ka each (Lisiecki and Raymo, 
2005). These fluctuations in climate led to 42 consecutive cycles of 
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associated vegetation, oscillating between open landscapes during 
glacial periods and dense forested landscapes during interglacial periods 
(Leroy et al., 2011). Along the Early Pleistocene, there was an overall 
trend towards slightly cooler conditions, resulting in progressively 
extended glacial periods (Lisiecki and Raymo, 2005). This is evident in 
the increasingly prolonged presence of open landscapes, generally 
observed during both glacial epochs and the transitional phases between 
glacial and interglacial periods (Leroy et al., 2011). The Mid-Pleistocene 

Transition was characterized by a fundamental change in the Earth’s 
climatic cyclicity, with a strong intensification of glacial periods (Head 
and Gibbard, 2005). At the end of the Early Pleistocene, intense 
longer-lasting glacial cycles were established that contrasted with the 
short interglacial pulses, and the cycle duration changed from 41 to 100 
ka (Head and Gibbard, 2005; Lisiecki and Raymo, 2005). 

In this context, the information obtained through the study of the 
Quibas site, located in southeastern Spain (Abanilla, Region of Murcia; 

Fig. 1. Geographic and structural context of the Quibas site. A. Map of the Iberian Peninsula showing the location of Quibas. B. Geologic map of the Quibas Range 
with the location of the Quibas karstic complex. C. View of the two main structures of the Quibas site in 2015. 
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Fig. 1), represents a significant contribution to the understanding of the 
climatic events that took place at the end of the Early Pleistocene in 
south-western Europe (Piñero et al., 2020; Del Castillo et al., 2023). The 
site is located in an abandoned limestone quarry on the southeastern 
slope of the Quibas Range and comprised a karstic system (a cave) with 
different features (galleries and chasms) filled with sediments (Fig. 1). 
This karstic system infillings record impressive continental sequences 
dating from the late Early Pleistocene. With an age between 1.1 and 0.9 
Ma, the Quibas site represents the only continuous sequence of terres
trial vertebrates of pre-Jaramillo to Jaramillo period in Europe (Piñero 
et al., 2020, 2022). Although levels of pre-Jaramillo and Jaramillo age 
have been detected in the Gran Dolina section (Atapuerca), these are 
levels with no record of continental vertebrates (Parés et al., 2018). 
Somewhat earlier than this time (at around 1.4–1.2 Ma), the first 
humans settled in the westernmost parts of the European continent (e.g. 
Carbonell et al., 2008; Toro-Moyano et al., 2013; Lozano-Fernández 
et al., 2019; Yravedra et al., 2021). 

Karstic deposits provide an extraordinary record of cave formation, 
paleobiota, and the relationship between external and internal envi
ronmental conditions (Goldberg, 2000; Farrand, 2001; Pickering et al., 
2007; Karkanas et al., 2008; Kourampas et al., 2009; Springer, 2012). 
Recognizing and characterizing different facies of these karstic infillings 
provides valuable information to elucidate the conditions under which 
they were formed, enabling the reconstruction of paleoenvironmental 
and paleoclimatic conditions (Farrand, 1975; Straus, 2001; Goldberg 
and Sherwood, 2006; Finlayson et al., 2008; Campaña et al., 2017). 

So far, no evidence of human occupation has been found at the 
Quibas site, which could be related to a cooling that occurred between 
1.15 and 1.12 Ma ago, immediately pre-dating the oldest levels of 
Quibas. The extreme conditions at the end of this cold phase would 
presumably have depopulated Europe during several successive glacial- 
interglacial cycles (Margari et al., 2023). However, since its discovery in 
1994, this site has yielded fossil remains of more than 90 species, mainly 
vertebrates, including new taxa (Montoya et al., 1999, 2001; Carlo
s-Calero et al., 2006; Made et al., 2008; Alba et al., 2011; Blain et al., 
2014; Sevilla et al., 2014; Pérez-García et al., 2015; Piñero and Alberdi, 
2015; Piñero et al., 2015, 2016, 2020, 2022; Blain and Bailon, 2019; 
Rosas et al., 2022, 2023; Agustí et al., 2022). The Quibas karstic complex 
is formed by two main features, Quibas-Sima (QS) and Quibas-Cueva 
(QC), which are part of the same gallery. In Quibas-Sima, seven 
distinct detrital units have been distinguished (QS-1 to QS-7). According 
to magnetobiostratigraphic correlations, QS-1 has an age between 1.1 
and 1.07 Ma, QS-2 to QS-5 between 1.07 and 0.99 Ma (Jaramillo sub
chron), and QS-6 and QS-7 between 0.99 and 0.9 Ma (Piñero et al., 2020, 
2022). Quibas-Cueva comprises six different levels (QC-1 to QC-6). The 
most basal units of Quibas-Cueva are equivalent in age to QS-1 
(1.1–1.07 Ma). Stratigraphic observations indicate that the highest 
level of Quibas-Cueva (QC-6) represents an extension of the QS-2/QS-3 
level of Quibas-Sima. 

The sedimentary record of the Quibas site can contribute signifi
cantly to expand our knowledge of the climatic changes that occurred 
during the transition from the Early to Middle Pleistocene. Specifically, a 
thorough examination of the different facies associations in the succes
sive units of the Quibas stratigraphic sections is crucial for establishing a 
solid paleoenvironmental and paleoclimatic framework for the conti
nental Early-Middle Pleistocene transition record in Southeast Iberia, 
close to the arrival of the first hominins. 

This study aims to summarize, yielding new data, the results of the 
Quibas paleokarstic-complex site (Fig. 1), in which stratigraphic sec
tions were studied to identify the different facies associations, the 
depositional environment and to interpret paleoenvironmental and pa
leoclimatic conditions. The high-precision chronology of the Quibas site 
offers the opportunity to correlate the detected continental paleoenvir
onmental shifts to the marine oxygen isotope record (Marine Isotopic 
Stages). 

2. Geological and geomorphological setting 

The Quibas Range is a part of the northeastern Betic Cordillera, and it 
is an open anticlinal fold ridge with a klippe structure of Middle Subbetic 
overlying Southern Prebetic materials. The calcareous massif of the Si
erra de Quibas is 6 km in length and 2.5 km wide, and mainly consists of 
Mesozoic rocks, Lower Jurassic limestones, and dolostones (Fig. 1B; 
Azema and Montenat, 1975; Azema, 1977; Rodríguez Estrella et al., 
2004). This massif underwent a neotectonic activity from the upper 
Miocene, manifesting in the presence of N–S and NE-SW sets of faults. 
From a geomorphological point of view, the Quibas Range presents 
karstic systems with different features; most of them were formed along 
these previous faults and diaclase sets (Rodríguez Estrella et al., 2004). 

The site of Quibas is located in the eastern part of the Quibas Range. 
Specifically, it was found in an abandoned quarry that cut a part of the 
karstic system in which it is found the Quibas site (Montoya et al., 1999). 
The outcropping karstic system consists of different passages, including 
a ~5-m-wide, ~8-m-high gallery, and an unknown length (Qui
bas-Cueva), within which a chasm was developed in the zenithal part of 
the cave (Quibas-Sima) (see Fig. 1C). There are also secondary cavities 
infilled with laminar speleothems (flowstones). The strike of the main 
gallery and the secondary cavities is N30◦E (Rodríguez Estrella et al., 
2004). On the southwestern wall of the quarry, several collapses fill one 
of the original entrances of the cave. The entire dimensions of the cave 
are unknown due to the impossibility of exploring it as all the structures 
are filled with quaternary deposits that comprise the Quibas site. 

The formation of the karstic Quibas system should have started in a 
phreatic regimen during the Pliocene (Rodríguez Estrella et al., 2004), 
when the endo-karstic system was formed like analogous caves in the 
southeast of the Iberian Peninsula (eg Walker et al., 2013). The karstic 
Quibas system shifted into a vadose regime during the Early Pleistocene, 
and the opening of different entrances enabled the deposition of the 
allochthonous sediments that fill the cavities (Montoya et al., 1999). 

3. Materials and methods 

3.1. Lithostratigraphic unit definition and sampling 

Two different profiles were exposed and freshly scraped on the old 
quarry walls in the Quibas site. Additionally, new profiles have been 
exposed on excavation walls and surrounding areas that connect the two 
previous profiles, providing additional information. Lithostratigraphic 
units were described, measured and photographed. The descriptions of 
lithostratigraphic units were based on sediment texture, structure, color 
(hue, value, and chroma), and stratigraphic contacts. 

Representative samples of each lithostratigraphic unit were collected 
from the freshly scraped exposures to carry out granulometrical and 
mineralogical analyses. Sieves sized 63–2000 μm were used for 
measuring grain size distribution. Following Blott and Pye (2012), 
sediment types have been classified based on particle size distributions. 

3.2. Sedimentological and mineralogical analyses 

15 g of unaltered samples from each lithostratigraphic level were 
homogenized by quartering and manually ground using an agate mortar, 
then sieved through a 50 μm metallic mesh. Bulk mineralogy powder X- 
ray diffraction (XRD) spectra were produced using a Philipps Analytical 
PW 1752 Cu Kα radiation X-ray diffractometer (graphite mono
chromator radiation Kα1 = 1540.6 nm), continuously recording 
diffraction spectra at 2θ angles from 2◦ to 68◦ with 0.02 stepping in
tervals and 1 s per step. Following Chung (1975), a semi-quantitative 
analysis was carried out using EVA software (Bruker), determining the 
Reference Intensity Ratios (RIR) of the existing phases and allowing the 
normalization of intensity calculations. 

For a complete understanding of the clay mineral assemblage, one 
sample (QS-1.1) was prepared for oriented aggregates XRD method (OA) 
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by taking a further fraction (0.1–0.5 g) of the original sample and 
dispersing it with distilled water. The <0.5 μm fraction was separated 
and extracted according to Stoke’s law and pipetted into a glass slide, 
where it was left to dry. The semi-quantitative analysis was carried out 
by using EVA software (Bruker) according to Srodon (1984) and Moore 
and Reynolds (1989), based on the reflective power applied over the 
measured areas of each mineral’s main reflection peak (assuming that 
the sum of all clay minerals in the sample sums up to 100%). 

Lastly, small chips were broken from representative rock blocks from 
lithostratigraphic units to expose fresh fracture surfaces representative 
of the micro-fabric and micro-texture of the rock, gold-coated and 
studied under a Scanning Electron Microscope (SEM). The SEM is 
equipped with an energy dispersive spectrometer (EDS) system for 
determining the chemical composition of small particles during SEM 
observations. 

The samples were also subjected to electrical conductivity, ion 
chromatography, and inductively coupled plasma optical emission 
spectrometry (ICP-OES) using argon plasma. The electrical conductivity 
analysis allowed to identify the degree of salinity contained in the 
studied levels, with samples exceeding the value of 4 dSm− 1 considered 
to present a notable salt content. The ion chromatography technique 
allowed us to quantify the content of anions (chloride, nitrate and sul
phate) for samples with a conductivity greater than or equal to 4 dSm− 1, 
whereas the ICP-OES technique showed the content of cations present at 
these same samples. 

3.3. Facies description 

The sedimentological analysis is based on the facies association 
concept, which consists of assemblages of spatially and genetically 
related facies that are the expression of different sedimentary environ
ments (White, 2007a). The terms “autochthonous” and “allochthonous” 
are used following Iacovello and Martini (2012) and Bosch and White 
(2018). The term autochthonous is used to indicate sediments derived 
within the cave (e.g. rock fall deposits). The term allochthonous is used 
for sediments transported into the cave (e.g. channel deposits). Chemical 
deposits (e.g. flowstones) are assumed to be autochthonous. 

3.4. Paleonvironmental and paleoclimatic inferences 

Cave fillings have been frequently used as paleoenvironment and 
paleoclimate indicators (Bull, 1981 Lawson, 1995; Woodward and 
Goldberg, 2001; Auler et al., 2009). Clastic and chemical cave sediments 
can provide essential data for local, regional and sub-continental re
constructions of climate change throughout the Quaternary period. 
Although caves provide a greater degree of protection for sediment from 
external erosion, they can present other problems such as disconfor
mities, paraconformities, sediment and fossil reworking, or even inver
ted stratigraphies (Osborne, 1984), which is why they have not been as 
extensively used as other continental sedimentary deposits (Pons et al., 
1989). 

Paleoclimatic inferences from the Quibas sedimentary record have 
been based on the following assumptions: (1) Clay minerals can be used 
as a proxy to reconstruct paleoclimatic changes (Singer, 1980, 1984; 
Chamley et al., 1983, 1989; Thiry, 2000; Hong, 2010; Huang et al., 
2020). The formation and transformation of clay particles primarily 
occurs during continental weathering and soil formation, with changes 
in temperature and precipitation playing a crucial role in controlling 
these processes (Kennett and Warkne, 1992); (2) The abundance and 
presence of certain minerals such as palygorskite, halite and gypsum can 
be indicative of arid and evaporative conditions outside the karstic 
system (Singer, 1979, 1989; Jones and Ng, 1988; Inglés and Anadón, 
1991; Gurel, 2008; Kadir and Eren, 2008; Kadir et al., 2010; Ye et al., 
2018); (3) Debris flows have been postulated to indicate dryness events 
where vegetation is less, allowing soil dragging (Brook and Nickmann, 
1996; Brook et al., 1997; Auler et al., 2009). On the other hand, gravity 

flows are generally produced by a massive contribution of water that 
destabilizes the slopes, leading other authors to postulate that they 
indicate more humid moments (Pawelec, 2006; Kłapyta et al., 2016). 
They have been described in caves located in highly humid places such 
as New Guinea and Borneo (Gillieson, 1986; Dykes, 2007); and (4) 
Erosional processes within the cave are related to humid periods (Brook 
and Nickmann, 1996; Brook et al., 1997) or transitional periods between 
dry and humid events (Auler et al., 2009). Paleoclimatic interpretations 
from the sedimentary record and sedimentary facies changes should be 
taken cautiously since many variables are involved in a sedimentary 
environment. Therefore, these interpretations should be supported by 
other available paleoenvironmental indicators, such as microfauna 
analyses. 

Paleoenvironmental interpretations based on clastic deposits should 
be approached with caution. Sedimentary deposits are influenced by 
various factors, not just the environment, although it is one of the most 
significant factors. To conduct paleoenvironmental interpretations at 
the Quibas paleontological site, we must assume that the sediment 
source originated from soil development on the slopes of the Sierra de 
Quibas, and that these soils were sensitive to local and regional climate 
changes. The paleoenvironmental interpretation of the facies at the 
Quibas paleontological site has been combined with new geomorpho
logical, faunal, and pollen data. 

4. Results 

4.1. Quibas stratigraphic sequence 

Quibas-Cueva (Fig. 2) and Quibas-Sima (Fig. 3) have been divided 
into six and seven lithostratigraphic units, respectively. Quibas-Cueva is 
a gallery 8 m high, 5 m wide and a yet unknown depth, although 
geophysical prospections reveal a minimum of 30 m. Quibas-Sima is 9 m 
deep and 2 m wide. As will be noted in the next section, both cavities are 
internally connected, lithostratigraphic unit QC-6 being a continuity of 
QS-2/3. 

4.1.1. Quibas-Cueva section 
The lowermost lithostratigraphic unit of Quibas-Cueva, QC-1, is 

further divided into two subunits, QC-1.1 and QC-1.2. 
QC-1.1 subunit is the lowest level of the Quibas-Cueva section. It is a 

~1-m-thick breccia composed of angular limestone and speleothem 
clasts (Fig. 2). The speleothem clasts are mainly fragments of flowstones 
from the walls and zenital speleothems. The matrix of this breccia is a 
pink (7.5 YR 7/4), poorly sorted, slightly gravelly muddy sand (Fig. 4; 
Table 1). These materials lay over a chaotic block accumulation 
cemented by a calcite speleothem that forms the cave floor. An accu
mulation of macrovertebrate fossils is attached to this cave floor, 
embedded in a cemented bone and bone fragment breccia. 

QC-1.2 subunit is a ~0.5 to 1-m-thick clast-supported and poorly 
selected breccia with angular clasts with a scarce, reddish yellow (7.5 YR 
7/6) (Fig. 2) polymodal gravelly mud matrix (Fig. 4; Table 1). 

QC-2 unit consists of homogeneous gravelly sediment with sub- 
rounded clasts and a scarce, reddish yellow (7.5 YR 7/6) mud matrix 
(Figs. 2 and 4; Table 1), 0.2–0.7 m thick. The unit presents root bio
turbation and contains polyhedral aggregates. The contact with the 
underlying unit is sharp, concave and irregular. 

The QC-3 unit consists of a poorly sorted breccia with angular 
limestone clasts and boulders, speleothems and gelifraction plates 
(Fig. 2) with a slightly gravelly muddy sand matrix (Fig. 4; Table 1). This 
unit is ~0.3–0.5 m thick and displays a chaotic structure, with a sharp 
contact with the underlying materials. 

QC-4 consists of a ~0.3–0.5-m-thick, reddish yellow (7.5 YR 6/6), 
poorly sorted gravelly mud with sub-rounded clasts and polyhedral 
aggregates (Fig. 2; Table 1). This unit comprises more than 40% mud 
(Fig. 4; Table 1). The contact with the previous unit is sharp and irreg
ular. This unit has abundant microvertebrate remains, and areas with 
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accumulation of large bones are common. 
QC-5 is a 3-m-thick accumulation of large and very large boulders, 

some imbricated (Fig. 2). The matrix between the boulders and clasts is a 
polymodal muddy sand (Fig. 4, Table 1). The color of the matrix varies 
from strong brown (7.5 YR 5/6) at the bottom to pink (7.5 YR 7/4) to
wards the top. The top of the unit is sealed by a speleothem that is easily 
correlated with the speleothem on the top of the QS-1.3 unit in the 
Quibas-Sima section. Large mammal and microvertebrate bone remains 
are common. 

QC-6 is the last lithostratigraphic unit and is in contact with the cave 
roof. This unit consists of a reddish yellow (7.5 YR 6/6) gravelly mud- 
rich sediment with a mix of subrounded and angular clasts (Figs. 2 
and 4; Table 1). This unit connects laterally with the QS-2/QS-3 unit 
from the Quibas-Sima section. Towards the Quibas-Sima section, clasts 
become coarser and more angular, and the sand component increases in 
the matrix. There are both small and large vertebrate remains. 

4.1.2. Quibas-Sima section 
The Quibas-Sima section comprises seven differentiated lithostrati

graphic units (QS-1 to QS-7) and two speleothems (S1 and S2; Fig. 3). 
The lowermost lithostratigraphic unit, QS-1, is divided into three 

subunits: QS-1.1, QS-1.2 and QS-1.3. QS-1.1 consists of a 1.8-m-thick, 
massive, light red-brown (10 YR 7/3, 7.5 YR 8/4), polymodal sandy 
mud (76–79% of mud; Fig. 4), with fine gravel clasts, granules and small 
speleothem clasts. Towards the base of the unit, in contact with the basal 
speleothem, there is a 4-cm-thick level of poorly sorted muddy sandy 
gravel composed of speleothems and angular limestone clasts. Small 
vertebrate remains are abundant, especially in some organic-matter-rich 
bed sets. 

QS-1.2 is a 0.3-m-thick, light-reddish (10 YR 7/4), cemented poly
modal gravelly mud sediment (~46% of mud content; Fig. 4). It has 
yielded large mammal and microvertebrate bone fragments. 

QS-1.3 consists of a 1.2-m-thick microstratified, light-brown (10 YR 
8/4), moderately cemented and poorly sorted sandy mud (43% sand and 
55% mud; Fig. 4). There are abundant bioturbations, scours and dis
secation structures. It is rich in microvertebrate remains and also con
tains some large mammal bones. 

Two speleothem layers overlie the uppermost part of the QS-1.3 
subunit. The lower one (S1) has a laminar structure, whereas the 
upper one (S2) is thicker and consists of different successive types of 
speleothems in the same bedset: laminar, coralloid and massive spe
leothems (Caddeo et al., 2015). 

During excavation campaigns, the contact between units originally 
described as QS-2 and QS-3 (Piñero et al., 2020) was not clearly iden
tified, since the sedimentological differences between one and another 
were not significant. For this reason, in the present work, we consider 
QS-2 and QS-3 to be part of the same unit (hereafter referred to as 
QS-2/3). 

Unit QS-2/3 is 2.7 m thick. The sediment of the first few centimeters 
above the underlying speleothem is similar to that of QS-1.3. The suc
cessive bedsets consist of microbreccia gravels and breccias with normal 
and inverse grading with a polymodal brown (7.5 YR 8/4) to reddish 
light-yellow (7.5 YR 8/4) muddy sand matrix that hosts some large 
boulders (Fig. 3). In the upper bedsets, there are some clast-supported 
coarse-grained breccias with large clasts with scarce or no matrix. This 
unit is rich in large and small vertebrate fossils. 

QS-4 is a 1-m-thick breccia deposit composed of unimodal gravel and 
cemented muddy sand of reddish yellow color (7.5 YR 8/2). The lower 
scorured surface boundary is filled with boulders. The breccia is 
microstratified with discontinuous thin layers showing normal and in
verse gradation. The upper bedset is composed of thin, cemented beds. 
The upper contact is sealed with a caliche (calcrete or dolocrete) and a 
scoured surface with a boulder deposit of Jurassic carbonates and spe
leothem fragments (Fig. 3). This unit has yielded both small and large 
vertebrate fossils. 

QS-5 unit consists of a 1-m-thick well-microstratified breccia. This 
deposit contains three horizontal and parallel bedsets and two lenticular 
bedsets close to the upper contact. The lower horizontal bedsets are 
made of unimodal fine gravels (4–6 cm), either clast-supported with a 
planar fabric or matrix-supported in a pale brown (7.5 YR 7/6, 5 YR 6/6) 
muddy sand matrix (Fig. 3). The upper lenticular gravel beds are clast- 
supported and show normal and inverse gradation. This unit yielded 
no fossils other than gastropods. 

QS-6 unit is a 1-m-thick breccia. The breccia is microstratified in four 

Fig. 2. Detailed stratigraphic section of Quibas-Cueva.  
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bedsets of discontinuous and horizontal strata. These deposits are 
matrix-supported, in a pale brown (2.5 YR 6/4) muddy sand matrix with 
normal-inverse gradation (weakly developed), and contain abundant 
boulders (roughly 25 cm maximum elongated axis). The unit contains 
gastropod fossils, but vertebrates are absent. Laterally, this unit consists 
of a thick paleosol. 

QS-7 is a 2.5-m-thick, poorly stratified, heavily cemented bimodal 
breccia. It is composed of medium and fine gravel with limestone and 
speleothem clasts. This unit has a clast-supported structure infilled with 
calcareous pale brown muddy sand. There are two beds composed of 
large boulders (speleothem fragments; Fig. 3). This unit has yielded 
scarce small vertebrate remains and has been entirely excavated. 

4.2. Mineralogical analyses 

4.2.1. Quibas-Cueva section 
The scarce, slightly gravelly muddy sand matrix of unit QC-1.1 is 

mainly composed of calcite (34%), quartz (22%), clay minerals (21%), 
and dolomite-ankerite (11%), alongside smaller quantities of plagio
clase, alkali feldspars, aragonite, hematite, and apatite (Table 2). Simi
larly, calcite (37%), quartz (21%), clay minerals (18%), and dolomite- 
ankerite (17%) are the most abundant minerals in unit QC-1.2 
(Table 3). SEM observations reveal a clastic texture, where abundant 
sub-angular and sub-rounded calcite clasts with high sphericity are 
found alongside bigger, less spherical and more angular calcite, quartz, 

and feldspar clasts (Fig. 5A). Euhedral rhombic dolomite-ankerite 
crystals can be observed growing on pore walls, with palygorskite fi
bers as bridges on and between clasts and crystals (Fig. 5B). 

Carbonate minerals such as dolomite-ankerite (31%) and calcite 
(28%) dominate the QC-2 mineral assemblage, followed by quartz 
(19%) and clay minerals (14%), and small quantities (<3%) of plagio
clase, alkali feldspars, goethite, hematite, halite, and apatite (Table 2). 
The texture of QC-2 is clastic, composed of calcite, dolomite-ankerite, 
and quartz sub-rounded and rounded spherical clasts with clay 
aggregates. 

Calcite (33%), quartz (25%), dolomite-ankerite (18%), and clay 
minerals (14%) are the most abundant mineral phases in the slightly 
gravelly muddy sand matrix of unit QC-3, alongside small quantities of 
plagioclase, K feldspars, aragonite, hematite, and apatite (Table 2). 
When observed under the SEM, the QC-3 unit is very porous, with 
abundant micrite (calcitic and dolomitic composition), euhedral 
rhombic dolomite-ankerite crystals formed on top of other minerals and 
on pore walls, and fibrous palygorskite masses growing as bridges on 
and between all other clasts (Fig. 6D). 

The muddy deposits of unit QC-4 are mainly composed of quartz 
(30%), clay minerals (30%), and calcite (18%), with minor amounts of 
dolomite-ankerite, plagioclase, alkali feldspars, aragonite, goethite, 
hematite, and apatite (Table 2). SEM observations show that the QC-4 
unit is detritic, with allochthonous quartz, feldspar, and calcite 
angular and sub-angular low-sphericity clasts with abundant smectite 

Fig. 3. Detailed stratigraphic section of Quibas-Sima.  
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aggregates (Fig. 5C). 
The QC-5 mineral assemblage varies significantly from the base to 

the top of the unit. Calcite content increases from the base (30%) to the 
top (52%), whereas quartz content nearly halves (30–17%) and clay 
minerals decrease (22–13%). The remaining minerals appear in smaller 
and similar quantities (Table 2). The texture of the QC-5 unit is detritic, 
composed of calcite and quartz clasts, alongside aluminum-rich (smec
tite) and magnesium-rich (palygorskite) clays. EDS analyses reveal 
phosphate-rich, calcium-rich masses, indicating the presence of guano 
deposits in the level. 

Calcite (48–52%, mean = 50%), quartz (20–23%, mean = 21.5%), 

clay minerals (14–15%, mean = 14.5%), and dolomite-ankerite (5–12%, 
mean = 8.5%) are the main mineral constituents of unit QC-6, with 
minor quantities of plagioclase, K feldspar, goethite, hematite, and 
apatite (Table 3). 

4.2.2. Quibas-Sima section 
Calcite (14–48%, mean = 34.2%), quartz (15–33%, mean = 23.3%), 

clay minerals (14–23%, mean = 16.8%), and dolomite-ankerite (5–27%, 
mean = 16.5%) are the most abundant minerals in QS-1 levels (Table 2). 
Both organic-matter-rich levels (QS-1.1 OMR and QS-1.2 OMR) contain 
lower quantities of calcite (14 and 22%, respectively) and, alongside the 

Fig. 4. Granulometries of the Quibas-Cueva and Quibas-Sima lithostratigraphic units projected on a ternary diagram (gravel-sand-mud trigon) according to Blott and 
Pye (2012). 1, QS-1.1 Base. 2, QS-1.1 OMR. 3, QS-1.1 Top. 4, QS-1.2 OMR. 5, QS-1.2.6, QS-1.3.7, QS-2/3.8, QS-2/3 Top. 9, QS-4.10, QS-5.11, QS-6.12, QC-1.1.13, 
QC-1.2.14, QC-2.15, QC-3.16, QC-4.17, QC-5 Base. 18, QC-6 Base. 

Table 1 
Particle size analyses.  

Sample >2000 1000 500 250 125 65 65> Gravel Sand Mud 

QS-1.1 Base 41.1 3.5 5.3 7.9 9.3 11.5 21.4 41 38 21 
QS-1.1 OMR 1.0 2.0 3.9 2.9 5.9 4.4 79.9 1 19 80 
QS-1.1 Top 0.3 0.3 4.7 6.7 5.1 6.1 76.7 0 23 77 
QS-1.2 OMR 22.7 3.2 3.8 3.8 12.0 8.2 46.4 23 31 46 
QS-1.2 12.1 1.7 7.6 9.0 12.1 7.6 49.8 12 38 50 
QS-1.3 1.7 1.3 8.8 11.7 12.5 8.8 55.4 2 43 55 
QS-2/3 39.8 12.3 13.2 8.4 8.4 7.2 10.8 40 49 11 
QS-2/3 Top 30.3 8.3 7.1 7.7 6.8 4.5 35.2 30 35 35 
QS-4 51.0 5.5 5.5 3.8 6.0 3.6 24.8 51 24 25 
QS-5 19.1 3.3 4.3 8.3 10.9 6.9 47.2 19 34 47 
QS-6 8.8 2.6 5.8 4.0 6.9 5.5 66.4 9 25 66 
QC-1.1 5.0 2.0 8.0 14.0 31.0 10.0 30.0 5 65 30 
QC-1.2 25.0 4.0 4.9 5.2 3.0 9.1 48.8 25 26 49 
QC-2 7.1 7.5 2.8 10.3 7.1 12.6 52.6 7 40 52 
QC-3 2.6 1.3 2.6 8.2 3.6 7.6 74.0 3 24 74 
QC-4 6.4 3.0 4.9 2.6 13.5 14.3 55.3 6 38 55 
QC-5 Base 14.3 3.3 7.2 12.5 14.3 9.0 39.4 14 46 39 
QC-6 Base 18.1 4.4 9.9 8.5 4.1 8.5 46.5 18 35 46 

Values are expressed in %. 
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fossil-rich levels QS-1.2 and lowermost QS-1.1 (QS-1.1 Base), significant 
quantities of apatite (Table 2). SEM observations reveal levels QS-1.1, 
QS-1.1 OMR, QS-1.2 OMR and QS-1.3 are very porous, with abundant 
micrite and palygorskite (Fig. 6A and B). Euhedral rhombic dolomite- 
ankerite crystals appear crystallized on top of other minerals, with 
only dense fibrous palygorskite masses growing as bridges on and be
tween them (Fig. 6C). On the other hand, level QS-1.2, although 
mineralogically very similar to QS-1 levels, is texturally very different, 
being less porous, more detritic and with allochthonous quartz, feldspar, 
and calcite rounded and sub-rounded clasts (Fig. 5D). 

The muddy sand matrix of unit QS-2/3 is mainly composed of calcite 
(44–46%, mean = 45%) and dolomite-ankerite (18–29%, mean = 24%), 
followed by much lower quantities of quartz and clay minerals and 
traces of plagioclase, alkali feldspars, and hematite (Table 2). When 
observed under the SEM, QS-2/3 levels are very detritic, with abundant 
calcite and dolomite-ankerite sub-rounded and sub-angular clasts. 

Muddy sands in QS-4 are composed of calcite (60%), quartz (13%), 
and dolomite-ankerite (10–11%), with low quantities of clay minerals 
(7–9%) and alkali feldspars (5%). Unit QS-4 has a high content of salts 
(≥4 ds/m), with high chloride and sulphate anions values, while the 
most abundant cations are calcium and sodium. This is a clear indication 
of the presence of halite (sodium chloride) and gypsum (calcium sul
phate) salts (Table 3). For the first time in the Quibas-Sima section, 
halite (1–3%) and gypsum (1%) are present (Table 2). SEM observations 

show calcite crystals overgrown by calcite and dolomite-ankerite 
crystals. 

Calcite (32–46%, mean = 39%), quartz (20–28%, mean = 24%), 
dolomite-ankerite (10–19%, mean = 14.5%) and clay minerals 
(13–15%, mean = 14%) are the most abundant minerals in unit QS-5, 
alongside small quantities (<5%) of plagioclase, alkali feldspars, 
halite, and gypsum (Table 2). The clastic texture of QS-5, observable 
under a SEM, is composed mainly of calcite, quartz, and dolomite- 
ankerite sub-rounded clasts in a clayey matrix, with palygorskite and 
salts (halite and gypsum) growing on pore walls and as aggregates on 
clasts and crystals. 

The muddy sand matrix of unit QS-6 is composed of quartz (34%), 
clay minerals (25%), and calcite (17%), with some accessory minerals 
such as plagioclase, alkali feldspars, aragonite, dolomite-ankerite, 
goethite, hematite, apatite, and gypsum (Table 2). Abundant bio
turbation pores affecting the clastic texture of the sample can be 
observed under the SEM. 

5. Discussion 

5.1. Sedimentary facies, depositional environments, and stratigraphic 
correlations 

Previous studies have classically divided karst deposits into three 
main groups: allochthonous, autochthonous, and chemical deposits (e.g. 
Ford and Williams, 2007; White, 2007b). In this study, chemical de
posits are assumed to be autochthonous. Furthermore, Bosch and White 
(2018) divide clastic sediment facies in caves into five types: backswamp 
facies, channel facies, diamicton facies, slackwater facies, and thalweg 
facies. Quibas site hosts a wide variety of these karstic facies, which will 
be discussed below. 

5.1.1. Channel facies 
Channel facies are allochthonous, and are considered the under

ground equivalent (in vadose conditions) of stream deposits on the 
surface (Bosch and White, 2018). These facies are very variable, 
including crudely bedded to massive deposits, ranging from unbedded to 
horizontal bedding or ripple crossbedding. Several channel facies are 
recognized at the Quibas site: QC-1.1, QC-2, and the lowermost part of 
QS-1.1. These units host well-sorted gravelly deposits containing both 
angular and sub-angular limestone and speleothem clasts in muddy or 

Table 2 
XRD results for the studied samples from the Quibas site showing the Reference Intensity Ratios (RIR) of the existing phases, allowing the intensity calculations to be 
normalised on the assumption that the sum of all phases in the sample is equal to 100%.  

Sample Quartz Clay minerals Plagioclase K feldspar Calcite Aragonite Dolomite-Ankerite Goethite Hematite Apatite Halite Gypsum 

QS-6 34 25 3 4 17 8 5 1 1 1 – 1 
QS-5 Top 20 15 2 3 46 2 10 – – – 1 1 
QS-5 Base 28 13 2 4 32 – 19 – – – 1 1 
QS-4 Top 13 7 – 5 60 – 11 – – – 3 1 
QS-4 Base 13 9 – 5 60 1 10 – – – 1 1 
QS-3 12 9 – 2 45 2 29 – 1 – – – 
QS-2/3 17 13 1 3 46 1 18 – 1 – – – 
QS-2 14 13 1 3 44 – 25 – – – – – 
QS-1.3 20 15 1 3 48 1 12 – – – – – 
QS-1.2 20 15 1 3 37 2 19 – 1 2 – – 
QS-1.2 OMR 23 15 2 4 22 2 27 1 1 3 – – 
QS-1.1 Top 23 19 2 4 45 1 5 1 – – – – 
QS-1.1 OMR 33 23 3 4 14 1 18 1 – 3 – – 
QS-1.1 Base 15 14 2 2 39 2 18 – 1 7 – – 
QC-6 Top 20 14 1 3 48 – 12 – 1 1 – – 
QC-6 Base 23 15 1 3 52 – 5 1 – – – – 
QC-5 Top 17 13 2 4 52 1 9 – 1 1 – – 
QC-5 Base 30 22 2 5 30 1 7 1 1 1 – – 
QC-4 30 30 2 7 18 1 8 1 1 2 – – 
QC-3 25 14 2 4 33 2 18 – 1 1 – – 
QC-2 19 14 1 3 28 – 31 1 1 1 1 – 
QC-1.2 21 18 1 4 37 – 17 – 1 1 – – 
QC-1.1 22 21 2 4 34 4 11 – 1 1 – –  

Table 3 
Anion and cation results of the Quibas samples with an electrical conductivity 
value ≥ 4 dSm− 1.  

Sample Cl− (mg/ 
L) 

NO3−

(mg/L) 
SO4

2− (mg/ 
L) 

Ca2+

(318,127 nm) 
ppm 

Na+

(589,592 nm) 
ppm 

QS-1.2 
OMR 

212.75 242.5 166.39 226.61 554.98 

QS-4 
Base 

1922.5 42.13 221.82 112.7 650.05 

QS-4 
Top 

69.99 946.8 15.42 143.04 974.51 

QS-5 
Base 

1749.71 30.49 385.56 118.02 668.04 

QS-5 
Top 

1384.62 26.13 210.49 119.79 402.27  
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sandy matrices. SEM observations reveal that channel facies exhibit 
similar textural properties, with clastic textures where abundant 
sun-angular to sub-rounded allochthonous clasts are found alongside 
bigger, less spherical, and more angular autochthonous clasts (Fig. 5A). 

The presence of root bioturbation and polyhedral aggregates in unit 
QC-2 indicates an open cave environment where an entrance to the cave 
would be located nearby. 

5.1.2. Backswamp facies 
Backswamp facies is a term used to refer to the leftover material from 

bedrock dissolution, which was filtered from the epikarst (Bosch and 
White, 2018). The mineralogical composition of these facies depends 
mainly on the composition of the insoluble fraction of the calcareous 
bedrock. These facies usually display a massive structure and may 
contain isolated clast fragments and fossils. 

Lithostratigraphic units QC-4, QS-1.1 and QS-1.3 are interpreted as 
backswamp facies. These units are very muddy (40–80% mud; Fig. 4), 
massive, and contain scarce limestone megaclasts and boulders, product 
of cave breakdown. All three units also host abundant microvertebrate 
remains, with high-density bone accumulations in unit QC-4 and two 
fossil- and organic-rich levels in unit QS-1.1. 

The stratigraphic positions and facies suggest units QC-4 and QS-1.1 
can be correlated (Fig. 7). The presence of polyhedral aggregates in QC-4 
and abundant root bioturbation in QS-1.3 indicates these units were 
deposited in an open cave environment with a nearby open cave 
entrance. 

5.1.3. Underground debris flow facies 
The underground equivalent to debris flows in karstic systems are 

diamicton facies, in which materials of all particle sizes and 

morphologies are suspended and flow down high-gradient passages or 
sub-vertical entries (Bosch and White, 2018). 

QC-1.2, QC-3, QC-5, and QS-1.2 deposits are chaotic, unsorted, 
unbedded, massive, and interpreted as diamicton deposits. QC-1.2, QC- 
3, and QC-5 are poorly sorted breccias and megabreccias, with angular 
limestone and speleothem clasts with textures varying from matrix- 
supported to clast-supported with a scarce matrix. These three units 
represent proximal diamicton facies close to the inferred paleoentrance: 
a high-gradient (45–60◦) north-dipping passage towards the south. The 
deposition of unit QC-5 completely infills and blocks this paleoentrance. 
The poorly sorted, polymodal gravelly mud deposits of unit QS-1.2 
represent the distal facies of the QC-5 diamicton deposits. 

SEM observations reveal a clastic texture, with unsorted sub-angular 
and sub-rounded calcite, quartz, and feldspar clasts (Fig. 5A). 

5.1.4. Debris flow facies 
Debris flows are high-density, one-phase clastic flows (Coussot and 

Meunier, 1996; Dasgupta, 2003). Debris flows commonly show no 
bedding and are formed by a chaotic mixture of clast sizes, ranging from 
clay to boulders (Coussot and Meunier, 1996; Dasgupta, 2003). In this 
study, debris flow facies and diamicton facies are separated according to 
their depositional environment: the former in open-air environments (e. 
g. dolines or avens), whereas the latter in a closed-cave environment (e. 
g. cave chambers or galleries). 

Debris flow facies are found in both sections of the Quibas site: unit 
QC-6 in Quibas-Cueva and unit QS-2/3 in Quibas-Sima. These two units 
can be correlated laterally (Fig. 7). The gravelly mud-rich deposits of 
unit QC-6 are interpreted as distal facies, while the breccia deposits of 
unit QS-2/3 constitute the proximal facies of the same debris cone. This 
unit marks a shift in the depositional environment, from a karstic system 

Fig. 5. SEM images of representative sample chips. A. Unit QC-1.2. Sub-angular and sub-rounded calcite clasts with high sphericity, alongside bigger, less spherical, 
and more angular calcite, quartz, and feldspar clasts. B. Unit QC-1.2. Euhedral rhombic dolomite-ankerite crystals growing on pore walls, with palygorskite fibres as 
bridges on and between clasts and crystals. C. Unit QC-4. Allochthonous quartz, feldspar, and calcite angular and sub-angular, low-sphericity clasts with abundant 
magnesian clay aggregates. D. Unit QS-1.2. Allochthonous quartz, feldspar, and calcite rounded and sub-rounded clasts. 
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to an open-air environment, with the formation of a new overhead 
opening or aven. 

5.1.5. Debris fall facies 
Debris fall facies are characterized by sedimentary deposits that have 

fallen under gravity where no interstitial fluid is necessary. These de
posits consist of heterometric clast accumulations, typically angular, 
with little or no matrix (open-work to clast-supported), with crude 
lateral sorting and commonly normal or inverse crude grading. These 
deposits are associated with sub-vertical and vertical cave entrances, 
cliffs, and steep slopes. 

The clast-supported heterometric breccias with normal and inverse 
crude grading of units QS-4 and QS-7 and the clast-supported micro
stratified breccia of unit QS-5 have been interpreted as debris fall de
posits (Fig. 3). Clasts are angular and chiefly composed of limestone and 
speleothem fragments from wall and roof breakdown. Additionally, at 
least seven rockfall events have been identified in the Quibas site: at the 
base of unit QC-1.1, embedded in diamicton deposits of units QC-1.2 and 
QC-5, and during the deposition of unit QS-2/3 (Figs. 2 and 3). These 
rock fall deposits indicate events of cave walls and roof dismantling. 

5.1.6. Paleosol facies 
Sandy mud deposits formed either by the dissolution of the host rock 

(weathering detritus, White, 2007a) or by colluvial processes that have 
suffered pedogenic processes are classified as authochthonous paleosol 
facies. 

The matrix-supported and microstratified colluvial breccias of units 
QS-5 and QS-6 with muddy sand matrices, heavily altered by pedogenic 
processes, are interpreted as paleosol (argillic leached horizon). Caliche 
development, in the form of laminar crusts and hardpans (Wright and 
Tucker, 1991), is observed in the contact between units QS-4 and QS-5 

and towards the top of unit QS-5 (Fig. 3). 

5.1.7. Speleothems and phosphatic accumulations 
Chemical sediments in caves are formed via precipitation of different 

chemical substances. The main two chemical facies in the Quibas site are 
speleothem formations (flowstones) and phosphatic accumulations. 

The Quibas site has two well-developed flowstones, S1 and S2. The 
lower S1 flowstone, embedded in unit QS-1.3, is laminar and laterally 
discontinuous. On the other hand, the upper S2 flowstone is thicker and 
polygenetic, composed of laminar, coralloid, and massive speleothem 
formations. The S2 flowstone overlies unit QS-1.3 in the Quibas-Sima 
section and can be traced laterally to overlie QC-5 in the Quibas- 
Cueva section (Figs. 2 and 3). 

Units QS-2/3 and QC-5 contain millimeter-to-centimeter-thick 
yellowish phosphatic passings with little lateral continuity. Addition
ally, EDS analyses of unit QC-5 reveal phosphate-rich, calcium-rich 
masses. These phosphate deposits are interpreted as bird and bat guano 
(Weiner et al., 2002; Shahack-Gross et al., 2004). 

5.2. Paleoclimatic inferences 

Two distinct paleoclimatic signals, discussed below, can be distin
guished in both the Quibas-Cueva and Quibas-Sima sections. These have 
enabled the identification of several alternating humid and arid phases 
derived from the Early Pleistocene glacial-interglacial cycles. 

5.2.1. Pre-Jaramillo warm and humid period 
The lowermost section of the Quibas paleontological sections (Qui

bas-Cueva and Quibas-Sima), comprising units QC-1 to QC-5 and QS-1.1 
to QS-1.3, hosts a wide array of clay-rich, water-lain karstic deposits, as 
well as the development of two flowstones (S1 and S2) (Figs. 8 and 9). 

Fig. 6. SEM images of representative sample chips. A. Unit QS-1.1 general texture. Very porous, with micrite and palygorskite. B and C. Unit QS-1.1 detailed images, 
showing abundant palygorskite fibres. D. Unit QC-3. Euhedral rhombic dolomite-ankerite crystals crystallized on top of other minerals, with dense fibrous paly
gorskite masses growing as bridges on and between them. 
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Fig. 7. Stratigraphic correlation between Quibas-Cueva and Quibas-Sima lithostratigraphic units. Legend as in Figs. 2 and 3.  

Fig. 8. Summary table of principal analyses conducted in the Quibas-Cueva section, identified facies, and probable Marine Isotope Stage (MIS) correlation. 
Paleomagnetic data is sourced from Piñero et al. (2020, 2022). 
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Water-lain karstic deposits, including channel facies (units QC-1.1, 
QC-2, and lowermost QS-1.1), diamicton facies (units QC-1.2, QC-3, 
QC-5, and QS-1.2), and backswamp facies (QC-4, QS-1.1, and QS-1.3) 
(Figs. 8 and 9) are indicative of a constant hydric regime inside the 
karstic system, which can also be related to hydric processes at a 
regional scale (Hunt et al., 2010; Wagner et al., 2011). Although this 
does not necessarily indicate humid conditions, the presence of concave 
and irregular basal contacts, alongside scour structures, does indicate 
that water is abundant in the karstic system and flooding events are 
common (Bosch and White, 2018). On the other hand, speleothem 
precipitation (S1 and S2) indicates higher precipitation rates than 
evaporation-runoff rates (Bar-Matthews, 2014), which hinders precipi
tation in semi-arid conditions and completely prevents it in 
arid/hyper-arid deserts. Therefore, it does suggests formation during 
humid conditions (Fleitmann et al., 2003; Vaks et al., 2003, 2007) 
(Fig. 8). 

The presence of halite in unit QC-2 could suggest that this unit was 
deposited during a relatively dry period with high evaporation rates 
(Gornitz, 2009) (Fig. 8). Palygorskite is widely accepted as a paleocli
matic indicator of semi-arid to arid environments (Singer and Norrish, 
1974; Weaver and Beck, 1977; Singer, 1984; Hong et al., 2007; Galán, 
2011; Knidiri et al., 2014; Hill et al., 2017). However, recent studies 
have stated only detrital palygorskite, originated as catchment-delivered 
detritus, should be used in paleoclimate reconstructions, whereas 
authigenic palygorskite that has formed during post-depositional pro
cesses should not be used (Ye et al., 2018). Fibrous palygorskite masses 
growing as bridges on and between all other clasts are observed in units 
QC-1.1, QC-1.2, QC-3, QC-5 and QS-1 (Fig. 5). These textures suggest an 
authigenic origin attributed to direct precipitation during diagenesis 
(Hong et al., 2007) and, therefore, cannot be used as a paleoclimatic 
indicator. 

The Quibas-Sima section records a polarity change from a reverse 
interval (QS-1) to a normal one (QS-2/3, QS-4, QS-5), followed by a 
second reverse one (QS-6 and QS-7). This normal polarity interval 
bounded by reverse polarities is identified as the Jaramillo subchron. 

The base of Quibas-Cueva (QC-1 to QC-5) showed a reverse polarity, 
which was correlated with the reversed interval recorded at base of 
Quibas-Sima (Piñero et al., 2020, 2022). This paleomagnetic study 
places the deposition of units QC-1 to QC-5 and QS-1 sometime between 
the Punaruu and Jaramillo subchrons (between 1.12 and 1.07 Ma), 
during Marine Isotopic Stages (MIS) 31–33 (Figs. 8 and 9). The entire 
interval from MIS 33 to 31 has been identified as one warm, long-lasting 
interglacial (DeConto et al., 2007; Teitler et al., 2007; de Wet et al., 
2016). In the central and western Mediterranean region, MIS 31 has 
been described as a warm, temperate, and very humid period with weak 
seasonality (Joannin, et al., 2011; Oliveira et al., 2017). The paleocli
matic inferences proposed in this study for this lowermost section of the 
Quibas site agree with such a warm, humid interglacial (Fig. 10). 

In this “super interglacial scenario” (DeConto et al., 2007; Teitler 
et al., 2007; de Wet et al., 2016), MIS 32 would be reduced to a stadial. 
Given that unit QC-2 was deposited during a drier period, it is possible 
that this unit was formed during this colder, drier stadial (1.104–1.081 
Ma). This would further delimit the inferred geochronology of the 
pre-Jaramillo units: units QC-1.1 and QC-1.2 during MIS 33 
(1.114–1.104 Ma), and QC-3 to QC-5 and QS-1.1 to QS-1.3 sometime 
during MIS 31 (1.081–1.062 Ma) before the Jaramillo subchron 
(Fig. 10). 

5.2.2. Jaramillo and post-Jaramillo arid period 
Units QC-6 and QS-2/3 to QS-5 correspond to a normal polarity in

terval, identified as the Jaramillo subchron (Piñero et al., 2020, 2022). 
These units, when compared to the lower pre-Jaramillo deposits, exhibit 
a progressive decrease in clay mineral and quartz content and an in
crease in the clast-to-matrix ratio (Figs. 8 and 9). Assuming that the 
entry point through which the sediments enter is a vertical fissure (aven) 
in a zenithal position, transport is inferred to be minimal. For this 
reason, this trend observed in mineral fractions and matrix versus clast 
content must be controlled by sediment production in the source area. 
This implies a decrease in chemical weathering and an increase in me
chanical weathering due to a decrease in the precipitation regime and an 

Fig. 9. Summary table of principal analyses conducted in the Quibas-Sima section, identified facies, and probable Marine Isotope Stage (MIS) correlation. Paleo
magnetic data is sourced from Piñero et al. (2020, 2022). 
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increase in aridity. This increase in climate aridity is also supported by 
paleontological data (Piñero et al., 2020, 2022), as discussed below. The 
progressive increase in aridity is consistent with a transitional period 
between an interglacial phase and a glacial phase, corresponding to MIS 
31 and MIS 30, respectively, according to the chronological framework 
(Fig. 10). 

Unit QS-4 has the lowest clay mineral and quartz content and the 
highest clast/matrix ratio, coupled with a high concentration of calcium 
carbonate and lower amounts of dolomite (Figs. 8 and 9). This is 
consistent with an arid climate, as a decrease in precipitation leads to a 
decline in chemical weathering, consequently resulting in a lower gen
eration of insoluble residue (clay minerals and quartz) from carbonate 
dissolution. Furthermore, according to the results of the electrical con
ductivity, unit QS-4 has a high content of salts (≥4 dSm− 1) (Table 3). A 
more significant precipitation of salts explains the significantly higher 
abundance of gypsum and halite in unit QS-4 concerning the rest of the 
levels, which could be related to periods of aridity. The dolocrete at the 
top of this unit also supports the interpretation of an arid environment 
with scarce vegetation and low sedimentation rates. This arid period can 
be correlated to the glacial MIS 30 (Fig. 10). 

In unit QS-5, the facies suggest a re-establishment of relatively humid 
and warm conditions compared to the previous unit QS-4. The hy
pothesis is supported by the presence of debris flow layers and paleosol 
horizons. The unit still falls within the normal polarity assigned to the 
Jaramillo subchron and may represent the following interglacial period, 
represented by MIS 29. At the top of this unit, the presence of halite, 
gypsum, and nitrates, along with the presence of a new caliche/calcrete 
horizon, indicates a return to more arid conditions and could be corre
lated with the subsequent glacial episode, represented by MIS 28. The 
thicker paleosol in unit QS-6, which overlies the calcrete/caliche of QS- 
5, suggests a new return to humid conditions. The reverse polarity of this 

unit indicates the Jaramillo-end inversion, suggesting it may represent 
interglacial MIS 27 (Fig. 10). Unfortunately, no vertebrate remains have 
been found in QS-5 and QS-6 to corroborate this assumption. 

5.2.3. Paleontological record 
The Early Pleistocene glacial episodes in Europe led to an increase in 

aridity, resulting in the expansion of open areas. Conversely, during 
interglacial phases, precipitation levels rose, leading to the spread of 
forested areas (Leroy et al., 2011). The mineralogical composition of the 
different units of Quibas offers evidence of a transition from moist 
interglacial conditions (QC-4, QC-5, QS-1) to arid glacial conditions 
(QS-2/3, QS-4). These findings are consistent with the small vertebrate 
succession identified in QS-1 to QS-4 (Piñero et al., 2022). The oldest of 
these units, QS-1, has yielded fossils of a flying squirrel from the Hylo
petes genus, a rodent typically associated with forested environments (e. 
g. Lee, 2016). QS-1 also contains remains of the water shrew Neomys sp., 
a semi-aquatic insectivore, indicating the existence of stable water 
courses in the vicinity of Quibas at the time of sediment deposition 
(Palomo and Gisbert, 2002). Furthermore, QS-1 is correlated with QC-4 
and QC-5, units recording the presence of the legless lizard Ophisaurus 
manchenioi, a reptile whose extant relatives inhabit tropical and sub
tropical regions (Blain and Bailon, 2019). Its presence in Quibas verifies 
that the southeastern part of the Iberian Peninsula served as the last 
refuge for subtropical species in Europe. The presence of these species in 
the earliest units of the site suggests that forests thrived under relatively 
humid conditions during their formation. 

Nevertheless, Neomys sp. and Ophisaurus manchenioi disappear from 
the lower part of QS-2/3, and Hylopetes sp. from the upper part of this 
unit. This corresponds to the presumed loss of habitat suitable for the 
survival of these species during the deposition of this unit. Conversely, 
QS-3 and QS-4 have yielded fossils of reptiles associated with open and 

Fig. 10. Chronological position of the different units of Quibas-Cueva and Quibas-Sima (Piñero et al., 2020, 2022) and their correlation with Marine Isotope Stages 
(MIS). GPTS (Geomagnetic Polarity Time Scale) shows Bruhnes and three normal polarity intervals within Matuyama: Jaramillo (1.07–0.99 Ma), Punaruu (1.12 Ma), 
and Cobb Mountain (1.22–1.19 Ma) (Singer, 2014). 
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scrub environments, including the Montpellier snake (Malpolon mon
spessulanus) and the snub-nosed viper (Vipera latastei) (Pleguezuelos, 
1997; Pleguezuelos and Santos, 2004), species absent in QS-1 (Piñero 
et al., 2020). Similar to the mineralogical composition, the ecological 
preferences of the small vertebrates in Quibas-Sima illustrate a record of 
climate change. This change shift from forested and humid conditions in 
the earliest part (QS-1) to drier conditions, marked by greater expanses 
of open scrubland, in the more recent levels (QS-2/3 to QS-4). 

Thus, the data aligns with the onset of a glacial phase about 1 Ma, 
characterized by an increase in aridity and, consequently, a decrease in 
tree cover in the southeastern region of Iberia. This environmental 
change coincided with the transition from the MIS 31 interglacial to the 
MIS 30 glacial during the Jaramillo subchron. 

5.3. Geological evolution and synthesis 

A rough reconstruction of the development of the cave can be 
inferred from its morphology and fills (Fig. 11). The bedrock underwent 
dissolution, favored along pre-existing faults, during the Miocene to 
Pliocene (Rodríguez Estrella et al., 2004) (Fig. 11A). This potentially 
hypogenic phreatic stage probably ended at the end of the Pliocene. The 
almost horizontal nature of the cave suggests that it formed close to the 
phreatic level, at least during its later stages of development. This is 
followed by a vadose stage, during which an active karst system 
developed before sediment deposition (Late Pliocene and Early Pleis
tocene) (Fig. 11B). The first entrance of the cave system was formed 
during the Early Pleistocene. The opening of the cave to the outside is 
marked by the formation of a cemented limestone breccia on the floor of 
the cavity containing macrofaunal remains. Although it is possibly 
earlier, this unit is in continuity with a large cemented and fossilized 
landslide with speleothems, within which remains of macro- and 
microfauna are also found (Piñero et al., 2015). The rest of the 
Quibas-Cueva and Quibas-Sima units are deposited on top of this basal 
unit (Fig. 11C). The units beneath the roof of speleothem S2 correspond 
to the pre-Jaramillo reverse period. They have karstic facies and were 
deposited during a warm and humid period correlated with the MIS 
33–31 super interglacial event (Fig. 11D). The formation of speleothems 
S1 and S2 would correspond to the closing event of the first cave 
entrance and the re-establishment of a closed cave environment 

(Fig. 11E and F). Above speleothem S2, the opening of a chasm in the 
zenithal part of the cave triggered the deposition of debris flow facies in 
an alluvial cone, depositing unit QS-2/3 (Fig. 11G). This unit represents 
a transition between the previous humid period and the arid period 
represented by unit QS-4, corresponding to the glacial period of MIS 30 
(Fig. 11H). Unit QS-5 shows a return to a relatively humid period at its 
base and becomes arid towards the top, representing the end of the 
Jaramillo subchron. Unit QS-6 is of normal polarity, represented by 
paleosol facies, corresponding to a wetter period right after the Jar
amillo subchron (Fig. 11I). 

Summarizing, in the paleontological site of Quibas, at least two main 
entrances have been identified. The first corresponds to the main cave 
entrance, which, due to successive collapses, would have shifted to a 
closer position. Subsequently, this entrance would have been sealed by a 
cone of debris (diamicton facies), and the cave would have returned to a 
closed environment. The second entrance corresponds to the opening of 
a shaft in the upper part of the cave, which would have culminated in its 
infilling. 

6. Conclusions 

The Quibas site has functioned as a sediment trap since its opening to 
the outside in the Early Pleistocene, until the cave filled up. During this 
time, the cave has been infilled mainly by clastic sediment containing 
macro- and microfaunal paleontological remains. 

Seven different facies types have been identified throughout the 
different lithostratigraphic units of Quibas: 1) channel facies in units QC- 
1.1, QC-2, and the lowermost part of QS-1.1; 2) backswamp facies in 
units QC-4, QS-1.1, and QS-1; 3) diamicton facies in units QC-1.2, QC-3, 
QC-5, and QS-1.2; 4) speleothem facies, consisting of two well- 
developed flowstones, embedded in unit QS-1.3 (S1), and overlying 
unit QS-1.3 and unit QC-5 (S2); 5) debris flow facies in units QC-6, QS-2/ 
3, QS-4, and part of unit QS-5; 6) debris fall and rock fall facies in QS-7, 
at the base of unit QC-1.1, embedded in diamicton deposits of units QC- 
1.2 and QC-5, and during the deposition of unit QS-2/3; and 7) paleosol 
facies in units QS-5 and QS-6. 

Two distinct paleoclimatic signals can be distinguished in both the 
Quibas-Cueva and Quibas-Sima sections, which have enabled the iden
tification of up to seven alternating humid and arid phases resulting 

Fig. 11. Geological evolution and synthesis of Quibas site.  
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from the Early Pleistocene glacial/interglacial dynamics. The high- 
precision chronology of the Quibas site has allowed the correlation of 
the detected paleoenvironmental shifts to the marine oxygen isotope 
record. 

The lowermost pre-Jaramillo units (QC-1 to QC-5 and QS-1.1 to QS- 
1.3) suggest these were deposited during a warm, humid period, 
correlated to the interglacial MIS 33–31. The Jaramillo units QS-2/3 and 
QC-6 indicate deposition during a period of increasing aridity up to a 
period of maximum aridity represented by unit QS-4, correlated to the 
glacial MIS 30. The Jaramillo unit QS-5 and the post-Jaramillo unit QS-6 
suggest these were deposited in alternating periods of aridity and humid 
conditions, although less humid than the pre-Jaramillo period, probably 
representing the interglacial MIS 29, glacial MIS 28 and interglacial MIS 
27. 

Data availability 

The authors confirm that all the data supporting the findings of this 
study are available within the article. 

CRediT authorship contribution statement 
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and species of arvicolid rodent (Mammalia) from the early Pleistocene of Spain. 
Comptes Rendus Palevol 21, 847–858. https://doi.org/10.5852/cr- 
palevol2022v21a39. 

Alba, D.M., Carlos-Calero, J.A., Mancheño, M.A., Montoya, P., Morales, J., Rook, L., 
2011. Fossil remains of Macaca sylvanus florentina (cocchi, 1872) (primates, 
cercopithecidae) from the early Pleistocene of Quibas (Murcia, Spain). J. Hum. Evol. 
61, 703–718. https://doi.org/10.1016/j.jhevol.2011.09.003. 
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