
Research Article

Statistics
in Medicine

Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Reducing Monte Carlo error in the Bayesian
estimation of risk ratios using log-binomial
regression models

D. Salmeŕon,abcd∗J. A. Canoe and M. D. Chirlaqueabc

In cohort studies binary outcomes are very often analyzed bylogistic regression. However, it is well-known that

when the goal is to estimate a risk ratio, the logistic regression is inappropriate if the outcome is common. In these

cases, a log-binomial regression model is preferable. On the other hand, the estimation of the regression coefficients

of the log-binomial model is difficult due to the constraintsthat must be imposed on these coefficients. Bayesian

methods allow a straightforward approach for log-binomial regression models, produce smaller mean squared

errors in the estimation of risk ratios than the frequentist methods, and the posterior inferences can be obtained

using the software WinBUGS. However, Markov chain Monte Carlo (MCMC) methods implemented in WinBUGS

can lead to large Monte Carlo errors in the approximations tothe posterior inferences since they produce correlated

simulations and the accuracy of the approximations are inversely related to this correlation. To reduce correlation

and to improve accuracy, we propose a reparameterization based on a Poisson model and a sampling algorithm

coded in R. Copyright c© xxxx John Wiley & Sons, Ltd.

Keywords: binomial regression models; Markov chain Monte Carlo; Monte Carlo error; Bayesian
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1. Introduction

The odds ratio is a measure of association widely used in Epidemiology that can be estimated using logistic regression.

However, when one wants to communicate a risk ratio, the logistic regression is not recommended if the outcome is

common [1-6]. If one wants to estimate the adjusted risk ratio, a log-binomial model is preferable to a logistic model. The
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log-binomial model assumes that the distribution of the outcomeyi is the Bernoulli distribution

yi ∼ Ber(pi), log pi = xiβ, i ∈ Nn = {1, ..., n}, (1)

where,

xiβ = (xi1, xi2, ..., xik)(β1, ..., βk)
T = xi1β1 + · · ·+ xikβk,

andxi includes variables denoting exposures, confounders, predictors and product terms. Usuallyxi1 = 1 and therefore

β1 is the intercept. The parametersexp(βj) are interpreted as adjusted risk ratios, whether the outcome is common or rare.

Sincepi = exp(xiβ) ∈ (0, 1), we have to impose the constraintsxiβ < 0, i ∈ Nn, on the values ofβ, which complicates

its maximum likelihood estimation. Zou [7] and Spiegelman and Hertzmark [4] have suggested the use of a Poisson model

without the constraints, that is,

yi ∼ Poisson(µi), logµi = xiβ, i ∈ Nn, (2)

to approximate the log-binomial maximum likelihood estimator, and they consider a robust sandwich variance estimator

to estimate the standard errors. Model (2) can be fitted with standard statistical packages. Nevertheless, ifβ̂ is the estimate

obtained fitting the Poisson model (2), thenxiβ̂ can be greater than zero. On the other hand, Petersen and Deddens [5, 6]

have proposed a different approximation using anexpanded datasetthat contains(c− 1) copies of the original data and

one copy of the original data with the dependent variable values interchanged (1’s changed to 0’s and 0’s changed to 1’s).

As c becomes large, the maximum likelihood estimator for this modified data set approaches the maximum likelihood

estimator for the original data set. Savuet al. [8] have shown the existence and the uniqueness of the estimator produced

by this method.

In this article we consider the Bayesian analysis of the log-binomial regression model (1). In this context, Chu and Cole

[9] have proposed to incorporate the constraintsxiβ < 0, i ∈ Nn, as part of the likelihood function using the indicator

function:
n
∏

i=1

exp(xiβ)
yi(1− exp(xiβ))

1−yiI(xiβ < 0),

whereI(xiβ < 0) = 1 if xiβ < 0, and0 otherwise. They have shown that the Bayesian approach provides estimates similar

to the maximum likelihood estimates, produces smaller meansquared errors in the estimation of risk ratios, and posterior

computations can be carried out using the Markov chain MonteCarlo (MCMC) methods implemented in WinBUGS

[10]. However, MCMC methods can lead to another error, that is, MCMC methods produce a sample from the posterior

distribution and approximate the posterior inferences using this sample, and therefore, every time we obtain a sample

from the posterior distribution, the resulting approximations are different and Monte Carlo errors are present. That is,

the sample generated by MCMC methods is a Markov chain that consists of correlated simulations from the posterior

distribution, and the Monte Carlo error in the results is related to this correlation, affecting the numerical accuracyof the

approximations [11].

As we show in this article, WinBUGS can lead to large Monte Carlo errors in the approximations. Therefore a very large

number of iterations (the length of the chain) would be needed to obtain a desirable accuracy. Furthermore, WinBUGS

does not take into account the constraints in an efficient wayto produce the Markov chain. The reason is that to generate a

value ofβ, WinBUGS has to proposek random values without taken into account the constraints, and then WinBUGS has

to evaluate the constraints. Every new proposed random value is not accepted if the correspondingn constraints are not

satisfied. It would be better if the proposed value satisfied the constraints from the time it is proposed since the acceptance

rate also affects the numerical accuracy of the approximations.

In this work we overcome these two drawbacks using a specific reparameterization. This sampling algorithm has been

implemented using the statistical packageR [12], and it is very easy to use because researchers only need to fit the Poisson

model (2) using theglm function. We establish the reparameterization in section 2, and in section 3 we develop a specific
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Gibbs sampler. The method is applied in section 4 with data from the Murcia population-based cancer registry. In section

5 we compare our method with WinBUGS using two real examples.A simulation study is performed in section 6, and the

conclusions are stated in section 7.

2. Reparameterization to improve the accuracy

To reduce correlation we propose a reparameterization replacing the original parameterβ with a new parameterθ whose

covariance matrix given the data is approximately the identity matrix. It is well-known that this approach can improve

the performance of MCMC methods like the Gibbs sampler [13]. This reparameterization may be obtained using the

estimated covariance matrix of the maximum likelihood estimator ofβ in model (1). However, very often neither the

maximum likelihood estimates nor the estimated covariancematrix can be calculated for log-binomial regression models.

To avoid this drawback we propose a reparameterization based on a Poisson model [7] as follows.

Let S be the estimated covariance matrix of the maximum likelihood estimator̂β obtained fitting the Poisson model (2)

and letL be a matrix such thatS = LTL. The vector̂β and the matrixS can be easily obtained with the statistical package

R [12] and theglm function, the matrixL is computed using the R functionchol: L = chol(S), and the matrixLT denotes

the transpose ofL. The reparameterization we propose is

β = LT θ, with θ = (θ1, . . . , θk)
T .

The likelihood function associated with the log-binomial regression model (1) is f(y | β) =
∏n

i=1 p
yi

i (1 − pi)
1−yi , where

y = (y1, . . . , yn), pi = exp(xiβ) andxiβ < 0, i ∈ Nn. If π(β) is the prior distribution, then the posterior distributionis

π(β | y) ∝ π(β)f(y | β) and hence, given the datay, the distribution ofθ is π(θ | y) ∝ π(LT θ)
∏n

i=1 p
yi

i (1− pi)
1−yi ,

θ ∈ Θ, where nowpi = exp(ziθ), zi = xiL
T , i ∈ Nn, andΘ = {θ ∈ Rk; ziθ < 0, i ∈ Nn}. Note that

LTL = S ≈ Cov(β | y) = LTCov(θ | y)L,

and thereforeCov(θ | y) is approximately the identity matrix, that is,(θ1, . . . , θk) are approximately uncorrelated, given

the data. Hence a Gibbs sampler with targetπ(θ | y) might get better convergence than a Gibbs sampler used to simulate

from π(β | y).

3. A specific Gibbs sampler to simute fromπ(θ | y)

As we have pointed out above, WinBUGS does not take into account the constraints in an efficient way to produce the

Markov chain. To overcome this drawback we consider a specific Gibbs sampler [13] to simulate fromπ(θ | y). Given the

value of the parameter of the chain at iterationt,

(θ1(t), θ2(t), . . . , θk(t)),

the next value

(θ1(t+ 1), θ2(t+ 1), . . . , θk(t+ 1))

is generated sequentially updating each coordinate conditionally on the present values of the remaining coordinates and

the data. More concretely, suppose that we have generatedθ1(t+ 1), . . . , θj−1(t+ 1). To generateθj(t+ 1) we carry out
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a Metropolis-Hastings step with target

π(θj | θ1(t+ 1), θ2(t+ 1), . . . , θj−1(t+ 1), θj+1(t), . . . , θk(t),y).

To perform the Metropolis-Hastings step we consider

θ = (θ1(t+ 1), θ2(t+ 1), . . . , θj−1(t+ 1), θj(t), θj+1(t), . . . , θk(t))

Then we simulateθ′j from aproposaldistributionC(θ′j), and we defineθ′ as

θ′ = (θ1(t+ 1), θ2(t+ 1), . . . , θj−1(t+ 1), θ′j , θj+1(t), . . . , θk(t)).

Finally, we simulatev from the uniform distributionU(0, 1) and then

θj(t+ 1) =

{

θ′j if v < ρ

θj(t) if v ≥ ρ

where,

ρ = min

(

1,
π(θ′ | y)C(θj(t))

π(θ | y)C(θ′j)

)

.

The proposal distributionC(θ′j) is chosen as follows. Note thatCov(θ | y) is approximately the identity matrix,

θ̂ = (θ̂1, . . . , θ̂k)
T = L−T β̂ approximates the mode ofπ(θ | y) assuming a non-informative prior forθ, and that given

θ1(t+ 1), θ2(t+ 1), . . . , θj−1(t+ 1), θj+1(t), . . . , θk(t) and y, θj is restricted to lie in the intervalΘj = (aj , bj)

(see Appendix). Therefore, the normal distributionN(θ̂j , 1) restricted toΘj = (aj , bj) may be an appropriate proposal

distribution to fulfill the Metropolis-Hastings step. On the other hand, to simulate from a truncated normal distribution we

need the evaluation of the normal cumulative distribution function and of its inverse, which can increase the computational

time. Instead of the truncated normal distribution, we propose the Cauchy distribution with location̂θj and scale1

restricted toΘj . The density of this distribution is

C(θ′j) ∝
1

(1 + (θ′j − θ̂j)2)
, θ′j ∈ Θj.

To simulateθ′j from this proposal distribution, we simulateu ∼ U(0, 1) and compute

θ′j = θ̂j − tan
(

(u− 1) arctan(aj − θ̂j) + u arctan(θ̂j − bj)
)

.

Finally, all the coordinates are generated in such a way that(θ1(t+ 1), θ2(t+ 1), . . . , θk(t+ 1)) automatically satisfies the

n constraints. The proposed MCMC algorithm has been implemented with the statistical package R [12] and it is provided

in the Appendix.

4. Survival of cancer patients using data from population-based cancer registries

The extent to which several factors, such as age, stage, sex or country, affect overall survival of cancer patients is of great

importance for the assessment of prognosis and patient care([14, 15]).

To illustrate our method we used the cases of colon cancer diagnosed during the period 1995-2006 in ages 55-79 years,

provided by the Murcia population-based cancer registry, which is member of the European Network of Cancer Registries.

We studied the effect of sex, age, year of diagnosis, histology and stage, on the probability of being alive five years after
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of being diagnosed with colon cancer, having survived one year. All patients (N = 2, 949) were followed up to December

31st, 2011; 2,000 (67.8%) were alive five years after diagnosis, and 949 (32.2%) died before.

The outcome isy = 1 if the patient was alive 5 years after diagnosis, and0 if the patient died before. The log-binomial

regression model is

log pi = xiβ = β1 + β2Femalei + β3StageIi + β4StageIIi + β5StageIIIi + β6StageUnknowni+

β7Age55i + β8Age60i + β9Age65i + β10Age70i + (β11, . . . , β21)(Year2i, . . . ,Year12i)
T + β22Adenoi,

i = 1, . . . , 2, 949. The variables Female, StageI, StageII, StageIII, StageUnknown, Age55, ..., Age70, Year2, ..., Year12

and Adeno are indicator variables, that is, Female=1 for females and 0 for males, StageI=1 for cancers in stage I and

0 otherwise, Age55=1 if the age at diagnosis was in the interval [55,60) and 0 otherwise, Year2=1 if the year of the

diagnosis was 1996 and 0 otherwise, and Adeno=1 if the histological group was adenocarcinoma (excluding mucinous)

and 0 otherwise. The reference categories are shown in Table1. For example, the parameterexp(β3) is a risk ratio: the

probability of being alive five years after diagnosis (having survived one year) among patients with the cancer in stage I,

divided by that probability among patients with the cancer in stage IV.

We simulated a chain of 30,000 iterations using WinBUGS and achain of 30,000 iterations using our method. The

first 20,000 values of each chain were discarded. Then we approximated the posterior mean and the credible interval

(based on the posterior quantilesQ(0.025) andQ(0.975)) of RRj = exp(βj), j = 1, . . . , 22, using these chains. The prior

distribution wasπ(β) ∝ 1 over the region defined by the constraints.

Table1 shows the estimates (for the variables sex, age group and stage) obtained fitting the logistic regression model

logit pi = xiβ, i = 1, . . . , 2, 949, and fitting the log-binomial regression model using the proposed method and using

WinBUGS. The estimates of the odds ratios were greater than the estimates of the risk ratios. On the other hand, the

approximations obtained fitting the log-binomial model with the proposed method were very similar to those obtained with

WinBUGS for all the parameters except for stage. Figure1 shows the trace plots and autocorrelation functions obtained

from the proposed algorithm (first row) and from WinBUGS (second row) for the parameterexp(β3) associated with stage

I. Using the proposed method, autocorrelation values dissipate rapidly, contrary to what happened using WinBUGS. This

and the trace plots indicate that the proposed method converges faster than WinBUGS towards the posterior distribution.

5. Comparison with WinBUGS

In this section we present two examples to compare the proposed method with WinBUGS. For each example we proceeded

in the following way to approximate the posterior distribution of exp(βj), j = 1, . . . , k. We simulated 500 different

values ofβ that satisfy the constraints. These values were used to initialize the Markov chains. For each initial value

we simulated a chain of 10,000 iterations using WinBUGS and achain of 10,000 iterations using our method. The first

500 values of each chain were discarded. Then we approximated the posterior mean, the posterior standard deviation and

the posterior quantilesQ(0.025) andQ(0.975) of exp(βj), j = 1, . . . , k, using the 500 chains obtained from WinBUGS

and the 500 chains obtained with our method. Therefore, for each summary statistics of the posterior distribution of

exp(βj), j = 1, . . . , k, we obtained 500 approximations using WinBUGS and 500 approximations using our method. The

prior distribution wasπ(β) ∝ 1 over the region defined by the constraints. To assess the stability of our method compared

with that of WinBUGS, we show the Monte Carlo error of each method using boxplots of these approximations. Also, we

show the effective sample size [16] for the parameterexp(βj), that is, the number of independent draws from the posterior

of exp(βj) that would give a Monte Carlo estimate of the posterior mean of exp(βj) with the same level of precision as

the estimate given by the Markov chain. We approximated the posterior distribution using our method with a chain of

1,000,000 iterations and the first 50,000 values of the chainwere discarded.
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5.1. Breast cancer mortality

We considered the data on the relation between receptor level and stage to 5-year survival in a cohort of 192 women with

breast cancer discussed in Greenland [3]. In this example the percentage of deaths was 28.13%.

The Gelman and Rubin statistics indicated for both methods that the Markov chains tended to converge within 9,500

iterations (the potential scale reduction factors were less or equal than 1.03). However, boxplots of the approximations

obtained with the proposed method and WinBUGS (see Figure2) show that our method resulted in smaller between chain

variability in the summary statistics (Table2). We do not display the boxplots for the parameterexp(β1) because they had

a very different scale to the others, but they exhibit the same behaviour. The mean effective sample sizes obtained with our

method were higher than those obtained with WinBUGS, see Table 3. These results show that our method converges faster,

reduces correlation and is more stable than WinBUGS (regarding the computational speed, our algorithm and WinBUGS

lasted 7 seconds to generate a chain).

To carry out the Metropolis-Hastings step, the truncated normal distribution can be used instead of the truncated Cauchy

distribution. We have explored this option with the breast cancer example as follows. To simulate from the truncated

normal distribution we have used the classical inversion technique. The two resulting methods have been used 1,000 times

with chains of length 10,000 (discarding the first 500 iterations) and we have meausured the efficiency Eff of each method.

The mean (standard deviation) of the 1,000 values of Eff for the parametersexp(βj), j = 1, . . . , 4, were 931.7(44.7),

724.8(40.8), 927.6(47.2), and 799.9(47.6), respectively, when we used the truncated Cauchy proposal, while they were

850.6(115.3), 771.2(43.4), 484.7(168.3), and 442.6(143.4) when we used the truncated normal one. In this example the

truncated Cauchy distribution worked better than the truncated normal distribution.

5.2. Low birth weight

We used the data [17] from a 1986 cohort study conducted at the Baystate Medical Center, Springfield Massachusetts.

The study was designed to identify risk factors associated with an increased risk of low birth weight (weighing less than

2,500 grams). Data were collected from 189 pregnant women, 59 of whom had low birth weight infants. We studied the

association between the low birth weight and uterine irritability (ui: yes/no), smoking status during pregnancy (smoke:

yes/no), mother’s race (race: white, black, other), previous premature labours (ptl> 0: yes/no), and mother’s age (age:

≤ 18, (18,20], (20,25], (25,30] and> 30).

Figure3 shows the boxplots of the approximations obtained with the proposed method and WinBUGS. The boxplots

show that our method resulted in smaller between chain variability in the summary statistics (Table4). We do not display

the boxplots for the parametersexp(β1) andexp(β9) because they had a very different scale to the others, but they show

the same behaviour. Mean effective sample sizes obtained with the proposed method were higher than those obtained with

WinBUGS, see Table5, reflecting reduction in the correlation. Again, the results show that our method converges faster

and is more stable than WinBUGS (regarding the computational speed, our algorithm and WinBUGS lasted 20 seconds to

generate a chain). On the other hand, the Gelman and Rubin statistics indicated for both methods that the Markov chains

tend to converge within 9,500 iterations (the potential scale reduction factors were less or equal than 1.02).

6. Simulation study

To explore the efficiency of the proposed method compared to WinBUGS, we performed a simulation study as follows.

We generated data from the log-binomial model

log pi = xi1β1 + xi2β2 + xi3β3, i = 1, . . . , 400,
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wherexi1 = 1, xij = F (zij), j = 2, 3, F is the distribution function of the standard normal distribution, and(zi2, zi3)

was generated from a bivariate standard normal distribution with a correlation coefficient of−0.5. For each set of true

values of the parameters in Table6, we generated 1,000 datasets,{(yi, xi) : i = 1, . . . , 400}, and for each dataset we fitted

the model using our algorithm with a chain of 5,000 iterations discarding the first 500 values of the chain. The prior

distribution wasπ(β) ∝ 1 over the region defined by the constraints. For each chain we obtained the effective sample

size, the computational time, and the approximate 95% credible interval based on the posterior quantilesQ(0.025) and

Q(0.975). This simulation study was replicated using WinBUGS also with chains of 5,000 iterations discarding the first

500 values of each chain. The efficiency (Eff) of each method was measured as the effective sample size for each parameter

exp(βj) divided by the computational time required to obtain a chain.

Table6 shows the mean and the standard deviation of the 1,000 valuesof Eff for each set of parameters, the percentage

of times that the 95% credible interval covered the true value of the parameter, and the average length of the 95% posterior

credible intervals. The mean efficiency of our method was always higher than the mean efficiency of WinBUGS. The

coverage percentages provided by both methods were close tothe nominal level. However, the coverage percentages

obtained in this simulation study were overall higher usingthe proposed method. The absolute difference between the

coverage percentages and the value 95 ranged from 0.1 to 1.1,from 0.1 to 1.6 and from 0.2 to 1.3, forexp(β1), exp(β2)

andexp(β3) respectively, when we used the proposed method. Using WinBUGS, the absolute difference ranged from 0.1

to 2.9, from 0.1 to 2.0 and from 0.6 to 2.7, forexp(β1), exp(β2) andexp(β3) respectively. On the other hand, the average

lengths of the posterior credible intervals were very similar.

7. Conclusions

Despite recent efforts made by several authors, logistic regression is still frequently used in cohort studies and clinical

trials with equal follow-up times, even if one wants to communicate a risk ratio. It is well-known that the more frequent

the outcome is the more the odds ratio overestimates the riskratio when it is greater than 1 (or underestimates it if it is

less than 1). If one wants to estimate an adjusted risk ratio,the log-binomial model is preferable to the logistic one but

the constrained parameter space makes difficult to find the maximum likelihood estimate. Bayesian methods implemented

with WinBUGS can work with a constrained parameter space in anatural way. Moreover, Chu and Cole[9] have shown

that Bayesian methods produce smaller mean squared errors than likelihood based methods. However, WinBUGS can

lead to large Monte Carlo errors. To avoid this drawback, we have proposed an efficient MCMC algorithm to estimate

risk ratios from a Bayesian point of view using log-binomialregression models. Our method is based on two strategies:

first, a reparameterization based on a Poisson model, and second, a specific Gibbs sampler with a Metropolis-Hastings

step with a truncated Cauchy distribution as proposal. We have shown the application of our method with data from the

Murcia population-based cancer registry, and we have compared our method with WinBUGS through two real examples

and a simulation study.

In conclusion, the proposed algorithm converges to the posterior distribution faster than the methods implemented with

WinBUGS. Furthermore the possibility of easily carrying out the estimations using our R functions is an important added

value.
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For j ∈ {1, 2, . . . , k} and θ∼j = (θ1, . . . , θj−1, θj+1, . . . , θk) ∈ Rk such thatπ(θ∼j | y) =
∫

π(θ | y)dθj > 0, the full

conditional distribution isπ(θj | y, θ∼j) ∝ π(θ | y), θj ∈ Θj where,

Θj = {θj ∈ R;π(θj | y, θ∼j) > 0}.

Proposition 1. If π(θ∼j | y) > 0 then the setΘj is the interval(aj , bj) where,

aj = max
i∈Aj

∑

s6=j

−zisθs/zij , Aj = {i ∈ Nn; zij < 0},

and

bj = min
i∈Bj

∑

s6=j

−zisθs/zij, Bj = {i ∈ Nn; zij > 0},

with the convention thataj = −∞ if Aj = ∅ andbj = +∞ if Bj = ∅.

Proof. Because ofπ(θ∼j |y) > 0, there exist θ∗j ∈ R such that π(θ∗j , θ∼j |y) > 0 and henceθ∗j ∈ Θj. Since

π(θ∗j , θ∼j |y) > 0 it follows thatzijθ∗j +
∑

s6=j zisθs < 0 for i ∈ Nn and then

∑

s6=j

zisθs < 0, ∀i ∈ Nn such that zij = 0.

Let θj be a real number. Thenθj ∈ Θj if and only if

zijθj +
∑

s6=j

zisθs < 0, ∀i ∈ Nn,

that is, if and only if

θj >
∑

s6=j

−zisθs/zij , ∀i ∈ Aj ,

θj <
∑

s6=j

−zisθs/zij, ∀i ∈ Bj

and
∑

s6=j

zisθs < 0, ∀i ∈ Nn such that zij = 0.

It follows thatΘj = (aj , bj).

R functions

The proposed Metropolis-within-Gibbs algorithm has been implemented in R using the following functions.

gibbsLogBinomial=function(j){

ztheta=Z[,-j]% * %matrix(theta[-j],ncol=1)

A=Aind[[j]];B=Bind[[j]]

suma1=sum(Z[,j]<0);a=-Inf

if(suma1!=0){a=max(-ztheta[A]/Z[A,j])}

suma2=sum(Z[,j]>0);b=Inf

if(suma2!=0){b=min(-ztheta[B]/Z[B,j])}
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Prepared usingsimauth.cls



D. Salmerón, J. A. Cano and M. D. Chirlaque

Statistics
in Medicine

u=runif(1,0,1);location=theta.hat[j]

thetaj.star=location-tan((u-1) * atan(a-location)+u * atan(location-b))

theta.new=theta;theta.new[j]=thetaj.star

p.new=exp(Z[,j] * (thetaj.star-theta[j])) * p

logvalue.new=sum(log(p.new[y==1]))+sum(log(1-p.new[ y==0]))

priortheta.new=prior(theta.new)

rho=exp(logvalue.new-logvalue);rho=rho * priortheta.new/priortheta

rho=rho * (1+(thetaj.star-location)ˆ2)/(1+(theta[j]-location) ˆ2)

rho=min(1,rho)

logvalue<<-logvalue;theta<<-theta;p<<-p

priortheta<<-priortheta

u=runif(1,0,1)

if(u<rho){theta<<-theta.new;logvalue<<-logvalue.new ;p<<-p.new;

priortheta<<-priortheta.new}

}

prior=function(theta){return(1)}

inicial.beta=function(){

coef=summary(glm(y ˜ 1,family=binomial))$coeff

mu=coef[1,1];serror=coef[1,2]

musim=rnorm(1,mu,serror)

beta1=log(exp(musim)/(1+exp(musim)))

return(c(beta1,rep(0,k-1)))}

initialize=function(){

#Reparameterization

X<<-model.ini$x;n<<-nrow(X);beta=model.ini$coeff

Sigma<<-summary(model.ini)$cov.unscaled

L<<-chol(Sigma);Z<<-X% * %t(L)

model.ini.0<<-glm(y ˜ Z-1,family=poisson,x=TRUE)

theta.hat<<-solve(t(L))% * %beta;k<<-ncol(Z)

Aind<<-{}

for(j in 1:k){Aind[[j]]<<-(1:n)[Z[,j]<0]}

Bind<<-{}

for(j in 1:k){Bind[[j]]<<-(1:n)[Z[,j]>0]}

#Initial point.

punto<<-solve(t(L))% * %inicial.beta()

theta<<-punto;p<<-exp(Z% * %theta)

logvalue<<-sum(log(p[y==1]))+sum(log(1-p[y==0]))

priortheta<<-prior(theta)
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}

Using the R function gibbsLogBinomial with the Breast cancer mortality example

#The data

datos<-rbind(cbind(rep(1,12),rep(1,12),c(rep(1,2),r ep(0,10))),

cbind(rep(1,55),rep(2,55),c(rep(1,5),rep(0,50))),

cbind(rep(2,22),rep(1,22),c(rep(1,9),rep(0,13))),

cbind(rep(2,74),rep(2,74),c(rep(1,17),rep(0,57))),

cbind(rep(3,14),rep(1,14),c(rep(1,12),rep(0,2))),

cbind(rep(3,15),rep(2,15),c(rep(1,9),rep(0,6))))

datos<-data.frame(datos)

names(datos)<-c("Stage","Receptor_Level","Dead")

#Recoding Receptor_level

datos$Receptor_Level=as.integer(datos$Receptor_Leve l==1)

#Outcome

y=datos$Dead

################################################### ###########

################ Runing the MCMC algorithm ############# ######

#Poisson model. The following line depends on covariates

model.ini=glm(y˜factor(Receptor_Level)+factor(Stage ),

family=poisson,data=datos,x=TRUE)

#The following lines compute the need input for

#the algorithm and fix the lengtht of the chain to 10000

initialize()

longChain=10000

theta.sim=matrix(rep(NA,longChain * k),ncol=k)

#Finally the chain is simulated as follows

for(h in 1:longChain){theta.sim[h,]=theta

for(j in 1:k){gibbsLogBinomial(j)}}

beta.sim=theta.sim% * %L

#The object beta.sim containts the simulations

#Posterior estimation of exp(beta) using the coda package

library(coda)

RR=mcmc(exp(beta.sim))

summary(RR)

Acknowledgements

The authors thank the reviewers, the Editor and the Associate Editor for their constructive comments.

10 www.sim.org Copyrightc© xxxx John Wiley & Sons, Ltd. Statist. Med.xxxx, 001–11

Prepared usingsimauth.cls



D. Salmerón, J. A. Cano and M. D. Chirlaque

Statistics
in Medicine

References

1. McNutt LA, Wu C, Xue X, Haffner JP. Estimating the relativerisk in cohort studies and clinical trials of common outcomes. American Journal of

Epidemiology2003;157:940–943. DOI: 10.1093/aje/kwg074

2. Deddens JA, Petersen MR, Lei X. Estimation of prevalence ratios when PROC GENMOD does not converge.Paper 270-28. Proceedings

of the 28th Annual SAS Users Group International Conference, Seattle, Washington, March 30-April 2, 2003. Downloaded from

http://www2.sas.com/proceedings/sugi28/270-28.pdf onthe 3rd March 2015.

3. Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies.

American Journal of Epidemiology2004;160:301–305. DOI: 10.1093/aje/kwh221

4. Spiegelman D, Hertzmark E. Easy SAS calculations for riskor prevalence ratios and differences.American Journal of Epidemiology2005;162:199–

200. DOI: 10.1093/aje/kwi188

5. Petersen MR, Deddens JA. RE: ”Easy SAS calculations for risk or prevalence ratios and differences”.American Journal of Epidemiology2006;

163:1158–1159. DOI: 10.1093/aje/kwj162

6. Deddens JA, Petersen MR. Approaches for estimating prevalence ratios.Occupational and Environmental Medicine2008; 65:501-506. DOI:

10.1136/oem.2007.034777

7. Zou GY. A modified Poisson regression approach to prospective studies with binary data.American Journal of Epidemiology2004;159:702–706.

8. Savu A, Liu Q, Yasui Y. Estimation of relative risk and prevalence ratio.Statistics in Medicine2010;29:2269–2281. DOI: 10.1002/sim.3989

9. Chu H, Cole SR. Estimation of risk ratios in cohort studieswith common outcomes: a Bayesian approach.Epidemiology2010;21:855-862. DOI:

10.1097/EDE.0b013e3181f2012b

10. Spiegelhalter DJ, Thomas A, Best NG. WinBUGS User Manual, Version 1.4. Cambridge, United Kingdom: Medical ResearchCouncil Biostatistics

Unit; 2003.

11. Hamra G, MacLehose R, Richardson D. Markov chain Monte Carlo: an introduction for epidemiologists.International Journal of Epidemiology2013;

42:627–634. DOI: 10.1093/ije/dyt043

12. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

13. Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods.Journal of the Royal Statistical

Society: Series B (Statistical Methodology)1993;55:3-23.

14. Minicozzi P, Caldarella A, Giacomin A, Ponz de Leon M, Cesaraccio R, Falcini F, Fusco M, Iachetta F, Pellegri C, TuminoR, Capocaccia R, Sant M.

Looking at differences in stage and treatment of colorectalcancers across Italy: a EUROCARE-5 high resolution study.Tumori 2012;98: 671-677.

DOI: 10.1700/1217.13488

15. Allemani C, Rachet B, Weir HK, Richardson LC, Lepage C, Faivre J, Gatta G, Capocaccia R, Sant M, Baili P, Lombardo C, Aareleid T, Ardanaz E,

Bielska-Lasota M, Bolick S, Cress R, Elferink M, Fulton JP, Galceran J, Gzdz S, Hakulinen T, Primic-Zakelj M, Rachtan J, Diba CS, Snchez MJ,

Schymura MJ, Shen T, Tagliabue G, Tumino R, Vercelli M, Wolf HJ, Wu XC, Coleman MP. Colorectal cancer survival in the USA and Europe: a

CONCORD high-resolution study.BMJ Open2013;3:e003055. DOI: 10.1136/bmjopen-2013-003055

16. Plummer M, Best N, Cowles K, Vines K. CODA: Convergence Diagnosis and Output Analysis for MCMC.R News2006;6:7–11.

17. Hosmer DW, Lemeshow S.Applied Logistic Regression. 2nd ed. John Wiley and Sons: New York, 2000.

Statist. Med.xxxx, 001–11 Copyright c© xxxx John Wiley & Sons, Ltd. www.sim.org 11
Prepared usingsimauth.cls



Statistics
in Medicine D. Salmerón, J. A. Cano and M. D. Chirlaque

Table 1.Colon cancer example. Probability of being alive five years after diagnosis, having survived one year. Numbers
in this table are the maximum likelihood estimates and the confidence intervals obtained using logistic regression, and
posterior means and credible intervals obtained with our proposed algorithm and with WinBUGS for log-binomial

regression models.

Variable (N) Logistic Proposed method WinBUGS
OR (CI 95%) RR (CI 95%) RR (CI 95%)

Sex
Male (1,622) 1 1 1
Female (1,327) 1.38 (1.17,1.63) 1.09 (1.05,1.14) 1.09 (1.05,1.14)
Stage
I (334) 9.95 (6.22,15.90) 2.46 (1.93,3.18) 2.72 (2.28,3.13)
II (1,177) 7.32 (4.91,10.91) 2.36 (1.87,3.04) 2.60 (2.20,3.00)
III (891) 2.51 (1.69,3.73) 1.70 (1.33,2.19) 1.87 (1.57,2.18)
IV (131) 1 1 1
Unknown (416) 5.12 (3.33,7.88) 2.18 (1.71,2.81) 2.40 (2.01,2.80)
Age
55-59 (318) 2.73 (1.99,3.74) 1.28 (1.19,1.38) 1.28 (1.19,1.38)
60-64 (478) 2.14 (1.65,2.79) 1.24 (1.15,1.33) 1.24 (1.15,1.33)
65-69 (664) 1.67 (1.32,2.11) 1.19 (1.10,1.28) 1.19 (1.10,1.27)
70-74 (789) 1.65 (1.32,2.07) 1.16 (1.08,1.25) 1.16 (1.08,1.25)
75-79 (700) 1 1 1
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Figure 1. Colon cancer example. Trace plots and autocorrelation functions obtained with the proposed algorithm (first row) and with WinBUGS (second row). Results for the
parameterexp(β3).
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Table 2.Posterior mean, posterior standard deviation and the posterior quantilesQ(0.025) andQ(0.975) of exp(βj),
j = 1, 2, 3, 4, using a chain of length 1,000,000 obtained with our method for the breast cancer mortality example.

Posterior mean Posterior standard deviationQ(0.025) Q(0.975)
exp(β1) 0.093 0.034 0.039 0.169
exp(β2) 1.578 0.332 1.051 2.346
exp(β3) 2.920 1.347 1.279 6.321
exp(β4) 6.560 2.988 2.925 14.106

Table 3.Effective sample size (ESS) for the breast cancer mortalityexample. Means and standard deviation of the 500
effective sample sizes obtained with WinBUGS and the proposed method, based on Markov chains of length 9,500.

WinBUGS Proposed method
Mean (SD) Mean (SD)

exp(β1) 71.9 (13.3) 5,192.1 (218.7)
exp(β2) 324.8 (30.6) 4,047.4 (209.6)
exp(β3) 60.2 (17.8) 5,166.7 (275.3)
exp(β4) 59.2 (16.5) 4,486.8 (259.6)

Table 4.Posterior mean, posterior standard deviation and posterior quantilesQ(0.025) andQ(0.975) of exp(βj), j =
1, 2, 3, 4, using a chain of length 1,000,000 obtained with our method for the low birth weight example.

Posterior mean Posterior standard deviationQ(0.025) Q(0.975)
exp(β1) 0.161 0.053 0.078 0.284
exp(β2) 1.240 0.274 0.779 1.859
exp(β3) 1.584 0.337 1.029 2.348
exp(β4) 1.748 0.489 0.934 2.846
exp(β5) 1.567 0.369 0.973 2.415
exp(β6) 1.123 0.360 0.558 1.953
exp(β7) 1.227 0.322 0.730 1.985
exp(β8) 0.935 0.281 0.480 1.593
exp(β9) 0.529 0.286 0.116 1.197
exp(β10) 1.729 0.360 1.120 2.528

Table 5.Effective sample size (ESS) for the low birth weight example. Mean and standard deviation of the 500 effective
sample sizes obtained with WinBUGS and the proposed method,based on Markov chains of length 9,500.

WinBUGS Proposed method
Mean (SD) Mean (SD)

exp(β1) 83.7 (12.8) 4,416.3 (237.7)
exp(β2) 432.6 (43.8) 4,325.7 (241.6)
exp(β3) 240.1 (39.2) 3,842.3 (194.3)
exp(β4) 309.8 (65.5) 4,148.8 (215.4)
exp(β5) 245.2 (43.0) 4,093.9 (231.0)
exp(β6) 264.0 (68.4) 4,928.2 (283.3)
exp(β7) 191.1 (48.9) 4,817.9 (286.0)
exp(β8) 431.2 (105.1) 5,621.1 (315.3)
exp(β9) 874.0 (227.8) 5,443.4 (275.0)
exp(β10) 315.5 (32.3) 2,438.6 (150.1)
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Figure 2. Boxplots of the approximations obtained with the proposed method and with WinBUGS for the breast cancer mortality example. Each boxplot is based on 500
approximations to the posterior mean, the posterior standard deviation and the quantiles Q(0.025) and Q(0.975) of the posterior distribution ofexp(βi), i = 2, 3, 4. Each
approximation is based on a Markov chain of length 10,000. A(i) denotes the boxplot corresponding to the approximationsobtained with the proposed method for the parameter
exp(βi). B(i) denotes the boxplot corresponding to the approximations obtained with WinBUGS for the parameterexp(βi).

14 www.sim.org Copyrightc© xxxx John Wiley & Sons, Ltd. Statist. Med.xxxx, 001–11

Prepared usingsimauth.cls



D. Salmerón, J. A. Cano and M. D. Chirlaque

Statistics
in Medicine

A
(3

)
B

(3
)

A
(4

)
B

(4
)

A
(5

)
B

(5
)

A
(1

0)
B

(1
0)

1.5

1.6

1.7

1.8

Method

P
os

te
rio

r 
m

ea
n

A
(2

)
B

(2
)

A
(6

)
B

(6
)

A
(7

)
B

(7
)

A
(8

)
B

(8
)

0.9

1.0

1.1

1.2

1.3

Method

P
os

te
rio

r 
m

ea
n

A
(3

)
B

(3
)

A
(4

)
B

(4
)

A
(5

)
B

(5
)

A
(1

0)
B

(1
0)

0.30

0.35

0.40

0.45

0.50

0.55

Method

P
os

te
rio

r 
st

an
da

rd
 d

ev
ia

tio
n

A
(2

)
B

(2
)

A
(6

)
B

(6
)

A
(7

)
B

(7
)

A
(8

)
B

(8
)

0.25

0.30

0.35

0.40

Method

P
os

te
rio

r 
st

an
da

rd
 d

ev
ia

tio
n

A
(3

)
B

(3
)

A
(4

)
B

(4
)

A
(5

)
B

(5
)

A
(1

0)
B

(1
0)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Method

Q
(0

.0
25

)

A
(2

)
B

(2
)

A
(6

)
B

(6
)

A
(7

)
B

(7
)

A
(8

)
B

(8
)

0.5

0.6

0.7

0.8

Method

Q
(0

.0
25

)

A
(3

)
B

(3
)

A
(4

)
B

(4
)

A
(5

)
B

(5
)

A
(1

0)
B

(1
0)

2.2

2.4

2.6

2.8

3.0

3.2

Method

Q
(0

.9
75

)

A
(2

)
B

(2
)

A
(6

)
B

(6
)

A
(7

)
B

(7
)

A
(8

)
B

(8
)

1.4

1.6

1.8

2.0

2.2

2.4

Method

Q
(0

.9
75

)

Figure 3. Boxplots of the approximations obtained with the proposed method and with WinBUGS for the low birth weight example. Eachboxplot is based on 500 approximations
to the posterior mean, the posterior standard deviation, and the quantiles Q(0.025) and Q(0.975) of the posterior distribution of exp(βi), i = 2, 3, 4, 5, 6, 7, 8, 10. Each
approximation is based on a Markov chain of length 10,000. A(i) denotes the boxplot corresponding to the approximationsobtained with the proposed method for the parameter
exp(βi). B(i) denotes the boxplot corresponding to the approximations obtained with WinBUGS for the parameterexp(βi).
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Table 6.Efficiency and coverage probability for the parametersRRi = exp(βi), i = 1, 2, 3, in the simulation study.
Mean and standard deviation (sd) of the 1,000 values of Eff for each set of true values of the parameters
(exp(β1), exp(β2), exp(β3)), coverage (percentage of times that the approximate 95% credible interval covers the true

value of the parameter), and average length of the 95% posterior credible intervals.

RR1

Set of WinBUGS The Proposal
parameters Mean(sd) coverage length Mean(sd) coverage length

(0.40,1.0,1.0) 7.1(1.2) 92.1 0.3 803.3(50.0) 94.5 0.3
(0.35,1.5,1.0) 6.5(1.2) 93.3 0.3 791.9(55.1) 94.9 0.3
(0.30,2.0,1.0) 6.1(1.2) 94.9 0.2 772.8(63.5) 95.8 0.3
(0.35,1.0,1.5) 6.6(1.2) 94.1 0.3 795.3(61.1) 94.1 0.3
(0.30,1.5,1.5) 6.5(1.1) 93.4 0.2 773.2(82.8) 94.2 0.2
(0.25,2.0,1.5) 6.3(1.1) 94.2 0.2 739.5(102.4) 95.1 0.2
(0.30,1.0,2.0) 6.2(1.1) 93.5 0.2 774.1(70.5) 94.7 0.3
(0.25,1.5,2.0) 6.4(1.1) 93.2 0.2 750.0(100.0) 94.3 0.2
(0.20,2.0,2.0) 6.6(1.2) 94.3 0.2 719.5(120.0) 95.8 0.2
(0.25,1.0,3.0) 5.6(1.1) 92.9 0.2 702.0(107.8) 95.8 0.2
(0.20,1.5,3.0) 6.3(1.2) 96.1 0.2 628.6(166.6) 96.1 0.2
(0.15,2.0,3.0) 6.5(1.2) 95.7 0.1 658.6(153.0) 95.7 0.1

RR2

Set of WinBUGS The Proposal
parameters Mean(sd) coverage length Mean(sd) coverage length

(0.40,1.0,1.0) 11.5(3.0) 93.1 1.0 796.6(54.3) 95.5 1.0
(0.35,1.5,1.0) 9.8(2.6) 93.6 1.4 767.9(59.7) 94.8 1.4
(0.30,2.0,1.0) 8.8(2.5) 93.9 1.8 742.6(70.0) 95.8 1.9
(0.35,1.0,1.5) 12.4(3.5) 93.9 0.9 812.2(59.1) 94.6 0.9
(0.30,1.5,1.5) 11.2(3.1) 93.8 1.3 784.4(76.6) 94.9 1.3
(0.25,2.0,1.5) 10.1(2.8) 93.8 1.7 741.2(101.2) 95.3 1.7
(0.30,1.0,2.0) 13.1(4.0) 93.0 0.9 821.8(61.0) 95.6 0.9
(0.25,1.5,2.0) 12.4(3.6) 94.0 1.2 793.7(84.2) 96.6 1.3
(0.20,2.0,2.0) 11.6(3.0) 94.6 1.8 750.7(110.8) 96.1 1.8
(0.25,1.0,3.0) 14.8(4.6) 94.8 0.8 826.4(87.0) 96.6 0.8
(0.20,1.5,3.0) 14.3(3.9) 94.7 1.1 754.5(141.8) 96.0 1.1
(0.15,2.0,3.0) 12.6(3.3) 95.1 1.7 737.5(137.6) 96.5 1.8

RR3

Set of WinBUGS The Proposal
parameters Mean(sd) coverage length Mean(sd) coverage length

(0.40,1.0,1.0) 11.9(3.7) 92.3 1.0 780.9(54.1) 95.4 1.0
(0.35,1.5,1.0) 13.1(4.0) 94.2 0.9 780.8(59.6) 94.8 0.9
(0.30,2.0,1.0) 13.9(4.3) 92.3 0.9 775.5(63.8) 94.8 0.9
(0.35,1.0,1.5) 9.6(2.7) 92.7 1.4 781.6(61.3) 96.0 1.4
(0.30,1.5,1.5) 11.4(3.3) 93.4 1.2 772.8(73.0) 95.3 1.3
(0.25,2.0,1.5) 12.5(3.5) 93.3 1.2 761.1(83.1) 94.3 1.3
(0.30,1.0,2.0) 8.6(2.5) 94.0 1.8 763.6(67.6) 94.7 1.8
(0.25,1.5,2.0) 10.5(3.0) 93.9 1.6 758.0(87.8) 93.7 1.7
(0.20,2.0,2.0) 12.4(3.6) 94.4 1.7 747.5(104.5) 95.5 1.8
(0.25,1.0,3.0) 7.3(2.1) 94.2 2.4 702.4(102.7) 96.0 2.5
(0.20,1.5,3.0) 9.1(2.5) 95.7 2.3 651.0(151.3) 95.6 2.4
(0.15,2.0,3.0) 10.6(3.0) 93.9 2.6 687.2(141.0) 95.8 2.7
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