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ABSTRACT Large language models (LLMs) have been massively applied to many tasks, often surpassing
state-of-the-art approaches. While their effectiveness in code generation has been extensively studied (e.g.,
AlphaCode), their potential for code detection remains unexplored. This work presents the first analysis
of code detection using LLMs. Our study examines essential kernels, including matrix multiplication,
convolution, fast-fourier transform and LU factorization, implemented in C/C++. We propose both a
preliminary, naive prompt and a novel prompting strategy for code detection. Results reveal that conventional
prompting achieves great precision but poor accuracy (67.5%, 22.5%, 79.5% and 64% for GEMM,
convolution, FFT and LU factorization, respectively) due to a high number of false positives. Our novel
prompting strategy substantially reduces false positives, resulting in excellent overall accuracy (91.2%, 98%,
99.7% and 99.7%, respectively). These results pose a considerable challenge to existing state-of-the-art code
detection methods.

INDEX TERMS Code detection, compilers, heterogeneous computing, high-performance computing, large
language model.

I. INTRODUCTION AND MOTIVATION
In recent years, transformer-based models have superseded
state-of-the-art neural network models for all kinds of
tasks, like computer vision [1], natural language processing
(NLP) [33], speech recognition [35] or translation [21]. One
of the most impressives models based on the transformer
architecture [40] are large language models (LLMs). A LLM
is no more than a language model trained with signifi-
cantly larger training data than traditional language models.
In essence, LLMs are probability distributions over sequences
of words. That is to say, language models aim to understand
and generate text, just like humans do.

LLMs are provoking impressive impact in diverse deep
learning fields, thanks to their impressive abilities to perform
diverse tasks [17], [42]. The extensive list of applications
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where LLMs work well implies that there may still be unex-
plored possibilities awaiting discovery. In particular, even
though LLMs are proven to work for code synthesis [42],
their evaluation in code detection remains unexplored.
Code detection involves analyzing programs to identify the
algorithms they contain, which is crucial in numerous areas
of programming language research. A notable application of
code detection is to match and replace handwritten code with
optimized libraries.

Specialized hardware accelerators provide massive perfor-
mance and energy efficiency improvements over traditional
microprocessors [8]. However, there is a lot of code that
is already written for CPUs, so executing it on accelerators
is not trivial. Detecting parts of acceleratable code and
replacing it with appropriate API calls is a novel approach to
overcome these issues. This technique has many advantages,
like improving the performance of a hardcoded implemen-
tation or offloading compute-heavy tasks to accelerators

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 35271

https://orcid.org/0000-0002-4391-2451
https://orcid.org/0000-0002-7265-3508
https://orcid.org/0000-0002-6388-2835
https://orcid.org/0000-0002-7622-4698


P. A. Martínez et al.: Code Detection for Hardware Acceleration Using LLMs

automatically. Many works focused on this topic [9], [13],
[23], [45], which rely either on constrained-based pattern
matching or neural network-based code detection. Those
code detection techniques are generally either brittle, unable
to match complex code, or inefficient in recognizing code
patterns. On the contrary, LLMs are trained with a huge
corpus of source code, so code detection is a field where
LLMs can potentially outstand.

Despite LLM powers, it is still challenging to exploit
their full capabilities because they are susceptible to
the prompt. LLMs can suffer from different kinds of
faults, like hallucination [15], which has motivated the
emergence of a new discipline called prompt engineering.
Prompt engineering aims to build prompts for maximizing
the performance of LLMs. However, depending on the
specific application, different prompt engineering meth-
ods shall be used because not all work well for every
situation.

This paper proposes a novel methodology that lever-
ages LLMs to perform code detection. More specifically,
we investigate the use of the GPT-3.5 platform and
OpenAI’s API for code detection tasks. To evaluate its
performance, we build a benchmark suite consisting of
significant and computationally intensive algorithms from
computer science. Although this evaluation does not cover
all possible algorithms, it provides proof of how LLMs
perform at code detection. Our evaluation demonstrates that
GPT-3.5 successfully detects a 93% of matrix multiplication
(GEMM), 100% convolution, 100% fast-Fourier transform
(FFT), and 93.3% LU factorization programs. Furthermore,
we evaluate GPT-3.5 using a benchmark containing diverse
program implementations that do not include the target
algorithms. This evaluation reveals a false positive rate of
44%, 80%, 21%, and 37% for GEMM, convolution, FFT,
and LU factorization, respectively. We investigate the causes
of this issue and propose a novel prompting strategy for
code detection using prompt engineering. Using our novel
proposal, we significantly reduce the false positive rates to
5.9% for GEMM, 1.6% for convolution, and 0.0% for FFT
and LU factorization, significantly improving the accuracy.
Our results affirm the viability of LLMs, specifically
GPT-3.5, for code detection tasks, no matter what kind of
algorithm we want to detect. This indicates that LLMs have
a great potential for integration with existing compilation
techniques to replace handwritten code with accelerated
implementations.

This paper makes the following contributions:
• We present the first analysis on code detection using
large language models.

• We propose a novel prompting strategy for code
detection that drastically improves LLM performance at
code detection tasks.

• We evaluate GPT-3.5 in code detection against matrix
multiplication, convolution, and fast-fourier-transform
programs, as well as several other programs to evaluate
GPT-3.5 false positive rates.

The rest of this paper is organized as follows. Section II
presents the background on prompt engineering and large
language models, code detection techniques, and their
applications for hardware acceleration. We present our
methodology to use GPT-3.5 API for code detection in
Section III. Section IV shows our prompt engineering
work, divided into two approaches, the second being a
novel prompting technique for code detection. In Section V
we evaluate the accuracy of each prompting technique,
showing that GPT-3.5 is indeed a code detection tool
for hardware acceleration. Finally, Section VI concludes
the work and gives hints and suggestions for future
work.

II. BACKGROUND AND RELATED WORK
A. LARGE LANGUAGE MODELS (LLMS)
Large LanguageModels (LLMs) refer to a family of language
models, based on the transformer architecture [40] containing
billions of parameters that are trained on massive datasets
containing text [42]. Generative Pre-trained Transformer 3
(GPT-3) is a 175 billion parameter LLM released in 2020 by
OpenAI [4]. Two years later, OpenAI released a new subclass,
GPT-3.5, which is the base of the popular ChatGPT, a chatbot
fine-tuned for conversations that have caused amassive shock
in society [5], [11]. OpenAI’s last release is GPT-4 [32], a new
version in the GPT series, which has shown impressive results
in many tasks, leading us to think that we are approaching
artificial general intelligence (AGI) [5]. Other notable LLMs
include Pathways Language Model (PaLM) [6] (Google) or
LLaMA [39] (Meta).

Applications where LLM exceeds are uncountable. From
coding to mathematical abilities, LLMs’ power focuses on
natural language tasks. One particular aspect of LLM is their
capability to show abilities that are not present in small
models but arise in large models [48]. Generally speaking,
we can organize these abilities into three domains: in-
context learning (ICL), instruction following and step-by-step
reasoning (e.g., chain-of-thought) [42], [48]. ICL consists
of prompting LLMs with a question in natural language
description along with several demonstrations and a test
query [42]. In instruction following, tasks are described in
the form of instructions. With instruction tuning, LLMs can
follow the task instructions for new tasks without using
explicit examples, thus improving their ability to generalize.
Lastly, step-by-step prompting includes several intermediate
reasoning steps, which LLMs can use to perform complex
reasoning.

B. PROMPT ENGINEERING
Language models are designed to imitate and predict the
next token given a sequence of tokens as input [2], which
explains why LLMs are extremely sensitive to the prompt.
Thus, it is crucial to understand how to provide good prompts
to LLMs in order to achieve good-quality outputs. In this
sense, prompt engineering covers a set of techniques to
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improve the communication between humans and LLMs.
Prompts are instructions given to an LLM to specify the
quality and quantity of the output, enforce rules in the output,
etcetera. Prompting can actually also be considered as a
form of programming an LLM since we are giving precise
instructions of how and what to do [44]. In that respect, recent
works have proposed new languages to aid programming of
LLMs [3], [27].
Zero-shot prompting is themost straightforward prompting

technique, where the prompt contains only instructions
describing the task. On the contrary, few-shot prompting
consists of providing additional examples or demonstrations
of the model. This technique can improve LLM perfor-
mance on complex tasks, where zero-shot prompting is not
enough.

Like humans, LLMs are thought to be capable of
performing reasoning [26]. In this line, one critical prompt
engineering technique to improve reasoning is called chain-
of-thought (CoT) [43]. With CoT, the prompt is spread out
across a larger sequence of tokens. Instead of prompting the
model with just the question, CoT prompts include examples
of chain-of-thought sequences of the task. In this sense, CoT
is an instance of few-shot prompting, proposing a simple
solution by modifying the answers in few-shot examples to
step-by-step answers [18].
Another relevant technique is called self-consistency [41].

Intuitively, it is based on the idea that we, as humans, think
in different ways. In tasks requiring reasoning, it is natural
to have several ways to attack the problem. Self-consistency
consists in prompting the model using CoT multiple times to
sample a diverse set of reasoning paths. Afterward, it selects
the most consistent answer by marginalizing all the available
answers in the answer set. This method has proved to be
effective in several scenarios [41].

A more complex technique, based on the previous
approaches of CoT and self-consistency is tree-of-thoughts
(ToT) [46]. This paradigm allows LLMs to explore multiple
reasoning paths over thoughts. In this context, a thought
is considered a part of the final solution. ToT prompting
involves defining four key aspects: how to decompose the
intermediate process into thoughts, how to generate potential
thoughts from each state, how to evaluate each state and what
search algorithm to use. This technique has shown promising
results in solving complex tasks such as Game of 24, Creative
Writing, and Crosswords [46].

A simpler, yet crucial aspect of prompting is controlling
the format of the output. For example, it is useful to
use delimiters to demarcate sections of text to be treated
differently [30]. Other techniques for controlling the output
format are specifying the desired length of the output or the
format and order in which each part of the output should be
presented.

C. PROGRAMMING HARDWARE ACCELERATORS
Specialized hardware accelerators provide massive perfor-
mance and energy efficiency improvements over traditional

microprocessors [8], necessary to overcome the challenges of
increasingly complex and compute-demanding applications.
Instead of using one device (CPU) for everything, accel-
erators are specialized for a given domain. The benefit
of microprocessors’ generality is their ease of adaption,
but at the same time, it is their source of inefficiency.
However, accelerators are highly diverse [34], which makes
programming particularly hard.

To write new code for accelerators, the typical approach
is writing software in the programming language specifically
designed for that accelerator. For existing code (e.g., a pro-
gram written in a general-purpose language) there is a better
alternative than rewriting the program using the accelerator-
specific language. This alternative involves replacing parts
of the code with calls to the accelerator API [9], [13].
By utilizing libraries that target the accelerator API, this
approach allows the compilation of old code, effectively
using the accelerator without the need for extensive code
rewriting.

To replace accelerable parts of code with calls to an
optimized library, the compiler must accomplish two distinct
tasks. First, the compiler must detect parts of the code that
are suitable for replacement. Second, the compiler must find
the mappings between the variables in the original program
and the variables in the library. In this work, we focus on
exploiting LLMs to achieve the first task, code detection,
which discovers the accelerable parts of the code that are
candidates for replacement.

D. CODE DETECTION
Code detection approaches in the literature can be divided
into two categories:

• Constraint-based matching: Also known as pattern-
based matching, consists in finding constraints and
patterns in the code that can bematched into a previously
defined set of constraints [29]. Idiom Description
Language (IDL) [13] proposed a description language
that allows the user to define constraints for detecting
particular idioms. Idioms are later translated into a set of
constraints over the LLVM IR [19], which are used by
the compiler to match the corresponding code. In [12],
authors also focus on idiom matching and rewriting,
but the idiom specification aims to be easier to under-
stand. Besides, idioms are translated into MLIR [20]
dialects rather than LLVM IR. Similarly, a pattern
constraint-based approach is used in KernelFaRer [9],
where authors focus primarily on detecting matrix-
multiplication (GEMM) and SYR2K kernels. Here,
constraints are hardcoded inside the compiler, and the
user can not modify them. Constraint-based matching
is, however, very brittle and generally unable to match
complex code structures [23].

• Neural embeddings: A neural network is trained to
detect the code. This is a more modern approach to
code detection [23], [45], which uses neural embeddings
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to detect accelerateable regions. In [23] and [45], the
neural classifier is based on ProGraML [7], and it
is trained using the OJClone dataset [28], containing
105 classes of different algorithms, each implemented
in different ways. New algorithms not present in the
dataset can be easily identified by adding examples of
that particular algorithm to the dataset, which will make
the neural classifier learn how to identify them. The
downside of current neural embedding proposals is their
low accuracy. They perform well to guide the search
of a given algorithm but although they can match more
complex code structures, they are less reliable compared
to constraint-based matching.

Above mentioned techniques aid to find and categorize
sections of code, but they do not provide any guarantee that
those sections are correctly identified, which can potentially
lead to faulty compilation. Therefore, some verification is
typically coupled with code detection to prove that the code
was identified correctly and works as expected. Besides
formal verification techniques, other approaches rely on
comparing the output of the code with the output of a valid
program (input-output validation) [23], [45]. Despite the
efforts to ensure the correctness of code, programmer sign-off
is ultimately required.

III. USING GPT-3.5 TO ANALYZE CODE
A. USING THE API
At the time of writing, OpenAI’s models (GPT-3.5, GPT-4)
and Claude are the most competitive general-purpose
LLMs [47].1 Another LLM to consider is AlphaCode [22],
a model specifically trained to generate code. However,
it is not publicly available, and it is limited to code
generation, not code detection. While Claude and GPT-4
are in a limited beta (they are only accessible to those who
have been granted access), GPT-3.5 (the base model for
ChatGPT) is publicly available [31]. In this work, we use the
gpt-3.5-turbo-16k model (the most capable GPT-3.5
model, according to OpenAI [31]) with the OpenAI API. The
16k suffix simply indicates that this model has a 16k context
window, in contrast to the standard GPT-3.5 model which
has a context window of 4k tokens. Having a larger context
window allows to analyze larger codes that otherwise would
not fit in 4k or fewer tokens. We believe that the proposals
shown in this work are applicable to any other LLM and that
results shall be similar.

We designed a simple wrapper around the OpenAI API
written in Python. It is responsible for reading the source
code, prompting the gpt-3.5-turbo-16k model with
the code, and parsing the output. As we will see in
Section IV, our prompt includes formatting instructions.
However, sometimes GPT-3.5 produces outputs that do not
match exactly the specified output format. This motivates
the need for a simple parser (detailed in Section IV-C),
which allows our Python program to interpret the output

1Ranking available at: https://chat.lmsys.org/?leaderboard

(e.g., to understand when a program is correctly classified
and when it is not). The API can be configured with
parameters such as the role of the temperature and nucleus
sampling parameters. The role parameter indicates how
the model should behave (acting as in a given role, such
as system, user, assistant, or function). Temperature and
nucleus sampling (top_p parameter) allows for control of
the sampling of the model. Both are ways to control the
sampling, so it is recommended to alter only one of those,
but not both. Intuitively, higher temperature values will make
the output more random, while lower values will make it more
deterministic.

B. THE DATASET
In this work, we focus on detecting C/C++ codes, so all codes
in our dataset are implemented in one of those languages.
We identify three key kernels in code detection works,
as well as one uncommon kernel. GEMM is clearly the one
that gets most of the attention [9], [13], [23]. Fast-fourier
transform (FFT) and convolution are also studied in the
literature [23], [45]. We also include LU factorization codes
to explore the possibility of extending code detection works
to less common kernels, which could challenge GPT-3.5
detection capabilities. To create the dataset, we explored
GitHub C/C++ code performing any of those four kernels.
To better understand the quality of GPT-3.5 code detection,
we focused on finding different implementations of each
algorithm.

1) GEMM
We identified and gathered 7 classes of matrix
multiplications:

• Naive: Implementations with the traditional 3-loop
structure.

• Unrolled: Implementation with unrolled loops.
• Function Calls: Implementations dividing the compute
into different function calls.

• Tiled: Tiled implementations.
• Goto: Implementations using the Goto algorithm [14].
• Strassen: Implementations using the Strassen
algorithm [37].

• Intrinsics: Implementations using Intel intrinsics.

2) CONVOLUTION
We found 3 different implementations:

• Winograd: The Winograd algorithm.
• Direct: The direct convolution algorithm.
• im2col+gemm:Uses a method called im2col to compute
the convolution using GEMM (e.g., like the Caffe
framework [16]).

3) FFT
We retrieved 3 different implementations:

• DFT: Discrete fourier transform implementations.
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TABLE 1. Source code dataset description (available at [24]).

• Radix-2: Computes the DFTs of the even-indexed and
the odd-indexed inputs separately and then combines
both.

• Recursive: Recursive implementations.

4) LU FACTORIZATION
We analyzed 4 different implementations:

• Naive: Naive implementations.
• Pivoting: LU factorization with full or partial pivoting.
• Tiled: Tiled implementations.
• Intrinsics: Implementations using Intel intrinsics.

5) FALSE POSITIVES
Also, we are interested in measuring the exposure of
the model to false positives. Therefore, we also included
programs not explicitly containing the four aforementioned
algorithms. We differentiate this part of the dataset between
mainstream and non-mainstream code. For the mainstream
code, we included the Parboil benchmark [38], a set of appli-
cations for benchmarking the performance and throughput
of processors, and Caffe [16], a deep learning framework.
Those programs are somewhat popular and it is easy to
find similar implementations of those applications in the
wild. Besides, the Parboil benchmark contains a matrix-
vector multiplication, which can be helpful to understand
the sensibility of the model, since it is a kernel very
similar to matrix multiplication. For the non-mainstream
code, we included cpufetch [10], a program that gathers CPU
architecture information, and an Ant Colony Optimization
(ACO) implementation [25]. Furthermore, for those codes
that unintentionally contained GEMM, convolution, FFT or
LU,we removed them from the dataset tomake sure that those
codes do not contain such algorithms. A description of the
dataset is shown in Table 1.

C. FEEDING GPT-3.5 WITH CODE
To feed the model with code, we simply copy and paste the
code into the prompt. In other words, we use crude code
straight into the model. It is worth noting that LLMs have an
input token limit, meaning that they can only process inputs
smaller than their limit. If the code is larger than the token
limit, we identify two ways of processing the input. First,
decreasing the token count of the code. The idea is to reduce

FIGURE 1. First prompt.

the token count without changing the code semantics (e.g.,
replacing spaces with tabs). Removing comments, removing
dead code, or reducing the length of variables and function
names are also viable, but they might hurt the model’s ability
to reason about code. Second, partition the code into smaller
parts. For example, partitioning the original program into n
partitions. In our case, however, none of the codes surpassed
the 16k token limit, so we can safely feed GPT-3.5 with code
without additional modifications.

IV. PROMPT ENGINEERING
One of the most common tips for good prompting is to start
with a simple prompt and then iterate over more complex and
complete prompts. Here we describe our prompt engineering
process in which we started with a very first prompt and a
second version of the prompt that is aimed to improve it.

A. FIRST PROMPT
The first prompt is detailed in Figure 1. In this prompt, the
keyword *algorithm* is replaced by the specific algorithm
we are looking for. That is, *algorithm* may take the value
of ‘‘matrix multiplication (GEMM)’’, ‘‘convolution’’, ‘‘fast
Fourier transform (FFT)’’ or ‘‘LU factorization (LU)’’. Also,
the keyword *the actual code* is replaced by the code itself.

First, we naturally ask the model to search for the specific
algorithm we are interested in. We also ask the model to
ignore functions whose code is not visible. In this sense,
we are concerned about hallucinations. Because the model
has been trained with large code bases, it could have been
trained with the same code (at least, parts of the code) that
we will be analyzing. This can lead the model to think that it
knows the code for unseen functions, which is actually wrong
because supposing that a function with the same name and
arguments corresponds to another function is no more than
an assumption.

Next, we specify the output format. We use ‘‘Desired
output’’ to clearly indicate that follows the output format
specification. To make the output easy to parse, we ask the
model to output ‘‘Yes’’ or ‘‘No’’, followed by the name of
the function (or functions) in case the answer is affirmative.
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FIGURE 2. Second prompt (part 1).

FIGURE 3. Second prompt (part 2).

Afterward, we simply paste the code between three quotation
marks to delimit the beginning and end of the source
code.

B. SECOND PROMPT
In the first prompt, we have clearly stated the task to perform.
Thus, we expect to have good detection results when the
code contains any of the algorithms. However, it is not clear
how the prompt allows the discard of false positives or the
reduction of hallucination effects. Hence, the second iteration
of the prompt tries to accomplish this matter.

We considered using several prompt engineering tech-
niques like chain-of-thought [18], [43], self-consistency [41],
or tree-of-thoughts [46]. However, none of these techniques
apply to code detection. First, code detection does not follow
any reasoning to conclude whether a code corresponds to a
class of algorithms or not (it is more of a classification-like
task). Second, all of these techniques focus on improving
the reasoning capabilities of LLMs in complex tasks, not
mitigating hallucinations. Previous works have highlighted
that LLMs are able to identify when they have produced a
wrong answer [36]. This, however, requires several prompts.
The first one contains the task to be performed by the
LLM, and the second, where the LLM can use self-reflection
to identify whether the previous answer is valid or not.
This two-step prompting of describing the task in a first
prompt and realizing that it was wrong in a second prompt
inspired us to propose a novel prompting technique for code
detection.

The second prompt is composed of two phases which are
shown in Figures 2 and 3. Rather than following a zero-shot
approach (like in the first prompt) here we use two prompts.
In the first part, we simply ask themodel to explain what is the
code doing. Leaving themodel to freely explainwhat the code

does work very well because it is very easy for the model to
understandwhat the task is.Most of the time, the explanations
given by the model at this step are correct (hallucinations are
not present, or at least are very rare). Once the model has
analyzed the code, we ask, in a second prompt, if the code
contains a given algorithm.

Please note the difference between this and the previous
prompt. Previously, we asked directly whether the code
contained an algorithm. Now, we ask the model to describe
the code and then we ask if in that ‘‘description’’ that the
model gave is found the algorithm in question. In essence,
false positives may arise in the first prompt (e.g., the model
wrongly identifying parts of the code) but it is way less
probable than asking directly to check for the algorithm.
In contrast, false positives may not appear as a consequence
of the second prompt because the model is simply reusing
the information previously given. Thus, we expect to reduce
hallucination effects with this technique, while maintaining
similar detection results.

C. OUTPUT FORMATTING
When the model’s output matches exactly the expected
output, the wrapper does not perform any parsing. Here is
a description of the rules that the wrapper applies when the
output does not match:

• If the expected answer is positive, e.g.: ‘‘Yes:
(function list)’’: The wrapper removes the following
substrings from the output: ‘‘\nNo’’, ‘‘\n’’, ‘‘.’’, ‘‘()’’
(where \n is a new line). This makes it possible to accept
outputs that contain outputs containing any ‘‘garbage’’.

• If the expected answer is negative, e.g.: ‘‘No’’: The
wrapper removes the following substrings, which we
observed that occasionally appear: ‘‘the code does not
contain any function’’, ‘‘there is no function’’, ‘‘the
code does not contain any function’’ and ‘‘there is no
function’’.

V. EVALUATION
A. SETUP
We evaluate the GPT-3.5 model using the source code dataset
shown in Section III-B with the two proposed prompts. More
precisely, we use model=‘gpt-3.5-turbo-16k’,
temperature=0.0, top_p=1.0 and max_tokens=
512. The selected model allows inputs up to 16K tokens,
allowing us to analyze larger codes, which would not be
possible with the default GPT-3.5 model (which supports
inputs with up to 4K tokens). We aim to obtain answers as
deterministic as possible, so we set top_p to 1.0 (the default
value) and only modify temperature, which we set to 0.
Lastly, max_tokens sets the maximum number of allowed
tokens in the output, which we limit to 512 since it is enough
for the first step of the second prompt.

In programs with multiple valid functions (e.g., multiple
functions performing a GEMM), we expect the model to
find the outermost function. For each prompt, we show the
confusion matrix and also a summary matrix that presents
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TABLE 2. Confusion matrices for GEMM, CONV, FFT and LU (first prompt).

how each algorithm is classified. In the false positives
evaluation for a given algorithm, we also include real
programs from other algorithms (e.g., for GEMM, we add
convolution, FFT, and LU codes to the false positives dataset).
Besides, we provide a detailed explanation of why the model
was unable to find the algorithm. We identify three types of
errors:

• Error 1: GPT-3.5 thinks there is no function, where there
is actually at least one.

• Error 2: GPT-3.5 finds at least one function, but not the
one we are looking for (the outermost).

• Error 3:Wrong output format (the output is right, but the
Python wrapper is not able to parse it).

B. FIRST PROMPT
Table 2 shows the confusion matrix for the four analyzed
algorithms. True positive results are excellent in all cases,
achieving 93% in GEMM, 93.3% in LU, and 100% in
convolution and FFT codes. This seems to indicate that
the model can confidently analyze the code and find if the
algorithm is present or not. Conversely, the number of false
positives is exceedingly high in the four algorithms, and
it is even more notable in the case of GEMM and convo-
lution. Alternatively, we can compute the accuracy of the
model as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN

which, using data from Table 2, yields a poor accuracy
for Convolution (22.5%), followed by LU (64%), GEMM
(67.5%) and FFT (79.5%). Despite the high precision, the
accuracy is severely harmed due to the high false positive
rate. Results indicate that the model tends to answer our
questions affirmatively rather than reasoning about the code
and answering accordingly.

TABLE 3. Summary of false negatives types (first prompt).

FIGURE 4. Summary of the confusion matrix (first prompt).

Regarding output consistency according to the rules set
in the prompt, we found that the rules implemented in the
wrapper (described in Section IV-C) are rarely triggered. For
the case where the expected output is affirmative, the most
simple rules, like removing a dot, are triggered, but not very
often. In fact, when the output is negative, rules never get
triggered. This indicates that the output formatting rules in
the prompt work consistently well since very little parsing is
needed.

Table 3 presents the type of false negatives for each
algorithm. The most common case is caused by the model
not giving a valid output format. Here we mostly found
issues with C++ formatting, where our Python wrapper was
expecting to find the name of the function, but the model also
includes C++ artifacts. Themodel answered a valid function,
but not the outermost function in two cases, while the rest
correspond to the model simply answering that there were no
functions matching the algorithm.

Regarding false positives, results show that the model gets
confused and identifies algorithms where they are not. It is
worth noticing that these false positives always occur on
functions that are defined and declared in the code. The only
exception to this rule is found in Caffe, where we found
that the model also triggers false positives in functions that
contain ‘‘GEMM’’ in the function name, even if they are
not defined or declared. It seems reasonable to think that
such functions perform matrix multiplication, but if code
is not available it is only an assumption that the model
is unable to confirm. This appears to be a clear example
of external hallucination since the model thinks to know
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TABLE 4. Confusion matrices for GEMM, CONV, FFT and LU (second
prompt).

the content of the function, which is actually unavailable.
We also observed clear cases of hallucination in some
programs where there was no function to detect but the model
gave an output with a length equal to max_tokens (e.g.,
exhausting the output) repeating one function name over and
over.

Figure 4 depicts the results summary for the first prompt,
showing for each algorithm (GEMM, CONV, FFT, LU) in the
x-axis, the percentage ofmatched programs against each code
type (in the y-axis). Ideally, we would like to have as high
values as possible for the diagonal of the first four elements
while the rest of the cells are as close to zero as possible.
Having high values in the diagonal indicates high true positive
rates, while low values in the rest of the figure indicate low
false positives. In the first prompt, we find high values in the
diagonal, as well as in the rest of the figure. The highest false
positive rates are found when we ask the model if a GEMM
program contains any convolution (96.1%), and when we
ask if convolution or FFT programs contain GEMMs (100%
in both cases). Results evidence that the model gets easily
confused when mixing GEMM and convolution (asking
for GEMM in convolution programs and vice versa). This
might be motivated by the fact that both have relatively
similar code structures and that sometimes convolutions are
implemented with matrix multiplications. However, we also
find surprisingly high false positives when analyzing other
codes. In the Parboil benchmark, we obtain rates as high
as 50% and 70% for GEMM and convolution, respectively.
This benchmark suite contains programs for evaluating the
performance of microprocessors, which also have certain
similarities with GEMM and convolution. In Caffe, the false
positive rate is also high. The model gets easily confused with
this code because many of them have functions containing
‘‘gemm’’ or ‘‘conv’’ in the code. However, most of the time,
they are simply function calls rather than function definitions.

TABLE 5. Summary of false negatives types (second prompt).

FIGURE 5. Summary of the confusion matrix (second prompt).

It is surprising to find that the model gets confused with
these even though we explicitly asked to ignore functions
whose definition is not visible. Also, sometimes functions
are visible, but they do not perform GEMM or convolutions
explicitly in the code. Lastly, we also found surprisingly
high false positive values in ACOTSP-MF and cpufetch, even
though those programs have in no way any similar code to
GEMM or convolution.

C. SECOND PROMPT
Table 4 shows the confusion matrix using the second prompt.
The first thing that draws attention is the true positives. They
are very similar to the one we had in the first prompt, but
they are slightly lower. However, the number of false positives
has decreased significantly, with only 5.9%, 1.6%, 0.0% and
0.0% for GEMM, convolution, FFT and LU, respectively.
These results confirm that our prompt proposal drastically
improves the accuracy of the model, which raises to 91.2%,
98%, 99.7% and 99.7%, respectively.

In the second prompt, we found that the rules implemented
in the wrapper (shown in Section IV-C) are much more
likely to be triggered than in the first prompt. Specifically,
rules for the case where the expected output is negative
were never triggered in the first prompt, but they are
sometimes triggered in this prompt. These results indicate
that the output specification is less robust in the second
prompt compared to the first one which showed to be pretty
reliable.

We analyze the failure reasons for the second prompt in
Table 5. The majority of failures are found in Error 2, (e.g.,
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when the model finds at least one function performing a
matrix multiplication, but it is not the one we were expecting
to find). Besides, we still have the same problems in GEMM
programs where the model does not comply with the output
format that we expect, which makes the wrapper unable to
parse the output.

In the second prompt, false positives only arise when
looking for GEMM and convolution in Caffe, and when
looking for GEMM in convolution codes. As we mentioned
in the first prompt, the model had two types of false
positives in Caffe. The majority were functions declared
and defined in the code, while a minority were undefined
functions containing ‘‘gemm’’ in the name. In the second
prompt, all the false positives from Caffe correspond
to the second class. This indicates that the model still
hallucinates with functions that have ‘‘gemm’’ in its name,
while the other false negatives have completely disappeared.
Lastly, in convolution codes, we can still find some cases
where the code is purely performing a convolution but
the model reports it as performing a matrix multiplication.
Sometimes, it happens because the code contains a matrix
multiplication inside the reported function, but it does
not mean that the function performs matrix multiplication
exclusively (which is what we are asking). However,
we believe that these issues should be fixed with more
powerful models (e.g., GPT-4) or code-specific models (e.g.,
AlphaCode).

VI. CONCLUSION AND FUTURE WORK
Large Language Model’s scale and complexity have grown
massively in the last few years. ChatGPT, in particular, and
LLMs, in general, have caused a massive impact on society
due to the enormous potential of these models for greatly
diverse natural language tasks. We also expect those models
to keep scaling and improving in the near future, so finding
new applications where these models excel is key for fully
exploiting them. A field not previously explored with LLMs
was code detection, which is key for many applications in
programming language research. Particularly, it has been
studied to achieve code lifting, a technique that consists
in replacing handwritten code with a call to an optimized
library. Previous work has approached this topic either with
constraint-based matching or with neural embeddings plus
input/output equivalence, which can be costly for large
codes.

In this work, we have explored the application of LLMs
to code detection for the first time. Specifically, we evalu-
ated GPT-3.5 in code detection with matrix multiplication
(GEMM), convolution, fast-fourier transform (FFT), and LU
factorization algorithms. After designing our first prompt
for code detection, the model showed an accuracy of
67.5%, 22.5%, 79.5%, and 64% for GEMM, convolution,
FFT, and LU factorization, respectively. False positives,
triggered by hallucinations, are the reason to explain such
poor results. In the second prompt, we introduced a novel
approach for code detection that achieved an accuracy of

91.2%, 98%, 99.7%, and 99.7%, respectively. The new
prompt drastically reduces the number of false positives
which, still occurring, are way less frequent. Despite not
being trained specifically for code detection, GPT-3.5 results
are truly impressive, reaching an accuracy very close
to 100%.

Rather than using raw code input, we aim to explore
alternative approaches in future research. Instead of analyzing
program files individually, we are interested in developing
a novel methodology that focuses on analyzing the program
function by function. This approach would involve creating
a dataflow graph that captures the interconnections between
the functions defined in the program. Adopting this approach
would allow us to analyze the entire code structure as opposed
to processing one file at a time. If LLMs are to be embedded
with a compiler, then we would need to investigate both
inference time and accuracy with local inference models, like
Vicuna. Additionally, we are intrigued by the effectiveness
of code metadata (function names, variable names and
comments) on the result. It may be valuable to understand
if the language model would still provide good results if
metadata was discarded or if, on the contrary, the language
model can achieve similar results without this information.
We are also interested in the performance of other models
like GPT-4 or other LLMs trained specifically on source code,
which may achieve even better results, stretching even more
the limit to reach 100% of accuracy.
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