UNIT 3. APPLICATIONS OF BIOCHEMICAL TOXICOLOGY TO DIAGNOSIS AND TO THE TREATMENT OF POISONING

UNIT 6. BIOTRANSFORMATION OF TOXICS.

BIOTRANSFORMATION

Chemical modification: Phase I reactions convert a parent drug to more polar active metabolites

Endoplasmic reticulum Lipid-anchored (microsomal)

1. Hydrolysis.
2. Epoxidation
3. Epoxidation.
4. ω-Oxidation.
5. Desmolysis.
6. Deamination.
7. Dealkylation
8. Reduction.
9. Dehalogenation.

Conjugation reaction: These reactions involve covalent attachment of glucuronic acid, sulfate, or glycine to form water-soluble compounds.

Cytosol

1. Glucoronidation 2. Acetylation.
2. Conjugation with glutathione
3. Conjugation with sulphate.
4. Methylation.

T7. Distribution and transport, fixation and accumulation of toxicants

UNIT 11. INMUNOTOXICOLOGY

	IMMUNOTOXICOLOGY	
Depends on: Concentration and exposure time	Study of immune disorders caused by exposure to toxic agents	\qquad

Immune System Goals

Maintain homeostasis.

Conditions of equilibrium where no toxic effect occurs
Without equilibrium new conditions arise:

1. Genetic predisposition
2. Extreme ages.
3. Stress
4. Pregnancy
5. Chronic diseases
6. Physical exhaustion
7. Toxic habits.
8. Malnutrition
9. Metabolic and antioxidant mechanism alterations.

T14. Pesticide poisoning

