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Processing-in-memory (PIM), where the compute is moved closer to the memory or the data, has been widely
explored to accelerate emerging workloads. Recently, different PIM-based systems have been announced by
memory vendors to minimize data movement and improve performance as well as energy efficiency. One
critical component of PIM is the large amount of compute parallelism provided across many PIM “nodes” or
the compute units near the memory. In this work, we provide an extensive evaluation and analysis of real
PIM systems based on UPMEM PIM. We show that while there are benefits of PIM, there are also scalability
challenges and limitations as the number of PIM nodes increases. In particular, we show how collective
communications that are commonly found in many kernels/workloads can be problematic for PIM systems.
To evaluate the impact of collective communication in PIM architectures, we provide an in-depth analysis
of two workloads on the UPMEM PIM system that utilize representative common collective communication
patterns – AllReduce and All-to-All communication. Specifically, we evaluate 1) embedding tables that are
commonly used in recommendation systems that require AllReduce and 2) the Number Theoretic Transform
(NTT) kernel which is a critical component of Fully Homomorphic Encryption (FHE) that requires All-to-All
communication. We analyze the performance benefits of these workloads and show how they can be efficiently
mapped to the PIM architecture through alternative data partitioning. However, since each PIM compute unit
can only access its local memory, when communication is necessary between PIM nodes (or remote data is
needed), communication between the compute units must be done through the host CPU, thereby severely
hampering application performance. To increase the scalability (or applicability) of PIM to future workloads,
we make the case for how future PIM architectures need efficient communication or interconnection networks
between the PIM nodes that require both hardware and software support.
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1 INTRODUCTION
Emerging workloads including deep neural networks require a significant amount of computation
and general-purpose architectures do not provide the necessary compute. As a result, domain-
specific architectures are commonly used to provide a significant increase in the amount of com-
pute [19, 39, 48]. With the increasing amount of compute throughput, modern computer system
performance is often bottlenecked by the memory system and, in particular, by the movement of
data to/from the main memory system [17, 38, 73]. This bottleneck is becoming more problematic
due to increasingly data-intensive workloads that require high memory capacity and memory
bandwidth [34, 45, 58]. As today’s domain-specific accelerators and hardware platforms provide
significantly improved compute throughput [13, 21, 47, 70], the gap between compute throughput
and memory bandwidth continues to increase.
Processing-in-memory (PIM) or near-data processing (NDP) have been proposed as potential

solutions to reduce the memory bandwidth gap and accelerate overall performance [28, 59]. PIM
accelerates applications by moving the computations to where the data is stored (i.e., main mem-
ory). PIM is not new as the concept has been proposed since the 70s [74]; however, it has gained
renewed interest recently with emerging memory-intensive workloads such as machine-learning
workloads [21, 37, 76]. In addition to growing interest from the research community on PIM and
NDP, recent announcements by multiple memory vendors include different types of PIM memory
modules, including the Samsung HBM function-in-memory (FIM) [53], SK Hynix GDDR-based
PIM [49], and the UPMEM processing-in-DRAM engine [22]. The type of computation provided
across the different PIM devices varies in terms of compute flexibility/programmability and effi-
ciency, as summarized in Table 1. For example, SK Hynix GDDR-AiM [49] have fixed functional
units that specifically target GEMV (GEneral Matrix-Vector multiplication), while the Samsung
HBM FIM [55] provides some (limited) programmable compute logic near the memory banks for
different machine-learning operations. In comparison, UPMEM [22] provides a general-purpose
compute core near the memory banks to provide the highest flexibility as compared to other PIM
implementations. However, this comes at the cost of reduced efficiency, similar to CPU vs ASIC
or domain-specific accelerators comparison. The AxDIMM [42] also provides general-purpose
compute near-memory but compute is located within the buffer chip of DDR4 and does not provide
the amount of parallelism compared to alternative PIM architectures. All PIM systems pursue a
similar goal of trying to minimize changes to the standard memory interface (e.g., DDRx protocol)
while providing the ability to enable computation near the memory.

The different PIM architectures have been evaluated across various workloads, including machine
learning applications [79], matrix-vector multiplications [64], and sparse-matrix vector multipli-
cations [29]. Prior studies have demonstrated various degrees of benefits from PIM – e.g., 3.5×
improvement on speech recognition on HBM2-PIM [46] and 6.7× improvement on decoder block
processing of GPT-3 on GDDR6-AiM [49], compared to non-PIM systems. In comparison, this
work provides an in-depth analysis of PIM architecture scalability challenges on a real
PIM architecture. In particular, many workloads or kernels require collective communication
where parallel compute units need to exchange data. In this work, we focus on two representative
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collective communication patterns (AllReduce and All-to-All) that are commonly found in many
workloads [77]. We analyze two different types of kernels from emerging workloads that can be
potentially accelerated through PIM while requiring collective communication – 1) embedding
tables used in recommendation systems [61]; and 2) Number Theoretic Transform (NTT) computa-
tions used in Fully Homomorphic Encryption [11]. The two kernels present different challenges
for the PIM as embedding table kernel is memory-intensive and requires high memory bandwidth
as well as high memory capacity. However, it requires a relatively small amount of compute (e.g.,
reduction) near memory while global reduction is often necessary. In comparison, NTT is more
compute-intensive from modular multiplications but requires All-to-All communication to shuffle
data around. These kernels have been analyzed [56, 58, 66, 69, 80] and PIM–based architectures
for these kernels have also been proposed [32, 33, 41, 50, 62, 65, 67]; however, to the best of our
knowledge, performance and scalability of these kernels have not been analyzed on real PIM
architectures.
In this work, we first implement these kernels on the UPMEM PIM system [22] and provide

an extensive evaluation and analysis of their performance. In particular, high performance (and
utilization) can be obtained on a single PIM node (module) or UPMEM DPU (or DRAM processing
unit). We then quantify the performance improvement and scalability as the problem (kernel) size
increases when multiple PIM nodes are used to increase the amount of parallelism. While there are
performance benefits from PIM when parallelism is exploited across a large number of PIM nodes,
we find that communication between PIM nodes is needed, similar to other parallel, distributed
systems. As a result, performance scalability of PIM is limited when the communication of
data between the PIM modules becomes a bottleneck. In this work, we define PIM locality
as the locality of data (or memory) for PIM compute logic. For workloads with high PIM locality,
PIM scalability is not a problem; however, when PIM locality is reduced (i.e., data is needed from
non-local memory), then performance scalability can be limited. However, all modern PIM systems
only support communication through the host (or the CPU) and do not provide direct communica-
tion between the PIM nodes. We evaluate the performance overhead during the movement of data
between the PIM module and the host, as well as the computation overhead from managing inter-
mediate data within the host processor – which fundamentally limits the amount of performance
improvement that can be obtained from PIM architecture.
To enable scalable PIM architecture, we discuss how future PIM systems should provide

hardware (and software) support for processing-in-memory (PIM) interconnect between
the PIM nodes (or banks). PIM interconnect can enable direct communication between the PIM
compute nodes – avoiding the high cost of having to communicate through the host (or the CPU)
and enabling higher scalability. Unlike traditional interconnects, the challenges and constraints
of DRAM require that both the hardware (i.e., interconnect architecture, switches, etc.) and the
software (i.e., communication and synchronization primitives) need to be modified to enable such
PIM interconnect. The main contributions of this work include the following.

• We present the design and implementation of two kernels from emerging workloads on the
UPMEM PIM architecture that utilizes collective communication and the potential perfor-
mance benefits from PIM.

• We demonstrate the performance scalability limitations as the number of PIM nodes scale
and inter-PIM communication needs to be done through the host (or CPU) communication.

• To enable a high-performance and scalable PIM architecture in the future, we discuss how
an interconnection network between the PIM nodes that supports direct communication
between them is necessary for future PIM systems to avoid communicating through the host.
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Fig. 1. High-level block diagram of UPMEM Processing-in-Memory system. This work refers to PIM “node”
as the unit of near-data processing or a single DPU (or a bank) that has its own compute and local memory.

Memory type Level of parallelism Supported compute Performance Flexibility
GDDR6-AiM [49] GDDR6 Bank GEMV + + - -
HBM-PIM [55] HBM2 Bank GEMV,ReLU,Vector ADD/Mult + + -
AxDIMM [42] DDR4 Rank General compute (CPU+FPGA) - +
UPMEM [22] DDR4 Bank General compute (CPU) + + +

Table 1. Qualitative comparison of different PIM systems.

2 BACKGROUND
In this section, we provide an overview of the UPMEM PIM system used in our evaluation. We also
provide the background of two kernels that we explore: embedding table found in deep learning
recommendation models (DLRM) as well as Number Theoretic Transform (NTT), commonly used
in Fully Homomorphic Encryption.

2.1 UPMEM architecture
While other PIM architectures are available such as Samsung HBM FIM [55] or SK Hynix GDDR
PIM [49], the UPMEM architecture was used in this work because it provides the most flexibility
in terms of near-data compute that could be exploited for near-data processing. A UPMEM-based
PIM system is made up of standard DDR4 2,400-DIMM modules with 8 or 16 UPMEM chips per
DIMM. Figure 1 depicts a high-level block diagram for an UPMEM chip. Inside each chip, there
are 8 DPUs (DRAM processing units) and 8 64-MB memory banks. As 20 is the maximum number
of UPMEM DIMM modules in today’s configurations, users can benefit from up to 2,560 (20×128)
DPUs and a total memory capacity of 160 GB [71]. All DPUs in the UPMEM modules operate
together as a parallel coprocessor to a host CPU. The DPU is a multithreaded 32-bit processor that
supports up to 24 hardware threads, called tasklets. Each tasklet is equipped with 24 32-bit (or 12
64-bit) general purpose registers, 4 fixed common registers (i.e., common to all tasklets), and 4
fixed thread index registers. The DPU consists of 14 pipeline stages and thus, multiple tasklets
are required to fully utilize the DPU pipeline [35]. Apart from a DPU and a 64-MB main memory
bank (MRAM), each of the eight PIM chip slices also contains a 24-KB instruction memory (IRAM),
and a 64-KB scratchpad memory (a software-managed cache called WRAM). The host CPU can
read/write data from/to MRAM through the DDR4 interface with UPMEM APIs [72]. Only data
located in WRAM can be used in an operation, hence a DMA module is responsible for moving
the data from MRAM to WRAM and from WRAM to MRAM by utilizing DMA read and write
instructions, respectively, from the DPU. A DPU can only access local data stored in WRAM. Hence
any inter-DPU communication is a very costly operation that must occur through the host CPU.
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Kernel/Workload Description Applications Type of collective When collective
communication communication is used?

Fast Fourier Signal conversion from Signal visualization, All-to-all Transpose intermediate
Transform (FFT) time/space domain to Spectrum analysis matrix

frequency domain
Number Theoretic Specialized Discrete Homomorphic All-to-all Transpose intermediate
Transform (NTT) Fourier Transform (DFT) encryption matrix

algorithm for finite
integer field

Embedding table Lookup of the corresponding Deep Learning AllReduce Global reduction of output
lookup embedding values for a list Recommendation model across row partitions

of IDs (DLRM), NLP
Molecular Dynamics Predict behavior of Drug discovery, AllReduce Collect global

atoms in molecular system Protein structure properties (e.g. total energy,
prediction stress, temperature)

PageRank Graph mining application Web search AllReduce Update vertex score
vector

BFS Graph traversal Shortest path, AllGather Compute union of local
Minimum spanning tree next frontier and copy

global next fontiers
Multi-Layer Feedforward neural network Classification, AllGather Broadcast

Perceptron (MLP) consisting of fully Regression partial output vectors
connected neurons

Distributed Machine Training or inference Large-scale neural AllReduce, Reduce gradients across nodes
Learning of large neural-network model using networks All-to-all in data parallelism (AllReduce),

multiple machines data exchange in hybrid
parallelism (All-to-all)

Table 2. Example of collective communication across various workloads.

2.2 Applications
In this work, we explore applications that require collective communications, which are com-
monly used in distributed parallel processing. A summary of different examples of collective
communication across different workloads is summarized in Table 2. In particular, we focus on two
representative collective communication patterns – AllReduce and All-to-All. AllReduce is a com-
munication pattern that reduces partial outputs from different nodes to produce fully accumulated
outputs and then copies the same reduced outputs across all nodes. AllReduce communication is
used in many different application fields including graph mining such as PageRank [81, 82], scien-
tific applications like molecular dynamics [30], embedding table lookup, and machine learning [68].
For the All-to-all communication pattern, a unique subset of data is exchanged between all pos-
sible pairs of nodes. All-to-all communication is used in scientific applications like Fast Fourier
Transform (FFT) [10], NTT computation in Homomorphic Encryption, DLRM training with hybrid
parallelism [58], and Homomorphic Encryption [47]. In the following sections, we describe two
kernels that we focus on – embedding tables that are accessed in recommendation systems as well
as the NTT kernel that is commonly used within homomorphic encryption.

2.2.1 Embedding Tables. Deep learning-based recommendation model (DLRM) is an important
class of model for recommendation systems [14, 61]. A high-level block diagram of DLRM is
shown in Figure 2a and consists of the bottom MLP, embedding layer, interaction layer, and the
top MLP. Bottom MLP handles dense input while the embedding layer handles sparse input. The
results of the bottom MLP and the embedding layer are combined by the interaction layer and
can consist of concatenation, summing, averaging, etc. The output of the interaction layer is
fed to the Top MLP before the final result (e.g., click probability) is generated. While the MLP
layers are compute-intensive, the embedding layer is very memory-intensive since it consists of
embedding table lookups with sparse inputs as indices. The indices are inputs to recommendation
system models and represent a unique identifier or index to an embedding table entry. Another
important parameter in the recommendation model and the embedding tables is the pooling factor.
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Fig. 2. (a) High-level overview of deep-learning recommendation model (DLRM) that consists of 𝑁 embedding
tables and MLP computation, (b) UPMEM basic program structure, and (c) system configuration of the
UPMEM server used in the evaluation.

The pooling factor determines the number of entries read from a single embedding table that are
combined (or reduced) to generate a single output value. The pooling factor is a hyperparameter
determined by the recommendation system model designer and can vary – from a value of 1 (e.g.,
YouTube [83]), 10s (e.g., Meta/Facebook [34, 58]), and up to 100s (e.g., Alibaba [84]). The embedding
table requires not only large memory capacity as the embedding table size for the recommendation
system can reach several TBs [51, 58] but also high memory bandwidth due to the large number of
memory accesses and some compute (e.g., reduction of the entries read from the single table). In
this work, we explore how the embedding table can leverage PIM architecture – in particular, unlike
prior work on DLRM PIM [41, 42, 50, 65], we identify the challenges when scaling out embedding
tables across multiple PIM nodes.

2.2.2 FHE and NTT. Fully Homomorphic Encryption (FHE) is an emerging technology that enables
computation on encrypted data. The security of modern FHE schemes—including BGV [9], BFV [24],
TFHE [12], and CKKS [11]—is based on the hardness of the Ring Learning with Errors (RLWE)
problem [57]. A key computational bottleneck in such schemes is polynomial multiplication, where
the coefficients are elements of a finite field. Negacyclic convolution is commonly implemented
using the Number Theoretic Transform (NTT) as demonstrated by prior works (e.g., GPU [40],
ASIC [47], and PIM [62]). An NTT is simply the FFT specialized to a finite field. The product a ∗ b
of two polynomials a and b is related to the NTT by the following [15]:

a ∗ b = Ψ−1 ⊙ iNTT(NTT(Ψ ⊙ a) ⊙ NTT(Ψ ⊙ b)) (1)

where ⊙ denotes Hadamard product, NTT and iNTT denote the NTT and its inverse respectively,
and Ψ is a vector consisting of powers of a primitive 2𝑁 th root of unity.

Stridden memory access in NTT leads to poor memory localization and data reuse, which makes
NTT difficult to parallelize. To counter this drawback, hierarchical NTT [8] divides the NTT
workload into smaller, localized, and manageable pieces that are easier to compute in parallel.
An𝑀-dimensional NTT breaks N-point NTT down to𝑀 computational steps (i.e., smaller NTT
chunks, ideally 𝑁 1− 1

𝑀 × 𝑀
√
𝑁 -point NTT per step) with a synchronization required between each

step – e.g., a 65536-point 2D NTT has 2 computational steps, each step containing 256 × 256-point
NTTs. Synchronization consists of an All-to-all data exchange between multiple parallel processes
(e.g., DPUs). For the current UPMEM system, this translates to a costly inter-DPU communication.
In this work, 2D NTT was chosen for the small number of synchronization requirements (i.e., only
one synchronization).
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2.3 Related work
Procesing-in-Memory (PIM) and UPMEM: There have been many prior works on processing-in-
memory (PIM) or near-data processing (NDP), both within academia as well as industry [3, 5, 7, 25–
27, 60]. Recently, memory vendors have proposed different PIM architectures including Samsung
HBM-based PIM [46, 55] and GDDR-based PIM from SK hynix [49]. UPMEM proposed PIM by
adding a general purpose core near each memory bank [72] and we exploit UPMEM architecture in
this work because of the flexibility provided. Prior work [29, 54, 63] have also explored accelerating
various workloads, including sparse matrix-vector multiplication, DNA sequencing, and AES
encryption on the UPMEM architecture while providing an in-depth analysis of the UPMEM system.
In addition, a benchmark suite for UPMEM architecture has also been released [35]. This work
also explores the performance benefits of UPMEM architecture; however, unlike prior work, we
focus on potential limitations of the UPMEM (and other PIM) architectures when communication
is necessary between the PIM nodes.
PIM for Recommendation Systems: RecNMP [41], TensorDIMM [50], and TRiM [65] proposed
adding a computing unit in the DIMMbuffer and performing the embedding operation at DIMM-side
for DLRM. RecNMP [41] proposed to connect PIM to the host memory controller with customized
NMP instructions, while TensorDIMM [50] proposed to compose the memory pool called Ten-
sorNode with several DIMMs that are interconnected to the host with high bandwidth network
channels such as NVLink. TRiM [65] exploits bank-level parallelism as well as rank-level parallelism.
Tensor Casting [51] proposes the solution for training DLRM with near-data processing in the
DIMM. AxDIMM [42] also accelerates recommendation systems through near-data processing with
compute logic placed within the buffer chip of a DIMM. However, prior work do not evaluate or
analyze the scalability challenges of embedding tables on a real system when distributed across
multiple “nodes.”
PIM for FHE: Different PIM architecture to accelerate FHE have been proposed [32, 33, 62, 67]
CiM-HE [67] proposes a PIM-based accelerator for the BFV scheme homomorphic operations on
SRAM while other work (Crypto-PIM [67], FHE-PIM [33], and MemFHE [32]) proposes PIM for
RRAM memory technology and accelerates NTT. Unlike prior work, this is one of the first works
to explore an important kernel within FHE (i.e., NTT) on a real PIM system and understand its
scalability limitations.
Interconnection Network: There has been a significant amount of work done on different types of
interconnection networks, including network-on-chip [18, 20] and large-scale networks. Memory-
centric network [43] explores interconnect between memory modules as well as intra-module
interconnect that utilizes a crossbar; however, the interconnect is not necessarily appropriate for
PIM-to-PIM communication. Memory channel network [5] proposed a practical near-memory
processing system by assuming each near-memory processor runs an OS and communicates
through the existing network stack of the OS. However, host communication is still required when
communication between near-memory processors is required. Recent work [75, 85] have proposed
to interconnect the DIMMs (or ranks); however, they do not necessarily enable communication
between the PIM nodes. To the best of our knowledge, this is one of the first works to discuss the
need for interconnection networks between PIM nodes to enable scalable PIM computation.

3 EVALUATION METHODOLOGY
In this study, we choose the UPMEM architecture [71] due to its flexibility in terms of computing
near memory (i.e., general purpose cores are available near memory); however, our observations
on the scalability (or lack thereof) are not limited to UPMEM but can be generalized to other PIM
architecture. For example, Samsung’s HBM-PIM [55] provides somewhat programmable compute
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(a) Embedding lookup

(b) NTT computation

Fig. 3. Block diagram illustrating offloading of embedding lookup and NTT computation.

logic within each bank, and SK Hynix’s AiM [49] provides fixed compute logic within each bank;
however, accessing data from a different bank is a challenge for these PIM architectures as well.
The system configuration shown for the UPMEM system used in our evaluation is summarized in
Figure 2c. To evaluate the performance, the code for the different kernels was implemented with
UPMEM API [72] that is based on C. UPMEM programming shares many similarities with GPU
(CUDA, OpenCL) programming. The source code is partitioned into host code that is executed
on the CPU, and kernel code that is offloaded to the PIM architecture or the DPUs. Instead of
threads (or warps), UPMEM provides units of tasklets, which are specified during compilation, with
a maximum of 24 tasklets supported for each DPU [22]. The basic control flow for the UPMEM
host application is: a) DPU allocation, b) load DPU program, c) input transfer, d) kernel launch,
and e) retrieve the output, as summarized in Figure 2b. In comparing the performance of PIM with
CPU-only (i.e., no PIM), the same host or the CPU was used in the evaluation.
This work explores the performance benefits of PIM, especially within the context of PIM

scalability. We evaluate the potential benefits (and limitations) of PIM on two important kernels, 1)
embedding tables in recommendation systems and 2) NTT within Fully Homomorphic Encryption.
A high-level overview of the execution of the two kernels is shown in Figure 3. For embedding
tables, the table and the indices are first loaded from the host and then, executed on the PIM (or
the DPU) by memory access and reduction computation. Afterward, the output is sent back to the
host for any potential postprocessing (based on how the data is partitioned) (Figure 3a). For the
NTT kernel which is partitioned into two stages, communication to/from the PIM nodes occurs
across two steps, and in between the two steps, shuffling of the data occurs in the host (Figure 3b).
In our implementation, NTT effectively results in the need for executing two kernels because of
the data shuffling that is required between the two kernels (or the two stages of NTT). While not
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(a) Table-wise (b) Column-wise (c) Row-wise

Fig. 4. Alternative embedding table partitioning approaches for a 4-node system with 6 different embedding
tables. The different colors represent the different embedding tables.

shown in detail, UPMEM programming requires data to be copied to “scratchpad” memory (i.e.
WRAM) [72] (Sec 2.1)– thus, data from the main memory (i.e. MRAM) is first copied over to the
WRAM in our implementation. Additional details of the kernel implementation and how data are
partitioned across multiple PIM nodes are provided in Sec 4 and Sec 5.

4 EMBEDDING TABLE KERNEL
4.1 UPMEM Implementation
The embedding table kernel for UPMEM was written and compared against a CPU implementation
to validate functional correctness. The offloaded compute to PIM includes the embedding table
lookup as well as a reduction of the embedding table entries that are accessed. To accelerate
performance on UPMEM, we used the WRAM (or the scratchpad memory within the DPU) and
24 tasklets (or threads) to keep the pipeline busy. Unless otherwise stated, a batch size of 512 is
assumed and each tasklet is responsible for executing a fraction of the total batch. Analysis is first
performed on a single DPU and then, evaluated across multiple DPUs.

4.2 Embedding Table Scalability through Partitioning
The size of the embedding tables can be very large as the size of an individual table can be hundreds
of MBs to up to a few TBs [1, 58], and multiple tables are commonly used. As a result, embedding
tables need to scale across multiple nodes, especially if a given table cannot fit into a single node,
and need to be partitioned across multiple nodes. Partitioning of tables is more problematic for PIM
architectures since the amount of memory per PIM node is often limited (e.g., 64 MBs for UPMEM
architecture). There are three approaches for partitioning the embedding tables [58] – table-wise,
column-wise, and row-wise (Figure 4). Table-wise partitioning distributes one or more tables to
each node – the simplest form of partitioning for embedding tables, but can lead to imbalanced
memory accesses across nodes. However, the number of tables per node is limited by the memory
capacity; thus, for PIM nodes where the memory per node is limited, the memory capacity is often
too small to support even one table, thus an alternative partitioning strategy is needed.

Column-wise partitioning divides each table vertically (Figure 4b). For an 𝑁 node system, each
table is partitioned into 𝑁 columns and each node contains a single column for a given table – thus,
the number of memory accesses to each node is identical and memory accesses are balanced. One
trade-off is that since the same entry or row needs to be accessed across all nodes, the network (or
communication) traffic is increased, as the same table indices need to be sent to every other node.
However, the bigger limitation is the scalability of column-wise partitioning since the scalability is
limited by the table width or the dimension of the table. Each dimension of an embedding table
entry contains data (e.g., 4B floating point data) that need to be combined with other embedding
table entries – thus, partitioning the table beyond the unit of a dimension is infeasible and an
embedding table with 𝑑 dimensions can be partitioned across, at most, 𝑑 nodes. Given that the
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(a) (b) (c) (d)

Fig. 5. Single DPU performance (kernel execution time) and analysis (memory bandwidth and DPU compute
IPC), with a single embedding table as the following parameters, are varied – (a) number of tasklets (𝑇 ), (b)
embedding table dimension (𝑑𝑖𝑚), (c) embedding table height (𝐻 ), and (d) pooling factor (𝑃 ). Unless otherwise
stated, the default parameters used are 𝑑𝑖𝑚 = 64, 𝐻 = 1𝑘,𝑇 = 24, 𝑃 = 16.

common dimension size is approximately 4-384 [58], the scalability of column-wise is also limited.
An alternative approach is dividing the table horizontally (Figure 4c), where each node contains
unique entries (or rows) of a given embedding table. This reduces the need for duplicating the
embedding table indices across multiple nodes. If the different entries of the tables are placed in
different nodes, then more data needs to be transferred from the memory nodes, since only a partial
reduction is done at each node and a global reduction is required. Because of scaling limitations,
we evaluate hybrid approaches that leverage both row-wise and column-wise partitioning in the
following sections.

4.3 Embedding Table Evaluations
Embedding tables are first evaluated using synthetic embedding tables on a single DPU and then, we
evaluate the scalability of embedding tables across multiple DPUs with different table partitioning
approaches described earlier in Section 4.2. We conclude with evaluations based on production-scale
embedding tables [58].

4.3.1 Single DPU Evaluations. Analysis of embedding tables on a single DPU is shown in Figure 5
as various parameters of the embedding table are varied, including the table height (𝐻 ), table width
or dimension size (𝑑𝑖𝑚), pooling factor (𝑃 ), and the number of tasklets (𝑇 ). The figure plots the
performance (kernel execution time - thus, lower is better) and results are normalized to the leftmost
data point. The analysis provides for the compute and memory – using the memory bandwidth and
the DPU IPC (instructions per cycle) metrics. Since the DPU is an in-order, single-issue processor,
the maximum IPC that can be obtained is a value of 1. Current UPMEM implementation does not
provide performance counters to measure internal MRAM memory bandwidth; thus, bandwidth is
estimated based on execution time and the amount of data transferred from the MRAM.
The embedding table implementation requires 11 tasklets to fully utilize the DPU pipeline,

suggesting that embedding table implementation in UPMEM is compute-bound instead of memory-
bound. When the number of tasklets increases beyond 11, the memory bandwidth utilization
actually drops as the performance is bottlenecked by the compute and not necessarily the memory
bandwidth. As the dimension size increases, more data needs to be fetched from the memory and
thus, proportionally increases the bandwidth as well as the execution time. As expected, the height
of the table (or the capacity) does not impact performance since the table is assumed to fit within a
single DPU. The pooling factor has an interesting impact on the result as for small pooling factors
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(a) Kernel time (b) Total time (c) Breakdown of execution time

Fig. 6. Normalized performance (execution time) measuring (a) kernel (DPU) execution time, (b) total execu-
tion time using UPMEM PIM, and (c) execution time analysis as the number of DPUs is varied for column-wise
and row-wise partitioning.

(𝑃 ≤ 8), the impact on performance is relatively small but beyond 16, the pooling factor has a
significant impact on performance. As both dimension and pooling factor increase, more internal
bandwidth becomes utilized as well.
OBSERVATION #1: For memory-bound workloads such as embedding table kernels, as
parallelism is exploited through higher batch size, the compute resource near memory can be
fully utilized and the workload can become compute-bound because of the limited compute
resource near memory.

4.3.2 Multi-DPU Evaluations. Performance as the number of DPUs increased is shown in Figure 6,
comparing the performance of row-wise partitioning (Row) and column-wise partitioning (Column)
with CPU baseline. The performance comparison metric is execution time – including the execution
time of the kernel or the time spent executing on the PIM (or the DPU) as well as the total execution
time, which includes the overhead of communication to/from the DPU as well as any inter-DPU
communication. In this evaluation, we use a single embedding table with 𝑑𝑖𝑚 = 64 (i.e., 64 columns),
𝐻 = 128𝑘 , and 𝑃 = 32. The column-wise partition scalability is limited to 64 DPUs since there are
only 64 “columns” in the tables and a column cannot be further partitioned. In comparison, row-wise
partitioning can scale beyond 64 DPUs. Results show how kernel time continues to improve as
the number of DPUs increases and with more than 64 DPUs, the performance of UPMEM can
exceed that of the CPU when only the kernel time is considered (Figure 6a). The performance
of column-wise and row-rise are relatively similar, aside from the fact that row-wise provides
scalability beyond 64 DPUs. However, in terms of the total execution time (Figure 6b), the overhead
from PIM results in the CPU always outperforming UPMEM PIM as the CPU exceeds UPMEM by
2.27× with 64 DPUs. Beyond 64 DPUs, the total execution time actually increases with row-wise
because of the PIM overhead.
Analysis of the total execution time for column-wise and row-wise partitioning is shown in

Figure 6c that includes kernel execution time (Kernel), time spent on the host CPU (Host), sending
data from CPU to DPU (CPU-DPU) and from DPU to CPU (DPU-CPU). In column-wise partitioning,
Host consists mostly of data movement (or re-organization) to properly concatenate the embedding
vector, while row-wise partitioning includes the global reduction that needs to be done by the host
CPU. As the number of DPUs increases, the fraction of time spent doing compute near memory (or
Kernel) becomes smaller – e.g., with 1024 DPUs and row-wise partitioning, Kernel represents only
2.3% of the total execution time. However, the overhead, including Host and DPU-CPU, dominates.
The DPU-CPU includes transferring the embedding output vectors back to the host and increases
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(a) (b)

Fig. 7. Impact of load-imbalance on the (a) kernel and
the (b) total execution time. With a pooling factor
of 64, 𝑥 : 𝑦 notation is used where 𝑥 is the number
of indices that are biased while 𝑦 is the number of
indices that are randomly assigned.

(a) (b)

Fig. 8. Normalized (a) kernel and (b) total execution
time as the pooling factor is varied, with 64 DPUs and
a single embedding table (𝑑𝑖𝑚=64, 𝐻=128K, 𝑇=24).

when only partial reductions are done within each PIM node. The CPU-DPU overhead is relatively
negligible since it only involves transmitting the indices to the UPMEM PIM. To provide a fair
comparison, we assume the embedding tables are already loaded into the main memory (for CPU
baseline) and also loaded in the MRAM for the UPMEM.
OBSERVATION #2: Even if the kernel execution time on PIM scales linearly, the communica-
tion overhead between the host CPU and PIM nodes (i.e., DPUs) can significantly minimize
the potential benefit of PIM as the number of PIM nodes increases.
The impact of potential load-imbalance is demonstrated in Figure 7. Prior work [23, 52] have

shown that embedding table accesses can be skewed and result in “hot” accesses. Thus, we create a
synthetic access pattern for embedding tables with an imbalance. Assuming a pooling factor of 64
(i.e., 64 memory accesses), (𝑥 : 𝑦) notation is used to represent the amount of imbalance – 𝑥 refers
to the number of indices of the pooling factor that are “biased” or accesses within the same DPU
while 𝑦 represents the number of indices that are randomly distributed. For example, 0:64 means
all inputs are generated randomly while 64:0 means all inputs are generated by bias and access a
single DPU. Results show that column-wise partitioning has a negligible impact on performance,
regardless of the amount of imbalance while the impact is noticeable for row-wise partitioning. In
column-wise partitioning, the same indices are sent to all PIM nodes and thus, load-balanced access
occurs across all nodes. However, for row-wise partitioning, the indices are only sent to nodes that
have the embedding table entries being accessed – thus, leads to load-imbalanced memory accesses
across nodes and cannot fully exploit the available memory bandwidth.

Given the skewed access for embedding tables in real recommendation systems (often following a
power-law distribution), it results in hot-data and this can be exploited by reordering the indices [78]
to exploit the locality of the CPU memory hierarchy by placing frequently accessed entries near
each other. However, a reordered embedding table can be problematic for PIM architectures where
the embedding tables are distributed across multiple “nodes.” For example, if the row-based (e.g.,
row-wise or hybrid partitioning) approach is used, the “hot” portion of the table entries will only
be distributed across a small number of PIM nodes – thus, creating an imbalance in the number of
accesses and not maximize the total amount of memory bandwidth (and compute) across all PIM
nodes.
OBSERVATION #3: Spatial locality of the embedding table is not necessarily beneficial since
it can create imbalance across the different PIM nodes.
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(a) Column Kernel (b) Row Kernel (c) Column Total (d) Row Total

Fig. 9. Comparison between integer (INT) and floating point (FP) implementation of the embedding table
(𝑑𝑖𝑚= 64, 𝐻=128K, 𝑇=24, 𝑃=32, and 64 DPUs).

The impact of the pooling factor is shown in Figure 8 and as the pooling factor increases, the
amount of memory access proportionally increases and thus, results in higher execution time. 1
For small pooling factors, row-wise provides significant improvement in kernel execution time
compared to column-wise. One benefit of column-wise is that compute (or memory access) across
all of the nodes is load-balanced as each PIM node whereas row-wise can result in imbalance since
the amount of accesses to each PIM node can vary (e.g., if a table is partitioned row-wise across
two nodes, all accesses to the table can occur on one node while the other node might not have any
accesses). However, one benefit of row-wise is memory access granularity, compared to column-
wise. For example, if the DRAM (or MRAM) access granularity is 64B, sequential read that accesses
the 64B results in more efficient memory bandwidth usage. With row-wise partitioning, each “row”
of the embedding table maps consecutively within the DRAM. However, for column-wise where
only one element (or one dimension) is mapped to each DPU, only 4B corresponding to one element
of the embedding vector is needed resulting in poor memory bandwidth utilization. As the pooling
factor increases, the performance gap decreases since imbalance can occur with row-wise, and the
overhead (as well as global reduction at the host) results in an increase in the total execution time
(Figure 8b).

Embedding tables for recommendation models use floating point data representation [61]. Un-
fortunately, current UPMEM does not have native support for floating point operations and thus,
floating point operations are emulated by the DPU [72]. However, given that some PIM architectures
have support for floating point operations [49, 55], we analyze the impact if the compute operations
are accelerated. In addition, some prior work [6, 31] have shown a minimal loss in accuracy when
using integer-based quantization for DLRM inference acceleration. Thus, we explore the impact
of using integer-based embedding tables and its impact on overall performance. Performance
comparison is shown in Figure 9 using an embedding table that consists of 32-bit integers (INT)
and tables that consist of 32-bit floating point numbers (FP). We also compare against the same
implementation using CPU-only baseline implementation. The use of INT results in a significant
reduction in kernel time, compared to FP for UPMEM. However, it is interesting to note that the
scalability gets worse with INT – e.g., the kernel execution time stops improving at around 16 or 32
DPUs while the total execution time flattens out at around 8 DPUs. Although the compute time
decreases with INT operations, the overhead, including the global reduction at the host or the
DPU-to-CPU data movement does not change – thus, the overhead becomes a larger fraction and
further limits scalability. Note that the impact of INT and FP has minimal impact on CPU evaluation
since the memory bandwidth is the dominant factor in determining the overall performance.
1The execution time for the CPU does not change significantly because of the large capacity of the last-level cache and the
locality that it provides.
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(a) Execution time breakdown (b) Performance Scalability

Fig. 10. Execution time breakdown and scalability comparison between different partitioning schemes. For
scalability, row-column hybrid partitioning is used instead of column partitioning.

OBSERVATION #4: The memory bandwidth utilization overhead from small-granularity
memory accesses can degrade overall performance. This can be more problematic as the
compute throughput of PIM increases.

Results in Figure 10a provide a detailed performance breakdown when the number of DPUs
is scaled from 4 to 128. An embedding table of 128 MB is used such that the table can fit within
4 DPUs. We evaluate the strong scaling out to 128 DPUs. The plot shows performance in terms
of execution time (thus, lower is better). In general, row-wise partitioning has better scalability
in terms of compute speedup – e.g., row-wise achieves nearly a 30× improvement in compute as
the number of DPUs is increased by 32×. In comparison, the compute scalability for column-wise
partitioning is limited to less than 16× as column-wise partitioning uses a smaller memory access
granularity when moving data between MRAM and WRAM which results in inefficiency.
However, the overall speedup is lower for row-wise partitioning, as the amount of time for

DPU-CPU transfers, i.e., the communication overhead to transfer partially reduced data back to
the host, and Host time, i.e., the reduction computation in the CPU, increases as the number of
DPUs increases. With row-wise partitioning, partial reduction is done across different DPUs and
the partially reduced output data needs to be transferred between the DPUs and the host. As
the number of DPUs increases, the amount of data transferred back to the host will also increase
proportionally – thus, explaining the slowdown as the number of DPUs reaches 64 and 128 with row-
wise partitioning. In comparison, column-wise partitioning continues to show overall performance
improvements, while kernel time decreased when employing more DPUs, the total size of data
needed to transfer remained unchanged when the number of DPUs changed.

Another fundamental limitation of column partitioning is that a column (even with just a single
dimension) can exceed the memory capacity of a single PIM bank for large tables. As a result, a
hierarchical partitioning needs to be used – e.g., a group of nodes or DPUs are used for the first-level
partition scheme and then, among the groups, a different type of partitioning scheme is used. Overall
scalability is shown in Figure 10b. Column-wise partitioning cannot scale beyond 128 DPUs due to
the embedding table’s dimension size. To address this limitation, hybrid (hierarchical) partitioning
is employed, where a given column is horizontally partitioned (i.e., row-wise) to provide more
scalability. However, both row-wise and hybrid partitioning suffer from communication and host
computation overhead, resulting in a similar performance degradation.
OBSERVATION #5: Hybrid partitioning is necessary to scale embedding table kernel across
a large number of PIM nodes. While hybrid partitioning performs better than naive parti-
tioning (e.g., row partitioning), the scalability is still limited because of inter-PIM commu-
nication.
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RM1 RM2 RM3
Embedding Dimension

(Width) 32 32 32

Hash Size
(Height) 16M 16M 160M

Avg. Pooling Factor 80 80 20
# of Tables 10 40 5

Total Table Size 20GB 80GB 100GB
Table 3. Different embedding table configurations based on production-scale [34] used in our evaluation.

(a) Performance (b) Execution time breakdown (c) Performance Scalability

Fig. 11. (a) Performance comparison of different partitioning schemes on large-scale embedding tables and
end-to-end DLRMmodels, (b) execution time breakdown, and (c) performance scalability comparison between
different partitioning schemes for RM2. C-R: Column-Row, T-R: Table-Row hybrid partitioning.

4.3.3 DLRM-based Embedding Table Evaluation: In addition to synthetic embedding tables, we
evaluate the performance of a large-scale embedding table configuration that is based on production-
size recommendation models [34]. We scaled it to fit within the UPMEM server memory capacity.
The configuration of the three different types of recommendation models is summarized in Table 3.
Figure 11a shows a performance comparison of UPMEM with a CPU for embedding table lookup-
only and end-to-end DLRM for different partitioning schemes. Performance is normalized to the
execution time of the CPU baseline without any PIM. For production model-based evaluations,
we used a batch size of 16 to model inference where smaller batch sizes are used. For embedding
table-only evaluation, row-wise partitioning results in a significant performance degradation (up to
54% for the RM1model) because of the significant overhead from data movement from the DPU back
to the CPU host, as well as host computation (Host) (Figure 11b). Adopting hierarchical (hybrid)
approaches can provide performance benefits – up to 13.2× for RM3. However, even for hybrid
partitioning, row-wise partitioning is still necessary to scale out embedding table recommendations
across a large number of nodes. Note that host computation (as well as DPU to CPU communication)
represents a significant fraction of the execution time. For end-to-end DLRM evaluation, we assume
that only the embedding table kernels are offloaded and the other operations of DLRM (e.g., MLP)
are done on the host CPU in the UPMEM implementation. Speedup over CPU is shown in RM3 for
different partitioning schemes. C-R hybrid partitioning can provide more than 8× improvement
for RM3, as even row partitioning outperforms baseline CPU. Figure 11c shows performance
scalability across different partitioning schemes for RM2 as the batch size is increased. While there
is performance improvement or speedup as the batch size is increased, row-based partitioning
(R) results in lower performance benefits as the batch size is scaled. However, hybrid partitioning
is able to achieve higher performance and approach linear speedup. To scale embedding tables
across a large number of nodes with PIM capability, row-wise partitioning is necessary but this
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Fig. 12. Single DPU NTT (𝑁 = 28) runtime and utilization with
various tasklet counts across different radix configurations.

Butterfly radix 2 4 16
Butterfly/NTT stage 128 64 16
Butterfly size 1 4 32
# of sync 7 3 1

Table 4. Different radix butterfly com-
parison for 256-point NTT.

leads to the need to perform a global reduction between the PIM modules. However, such inter-
PIM communication or global communication can only be done through the host in modern PIM
architectures and severely limits scalability.

5 NTT KERNEL
5.1 UPMEM Implementation
We implemented the Number Theoretic Transform (NTT) for the UPMEM architecture and verified
its functional correctness by comparing it with CPU implementation in [4]. We implemented the
NTT kernel based on an iterative FFT algorithm and merged Cooley–Tukey NTT optimization
from [69]. We started with a single DPU implementation of the NTT with 𝑁 = 28 where 𝑁 is
the number of coefficients. We changed the number of tasklets for each butterfly radix, sweeping
the value from 1 to 24, to evaluate NTT performance and the DPU pipeline utilization. Using
hierarchical NTT [8], we scaled the NTT to 𝑁 = 216. Our initial implementation is based on 2D
NTT and based on our results, we extrapolated the results to 3D and 4D NTT. However, because of
the communication overhead, 2D NTT results are the most optimal performance on UPMEM and
we use 2D NTT for the rest of our evaluation. We evaluated the 2D NTT kernel through a strong
scaling experiment, where we varied the number of DPUs while maintaining a fixed problem size.
Additionally, we experimented with variations in the log𝑄 value which corresponds to the number
of limbs (i.e., the number of NTTs). Finally, we evaluated the homomorphic multiplication of the
CKKS scheme on the UPMEM system.

5.2 NTT Evaluations
5.2.1 Single DPU Evaluation. Figure 12 shows NTT evaluation on a single DPU with various
numbers of tasklets and radix configurations. The 𝑥-axis shows the number of hardware tasklets
and the right side 𝑦-axis shows the DPU pipeline utilization with 100% representing that the DPU
is executing 1 instruction per cycle. The left-side 𝑦-axis shows the kernel performance (execution
time) and thus, lower is better. We evaluate the implementation of radix 2, 4, and 16 and use
256-point NTT since it is the smallest (larger than 16) NTT that can be broken down into radix 2, 4,
and 16. The number of butterfly operations per stage, the size of each butterfly operation, and the
necessary thread synchronization vary depending on the radix. The highest radix (i.e. radix-16) has
the fewest stages (with the largest butterfly operations size per stage) and results in the smallest
number of synchronizations. The impact on the NTT implementation from the different radix sizes
is shown in Table 4.
𝑀-point NTT using radix-𝑘 implementation results in log𝑘 (𝑀) stages, with each stage consisting

of𝑀/𝑘 butterfly operations. During each NTT stage, butterfly operations will be assigned to each
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Fig. 13. Analysis of (a) hierarchical NTT and (b) different step size implementation for 2D NTT.

tasklet in a round-robin fashion, and then synchronize using a barrier API provided by UPMEM, with
other tasklets, before the next NTT stage. Figure 12 shows that the pipeline starts to saturate around
11 tasklets for radix-2 and radix-4. However, for radix-16, the utilization actually drops significantly
before reaching 16 tasklets. The reduction in utilization is caused by workload fragmentation with
the amount of fragmentation equaling (𝑀/𝑘 mod 𝑇 ) where 𝑇 is the number of tasklets. Thus,
while fragmentation also occurs for radix-2 and 4, the amount of fragmentation is much lower and
the impact on utilization is also very small. In general, more tasklets result in higher performance
and higher radix, when “balanced” without any fragmentation across the tasklets, provides the
highest performance) For example, in the 16 tasklets implementation, radix-16 performs better
than radix-2 by approximately 8% from fewer synchronizations and better temporal locality.
OBSERVATION #6: High-radix NTT results in the highest performance if the butterfly
operations are load-balanced across the tasklets and maximize compute utilization.

5.2.2 Hierarchical NTT exploration. Hierarchical NTT is often used to partition a large NTT into
smaller-sized NTTs. The total number of computations does not change but hierarchical NTT
partitions NTT into multiple “steps” or dimensions – with smaller NTT size calculations performed
within each step or dimension. We refer to the local NTT size as the step size. 2 Increasing the
number of steps or dimensions partitions the NTT into smaller step size and allows parallelism to be
exploited. However, there is a trade-off as synchronization is needed after each step. In the UPMEM
architecture, the overhead of synchronization within a DPU is relatively small but if synchronization
is needed between the DPUs, the overhead is more significant since synchronization is effectively
done through the host CPU.
The two main components of NTT are the computation (or kernel computation on UPMEM

DPU) and the communication or synchronization between the DPUs. To understand the impact of
these two components, the compute and the communication are measured on UPMEM to analyze
the trade-off between the two components. As the NTT dimension size increases, the NTT compute
is measured as well as the communication of the data to/from the host for the synchronization. As
shown in Figure 13a, as the number of dimensions increases, the computation time is reduced as the
additional amount of parallelism with higher dimensions can be exploited with a larger number of
DPUs (i.e., using 256 DPUs for 2D but leveraging 2048 DPUs for 4D). However, the communication
time increases as more synchronization is needed after each step – thus, overall execution time
increases.
Analysis of different step sizes for 2D NTT is shown in Figure 13b. CPU-DPU and DPU-CPU

represent communication to/from the DPU while Kernel1 and Kernel2 represent the two steps of
the 2D NTT. The Inter-DPU is the communication time between the DPU that occurs between
2For a hierarchical NTT, the step size for each dimension can differ.
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Fig. 14. Strong scaling experiment results of 8 NTTs (𝑁 = 216) with model- and hybrid-level parallelism.

Kernel1 and Kernel2. The different step sizes for the two kernels result in an unbalanced compute
time between the kernels – thus, a balanced step size results in optimal performance and minimizes
overall execution time.
OBSERVATION #7: High-dimensional, hierarchical NTT reduces the local NTT size and
increases the parallelism but increases DPU-level synchronization. Our analysis demon-
strates a “balanced” 2D NTT provides a balance between computation and communication.

5.2.3 Multi-DPU Evaluations. We implemented 2D NTT – i.e., a two-computational step NTT with
each step composed of 256× 256-point NTTs using 16 tasklets for each DPU. Each tasklet performs
a single radix-16 NTT per stage to increase data reuse and minimize thread synchronization (see
Section 5.2.1). We carried out a strong scaling experiment from 32 to 2048 DPUs. Given the limit of
256 DPUs for partitioning a 2D 216-point NTT, we evaluated eight independent NTTs in parallel,
to scale up to 2048 DPUs. For DPUs ranging from 32 to 256, we used model-level parallelism,
distributing each 256-point NTT among the DPUs. To scale beyond 256 DPUs, we combined model-
and input-level parallelism (shown as Hybrid in Figure 14). This involved partitioning the input
NTTs and distributing them across multiple sets of 256 DPUs. For instance, to execute 8 NTTs with
512 DPUs, the first 4 NTTs are allocated to a set of 256 DPUs, while the remaining 4 NTTs are
assigned to another set of 256 DPUs, thus in total 512 DPUs are allocated. Consequently, each DPU
computes 4× 256-point NTT in every kernel.
The MRAM stores the input and twiddle factors (i.e., sets of integer constants to facilitate the

transformation from one domain to another). Data transfer to the WRAM occurs prior to NTT
execution, and afterward, the results are returned to theMRAM. In each DPU, we further break down
the 256-point NTT through an additional level of 2D NTT, resulting in two computational steps
of 16× 16-point NTTs. Each tasklet computes a 16-point NTT (i.e., radix-16 butterfly operation)
for each step. Thus, the NTT is effectively a hierarchical 4D NTT calculation. With this NTT
configuration, only one DPU synchronization is required between the first and second steps (i.e.,
kernel). Following the DPU synchronization, an All-to-all communication is conducted to shuffle
data among the DPUs before the second kernel.
The scalability of the NTT kernel as the number of DPUs increases is shown in Figure 14a.

CPU-DPU and DPU-CPU represent communication to and from the DPU, while Kernel1 and Kernel2
represent the two compute steps for the 2D NTT. The Inter-DPU represents the time for commu-
nication between the DPU that occurs between Kernel1 and Kernel2. 3 As the number of DPUs
3Even though the communication occurs through the host in the UPMEM PIM architecture, it is categorized differently to
isolate the impact of inter-DPU communication on overall performance.
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Fig. 15. NTT evaluation with varying log𝑄 (i.e., number of limbs) and number of DPUs.

increases, the compute time (i.e., computation time from UPMEM’s performance measurement cycle
counter) scales almost linearly – approximately 63.5× speedup as the number of DPUs increases
from 32 to 2048. However, the overall speedup is limited to approximately 9.7×. For a smaller
number of DPUs, Inter-DPU is negligible but represents approximately 40.3% of the total execution
time for 2048 DPUs (Figure 14b). Thus, as the compute time linearly decreases, communication
becomes a bigger bottleneck in overall performance.
OBSERVATION #8: For strong scaling, DPU kernel execution time scales linearly with the
number of DPUs for NTT but inter-DPU overhead does not scale linearly and limits overall
scalability.

5.2.4 NTT Scalability: The coefficient modulus size or log𝑄 is an important FHE parameter,
which has a direct effect on the multiplicative depth (i.e., how many multiplications can be done
before bootstrapping is needed). The value of log𝑄 impacts the number of limbs and in this
experiment each limb corresponds to an NTT. In Figure 15 we vary the log𝑄 size across four
UPMEM implementations (256, 512, 1024, and 2048 DPUs) and CPU implementation. Figure 15a
shows the scalability for NTT and all implementations scale linearly. The 2048 DPUs configuration
results in the best performance across all values of log𝑄 . Figure 15b shows the execution time
breakdown for two values of log𝑄 . While inter-DPU time continues to dominate the total execution
time for the 2048 DPUs, the kernel runtime scales linearly with the number of DPUs. Inter-DPU
time for the 2048 DPUs is faster than the 256 DPUs due to higher total memory bandwidth.
The inter-DPU communication for NTT, which consists of copying intermediate data from the

DPU back to the host, re-arranging the data, and then, re-distributing the data or moving the data
back to the DPU, is effectively a “software” implementation of All-to-All communication in modern
PIM architecture. As the results show, it results in performance overhead and limits scalability –
i.e., it represents 34.9% of the total execution time for 2048 DPUs with log𝑄 = 2800.
OBSERVATION #9: With hybrid parallelism, the maximum number of DPUs provides
the highest performance because of the additional parallelism (both memory bandwidth
and compute); however, scalability can still be improved if the inter-DPU communication
overhead is reduced.

We also evaluated NTT within an end-to-end homomorphic multiplication of the CKKS scheme
from [36] on the UPMEM system, and results are shown in Figure 16. The following parameters
were used: 𝑁 = 65536, 𝐿 = 23, 8 extension limbs, 54-bit 𝑞, and 𝑑𝑛𝑢𝑚 = 3 [2]. The performance of
each primitive operation on the homomorphic multiplication of the CKKS scheme was measured
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(a) Host Communication (b) PIM interconnect

Fig. 17. A high-level block diagram of (a) conventional PIM system where communication occurs through the
host and (b) PIM system with PIM interconnect that enables PIM-to-PIM communication.

separately, based on its sequence of occurrence Compute-wise, UPMEM provides speedup compared
to CPU across all primitive functions. The significant amount of speedup on the polynomial addition
(poly add) primitives is primarily due to the high compute throughput provided by the PIM core.
However, the absence of an integer multiplication unit in UPMEM [72], results in limited compute
speedup for any kernel involving modular multiplication (e.g., poly mult and NTT). In addition,
the significant Inter-DPU portion in Figure 16 is caused by synchronization in NTT and its inverse.

6 DISCUSSION: CASE FOR PIM INTERCONNECT
A key aspect of PIM systems to enable scalable performance with a large number of PIM nodes is
inter-PIM communication. In this section, we argue that future PIM architectures need hard-
ware/software support for PIM-to-PIM communication (or PIM interconnect) to enable
scalability. The need for communication between nodes is not new in a distributed (parallel)
system [16] and interconnection networks [18] are commonly found in many systems to enable
such communication. Similar communication is necessary in a PIM system but current PIM systems
communicate “indirectly” through the host CPU. To the best of our knowledge, this is one of the first
work to demonstrate the limitations of a scalable PIM system and argue how an interconnection
network is necessary even in a PIM-based system. A high-level block diagram of the potential
benefit of PIM interconnect is shown in Figure 17 with an example of All-to-all operation. In
today’s PIM systems, any communication between the PIM banks/nodes needs to occur through
the host (Figure 17a). This creates a bottleneck in the host-to-memory interface and more impor-
tantly, the communication (and any additional processing at the host) is serialized through the
host. In comparison, a PIM interconnect enables low latency communication directly between
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(a) Performance comparison over different reduc-
tion ratios.

(b) Performance comparison over different inter-
bank channel bandwidth.

Fig. 18. Modeling of the potential performance benefit of PIM interconnect compared to PIM communication
through the host.

the PIM banks (Figure 17b) and more importantly, enables parallel communication. For simplicity,
data communication from only the left PIM node is shown in the figure. We outline some of the
hardware/software challenges for PIM interconnect in this section.
Hardware Challenges: Unlike traditional interconnection networks [18] such as those used
in large-scale supercomputers or network-on-chip, the constraints of PIM and DRAM are very
different, and traditional interconnect architectures cannot be leveraged. Especially, because of
the limited amount of logic and the limited bandwidth available, a conventional hardware-based
interconnect router microarchitecture is not necessarily appropriate. To enable practical PIM
interconnect, the following principles need to be exploited.

• Hierarchical Network: The hierarchical packaging constraints (bank, chip, rank) will
require a hierarchical interconnect organization to match the packaging constraints. However,
given the limited pin bandwidth available in a DRAM system, existing bandwidth, including
PIM-host bandwidth, will likely need to be shared to enable efficient PIM interconnect.

• Low Cost: Buffered router-based interconnect is likely not feasible because of the high cost
of input buffers. Thus, an efficient, minimally buffered router approach [44] is necessary to
enable PIM interconnect.

Software Challenges: In addition to hardware support, including channels and any “router” logic,
software support is necessary to enable practical PIM-to-PIM communication. In particular, we
highlight the following main challenges.

• Minimal impact on DDR interface: Any PIM-to-PIM communication needs to minimize
its impact on the DDR interface, similar to how modern PIM systems [22, 49, 55] have been
designed. Hence, remote accesses will need to be viewed like local Load/Store operations but
enable PIM interconnect access through appropriate PIM instructions.

• Deterministic behavior: Introducing non-determinism can be problematic for the host
(CPU) and PIM interface (as well as the DDR interface). Therefore, the software (and the
hardware) needs to guarantee deterministic behavior to ensure minimal impact on the
programming and usage of the PIM-to-PIM communication.

To understand the potential benefit of PIM interconnect, we model PIM interconnect to analyze
potential performance benefits using the embedding table kernel (with hybrid partitioning policy
(C-R) and the results are shown in Figure 18. The key components that are modeled are the host-PIM
bandwidth as well as the PIM-to-PIM bandwidth that is enabled with the PIM interconnect. For
host-based communication, the model assumes global reduction is performed by reading partial
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embedding outputs. For the analysis, we ignore the cost of the global reduction within the host and
estimate the performance based on the amount of data transferred and the host-PIM bandwidth.
For the PIM interconnect, we assume a point-to-point interconnect is available between the PIM
banks to create a hierarchical network, across the bank, chip, and rank hierarchy. We vary two
components to determine the potential benefit of PIM interconnect – (a) global reduction ratio or
the amount of computation that would need to be done by the host and (b) PIM interconnect (or
PIM-to-PIM channel) bandwidth.

Figure 18a shows the performance improvement of PIM interconnect over host communication
as the global reduction ratio is varied. We analyze the benefit of PIM interconnect across three
different numbers of PIM nodes — (1) Bank-wise where 8 PIM banks are within the same DRAM
chip, (2) Chip-wise where 64 PIM banks are within the same rank, and (3) Rank-wise where 256 PIM
banks across 4 DRAM ranks, need to communicate with each other. Performance (or inverse of time)
is shown and thus, higher is better and the results are normalized to the host communication with
a global reduction ratio of 1. Not shown but when the ratio is 0, no inter-PIM reduction is necessary
as all reduction is done locally and thus, the performance between the two architectures is identical.
However, when the value is 1, all reduction is done globally and maximizes the difference between
the two architectures. When there is a small amount of global reduction, the performance benefit
is only 66% but when most of the reduction is global, the potential benefits from PIM interconnect
can be approximately 6.5×.
For this analysis, we assumed the inter-bank channel bandwidth of the PIM interconnect is 2.8

GB/s (64b link width at 350MHz). Figure 18b shows how the performance of PIM interconnect
changes over different inter-bank channel bandwidths of PIM interconnect. For this analysis, we
assumed a 50% reduction ratio and varied inter-channel bandwidth from 0.35GB/s to 3.5GB/s (x-axis
is normalized to 0.35GB/s) and analyzed performance improvement of embedding table lookup with
hybrid partitioning that requires different scope of AllReduce. Even with 0.35GB/s of bandwidth,
PIM interconnect shows significant performance improvement over host communication. This
analysis demonstrates how PIM interconnect can improve communication and overall performance,
even when assuming limited bandwidth for PIM interconnect.

OBSERVATION #10: PIM interconnect that provides direct communication between PIM
bank (or nodes) is critical to enable scalable performance. PIM interconnect will not only
require hardware support but also software support to ensure the DRAM interface can
support PIM-to-PIM communication.

7 CONCLUSION
Processing-in-memory (PIM) architecture enables the acceleration of emerging workloads by
minimizing data movement as computation is moved near the data. In this work, we addressed the
potential PIM scalability challenges as the number of PIM nodes increases and communication is
necessary between the PIM nodes. In particular, we observed that performance scalability in PIM
can be achieved when load-balancing occurs across multiple PIM nodes; however, we also identified
on real UPMEM PIM hardware that workload scalability can be limited when communication
(e.g., collective communication) is needed and occurs through the host (or the CPU). Based on the
analysis, we present the case for PIM interconnect or an interconnection network between the
PIM nodes and argue how it can benefit next-generation PIM architectures to provide scalable
performance.
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