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Reducing Monte Carlo error in the Bayesian
estimation of risk ratios using log-binomial
regression models

D. Salmeron2bc®J. A, Canc® and M. D. Chirlaque?2P¢

In cohort studies binary outcomes are very often analyzed byogistic regression. However, it is well-known that
when the goal is to estimate a risk ratio, the logistic regresion is inappropriate if the outcome is common. In these
cases, a log-binomial regression model is preferable. Ondtother hand, the estimation of the regression coefficients
of the log-binomial model is difficult due to the constraintsthat must be imposed on these coefficients. Bayesian
methods allow a straightforward approach for log-binomial regression models, produce smaller mean squared
errors in the estimation of risk ratios than the frequentist methods, and the posterior inferences can be obtained
using the software WinBUGS. However, Markov chain Monte Cato (MCMC) methods implemented in WinBUGS
can lead to large Monte Carlo errors in the approximations tothe posterior inferences since they produce correlated
simulations and the accuracy of the approximations are invisely related to this correlation. To reduce correlation
and to improve accuracy, we propose a reparameterization teed on a Poisson model and a sampling algorithm
coded in R. Copyright (© xxxx John Wiley & Sons, Ltd.
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1. Introduction

The odds ratio is a measure of association widely used indBpiclogy that can be estimated using logistic regression.
However, when one wants to communicate a risk ratio, thestmgregression is not recommended if the outcome is
common [1-6]. If one wants to estimate the adjusted risloratiog-binomial model is preferable to a logistic modeleTh
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log-binomial model assumes that the distribution of theomtey; is the Bernoulli distribution

y; ~ Ber(p;), logp, = z;8, i € N, ={1,...,n}, @)

where,
T8 = (i1, Tiz, s Tit) (B1, s Br) T = 21 B+ -+ + Tit B,

andz; includes variables denoting exposures, confoundersjgioesl and product terms. Usually; = 1 and therefore
b1 is the intercept. The parametess(5;) are interpreted as adjusted risk ratios, whether the owgésicommon or rare.
Sincep; = exp(z;3) € (0, 1), we have to impose the constraimt® < 0,4 € N,,, on the values of, which complicates
its maximum likelihood estimation. ZoudTand Spiegelman and Hertzmar have suggested the use of a Poisson model
without the constraints, that is,
y; ~ Poisson(p;), logu; = x;8, i € Ny, 2

to approximate the log-binomial maximum likelihood esttoraand they consider a robust sandwich variance estimator
to estimate the standard errors. ModdId¢an be fitted with standard statistical packages. Nevieshgif 3 is the estimate
obtained fitting the Poisson modé)(thenz; 3 can be greater than zero. On the other hand, Petersen anemeids)
have proposed a different approximation usinge&panded datasé¢hat containgc — 1) copies of the original data and
one copy of the original data with the dependent variablaegsinterchanged (1's changed to 0's and 0’s changed to 1's).
As c becomes large, the maximum likelihood estimator for thigdified data set approaches the maximum likelihood
estimator for the original data set. Saeual. [8] have shown the existence and the uniqueness of the estipratiuced
by this method.

In this article we consider the Bayesian analysis of thelmmpmial regression model). In this context, Chu and Cole
[9] have proposed to incorporate the constraints < 0, : € N,,, as part of the likelihood function using the indicator
function:

n

H exp(z;3)Yi (1 — exp(z:8))* Y I(x;8 < 0),

i=1
wherel (z;5 < 0) = 1if 2;8 < 0, and0 otherwise. They have shown that the Bayesian approachdaeeistimates similar
to the maximum likelihood estimates, produces smaller nsgaared errors in the estimation of risk ratios, and pasteri
computations can be carried out using the Markov chain M@#do (MCMC) methods implemented in WinBUGS
[10]. However, MCMC methods can lead to another error, that §MC methods produce a sample from the posterior
distribution and approximate the posterior inferencesgishis sample, and therefore, every time we obtain a sample
from the posterior distribution, the resulting approxiroas are different and Monte Carlo errors are present. That i
the sample generated by MCMC methods is a Markov chain thadists of correlated simulations from the posterior
distribution, and the Monte Carlo error in the results isied to this correlation, affecting the numerical accurafche
approximations11].

As we show in this article, WinBUGS can lead to large Montel@arrors in the approximations. Therefore a very large
number of iterations (the length of the chain) would be ndddeobtain a desirable accuracy. Furthermore, WinBUGS
does not take into account the constraints in an efficientta@yoduce the Markov chain. The reason is that to generate a
value of 3, WinBUGS has to proposerandom values without taken into account the constraintsflaen WinBUGS has
to evaluate the constraints. Every new proposed randone valoot accepted if the correspondingonstraints are not
satisfied. It would be better if the proposed value satisfieccbnstraints from the time it is proposed since the acoepta
rate also affects the numerical accuracy of the approxamati

In this work we overcome these two drawbacks using a speejiiarameterization. This sampling algorithm has been
implemented using the statistical pack@gEL2], and it is very easy to use because researchers only ne¢th® Fioisson
model @) using theglm function. We establish the reparameterization in sectjand in section 3 we develop a specific
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Gibbs sampler. The method is applied in section 4 with data fihe Murcia population-based cancer registry. In section
5 we compare our method with WinBUGS using two real examplesmulation study is performed in section 6, and the
conclusions are stated in section 7.

2. Reparameterization to improve the accuracy

To reduce correlation we propose a reparameterizatioacey the original parametgrwith a new parametet whose
covariance matrix given the data is approximately the itematrix. It is well-known that this approach can improve
the performance of MCMC methods like the Gibbs sampléd.[This reparameterization may be obtained using the
estimated covariance matrix of the maximum likelihoodraator of 3 in model (). However, very often neither the
maximum likelihood estimates nor the estimated covarianatix can be calculated for log-binomial regression msdel
To avoid this drawback we propose a reparameterizatiordbasa Poisson modelT as follows.

Let S be the estimated covariance matrix of the maximum likelthestimator3 obtained fitting the Poisson modé)(
and letL be a matrix such that = L7 L. The vector3 and the matrixS can be easily obtained with the statistical package
R [12] and theglm function, the matrix, is computed using the R functiehol: L = chol(S), and the matrix.” denotes
the transpose af. The reparameterization we propose is

B=L"0, with 0 = (61,...,0.)".

The likelihood function associated with the log-binomigression modellj is f(y | 8) = [T, pY*(1 — p;)* ¥, where
y= 1, yn), pi =exp(a;8) andz; 5 < 0, ¢ € N,,. If #(53) is the prior distribution, then the posterior distributisn
m(B|y) < m(B)f(y | B) and hence, given the daga the distribution ofd is (6 | y) o< 7(LT0) [T}, p¥" (1 — pi)* ¥,
0 € ©, where now; = exp(z;0), z; = z;LT,i € N,,, and® = {# € R*; 2,0 < 0, i € N,,}. Note that

LTL =8~ Cov(B|y) =L Cov(d | y)L,

and thereforeCov (6 | y) is approximately the identity matrix, that i), . . ., 0x) are approximately uncorrelated, given
the data. Hence a Gibbs sampler with targgt | y) might get better convergence than a Gibbs sampler used tdeagam

fromn (5 |y).

3. A specific Gibbs sampler to simute fromw (0 | y)

As we have pointed out above, WinBUGS does not take into atdbe constraints in an efficient way to produce the
Markov chain. To overcome this drawback we consider a sjpasifibs sampler][3] to simulate fromr (6 | y). Given the
value of the parameter of the chain at iteratipn

(01(t),02(1),...,0c(1)),

the next value
(01(t+1),02(t+1),...,0k(t+1))

is generated sequentially updating each coordinate dondlty on the present values of the remaining coordinabes a
the data. More concretely, suppose that we have genefgted 1),...,6,_1(¢ + 1). To generatd; (¢t + 1) we carry out
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a Metropolis-Hastings step with target

w0 | 61(t+1),02(t+1),...,0,_1(t +1),0,41(¢),...,0k(t),y).
To perform the Metropolis-Hastings step we consider

0= (01(t+1),02(t+1),....,0,_1(t+1),0,(t),0511(¢),...,0k(t))
Then we simulaté; from aproposaldistributionC(6}), and we definé’ as

0 = (01(t+1),02(t+1),....0;1(t+1),0,0;11(¢),...,0k(t)).

) _7’
Finally, we simulate) from the uniform distributiori/ (0, 1) and then

0’ if v<p
0;(t) it v>p

Gj(tJrl){

where,
(0| y)C(9j(t))> '

(0 | y)C(6})

The proposal distributior®(¢}) is chosen as follows. Note thatov(¢ [ y) is approximately the identity matrix,
0=(0y,...,0,)T = LT3 approximates the mode af(¢ | y) assuming a non-informative prior f& and that given
O1(t+1), O2(t+1), ..., 0;_1(t+1), 0;41(t), ..., Ox(t) andy, 0; is restricted to lie in the interva®; = (a;,b;)
(see Appendix). Therefore, the normal distributiﬁméj, 1) restricted t0®; = (a;,b;) may be an appropriate proposal
distribution to fulfill the Metropolis-Hastings step. Oretbther hand, to simulate from a truncated normal distriouive
need the evaluation of the normal cumulative distributiomction and of its inverse, which can increase the compmrtati
time. Instead of the truncated normal distribution, we ps®pthe Cauchy distribution with Iocaticé; and scalel
restricted ta® ;. The density of this distribution is

p = min <1,

1
C(0;) x —————, 0, €0,
O "

To simulate?’; from this proposal distribution, we simulate~ U (0, 1) and compute
0; = 0; — tan ((u — 1) arctan(a; — 0;) + uarctan(d; — bj)) .

Finally, all the coordinates are generated in such away(that+ 1), 62(¢ + 1), ..., 60, (t + 1)) automatically satisfies the
n constraints. The proposed MCMC algorithm has been impléedeanith the statistical package R and it is provided
in the Appendix.

4. Survival of cancer patients using data from population-lased cancer registries

The extent to which several factors, such as age, stagey sexiotry, affect overall survival of cancer patients is tdaj
importance for the assessment of prognosis and patien[dael5)]).

To illustrate our method we used the cases of colon cancgndsed during the period 1995-2006 in ages 55-79 years,
provided by the Murcia population-based cancer registhycivis member of the European Network of Cancer Registries.
We studied the effect of sex, age, year of diagnosis, higjoémd stage, on the probability of being alive five yearsrafte
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of being diagnosed with colon cancer, having survived orae. Y| patients (V = 2, 949) were followed up to December
31st, 2011; 2,000 (67.8%) were alive five years after diaignasd 949 (32.2%) died before.

The outcome iy = 1 if the patient was alive 5 years after diagnosis, aiftthe patient died before. The log-binomial
regression model is

log p; = x; 8 = (1 + PB2Female; + B3Stagel; + S4Stagell, + B5Stagelll, + BsStageUnknown,;+

BrAge55; + BsAge60,; + BoAge65, + B1oAgeT0; + (Bi1, ..., Bo1)(Year2,, ..., Year12;)” 4 BasAdenos,

i=1,...,2,949. The variables Female, Stagel, Stagell, Stagelll, Stagetlan, Age55, ..., Age70, Year2, ..., Yearl2
and Adeno are indicator variables, that is, Female=1 forafemiand O for males, Stagel=1 for cancers in stage | and
0 otherwise, Age55=1 if the age at diagnosis was in the iatgfb,60) and 0 otherwise, Year2=1 if the year of the
diagnosis was 1996 and 0 otherwise, and Adeno=1 if the bigidl group was adenocarcinoma (excluding mucinous)
and 0 otherwise. The reference categories are shown in TaBler example, the parametetp(fs) is a risk ratio: the
probability of being alive five years after diagnosis (hgveurvived one year) among patients with the cancer in stage |
divided by that probability among patients with the canoestage IV.

We simulated a chain of 30,000 iterations using WinBUGS amtian of 30,000 iterations using our method. The
first 20,000 values of each chain were discarded. Then weogippated the posterior mean and the credible interval
(based on the posterior quantil@$0.025) and@(0.975)) of RR; = exp(5;),j = 1,...,22, using these chains. The prior
distribution wasr(3) « 1 over the region defined by the constraints.

Table 1 shows the estimates (for the variables sex, age group age)siatained fitting the logistic regression model
logitp; = z; 8, i = 1,...,2,949, and fitting the log-binomial regression model using theppsed method and using
WInBUGS. The estimates of the odds ratios were greater tharestimates of the risk ratios. On the other hand, the
approximations obtained fitting the log-binomial modelwitie proposed method were very similar to those obtaindd wit
WinBUGS for all the parameters except for stage. Figushows the trace plots and autocorrelation functions oéthin
from the proposed algorithm (first row) and from WinBUGS (@edt row) for the parametekp(5s) associated with stage
I. Using the proposed method, autocorrelation valuesmhssirapidly, contrary to what happened using WinBUGS. This
and the trace plots indicate that the proposed method ageséaster than WinBUGS towards the posterior distribution

5. Comparison with WinBUGS

In this section we present two examples to compare the peajfpogthod with WinBUGS. For each example we proceeded
in the following way to approximate the posterior distribut of exp(5;), 7 =1,...,k. We simulated 500 different
values of that satisfy the constraints. These values were used falin& the Markov chains. For each initial value
we simulated a chain of 10,000 iterations using WinBUGS antlaan of 10,000 iterations using our method. The first
500 values of each chain were discarded. Then we approxnttaégoosterior mean, the posterior standard deviation and
the posterior quantileQ(0.025) andQ(0.975) of exp(5;), j = 1,..., k, using the 500 chains obtained from WinBUGS
and the 500 chains obtained with our method. Therefore, doh esummary statistics of the posterior distribution of
exp(B;), 7 =1,...,k, we obtained 500 approximations using WinBUGS and 500 agmiations using our method. The
prior distribution wasr(3) « 1 over the region defined by the constraints. To assess thiéitgtabour method compared
with that of WinBUGS, we show the Monte Carlo error of eachimetusing boxplots of these approximations. Also, we
show the effective sample sizeq] for the parameteexp(3;), that is, the number of independent draws from the posterior
of exp(8;) that would give a Monte Carlo estimate of the posterior mdasxp(3;) with the same level of precision as
the estimate given by the Markov chain. We approximated thsgpior distribution using our method with a chain of
1,000,000 iterations and the first 50,000 values of the clvaie discarded.
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5.1. Breast cancer mortality

We considered the data on the relation between receptdrdauestage to 5-year survival in a cohort of 192 women with
breast cancer discussed in Greenl&a3]dlp this example the percentage of deaths was 28.13%.

The Gelman and Rubin statistics indicated for both methbdsthe Markov chains tended to converge within 9,500
iterations (the potential scale reduction factors wers tasequal than 1.03). However, boxplots of the approxinmatio
obtained with the proposed method and WinBUGS (see Figlusbow that our method resulted in smaller between chain
variability in the summary statistics (Tal?. We do not display the boxplots for the parametes(5;) because they had
a very different scale to the others, but they exhibit theeshehaviour. The mean effective sample sizes obtained with o
method were higher than those obtained with WinBUGS, seleBaihese results show that our method converges faster,
reduces correlation and is more stable than WinBUGS (raggitie computational speed, our algorithm and WinBUGS
lasted 7 seconds to generate a chain).

To carry out the Metropolis-Hastings step, the truncatedvabdistribution can be used instead of the truncated Gauch
distribution. We have explored this option with the breamtaer example as follows. To simulate from the truncated
normal distribution we have used the classical inversiohr@ue. The two resulting methods have been used 1,008 time
with chains of length 10,000 (discarding the first 500 itierat) and we have meausured the efficiency Eff of each method.
The mean (standard deviation) of the 1,000 values of Eff lier garametersxp(5;), j =1,...,4, were 931.7(44.7),
724.8(40.8), 927.6(47.2), and 799.9(47.6), respectivehen we used the truncated Cauchy proposal, while they were
850.6(115.3), 771.2(43.4), 484.7(168.3), and 442.64)A8hen we used the truncated normal one. In this example the
truncated Cauchy distribution worked better than the tateat normal distribution.

5.2. Low birth weight

We used the datal[] from a 1986 cohort study conducted at the Baystate Mediealt€, Springfield Massachusetts.
The study was designed to identify risk factors associatiéillan increased risk of low birth weight (weighing less than
2,500 grams). Data were collected from 189 pregnant wonm@&of &hom had low birth weight infants. We studied the
association between the low birth weight and uterine biliiy (ui: yes/no), smoking status during pregnancy (setok
yes/no), mother’s race (race: white, black, other), previpremature labours (ptl0: yes/no), and mother’s age (age:
< 18, (18,20], (20,25], (25,30] ang 30).

Figure 3 shows the boxplots of the approximations obtained with tloppsed method and WinBUGS. The boxplots
show that our method resulted in smaller between chainbiditiain the summary statistics (Tab#g. We do not display
the boxplots for the parametersp(51) andexp(S3y) because they had a very different scale to the others, bystiev
the same behaviour. Mean effective sample sizes obtairtbdive proposed method were higher than those obtained with
WInBUGS, see Tablé, reflecting reduction in the correlation. Again, the resshow that our method converges faster
and is more stable than WinBUGS (regarding the computdt&pesed, our algorithm and WinBUGS lasted 20 seconds to
generate a chain). On the other hand, the Gelman and Rubististindicated for both methods that the Markov chains
tend to converge within 9,500 iterations (the potentialescaduction factors were less or equal than 1.02).

6. Simulation study

To explore the efficiency of the proposed method compareditBWGS, we performed a simulation study as follows.
We generated data from the log-binomial model

logp; = x1 81 + xi2B2 + 2383, 1=1,...,400,
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wherez;1 =1, x;; = F(zi;), j = 2,3, F is the distribution function of the standard normal disitibn, and(z;2, z;3)
was generated from a bivariate standard normal distributith a correlation coefficient of0.5. For each set of true
values of the parameters in Talilewve generated 1,000 datas€tsy;, «;) : ¢ = 1,...,400}, and for each dataset we fitted
the model using our algorithm with a chain of 5,000 iteragialiscarding the first 500 values of the chain. The prior
distribution wasr(3) o 1 over the region defined by the constraints. For each chainbtared the effective sample
size, the computational time, and the approximate 95% loledterval based on the posterior quantidg®.025) and
Q(0.975). This simulation study was replicated using WinBUGS alsthwhains of 5,000 iterations discarding the first
500 values of each chain. The efficiency (Eff) of each methasinveasured as the effective sample size for each parameter
exp(p,) divided by the computational time required to obtain a chain

Table6 shows the mean and the standard deviation of the 1,000 vaflig&for each set of parameters, the percentage
of times that the 95% credible interval covered the trueevalithe parameter, and the average length of the 95% pasterio
credible intervals. The mean efficiency of our method wasagénrhigher than the mean efficiency of WinBUGS. The
coverage percentages provided by both methods were clobe toominal level. However, the coverage percentages
obtained in this simulation study were overall higher uding proposed method. The absolute difference between the
coverage percentages and the value 95 ranged from 0.1 tivdil 0.1 to 1.6 and from 0.2 to 1.3, fekp(51), exp(B2)
andexp(/33) respectively, when we used the proposed method. Using WaBhe absolute difference ranged from 0.1
to 2.9, from 0.1 to 2.0 and from 0.6 to 2.7, fatp(51), exp(2) andexp(3s) respectively. On the other hand, the average
lengths of the posterior credible intervals were very samil

7. Conclusions

Despite recent efforts made by several authors, logisgiession is still frequently used in cohort studies andicdin
trials with equal follow-up times, even if one wants to commuate a risk ratio. It is well-known that the more frequent
the outcome is the more the odds ratio overestimates theaigkwhen it is greater than 1 (or underestimates it if it is
less than 1). If one wants to estimate an adjusted risk rditeolog-binomial model is preferable to the logistic one but
the constrained parameter space makes difficult to find thénmuan likelihood estimate. Bayesian methods implemented
with WinBUGS can work with a constrained parameter spaceriataral way. Moreover, Chu and Cdobhave shown
that Bayesian methods produce smaller mean squared enandikelihood based methods. However, WinBUGS can
lead to large Monte Carlo errors. To avoid this drawback, aeehproposed an efficient MCMC algorithm to estimate
risk ratios from a Bayesian point of view using log-binomiediression models. Our method is based on two strategies:
first, a reparameterization based on a Poisson model, anddea specific Gibbs sampler with a Metropolis-Hastings
step with a truncated Cauchy distribution as proposal. We Bhown the application of our method with data from the
Murcia population-based cancer registry, and we have cogdpaur method with WinBUGS through two real examples
and a simulation study.

In conclusion, the proposed algorithm converges to thegpostdistribution faster than the methods implemented wit
WInBUGS. Furthermore the possibility of easily carrying the estimations using our R functions is an important added
value.
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Appendix

For j € {1,2,...,k} and 6; = (61,...,0;-1,0j41,...,0)) € R* such thatr(-; | y) = [7(6 | y)dd; > 0, the full
conditional distribution isr(6; | y,0~,) < (0 | y), 8, € ©; where,

@j = {09] S R;w(éj | y,GNj) > 0}

Proposition 1. If 7(6.; | y) > 0 then the se®; is the intervala,, b;) where,

a; = max —zisbs/zij, Aj ={i € Ny;2;; <0},
ieA
T s#i
and
bj = 12}311 72’2'595/22']', Bj = {Z € Nn;Zij > 0},
i€B; —
7]

with the convention thai; = —oc if A; = 0 andb; = 400 if B; = 0.
Proof. Because ofr(0.;ly) >0, there existd; € R such thatn(¢7,0.;]y) >0 and hencef; € ©;. Since
m(07,0~;ly) > 0 it follows thatz;;67 + ZS# zis0s < 0fori e N, and then

Zziﬁs <0, Vi € N,, suchthatz;; = 0.
s#j

Let 0, be areal number. Thety € ©; if and only if

zijﬁj + Z zisls < 0, Vi € Nn,
s#i
that is, if and only if
Gj > Z —zises/zij, Vi € Aj,
s#j
09j < Z —ziSHS/zij, Vi € Bj
s#j
and
> zisbs <0, Vi € N, suchthat z; = 0.
s#j
It follows that@j = (aj, b])

R functions

The proposed Metropolis-within-Gibbs algorithm has beeplemented in R using the following functions.

gibbsLogBinomial=function(j){

ztheta=Z[,-j]% * Yomatrix(theta[-j],ncol=1)
A=Aind[[j]];B=Bind[[j]]
sumal=sum(Z[,j]<0);a=-Inf
if(sumal!=0){a=max(-ztheta[A]/Z[A.]])}
suma2=sum(Z[,j]>0);b=Inf
if(suma2!=0){b=min(-ztheta[B]/Z[B,]])}
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u=runif(1,0,1);location=theta.hat[j]

thetaj.star=location-tan((u-1) * atan(a-location)+u * atan(location-b))
theta.new=theta;theta.new[j]=thetaj.star

p.new=exp(Z[,j] * (thetaj.star-thetalj])) *p
logvalue.new=sum(log(p.new[y==1]))+sum(log(1-p.new[ y==0]))

priortheta.new=prior(theta.new)

rho=exp(logvalue.new-logvalue);rho=rho * priortheta.new/priortheta
rho=rho = (1+(thetaj.star-location)"2)/(1+(theta[j]-location) "2)
rho=min(1,rho)

logvalue<<-logvalue;theta<<-theta;p<<-p

priortheta<<-priortheta

u=runif(1,0,1)

if(u<rho){theta<<-theta.new;logvalue<<-logvalue.new ;P<<-p.new;
priortheta<<-priortheta.new}

}

prior=function(theta){return(1)}
inicial.beta=function(){

coef=summary(gim(y ~ 1,family=binomial))$coeff
mu=coef[1,1];serror=coef[1,2]
musim=rnorm(1,mu,serror)
betal=log(exp(musim)/(1+exp(musim)))
return(c(betal,rep(0,k-1)))}

initialize=function(){

#Reparameterization
X<<-model.ini$x;n<<-nrow(X);beta=model.ini$coeff
Sigma<<-summary(model.ini)$cov.unscaled
L<<-chol(Sigma);Z<<-X%  *%t(L)
model.ini.0<<-gIm(y ~ Z-1,family=poisson,x=TRUE)

theta.hat<<-solve(t(L))% * Ypbeta;k<<-ncol(2)
Aind<<-{}

for(j in 1:k)}{Aind[[j]]l<<-(1:n)[Z[,j]<0]}

Bind<<-{}

for(j in 1:k)}{Bind[[j]]<<-(1:n)[Z[,j]>0]}

#Initial point.

punto<<-solve(t(L))% * Opinicial.beta()
theta<<-punto;p<<-exp(Z% * Optheta)
logvalue<<-sum(log(p[y==1]))+sum(log(1-p[y==0]))
priortheta<<-prior(theta)
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}

Using the R function gibbsL ogBinomial with the Breast cancer mortality example

#The data

datos<-rbind(cbind(rep(1,12),rep(1,12),c(rep(1,2),r ep(0,10))),
cbind(rep(1,55),rep(2,55),c(rep(1,5),rep(0,50))),
cbind(rep(2,22),rep(1,22),c(rep(1,9),rep(0,13))),
cbind(rep(2,74),rep(2,74),c(rep(1,17),rep(0,57))),
cbind(rep(3,14),rep(1,14),c(rep(1,12),rep(0,2))),
cbind(rep(3,15),rep(2,15),c(rep(1,9),rep(0,6))))

datos<-data.frame(datos)
names(datos)<-c("Stage","Receptor_Level","Dead")

#Recoding Receptor_level
datos$Receptor_Level=as.integer(datos$Receptor_Leve I==1)
#Outcome

y=datos$Dead

R R R R R R R R R A R B R R e BRBRHGHIEE
R Runing the MCMC  algorithm BRERHE

#Poisson model. The following line depends on covariates
model.ini=gim(y~factor(Receptor_Level)+factor(Stage ),
family=poisson,data=datos,x=TRUE)
#The following lines compute the need input for
#the algorithm and fix the lengtht of the chain to 10000
initialize()
longChain=10000
theta.sim=matrix(rep(NA,longChain * k),ncol=k)
#Finally the chain is simulated as follows
for(h in 1:longChain){theta.sim[h,]=theta

for(j in 1:k){gibbsLogBinomial(j)}}
beta.sim=theta.sim% * %L
#The object beta.sim containts the simulations
#Posterior estimation of exp(beta) using the coda package
library(coda)
RR=mcmc(exp(beta.sim))
summary(RR)
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Table 1.Colon cancer example. Probability of being alive five yedisraliagnosis, having survived one year. Numbers

in this table are the maximum likelihood estimates and th&idence intervals obtained using logistic regression, and

posterior means and credible intervals obtained with oop@sed algorithm and with WinBUGS for log-binomial
regression models.

Variable (N) Logistic Proposed method WIinBUGS
OR (CI195%) RR (C195%) RR (C195%)

Sex

Male (1,622) 1 1 1

Female (1,327) 1.38(1.17,1.63) 1.09(1.05,1.14) 1.0%(1.04)

Stage

I (334) 9.95(6.22,15.90) 2.46(1.93,3.18) 2.72(2.288.13

I1(1,177) 7.32(4.91,10.91) 2.36(1.87,3.04)  2.60(2.21I)3

Il (891) 2.51(1.69,3.73) 1.70(1.33,2.19) 1.87(1.57@.1

IV (131) 1 1 1

Unknown (416) 5.12(3.33,7.88) 2.18(1.71,2.81) 2.40(2@D)

Age

55-59 (318) 2.73(1.99,3.74) 1.28(1.19,1.38)  1.28(1.B8)
60-64 (478) 2.14(1.652.79) 1.24(1.15,1.33)  1.24(1.B3)
65-69 (664) 1.67(1.32,2.11)  1.19(1.10,1.28)  1.19(1.20)

70-74 (789) 1.65(1.32,2.07) 1.16(1.08,1.25)  1.16(1.28)L
75-79 (700) 1 1 1
4.0 4 1.0
0.8
0.6
0.4
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Figure 1. Colon cancer example. Trace plots and autocorrelationtifme obtained with the proposed algorithm (first row) anthwVinBUGS (second row). Results for the
parameteexp(f3).
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Table 2.Posterior mean, posterior standard deviation and the pastguantiles@(0.025) and Q(0.975) of exp(S;),
j =1,2,3,4, using a chain of length 1,000,000 obtained with our metloode breast cancer mortality example.

Posterior mean Posterior standard deviatio(0.025) Q(0.975)

exp(f1) 0.093 0.034 0.039 0.169
exp(f2) 1.578 0.332 1.051 2.346
exp(f3) 2.920 1.347 1.279 6.321
exp(fs) 6.560 2.988 2.925 14.106

Table 3.Effective sample size (ESS) for the breast cancer mortakigmple. Means and standard deviation of the 500
effective sample sizes obtained with WinBUGS and the pregosethod, based on Markov chains of length 9,500.

WIinBUGS  Proposed method
Mean (SD) Mean (SD)
(81) 71.9(13.3) 5,192.1(218.7)
exp(fB2) 324.8(30.6) 4,047.4 (209.6)
(P3)
(B4)

60.2(17.8)  5,166.7 (275.3)
59.2 (16.5)  4,486.8 (259.6)

Table 4.Posterior mean, posterior standard deviation and postguantiles?)(0.025) and Q(0.975) of exp(8;), j =
1,2, 3,4, using a chain of length 1,000,000 obtained with our metloodHe low birth weight example.

Posterior mean Posterior standard deviatiof(0.025) (Q(0.975)

exp(B1) 0.161 0.053 0.078 0.284
exp(f2) 1.240 0.274 0.779 1.859
exp(Bs) 1.584 0.337 1.029 2.348
exp(B4) 1.748 0.489 0.934 2.846
exp(Bs) 1.567 0.369 0.973 2.415
exp(Bs) 1.123 0.360 0.558 1.953
exp(B7) 1.227 0.322 0.730 1.985
exp(fBs) 0.935 0.281 0.480 1.593
exp(Bo) 0.529 0.286 0.116 1.197
exp(B10) 1.729 0.360 1.120 2.528

Table 5. Effective sample size (ESS) for the low birth weight examMean and standard deviation of the 500 effective
sample sizes obtained with WinBUGS and the proposed mebfaséd on Markov chains of length 9,500.

WIinBUGS  Proposed method
Mean (SD) Mean (SD)

exp(B1)  83.7(12.8)  4,416.3 (237.7)
exp(B2)  432.6(43.8)  4,325.7 (241.6)
exp(f;)  240.1(39.2)  3,842.3(194.3)
exp(B1)  309.8 (65.5)  4,148.8 (215.4)
exp(fs) 2452 (43.0)  4,093.9 (231.0)
exp(Bs)  264.0 (68.4)  4,928.2(283.3)
exp(Br)  191.1(48.9)  4,817.9(286.0)
exp(fs) 431.2(105.1) 5,621.1(315.3)
exp(Bo) 874.0(227.8)  5,443.4 (275.0)
exp(fo) 315.5(32.3)  2,438.6 (150.1)
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Figure 2.Boxplots of the approximations obtained with the proposezthmd and with WinBUGS for the breast cancer mortality eXxamBach boxplot is based on 500
approximations to the posterior mean, the posterior standeviation and the quantiles Q(0.025) and Q(0.975) of thetgyior distribution ofexp(f;), « = 2, 3, 4. Each
approximation is based on a Markov chain of length 10,000. @gnotes the boxplot corresponding to the approximataiitained with the proposed method for the parameter
exp(B:). B(i) denotes the boxplot corresponding to the approxiomstiobtained with WinBUGS for the parameterp(3; ).
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Figure 3. Boxplots of the approximations obtained with the proposethwd and with WinBUGS for the low birth weight example. E&cixplot is based on 500 approximations
to the posterior mean, the posterior standard deviatiod,the quantiles Q(0.025) and Q(0.975) of the posterior ibigion of exp(3;), « = 2, 3,4, 5,6, 7,8, 10. Each
approximation is based on a Markov chain of length 10,000). dgnotes the boxplot corresponding to the approximatairained with the proposed method for the parameter
exp(3;). B(i) denotes the boxplot corresponding to the approxiomatiobtained with WinBUGS for the parametaip(/3; ).
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Table 6.Efficiency and coverage probability for the paramet&®; = exp(5;), ¢ = 1,2,3, in the simulation study.

Mean and standard deviation (sd) of the 1,000 values of Eff dach set of true values of the parameters

(exp(B1),exp(B2), exp(B3)), coverage (percentage of times that the approximate 95&bteeinterval covers the true
value of the parameter), and average length of the 95% parsteedible intervals.

RR;
Set of WInBUGS The Proposal
parameters Mean(sd) coverage length Mean(sd) coverage gthlen
(0.40,1.0,1.0) 7.1(1.2) 92.1 0.3 803.3(50.0) 945 0.3
(0.35,1.5,1.0) 6.5(1.2) 93.3 0.3 791.9(55.1) 94.9 0.3
(0.30,2.0,1.0) 6.1(1.2) 94.9 0.2 772.8(63.5) 95.8 0.3
(0.35,1.0,1.5) 6.6(1.2) 94.1 0.3 795.3(61.1) 94.1 0.3
(0.30,1.5,1.5) 6.5(1.1) 93.4 0.2 773.2(82.8) 94.2 0.2
(0.25,2.0,1.5) 6.3(1.1) 94.2 0.2 739.5(102.4) 95.1 0.2
(0.30,1.0,2.0) 6.2(1.1) 93.5 0.2 774.1(70.5) 94.7 0.3
(0.25,1.5,2.0) 6.4(1.1) 93.2 0.2 750.0(100.0) 94.3 0.2
(0.20,2.0,2.0) 6.6(1.2) 94.3 0.2 719.5(120.0) 95.8 0.2
(0.25,1.0,3.0) 5.6(1.1) 92.9 0.2 702.0(107.8) 95.8 0.2
(0.20,1.5,3.0) 6.3(1.2) 96.1 0.2 628.6(166.6) 96.1 0.2
(0.15,2.0,3.0) 6.5(1.2) 95.7 0.1 658.6(153.0) 95.7 0.1
RRy
Set of WIinBUGS The Proposal
parameters Mean(sd) coverage length Mean(sd) coverage gthlen
(0.40,1.0,1.0) 11.5(3.0) 931 1.0 796.6(54.3) 955 1.0
(0.35,1.5,1.0) 9.8(2.6) 93.6 1.4 767.9(59.7) 94.8 1.4
(0.30,2.0,1.0) 8.8(2.5) 93.9 1.8 742.6(70.0) 95.8 1.9
(0.35,1.0,1.5) 12.4(3.5) 93.9 0.9 812.2(59.1) 94.6 0.9
(0.30,1.5,1.5) 11.2(3.1) 93.8 1.3 784.4(76.6) 94.9 1.3
(0.25,2.0,1.5) 10.1(2.8) 93.8 1.7 741.2(101.2) 95.3 1.7
(0.30,1.0,2.0) 13.1(4.0) 93.0 0.9 821.8(61.0) 95.6 0.9
(0.25,1.5,2.0) 12.4(3.6) 94.0 1.2 793.7(84.2) 96.6 1.3
(0.20,2.0,2.0) 11.6(3.0) 94.6 1.8 750.7(110.8) 96.1 1.8
(0.25,1.0,3.0) 14.8(4.6) 94.8 0.8 826.4(87.0) 96.6 0.8
(0.20,1.5,3.0) 14.3(3.9) 94.7 1.1 754.5(141.8) 96.0 11
(0.15,2.0,3.0) 12.6(3.3) 95.1 1.7 737.5(137.6) 96.5 1.8
RR3
Set of WinBUGS The Proposal
parameters Mean(sd) coverage length Mean(sd) coverage gthlen
(0.40,1.0,1.0) 11.9(3.7) 92.3 1.0 780.9(54.1) 95.4 1.0
(0.35,1.5,1.0) 13.1(4.0) 94.2 0.9 780.8(59.6) 94.8 0.9
(0.30,2.0,1.0) 13.9(4.3) 92.3 0.9 775.5(63.8) 94.8 0.9
(0.35,1.0,1.5) 9.6(2.7) 92.7 14 781.6(61.3) 96.0 14
(0.30,1.5,1.5) 11.4(3.3) 93.4 1.2 772.8(73.0) 95.3 1.3
(0.25,2.0,1.5) 12.5(3.5) 93.3 1.2 761.1(83.1) 94.3 1.3
(0.30,1.0,2.0) 8.6(2.5) 94.0 1.8 763.6(67.6) 94.7 1.8
(0.25,1.5,2.0) 10.5(3.0) 93.9 1.6 758.0(87.8) 93.7 1.7
(0.20,2.0,2.0) 12.4(3.6) 94.4 1.7 747.5(104.5) 95.5 1.8
(0.25,1.0,3.0) 7.3(2.1) 94.2 24 702.4(102.7) 96.0 2.5
(0.20,1.5,3.0) 9.1(2.5) 95.7 2.3 651.0(151.3) 95.6 24
(0.15,2.0,3.0) 10.6(3.0) 93.9 2.6 687.2(141.0) 95.8 2.7
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