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Un resumen

Entre las preguntas que surgen en el estudio de los anillos de grupo, una de las más populares es el problema
del isomorfismo. Y entre las variantes de ésta, la que más tiempo ha resistido a una solución es el problema
del isomorfismo modular. Éste pregunta si, dados dos p-grupos finitos G y H, la existencia de un isomorfismo
entre las álgebras de grupo de G y de H sobre el cuerpo de p elementos (o, alternativamente, sobre algún
cuerpo de caracteŕıstica p) implica la existencia de un isomorfismo entre G y H. Este problema ya apareció
en el influyente art́ıculo de recopilación de R. Brauer Representations of finite groups de 1963, y para el
que los primeros resultados parciales se remontan a un trabajo de W. E. Deskins de 1956. A pesar de
haber recibido un interés más o menos continuado durante las décadas subsiguientes, este problema sólo
hab́ıa recibido soluciones parciales positivas restringidas a clases de p-grupos finitos espećıficas, como la
clase de los p-grupos abelianos (el mencionado resultado de Deskins), la clase de los p-grupos de clase de
nilpotencia 2 y subgrupo derivado elemental abeliano (un resultado debido a R. Sandling de 1989) o la clase
de los grupos metaćıclicos (debido para p mayor que 3 a C. Bagiński en 1989, y completado por R. Sandling
para p un número primo arbitrario en 1996). También es sabido que el problema del isomorfismo modular
tiene respuesta positiva para grupos de orden pequeño: Passman demostró en 1965 que el problema tiene
respuesta positiva para grupos de orden divisor de p4 para cualquier primo p, y este resultado fue extendido
para grupos de order p5 por M. A. M. Salim y R. Sandling. Con ayuda de ordenadores, el mismo resultado
se ha probado para grupos de orden divisor de 28, de 37 o, con unas pocas excepciones, de 56 (en distintos
trabajos de M. Wursthorn, B. Eick, L. Margolis y T. Moede, entre 1993 y 2022).

Nuestra contribución a esta área consiste en un estudio concienzudo del problema del isomorfismo modular
para p-grupos finitos 2-generados con subgrupo derivado ćıclico, llevado a cabo en las Partes III y IV, con
el que demostramos que este problema tiene respuesta positiva para algunas subclases de esta clase de
grupos, y demostramos que ciertos invariantes de estos grupos están determinados por sus álgebras de grupo
modulares. Un prerrequisito para este estudio era tener clasificados, salvo isomorfismo, los grupos de nuestra
clase objetivo, que se realiza en la Parte I. Esta clasificación consiste en en una biyección entre el conjunto
de las clases de isomorf́ıa de estos grupos y un cierto conjunto de 12-tuplas de números enteros. Como parte
del mencionado estudio del problema del isomorfismo modular para esta clase de grupos, en la Parte II,
somos capaces de dar una respuesta negativa al problema del isomorfismo modular, cerrando finalmente los
sesenta años de historia de este problema. Más concretamente, encontramos una familia infinita de pares
de 2-grupos G y H no isomorfos cuyas álgebras de grupo FG y FH sobre un cuerpo F de caracteŕıstica 2
arbitrario son isomorfas. Sin embargo, el problema del isomorfismo modular sigue siendo una pregunta de
interés para algunas clases de grupos, como los p-grupos de orden impar (i.e., con p mayor que 2) o los p-
grupos de clase de nilpotencia 2. En la primera dirección destacamos que nuestros esfuerzos en las Partes III
y IV muestran que no es posible encontrar, al menos en un sentido náıf, un análogo al contraejemplo de la
Parte II cuando p es mayor que 2. En la segunda dirección, en la Parte V damos una respuesta positiva
al problema del isomorfismo modular para p-grupos de clase de nilpotencia 2 con centro ćıclico. Si además
admitimos cuerpos arbitrarios en el enunciado del problema del isomorfismo modular, también damos una
respuesta positiva cuando p es impar, pero cuando p es 2 necesitamos hacer una suposición adicional o bien
sobre el cuerpo o bien sobre los grupos para obtener una respuesta positiva. Desde un punto de vista más
estructural, en la Parte VI demostramos que el problema del isomorfismo modular es equivalente al mismo
problema para p-grupos sin factores directos abelianos. Esto nos permite extender de forma no trivial las
clases de grupos para las que se conoce que el problema del isomorfismo modular tiene respuesta positiva.
En la Parte VII demostramos que, para el problema del isomorfismo modular en su versión para cuerpos
arbitrarios, de hecho sólo los cuerpos finitos pueden tener relevancia.



La tesis formalmente consiste en un preámbulo doble y siete partes, cada parte formada por o bien
un art́ıculo publicado o bien un preprint. El preámbulo se divide en una introducción, donde se presenta
el problema del isomorfismo para álgebras de grupo, con especial énfasis en el problema del isomorfismo
modular y los resultados conocidos sobre el mismo que no forman parte de esta tesis, y en una sección de
resultados, donde los resultados originales que conforman esta tesis se presentan y se ponen en contexto.
Las siete partes restantes constituyen el cuerpo principal de la tesis: seis de ellas (las Partes I,II, III, VI
y VII) consisten en art́ıculos ya publicados, y aparecen exactamente en el mismo formato en el que lo han
sido. La parte restante consiste en un preprint no publicado, ya disponible online en el mismo formato en
que aqúı aparece, y en proceso de revisión para ser publicado. A continuación incluimos una lista de estas
partes junto con sus resúmenes y sus correspondientes referencias, o, en su caso, su identificador en arXiv.

� Parte I. A classification of the finite 2-generator cyclic-by-abelian groups of prime-power order, en
colaboración con Osnel Broche Cristo y Ángel del Ŕıo Mateos. International Journal of Algebra and
Computation, 33 no. 04 (2023) 641-686.

Resumen: En este art́ıculo clasificamos los grupos finitos cuyo subgrupo derivado es ćıclico, que están
generados por dos elementos y cuyo orden es potencia de un primo. Para ello, asociamos a cada G
en esas condiciones una lista inv(G) de invariantes númericos que determina la clase de isomorf́ıa del
grupo G. A continuación, describimos el conjunto formado por todos los posible valores de inv(G).
Esto nos permite desarrollar algoritmos prácticos que permiten construir todos los grupos finitos no
abelianos con subgrupo derivado ćıclico generados por dos elementos de orden una potencia de un
primo fijada, calcular el vector de invariantes de un grupo tal, y decidir si dos grupos tales dados son
o no isomorfos.

� Parte II. Non-isomorphic 2-groups with isomorphic modular group , en colaboración con Leo Margolis
y Ángel del Ŕıo Mateos. Journal fur die Reine und Angewandte Mathematik, 783 (2022) 269-274.
doi.org/10.1515/crelle-2021-0074

Resumen: En este art́ıculo presentamos una familia de 2-grupos finitos no isomorfos que tienen álgebras
de grupo isomorfas sobre cada cuerpo de caracteŕıstica 2, dando aśı respuesta al problema del isomor-
fismo modular.

� Parte III. On group invariants determined by modular group algebras: Even versus odd characteristic,
en colaboración con Ángel del Ŕıo Mateos y Mima Stanojkovski. Algebras and Representation Theory.
doi.org/10.1007/s10468-022-10182-x

Resumen: Sea p un primo distinto de 2 y sea G un p-grupo finito con subgrupo conmutador ćıclico. En
este art́ıculo demostramos que el exponente y el abelianizado del centralizador CG(G′) del subgrupo
derivado en G están determinados por el álgebra de grupo de G sobre cualquier cuerpo de caracteŕıstica
p. Si, adicionalmente, G está generado por dos elementos, entonces casi todos los invariantes numéricos
que determinan G salvo isomorfismos están determinados por las mencionadas álgebras de grupo; como
consecuencia, la clase de isomorf́ıa del centralizador en G del subgrupo derivado de G está determinada
por el álgebra de grupo. Es sabido que todas estas afirmaciones son falsas para p igual a 2.

� Parte IV. On the Modular Isomorphism Problem for 2-generated groups with cyclic derived subgroup,
en colaboración con Ángel del Ŕıo Mateos. Preprint arXiv:2310.02627

Resumen: En este preprint continuamos el análisis del problema del isomorfismo modular para los
grupos con subgrupo derivado ćıclico, que están generados por dos elementos, y cuyo orden es una
potencia de un primo p mayor que dos, iniciado en la Parte III. En él demostramos que si G pertenece
a esta clase de grupos, entonces la clases de isomorf́ıa de los cocientes G/(G′)p

3

y G/γ3(G)p están
determinadas por el álgebra de grupo modular de G. De hecho, obtenemos un resultado más gen-
eral pero bastante más técnico, en términos de la clasificación de los grupos de la mencionada clase
descrita en la Parte I. También mostramos que para los grupos en esta clase de orden no mayor que
p11, el problema del isomorfismo modular tiene respuesta positiva. Finalmente, describimos algunas
familias de grupos de orden p12 cuyas álgebras de grupo sobre el cuerpo de p elementos no pueden ser
distinguidas utilizando las técnicas de las que disponemos.



� Parte V On the modular isomorphism problem for groups of nilpotency class 2 with cyclic center, en
colaboración con Leo Margolis. Forum Mathematicum, 2024. doi.org/10.1515/forum-2023-0237

Resumen: En este art́ıculo demostramos que el problema del isomorfismo modular tiene respuesta
positiva para grupos de clase de nilpotencia 2 con centro ćıclico, i.e., que para p-grupos G y H en
las mencionadas condiciones, la existencia de un isomorfismo entre las álgebras de grupo FG y FH
implica la existencia de un isomorfismo entre los grupos G y H, donde F es el cuerpo de p elementos.
Para grupos de orden impar, esta implicación también se demuestra cuando F es un cuerpo arbitrario
de caracteŕıstica p. Para grupos de orden par, necesitamos o bien añadir una hipótesis adicional, o
bien sobre los grupos o bien sobre el cuerpo.

� Parte VI. The modular isomorphism problem and abelian direct factors. Mediterranean Journal of
Mathematics. 21, 18 (2024). doi.org/10.1007/s00009-023-02557-1

Resumen: Sea p un número primo y sea G un grupo de orden potencia de p. En este art́ıculo de-
mostramos que tanto la clase de isomorf́ıa el factor directo maximal de G como la clase de isomorf́ıa
del álgebra de grupo sobre el cuerpo de p elementos Fp factor directo no abeliano restante, si ex-
istiese, están determinadas por el álgebra de grupo FpG. Esto generaliza un resultado de L. Margolis,
T. Sakurai y M. Stanojkovski (Abelian invariants and a reduction theorem for the modular isomor-
phism problem, Journal of Algebra 636, 533-559 (2023)) subre el cuerpo primo. Con el fin de lograr
esto, abordamos el probleam de encontrar subgrupos caracteŕısticos de G tales que sus ideales de au-
mento relativos dependan sólo de la clase ed isomorf́ıa del álgebra de grupo kG, donde k es un cuerpo
de caracteŕıstica p arbitrario, y lo relacionamos con el problema del isomorfismo modular, extendiendo
y dando pruebas alternativas a algunos resultados ya existentes.

� Parte VII. A reduction theorem for the Isomorphism Problem of group algebras over fields, en colabo-
ración con Ángel del Ŕıo Mateos. Journal of Pure and Applied Algebra 228 (2024), no. 4, 107511.

Resumen: En este art́ıculo demostramos que el problema del isomorfismo para álgebras de grupo se
reduce al mismo problema restringido a álgebras de grupo sobre extensiones finitas del cuerpo primo.
En particular, el problema del isomorfismo modular se reduce al mismo problema sobre álgebras de
grupo modulares finitas.
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aplicaciones del Álgebra no conmutativa”(Proyecto 22004/PI/22 financiado por Fundación Séneca (CARM)).
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Abstract

Among the questions that arise in the study of group rings, one of the most popular is the so called iso-
morphism problem. And among its variants, the one that remained unsolved the longer is the modular
isomorphism problem. It asks whether, given two finite p-groups G and H, the existence of an isomorphism
between the group algebras of G and H over the field with p elements (or, alternatively, any field of char-
acteristic p) implies the existence of an isomorphism between G and H themselves. This problem already
appeared in R. Brauer’s influential 1963 survey Representations of finite groups, and the first partial positive
result goes back to 1956, to the work of W. E. Deskins.

Our contribution to this issue consists in a thorough study of the modular isomorphism problem for
2-generated p-groups with cyclic derived subgroup, performed in Parts III and IV, in which we prove that
this problem has positive answer for some subclasses of this classes of groups, and we show that certain
group theoretical invariants are determined by the group algebra. A prerequisite to this was to have the
target class of groups classified up to isomorphism, and this is achieved in Part I. As part of this study, in
Part II, we are able to answer the modular isomorphism problem in the negative, finally closing this sixty
years old problem. Nevertheless, the modular isomorphism problem remains a question of interest for several
classes of p-groups, such as the p-groups of odd order (i.e., with p > 2) or the p-groups with nilpotency class
2. In this last direction, in V we give a positive answer to the modular isomorphism problem for p-groups of
nilpotency class 2 with cyclic center. From a more structural point of view, in Part VI we show that modular
isomorphism problem is equivalent to the same problem for p-groups without abelian direct factors. This
allows us to extend non-trivially the classes of groups of which the modular isomorphism problem is known
to have positive answer. In Part VII we show that for the modular isomorphism problem in its version for
arbitrary fields, actually only finite fields matter.

Formally, the thesis consists in a twofold preamble, and seven parts, each part constituted by a published
paper or a preprint. The preamble consists in an introduction, where the isomorphism problem for group
rings is presented, with special emphasis on the modular isomorphism problem; and in a section of results,
where the original contributions of this thesis are described and put in context. The remaining seven parts
constitute the main body of the thesis: six of them (Parts I, II, III, VI, and VII) consist in already published
papers, and they appear in exactly the same format they were published. The remaining part consists in an
unpublished preprint, already submitted for publication and made available online exactly in the same format
it appears here. Next we include a list of these parts together with the corresponding journal references, or
in its case the arXiv identification.

� Part I. A classification of the finite 2-generator cyclic-by-abelian groups of prime-power order, joint
with Osnel Broche and Ángel del Ŕıo. International Journal of Algebra and Computation, 33 no. 04
(2023) 641-686. dx.doi.org/10.1142/S0218196723500297

� Part II. Non-isomorphic 2-groups with isomorphic modular group, joint with Leo Margolis and Ángel del
Ŕıo. Journal fur die Reine und Angewandte Mathematik, 783 (2022) 269-274. doi.org/10.1515/crelle-
2021-0074

� Part III. On group invariants determined by modular group algebras: Even versus odd characteristic,
joint with Ángel del Ŕıo and Mima Stanojkovski. Algebras and Representation Theory.
doi.org/10.1007/s10468-022-10182-x

� Part IV. On the Modular Isomorphism Problem for 2-generated groups with cyclic derived subgroup,
joint with Ángel del Ŕıo. arXiv:2310.02627

Page i



� Part V On the modular isomorphism problem for groups of nilpotency class 2 with cyclic center, joint
with Leo Margolis. Forum Mathematicum, 2024. doi.org/10.1515/forum-2023-0237

� Part VI.The modular isomorphism problem and abelian direct factors. Mediterr. J. Math. 21, 18
(2024). doi.org/10.1007/s00009-023-02557-1

� Part VII. A reduction theorem for the isomorphism problem of group algebras over fields, joint with
Ángel del Ŕıo. Journal of Pure and Applied Algebra 228 (2024), no. 4, 107511.
doi.org/10.1016/j.jpaa.2023.107511
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Prolegomena

I feel compelled to say a word about the choice of format of this thesis: namely, this is a thesis by compendium
(i.e., that consists in a short introduction and several published papers or preprints), instead of a thesis in
the traditional sense. The main reason of this choice is, of course, that it was an option, and I was lucky
enough to fulfill the requisites by the time I had to make the decision. Other reason is that most of the
background content that should be included in any thesis that addresses the modular isomorphism, e.g., the
theory Jennings for modular group algebras of finite p-groups, or a detailed account of the pre-existing results
and techniques related to this problem, is already contained in my master’s thesis. Though unfortunately
this thesis is written in Spanish, and contains a number of typos and mistakes, as well as a certain lack of
insight, its existence made much less appealing to me to rewrite and translate all that material, and more
attractive to focus on obtaining new results. And a thesis by compendium was the ideal choice for this goal.
Moreover, the contents of the different papers actually fit as chapters of a single work: Part II, Part III, and
its direct continuation Part IV, provide a thorough study of the modular isomorphism problem for the class
of p-groups described in Part I. Part V gives positive answer to this problem for other reasonably nice class
of groups (also with cyclic derived subgroup). Finally, Parts VI and VII provide reductions to the modular
isomorphism problem from two different points of view.

However, this format of thesis comes with some unpleasant unavoidable features: each paper or preprint
comes with its own format and numeration (if the paper is published, the one of the corresponding journal). In
an attempt to mitigate the confusion that a double page numeration entails, the page number correspondent
to the pagination of the thesis will always be situated at the bottom-center of the page, and preceded by the
word page, anti-aesthetic as it might be. Moreover, each paper comes with an introduction, and, when read
in a row, they become quite repetitive and discouraging for the reader. I apologize for that.

I would like to express my gratitude to my advisors Ángel del Ŕıo and Leo Margolis, for their guidance,
support and patience during these years. Without them this thesis would not be, and almost surely I would
never had developed any interest in group rings. I read recently in the preface of Modules and group algebras,
by J. F. Carlson, that “There is a legendary story that Brauer, himself, used to advise his students to try to
study the representation theory of p-groups. The subject seemed to be too difficult with little or no promise
of productive results.” And this thesis can act as a witness of this difficulty: the initial goal was to study the
modular isomorphism problem for 2-generated finite p-groups with cyclic derived subgroup, and despite the
intense work these years and some major advances in Part III and Part IV, for p > 2 this question remains
far from being answered. However, other interesting projects appeared and some fortuitous and fortunate
results were obtained (all of them related to the modular isomorphism problem), and I can say that I am
satisfied with the final configuration (from the third title-page onward) of this thesis. So, I am glad they did
not follow His lead.

Aside from Ángel and Leo, I am specially grateful to the other two coauthors of the papers that form this
thesis: Osnel Broche and Mima Stanojkovski. It is tautological to say that without them this thesis would
not be as it is. I am also grateful to Sofia Brenner, with whom I recently found some results on the topic of
this thesis, mentioned in the introduction, but that could not be properly included as an eighth part.

I am grateful to Benjamin Sambale and the Institut für Algebra, Zahlentheorie und Diskrete Mathematik
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Introduction

1 The isomorphism problem for group algebras

Let G be a group and let R be a commutative ring. The group algebra of G over R, denoted RG, is the R-
algebra whose elements are formal linear combinations of elements of G with coefficients in R, i.e., elements
of the form

∑

g∈G
agg, (ag ∈ R, ag = 0 for each g ∈ G except for a finite amount of them),

with the obvious sum and R-action, and the multiplication given by the operation in the group and the
multiplication in the ring, (rg) · (sh) = (rs) · gh for r, s ∈ R and g, h ∈ G, extended by linearity. Then G is a
basis of RG as a free RG-module. This structure plays a fundamental rôle in the study of the representation
theory of the group G over the ring R, and has raised considerable, and consistent thorough time, interest,
with several books like [Pas77, Seh78, Pas79, Seh93, PMS02, JdR16] devoted to its study. One of the most
natural questions about group rings, and arguably the most popular, is the-so called isomorphism problem.
It asks whether the isomorphism type of the group G is determined by that of the group algebra RG as an
R-algebra. Formally:

Problem 1.1 (Isomorphism problem). Let R be a commutative ring and G and H finite groups. Does
RG ∼= RH imply G ∼= H?

Throughout this thesis we use standard notation: RG ∼= RH means that RG is isomorphic to RH as an
R-algebra, and G ∼= H means that G is isomorphic to H as a group. Furthermore, we will only consider
group algebras of finite groups. Let G̃ be a subgroup of the group of unit of RG that is at the same time
a basis of RG as a free R-module. Then G̃ is called a group basis of RG. Since G and G̃ have the same
cardinality, by the universal property of the group ring there is an isomorphism RĜ ∼= RG. Thus Problem 1.1
is equivalent to the question: Is every group basis of RG isomorphic to G?

Problem 1.1, under the additional hypothesis that R is a field, appears in R. Brauer’s survey on repre-
sentations of finite groups [Bra63] as Problem 2. A version of this question can be traced back to the decade
of 1940, when, according to [PW50], the problem “given a finite group G and a field R, determine all the
groups H such that RG ∼= RH” was proposed by R. M. Thrall at the Michigan Algebra Conference in the
summer of 1947. Examples of groups and rings for which Problem 1.1 has negative answer are easy to find:
take R = C and G and H two non-isomorphic abelian groups of the same order. Then CG ∼= CH. Thus, the
problem becomes more a problem about finding the right combination of chosen ring and extra properties
to impose on the groups, for which Problem 1.1 has positive answer. In this sense, if one chooses not to
impose additional conditions on the groups, it is natural to make the ring vary on a nice class of rings. For
example, for R varying in the class of all fields, the problem is Problem 2∗ in [Bra63]:

Problem 1.2 (Isomorphism problem for all fields). Let G and H be finite groups. Does kG ∼= kH for every
field k imply that G ∼= H?

Despite the apparently strong antecedent in the implication of Problem 1.2, less than a decade since
Brauer’s survey, E. Dade found couples of metabelian groups of order p3q6, for p and q two different primes,
with isomorphic group algebras over every field [Dad71]. Then, if one still wants not to impose extra condition
on the group, a wider class of commutative rings than the class of all fields is needed. This leads to the
following:
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Problem 1.3 (Isomorphism problem for all rings). Let G and H be finite groups. Does RG ∼= RH for every
commutative ring R imply that G ∼= H?

Since every commutative ring R can be seen as a Z-module, tensorizing we obtain that RG ∼= R⊗Z ZG.
Therefore ZG ∼= ZH if and only if RG ∼= RH for every commutative ring R. This implies that Problem 1.3
is equivalent to:

Problem 1.4 (Integral isomorphism problem). Let G and H be finite groups. Does ZG ∼= ZH imply that
G ∼= H?

This version of the question is mentioned in G. Higman’s thesis [Hig40] in the following terms: “Whether
it is possible for two non-isomorphic groups to have isomorphic integral group rings I do not know; but the
results of section 5 suggest that it is unlikely”. Since then, it has attracted a lot of interest, and lead to a
number of significant positive partial results, which we summarize in the following theorem:

Theorem 1.5. Problem 1.4 has positive answer provided that G and H belong to one of the following classes
of groups:

(1) Abelian groups [Hig40].

(2) Metabelian groups [Whi68]

(3) Abelian-by-nilpotent groups [RS87].

(4) Supersolvable groups [Kim91].

(5) Frobenius groups and 2-Frobenius groups [Kim91].

(6) Nilpotent-by-abelian groups [RT92].

Observe that the different items in the previous theorem are not independent. For example, the class
of abelian groups is contained in the class of metabelian groups. We include all of them to illustrate the
progress on the problem throughout time.

Despite these considerable advances, M. Herweck [Her01] found two non-isomorphic groups of order
2219728 with isomorphic group algebras over the integers (and hence over every commutative ring) in 2001,
sixty years after G. Higman’s thesis. Many other interesting problems raised in the study of group algebras of
finite groups over the integers, such as the Zassenhaus conjectures, or weakened versions of the isomorphism
problem, such as the spectrum problem (we suggest the surveys [Md19, PM22] for an overview on these
questions).

2 The modular isomorphism problem

More than twenty years before M. Hertweck’s examples were found, in [Pas77] D. Passman wrote about
Problem 1.1, and apropos E. Dade’s counterexamples mentioned above, that “There are, however, two
glimmers of hope. The first concerns integral group rings, and the second concerns p-groups over GF (p).”
This second glimmer of hope (and the only one remaining after M. Hertweck faded away the first) is the
modular isomorphism problem, the main topic of this thesis:

Problem 2.1 (Modular isomorphism problem). Let p be a prime, let k be the field with p elements, and let
G and H finite p-groups. Does kG ∼= kH imply G ∼= H?

Some authors (e.g. [Dre89]) considered a version of this problem substituting the field of p elements by
an arbitrary field of characteristic p, raising the question:

Problem 2.2 (k-modular isomorphism problem). Let p be a prime, let k be a field of characteristic p and
let G and H be finite p-groups. Does kG ∼= kH imply G ∼= H?
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We shall sometimes refer to these problem also by the initials MIP and k-MIP, respectively. Since every
field k of characteristic p is a vector space over its prime field k0, there is an isomorphism kG ∼= k ⊗k0 k0G.
Therefore, a positive answer to Problem 2.2 for some field k implies a positive answer to Problem 2.1.

The history of Problem 2.1 starts in [Des56], where W. E. Deskins answers the question in the positive
for finite abelian p-groups. In the “Supplements” of [Bra63], R. Brauer writes “Jennings’ results allow us to
define many numerical invariants of p-groups over the prime fields of characteristic p by counting the number
of elements of a power of the radical which satisfy given conditions. This suggests that it may be much easier
to study Problem 2 for this particular case.” These results of S. A. Jennings [Jen41] consist, mainly, in a
method to construct bases B of kG, where k is a field of characteristic p and G a finite p-group, which are
compatible with the filtration of ideals I ⊇ I2 ⊇ I3 ⊇ . . . , where I is the Jacobson radical of kG. That is,
B ∩ In is a basis of In, for each n. The construction of these bases relies in a series of normal subgroups
(Dn(G))n≥1 of G called the Jennings series, or the Brauer-Jennings-Zassenhaus series, of G, defined as
follows. Given an arbitrary group G, we set

D1(G) = G,

Dn+1(G) = [G,Dn(G)]℧1(Di(G)), for n ≥ 2,

where in each step i is the smallest integer greater or equal than n/p. Here ℧j(G) denotes the subgroup of
G generated by the pj-powers of the elements of G for each j ≥ 0, and given two subgroups N1 and N2 of
G, [N1, N2] denotes the subgroup of G generated by the elements of the form [n1, n2] = n−1

1 n−1
2 n1n2, with

n1 ∈ N1 and n2 ∈ N2. These series of subgroups admit the alternative characterization, due to M. Lazard
[Laz54],

Dn(G) =
∏

ipj≥n
℧j(γi(G))

for each n ≥ 1, where γi(G) denotes the i-th term of the lower central series of G. If G is a p-group, then
the second term of the Jenning series is the Frattini subgroup Φ(G) = D2(G) = ℧1(G)γ2(G) of G, and the
series coincide with the series of dimension subgroups of G, i.e., for each n ≥ 1,

Dn(G) = G ∩ (1 + In).

This last result is also due to S. A. Jennings [Jen41]. A detailed account of these topics can be found in
[Pas77, Section 11.1].

Despite R. Brauer’s initial optimism, Problem 2.1 turned out to be considerably difficult, and only partial
positive results were obtained, limited to very restrictive classes of p-groups. In the next two theorems we
list all the partial results that are not part of this thesis. An almost identical list can be found in [Mar22,
Section 3].

Theorem 2.3. Problem 2.2 has positive answer provided that G belongs to at least one of the following
classes of finite p-groups:

(1) Abelian p-groups [Des56].

(2) 2-groups of maximal class [Car77]1.

(3) Groups with center of index p2 [Dre89].

(4) Metacyclic groups [Bag88, San96]2.

(5) Groups of order 32 [NS18].

1J. F. Carlson gave a module theoretic proof in [Car77]; years later C. Bagiński provided an alternative proof working inside
the modular group algebra. A third proof appeared in [RV13]

2C. Bagiński proved this result for p > 2, and R. Sandling gave a general proof for every prime p. Both results are stated
for the prime field, but the arguments of the later work for every base field of the same characteristic. Some other results in
these lists were originaly stated only for the prime field, but with the same arguments, or a very slight variation of them, are
valid for arbitrary fields of the same characteristic. We present them in the most general version without further comment.
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(6) 2-generated groups of class 2 for p odd [BdR21].

(7) 2-groups of nilpotency class 3 such that |G : Z(G)| = |Φ(G)| = 8. [MSS23].

(8) 2-groups with cyclic center such that G/Z(G) is dihedral [MSS23].

In this theorem (and for the rest of the thesis) Z(G) denotes the center of the group G. Moreover, for
any integer n ≥ 0, Ωn(G) denotes the subgroup of G generated by the elements g of G such that gp

n

= 1.

Theorem 2.4. Problem 2.1 has positive answer provided that G belongs to at least one of the following
classes of finite p-groups:

(1) Groups of order dividing p5 [Pas65, SS96a].

(2) Groups of order 26 [HS06].

(3) Groups with D3(G) = 1 [PS72].

(4) Groups with D4(G) = 1, if p > 2 [Her07].

(5) Groups of maximal class and order at most pp+1 which contain a maximal subgroup which is abelian
[BC88].

(6) 3-groups of maximal class, except for a single family of groups [BK19].

(7) Groups containing a cyclic subgroup of index p2 [BK07].

(8) 2-generated groups of nilpotency class 2 [BdR21].

(9) Groups of nilpotency class 2 with elementary abelian derived subgroup [San89].

(10) 2-generated groups of nilpotency class 3 and elementary abelian derived subgroup [MM22].

(11) Groups of nilpotency class 3 with elementary abelian derived subgroup and such that CG(γ2(G)), the
centralizer in G of the derived subgroup γ2(G), is abelian and maximal in G [MS22].

(12) Groups of order dividing 28 or 37 [Wur93, BKRW99, Eic08, MM22].

(13) Groups of order 56, except for six families of groups, each one of size at most 4 [MM22].

(14) Groups of the form F/N , where F is a free group of finite rank and Di+2(F ) ⊆ N ⊆ Di+1(F ) for some
integer i ≥ 1 [R9̈0] (see also [HS07, Theorem 5.8]).

There exist two main strategies (cf. the introduction of [Her07]) to attack the modular isomorphism
problem, both of them with strong limitations. The first one consists in attacking the problem for a concrete
class of groups which is already classified, i.e., there exists a non-redundant list of the isomorphism types
groups in the class, maybe parametrized somehow. Then the problem consists in proving that the group
algebra of each of the groups in the list is not isomorphic to the group algebra of the others. This is the
approach followed in the aforesaid result of W. E. Deskins, and also in the positive answer of D. S. Passman
for groups of order dividing p4 [Pas65]. The remainder of the results in Theorem 2.3 can also be seen as
a result of this approach. Moreover, all the results obtained with computational help lie in this category.
Of course, this approach entails the need of a deep knowledge of the groups one is working with. Since a
classification of all finite p-groups is hopelessly out of question, this strategy was never meant to provide a
definitive positive answer to Problem 2.1, but, at best, to isolate possible counterexamples.

Recall that a group theoretical invariant of a group G is a feature of G depending only on the isomorphism
type of G. A group theoretical invariant of a p-group is determined by its modular group algebra in a class
of groups C, or simply determined in the class C, if any two p-groups belonging to C with isomorphic group
algebras share this invariant. When C is the class of all finite p-groups, we just say that the invariant is
determined. Finding and using invariants of this type has been key in the success of this approach, which,
usually, reduces to show that the isomorphism type of a group is determined by a set of apparently weaker
group-theoretical invariants that, in turn, are determined by the modular group algebra. We give a list of
invariants of this kind that are not part of the results of the thesis in the following theorem (cf. [MM22,
Theorem 2.1]).
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Theorem 2.5. Let p be prime, k a field of characteristic p, and let G be a finite p-group. The following
group theoretical invariants of G are determined by the group algebra kG.

(1) The isomorphism type of G/γ2(G) [Col64].

(2) The isomorphism type of Z(G). [War61].

(3) The isomorphism type of Di(G)/Di+1(G) for each i ≥ 1 [PS72]

(See [Pas77, Lemma 2.7] for the first three invariants).

(4) The isomorphism type of γ2(G) ∩ Z(G) [San89, Theorem 6.11].

(5) The isomorphism type of Z(G)/Z(G) ∩ γ2(G) [San89, Theorem 6.11].

(6) The isomorphism type of Di(γ2(G))/Di+1(γ2(G)) for each i ≥ 1 [San85, Lemma 6.26].

(7) The isomorphism type of G/Z(G), if G has nilpotency class 2 [San85, Theorem 6.23].

(8) The isomorphism type of G′, in the class of metabelian groups.

(9) The isomorphism type of G/γ2(G)Ωi(Z(G)), for each i ≥ 0 [MSS23, Theorem B].

(10) The isomorphism type of γ2(G)Ωi(Z(G))/γ2(G), for each i ≥ 0 [MSS23, Theorem B].

(11) The isomorphism type of Z(G) ∩ (℧i(G)γ2(G)) for each i ≥ 0 [MSS23, Theorem B].

(12) The isomorphism type of Z(G)/Z(G) ∩ (℧i(G)γ2(G)), for each i ≥ 0 [MSS23, Theorem B].

(13) The smallest possible size of a set of generators of G.

(14) The smallest possible size of a set of generators of γ2(G).

(15) For n ≥ 0, the number of conjugacy classes of G containing an element of the form gp
n

, with g ∈ G
[Kü82].

(16) The number of conjugacy classes of p n-th powers which have the same order as a class which powers
to them [PPM81] (see also [HS06, Corollary 2.4 ]).

(17)
∑
gG logp |CG(g)|/|Φ(CG(g))| (called the “Roggenkamp parameter”).

(18) The exponent of G [Kü82].

(19) The nilpotency class of G, if γ2(G) is cyclic [BK07, Theorem 2].

(20) The nilpotency class of G, if G has exponent p [BK07, Theorem 2].

(21) Whether G has nilpotency class 2 or not [BK07, Theorem 2].

(22) The order of largest cyclic subgroup containing G′, in the class of groups with cyclic derived subgroup
[San96, Proposition 4].

When the base field is prime, some stronger invariants can be obtained.

Theorem 2.6. Let p be a prime, k the field of p elements, and G a finite p-group. The following group
theoretical invariants of G are determined by the group algebra kG.

(1) The isomorphism type of Di(G)/Di+2(G) for each i ≥ 1 [PS72].

(2) The isomorphism type of Di(G)/D2i+1(G) for each i ≥ 1 [RS83].

(3) The isomorphism type of G/℧1(γ2(G))γ3(G) for each i ≥ 1 [San89].

(4) The isomorphism type of G/D4(G), if p > 2 [Her07].
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(5) The isomorphism type G/℧1(γ2(G))γ4(G), if G is 2-generated [Bag99, MM22]3.

(6) The isomorphism type of Φ(G), in the class of abelian-by-(elementary abelian) groups.

(7) The isomorphism type of Φ(G), in the class of (elementary abelian)-by-abelian groups with γ2p(G) = 1
[HS06, p. 16].

(8) The number of conjugacy classes of maximal elementary abelian subgroups of G (called “Quillen pa-
rameter”).

(9) The nilpotency class of G/Φ(γ2(G)) [BC88].

(10) Whether G is of maximal class or not [BK19].

In Theorems 2.3, 2.4, 2.5 and 2.6, the non-referenced results are folklore (or I have not been able to
track the original source). Observe that the condition “if G satisfies certain property” is different from
the condition “in the class of groups with certain property”, since the former means that if G satisfies the
property and H is any other group such that kG ∼= kH, then G and H agree in the considered invariant.

The second approach consists in some canonical ideal J of kG such that G (and hence every group basis
of kG) embeds naturally into the quotient kG/I, and furthermore the structure of kG/I is simple enough
to allow the identification of the isomorphism type of G. The inconvenience of this method is obvious: the
bigger the ideal I is, the simpler has to be G to embed naturally into kG/I, and the smaller the ideal I is, the
less probable is that kG/I can be properly understood. Moreover this strategy has been applied successfully
only when the base field is prime. In the bright side, this strategy allows us to obtain positive answers for the
modular isomorphism problem for classes of groups that are not classified up to isomorphism. Moreover, it
has proved to be very useful to deal with classes of groups under strong constraints, mainly in the nilpotency
class and the exponent of the derived subgroup (e.g., items (3), (4), (5) and (9) in Theorem 2.4), which
led to some optimism about the further success of this approach. M. A. M. Salim and R. Sandling write in
[SS96b] that “One can chart a progression in recent papers on the modular isomorphism problem. Each sets
out to deduce as much as possible from a quotient algebra of FG. The ideals which are divided out have
become smaller and smaller, resulting in larger and larger sections of FG susceptible to purposeful analysis.
At each stage a more complicated group basis becomes embeddable in the quotient algebra and thence its
structure made accessible.” (For them F stands for the field with p elements.) However, after this, only a
few papers applied successfully this strategy: [Bag99], [Her07] and [MS22]. This suggests that this approach
is almost exhausted, but some modest new results can still be obtained. In a recent preprint [BGL], via this
approach we show the following:

Theorem 2.7 (Brenner, —). Let p be an odd prime, let k be the field with p elements, and let G and be a
finite p-group such that |G/Φ(G)Z(G)| = pd for some positive integer d. Suppose that

(1) ℧1(G) ∩ γ2(G) ⊆ ℧1(γ2(G))γ3(G) and

(2) |γ2(G)/℧1(γ2(G))γ3(G)| = p(
d
2).

If kG ∼= kH for some group H, then G/℧1(γ2(G))γ4(G) ∼= H/℧1(γ2(H))γ4(H).

A corollary of this theorem is a generalization of Theorem 2.6(5) for odd primes:

Corollary 2.8 (Brenner, —). Let p be an odd prime, let k be the field with p elements and let G and be a
finite p-group such that G/Z(G) is 2-generated. If kG ∼= kH for some group H, then

G/℧1(γ2(G))γ4(G) ∼= H/℧1(γ2(H))γ4(H).

Combining the former with Theorem 2.4(9), we are able to solve the modular isomorphism problem
for finite p-groups G such that the index of Z(G) in G is at most p3 for p odd, an improvement over
Theorem 2.3(3) for the prime field. This also delves into the difference between the cases p = 2 and p > 2,
in the light of Part II (observe that the groups in Theorem 3.2 have center of index 23).

3It was mentioned without proof in the last lines of [Bag99]. A proof was provided in [MM22].
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Theorem 2.9 (Brenner, —). Let p be an odd prime, let k be the field of p elements, and let G be a finite
p-group such that |G : Z(G)| ≤ p3. If kG ∼= kH for some group H, then G ∼= H.

As the reader would expect, both approaches usually interact. For example, when dealing with the
modular isomorphism problem for a well understood class of groups, the techniques of the second approach
might be useful to distinguish their group algebras. As well as the application of the second strategy might
be combined with the use of the invariants in Theorems 2.5 and 2.6.

There is a third way to approach the modular isomorphism problem, that consists in proving that to solve
the problem for the class of all finite p-groups is equivalent to solve this problem for groups in a smaller class.
This approach is relatively novel, the first result appearing in 2020. We introduce the necessary notation
to present this result. Given a finite p-group G, one can take subgroups El(G) and NEl(G) of G such that
G = El(G)×NEl(G), El(G) is elementary abelian, and NEl does not have elementary abelian direct factors.
By the Krull-Schmidt theorem for finite groups, the isomorphism types of El(G) and NEl(G) are completely
determined by the isomorphism type of G.

Theorem 2.10. [MM22, Theorem A] Let p be a prime, let k be a field of characteristic p, and let G and
H be finite p-groups. The following are equivalent:

(1) kG ∼= kH.

(2) k (NEl(G)) ∼= k (NEl(H)) and El(G) ∼= El(H).

In other words, Theorem 2.10 reduces the modular isomorphism problem for the same problem only for
groups without elementary abelian direct factors. This reduction approach, per se, does not aim to give
a definitive answer in any sense to the modular isomorphism problem, but combined with the pre-existing
results, it leads to answer MIP in the positive for some new classes of groups extending the known ones.
For example, the positive answer for the classes (7) and (8) in Theorem 2.3 were obtained as applications of
Theorem 2.10.

A result that does not fit in none of the previous categories is the following criterion due to T. Sakurai.
Its proof, in contrast to the previous results, does not consists in studying the internal structure of kG, nor
its module category, but in exploiting the adjunction between the functor group of units, from the category
of k-algebras to the category of groups, and the functor group algebra, from the category of groups to the
category of k-algebras. The statement requires a quite technical definition:

Definition 2.11. [Sak20, Definition 1.4] Set M = {[G] : G is a finite group}, where the symbol [G] denotes
the isomorphism type of a group G. M becomes a commutative monoid with the operation [G]+[H] = [G×H].
Thus we can construct its Groethendieck group K(M). As it is Z-module, we can extend scalars and obtain
a Q-vector space L(M) = Q ⊗Z K(M). Given a finite commutative ring k, the subspace S(k) of L(M) is
defined by

S(k) =
∑

A is a finite
unital k-algebra

Q[ U(A)],

where U(A) denotes the group of units of A. Namely, S(k) is the subspace of L(M) spanned by all the
isomorphism types of groups of units of finite unital k-algebras. A finite group is called hereditary over k if
for each subgroup K of G, one has [K] ∈ S(k).

Theorem 2.12. [Sak20, Criterion 1.6] Let G and H be finite groups, and let k be a commutative ring.
Suppose that G is hereditary over k. If kG ∼= kH, then G ∼= H.

This criterion provides an alternative proof of Theorem 2.3(1) restricted to the prime field, and of
Theorem 2.4(3).
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Results

Now we give an overview of the results that form this thesis.

3 2-generated finite p-groups with cyclic derived subgroup

We start mentioning that our initial goal was to study the modular isomorphism problem for 2-generated
finite p-groups with cyclic derived subgroup, inspired by the success of [BdR21]. We devote to these groups
Parts I, II, III and IV.

A classification

Following the first approach described in Section 2, an initial step to study the modular isomorphism problem
for a concrete class of groups is to classify those groups up to isomorphism. Two different classifications
of the 2-generated finite p-groups with cyclic derived subgroup for p > 2 already existed in the literature:
[Mie75] and [Son13]. The first one contains some mistakes and missing groups, while the second was not
suitable for our purposes, since the group-theoretical meaning of some of the parameters that configure her
classification is sometimes obscure — and this is a key aspect, since our goal is to recover those parameters
not only from the group, but from the k-algebra structure of kG. For these reasons, added up to the lack of
a classification for p = 2, the first result in this thesis consists in a complete —and suitable for the study of
the modular isomorphism problem— classification of these groups. This is achieved in Part I ([BGLdR23]).

To give a meaningful statement of the classification theorem, we first fix some notation. Let A be the
set of tuples

(p,m, n1, n2, σ1, σ2, o1, o2, o
′
1, o

′
2, u1, u2)

satisfying the following conditions:

(1) p is prime and n1 ≥ n2 ≥ 1.

(2) σi = ±1, 0 ≤ oi < min(m,ni) and p ∤ ui for i = 1, 2.

(3) If p = 2 and m ≥ 2 then oi < m− 1 for i = 1, 2.

(4) 0 ≤ o′i ≤ m− oi for i = 1, 2 and o′1 ≤ m− o2.

(5) One of the following conditions holds:

(a) o1 = 0.

(b) 0 < o1 = o2 and σ2 = −1.

(c) o2 = 0 < o1 and n2 < n1.

(d) 0 < o2 < o1 < o2 + n1 − n2.

(6) Suppose that σ1 = 1. Then the following conditions hold:

(a) σ2 = 1 and o2 + o′1 ≤ m ≤ n1.

(b) Either o1 + o′2 ≤ m ≤ n2 or 2m− o1 − o′2 = n2 < m and u2 ≡ 1 mod pm−n2 .
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(c) If o1 = 0 then either

(i) o′1 ≤ o′2 ≤ o′1 + o2 + n1 − n2 and max(p− 2, o′2, n1 −m) > 0, or

(ii) p = 2, m = n1, o′2 = 0 and o′1 = 1.

(d) If o2 = 0 < o1 then o′1 + min(0, n1 − n2 − o1) ≤ o′2 ≤ o′1 + n1 − n2 and max(p− 2, o′1, n1 −m) > 0.

(e) If 0 < o2 < o1 then o′1 ≤ o′2 ≤ o′1 + n1 − n2.

(f) 1 ≤ u1 ≤ pa1 , where
a1 = min(o′1, o2, o2 + n1 − n2 + o′1 − o′2).

(g) One of the following conditions holds:

(i) 1 ≤ u2 ≤ pa2 .

(ii) o1o2 ̸= 0, n1 − n2 + o′1 − o′2 = 0 < a1, 1 + pa2 ≤ u2 ≤ 2pa2 , and u1 ≡ 1 mod p,

where

a2 =





0, if o1 = 0;

min(o1, o
′
2, o

′
2 − o′1 + max(0, o1 + n2 − n1)), if o2 = 0 < o1;

min(o1 − o2, o
′
2 − o′1), otherwise.

(7) Suppose that σ1 = −1. Then the following conditions hold:

(a) p = 2, m ≥ 2, o′1 ≤ 1 and u1 = 1.

(b) If σ2 = 1 then n2 < n1 and the following conditions hold:

(i) If m ≤ n2 then o′2 ≤ 1, u2 = 1 and either o′1 ≤ o′2 or o2 = 0 < n1 − n2 < o1
(ii) If m > n2 then m + 1 = n2 + o′2, u2(1 + 2m−o1−1) ≡ −1 mod 2m−n2 , 1 ≤ u2 ≤ 2m−n2+1,

either o′1 = 1 or o1 + 1 ̸= n1, and at least one of the following conditions holds:

� o′1 = 0 and either o1 = 0 or o2 + 1 ̸= n2.

� o′1 = 1, o2 = 0 and n1 − n2 < o1.

� u2 ≤ 2m−n2 .

(c) If σ2 = −1 then o′2 ≤ 1, u2 = 1 and the following conditions hold:

(i) If o1 ≤ o2 and n1 > n2 then o′1 ≤ o′2.

(ii) If o1 = o2 and n1 = n2 then o′1 ≥ o′2
(iii) If o2 = 0 < o1 = n1 − 1 and n2 = 1 then o′1 = 1 or o′2 = 1.

(iv) If o2 = 0 < o1 and n1 ̸= o1 + 1 or n2 ̸= 1 then o′1 + min(0, n1 − n2 − o1) ≤ o′2.

(v) If o1o2 ̸= 0 and o1 ̸= o2 then o′1 ≤ o′2.

Now we are ready to state the classification theorem (the Main Theorem of Part I):

Theorem 3.1 (Broche, —, del Ŕıo). For each I = (p,m, n1, n2, σ1, σ2, o1, o2, o
′
1, o

′
2, u1, u2) ∈ A, we define

the group

GI =
〈
b1, b2 | [b2, b1]p

m

= 1, [b2, b1]bi = [b2, b1]ri , bp
ni

i = [b2, b1]uip
m−o′i , (i = 1, 2)

〉
,

where r1 and r2 are the unique integers 1 < ri ≤ 1 + pm satisfying

r1 ≡ σ1(1 + pm−o1) mod pm and

{
r2 ≡ σ2(1 + pm−o2) mod pm, if o1o2 = 0;

r2 ≡ σ2(1 + pm−o1)p
o1−o2

mod pm, otherwise.

The map I 7→ [GI ], where [GI ] is the isomorphism type of GI , is a bijection between A and the set of
isomorphism types of the 2-generated groups of prime power order with cyclic derived subgroup.

We denote the inverse of the map in the theorem by inv(·). This inverse is described in Part I. Moreover,
this description together with the proof of the theorem provides an algorithm to compute this inverse
efficiently, and hence to check whether two given 2-generated finite p-groups with cyclic derived subgroup
are isomorphic or not. This algorithm, together with the set A and an efficient method to construct the
groups have been implemented in a GAP program, available at [BCGLdR22]
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A negative answer

Part II([GLMdR22]) consists in the description of a series of pairs of 2-generated finite 2-groups with cyclic
derived subgroup with isomorphic group algebras over each field of characteristic 2, solving the modular
isomorphism problem in its generality, more than sixty years since W. E. Deskins initial result.

Let n1 > n2 > 2, and let G and H be the 2-generated groups with cyclic derived commutator satisfying

inv(G) = (2, 2, n1, n2,−1,−1, 0, 0, 0, 0, 1, 1);

inv(H) = (2, 2, n1, n2,−1, 1, 0, 0, 0, 0, 1, 1).

Presentations for these groups are:

G =
〈
b1, b2 : [b2, b1]4 = 1, [b2, b1]b1 = [b2, b1]b2 = [b2, b1]−1, bp

n1

1 = bp
n2

2 = 1
〉

;

H =
〈
b̃1, b̃2 : [b̃2, b̃1]4 = 1, [b̃2, b̃1]b̃1 = [b̃2, b̃1]−1, [b̃2, b̃1]b̃2 = [b̃2, b̃1] b̃p

n1

1 = b̃p
n2

2 = 1
〉

Theorem 3.1 yields that G and H are non-isomorphic, since inv(G) ̸= inv(H). Then the following theorem
answers Problem 2.1 (and hence Problem 2.2) in the negative for p = 2:

Theorem 3.2 (—, Margolis, del Ŕıo). Let k be a field of characteristic 2. Then kG ∼= kH.

The proof is not complicated, and simply consists in showing that the subgroup

〈
b̃1, b̃2(b̃1 + b̃2 + b̃1b̃2)[b̃2, b̃1]

〉

of the group of units of kH is isomorphic to G, and its elements generate all of kH as a k-algebra.

On the modular isomorphism problem for p > 2

Once settled the modular isomorphism problem in the negative for p = 2, in Part III ([GLdRS22]), and later
in Part IV ([GLdR23]), we attack this question for 2-generated finite p-groups with cyclic derived subgroup
for p > 2. The following result encompass Theorem B of Part III and Theorem 2 of Part IV, and states
that if G is 2-generated with cyclic derived subgroup, then so is H and almost all the entries of inv(G) are
determined by kG.

Theorem 3.3 (—, del Ŕıo, Stanojkovski). Let p be an odd prime, let k be a field of characteristic p, and
let G be a 2-generated finite p-group with cyclic derived subgroup with

inv(G) = (p,m, n1, n2, σ1, σ2, o1, o2, o
′
1, o

′
2, u1, u2).

If kG ∼= kH for some group H, then H is 2-generated, γ2(H) is cyclic and

inv(H) = p,m, n1, n2, σ1, σ2, o1, o2, o
′
1, o

′
2, v1, v2)

for some integers v1 and v2. If additionally k is the field of p elements, then u2 ≡ v2 mod p and one of the
following holds:

(1) u1 ≡ v1 mod p.

(2) o1o2 > 0, n1 + o′1 = n2 + o′2 and at least one of the following conditions fails:

� u2 ≡ v2 ≡ 1 mod po1+1−o2 ,

� n2 = 2m− o1 − o′2,

As a consequence, corresponding to Theorem A of Part III we obtain a number of group theoretical
invariants that are determined by the modular group algebra for groups with cyclic derived subgroup (not
necessarily 2-generated).
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Theorem 3.4 (—, del Ŕıo, Stanojkovski). Let p be an odd prime, let k be a field of characteristic p, and
let G be finite p-group with cyclic derived subgroup. If kG ∼= kH for some group H, then the following hold:

(1) CG(γ2(G)) and CH(γ2(H)) have the same exponent.

(2) CG(γ2(G))/γ2(G) ∼= CH(γ2(H))/γ2(H).

(3) CG(γ2(G))/γ2(CG(γ2(G))) ∼= CH(γ2(H))/γ2(CH(γ2(H))).

A corollary of the previous theorem is that the isomorphism type of the centralizer of the derived subgroup
is determined by the modular group algebra for this class of groups.

Corollary 3.5 (—, del Ŕıo, Stanojkovski). Let p be an odd prime, let k be a field of characteristic p, and
let G be a finite 2-generated p-group with cyclic derived subgroup. If kG ∼= kH for some group H, then
CG(γ2(G)) ∼= CH(γ2(H)).

Another consequence, corresponding to Theorem 1.1 of Part IV, and involving only group algebras of
2-generated groups with cyclic derived subgroup over the prime field, is the following:

Theorem 3.6 (—. del Ŕıo). Let p be an odd prime, let k be the field with p elements and let G be a
2-generated finite p-group with cyclic derived subgroup. If kG ∼= kH for some group H, then

(1) G/℧1(γ3(G)) ∼= H/℧1(γ3(H)).

(2) G/℧3(γ2(G)) ∼= H/℧3(γ2(H)).

Moreover, we can also provide a positive answer to Problem 2.1 for 2-generated group with cyclic derived
subgroup with order dividing p11, and for groups with order p12 but for p− 2 families of groups, each one of
size p.

Theorem 3.7 (—, del Ŕıo). Let G be a finite 2-generated group with cyclic derived subgroup and order
dividing p12. If kG ∼= kH for some group H, then one of the following holds:

(1) G ∼= H.

(2) |G| = p12 and one has that

inv(G) = (p, 4, 4, 4, 0, 2, 2, 2, u1, 1);

inv(H) = (p, 4, 4, 4, 0, 2, 2, 2, v1, 1),

with {u1, v1} ⊆ Ji for some 1 ≤ i ≤ p− 2, where Ji = {i+ jp : 0 ≤ j ≤ p− 1}.

4 Groups of nilpotency class 2 with cyclic center

In his 1985 survey [San85], R. Sandling writes “Nonetheless, it is a sad reflection on the state of the modular
isomorphism problem that the case of class 2 groups is yet to be decided in general.” And almost forty years
later, the situation is not very different. Aside for a few of partial positive results (e.g., Theorem 2.3(6)
and Theorem 2.4(8)) an answer for the modular isomorphism problem for groups of class 2 still remains
unknown.

Our contribution to this issue is Part V ([GLM24]), where we solve Problem 2.1 in the positive for p-groups
of nilpotency class 2 with cyclic center. Moreover, we pay special attention to the base field, being able to
solve Problem 2.2 in the positive for every field of odd characteristic, and for every field k of characteristic
2 such that the polynomial X2 +X + 1 ∈ k[X] is irreducible over k. These are the following two theorems.

Theorem 4.1 (—, Margolis). Let p be an odd prime, let k be a field of characteristic p and let G be a finite
p-group of nilpotency class 2 with cyclic center. If kG ∼= kH for some group H, then G ∼= H.

Theorem 4.2 (—, Margolis). Let k be a field of characteristic 2 and let G be a finite p-group of nilpotency
class 2 with cyclic center. Assume moreover that the polynomial X2 +X + 1 is irreducible in the polynomial
ring k[X]. If kG ∼= kH for some group H, then G ∼= H.
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For the rest of fields of characteristic 2, we solve Problem 2.2 except for a sequence of pairs of groups.
To state this last result, we need some notation. For a 2-group G of class 2, let m(G) be the rank of the
homocyclic component of G/Z(G) of maximal exponent, i.e. the number of cyclic direct factors of maximal
order of this group. This is the same as the rank of the elementary abelian group G/Ωlog2(exp(G))−1(G).

Theorem 4.3 (—, Margolis). Let k be a field of characteristic p, let G be a finite 2-group of nilpotency class
2 with cyclic center.

(1) If kG ∼= kH for some group H and m(G) ≤ 2, then G ∼= H.

(2) Suppose that m(G) > 2. Then there exists at most one isomorphism class of groups C not containing
G such that the following implication holds: If kG ∼= kH for some group H, either G ∼= H or H ∈ C.

The results in this part follow closely the first strategy, and are based on the classification of the finite
p-groups of class 2 with cyclic centre due to Y. K. Leong [Leo74, Leo79].

5 Reduction theorems

In Part VI ([GL24]), Theorem 2.10 is generalized by dropping the ‘elementary’ hypothesis, i.e., proving that
the modular isomorphism problem can be reduced to the same problem over groups without abelian direct
factors, with no restrictions on the exponent. We formalize this as follows. Given a finite p-group G, consider
the subgroups Ab(G) and NAb(G) of G such that G = Ab(G) × NAb(G), Ab(G) is abelian and NAb(G)
has no abelian direct factors. By the Krull-Remak-Schmidt theorem, the isomorphism types of Ab(G) and
NAb(G) do not depend on the chosen decomposition, so they are group-theoretical invariants of the group G.
Then we can disregard the direct factor Ab(G) in the study of the modular isomorphism problem. Formally:

Theorem 5.1. Let p be a prime, let k be the field of p elements and let G and H be finite p-groups. The
following are equivalent:

(1) kG ∼= kH.

(2) k (NAb(G)) ∼= k (NAb(H)) and Ab(G) ∼= Ab(H).

As an immediate corollary, we can extend non-trivially some of the classes of groups for which the modular
isomorphism problem is known to have a positive answer.

Corollary 5.2. Let p be a prime, let k be the field of p elements and let A and G be finite p-groups such
that A is abelian and G belongs to at least one of the classes in Theorem 2.3 or in Theorem 2.4. If H is
another group such that kH ∼= k(G×A), then H ∼= G×A.

The primality of the field is important in the proof of Theorem 5.1. However, for an arbitrary field of
characteristic p we can still recover the isomorphism type of the maximal abelian direct factor.

Proposition 5.3. Let p be a prime, let G and H be finite p-groups and k be a field of characteristic p. Then
kG ∼= kH implies that Ab(G) ∼= Ab(H).

We do not have an analogue of the proof of the other implication in Theorem 5.1 (kG ∼= kG implies that
k (NAb(G)) ∼= k (NAb(H))), but it seems reasonable that the result will extend to arbitrary fields of the
same characteristic.

This extra difficulty when one increases the size of the field in the same characteristic, together with the
curious behaviour of certain fields of characteristic 2 observed in Theorem 4.2 and Theorem 4.3, made us
wonder how the field k of characteristic p influences the answer to Problem 2.2. Part VII ([GLdR24]) is an
initial attempt to attack this problem. There we show that only finite extensions of prime fields matter for
the isomorphism problem.

Theorem 5.4 (—, del Ŕıo). Let k be a field, let k0 be the prime field of k, and let G and H be finite groups.
If kG ∼= kH, then there exists a finite extension k1 of k0 such that k1G ∼= k1H.
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If the characteristic of k is coprime with the order of the group G, then a finite extension of k0 split k0G
and k0H and hence, in this case, a proof of Theorem 5.4 is straightforward. However, we present a unified
proof for any characteristic. The application of Theorem 5.4 to the Problem 2.2 shows that this question
can be regarded as exclusively about finite objects. Formally:

Corollary 5.5 (—, del Ŕıo). Let p be a prime, and let G and H finite p-groups such that kG ∼= kH for
some field k of characteristic p. Then there exists a finite field k1 of characteristic p such that k1G ∼= k1H.

We highlight that this reduction makes possible to apply R. Brauer’s suggestion to attack Problem 2.1
“by counting the number of elements of a power of the radical which satisfy a given condition” also to attack
Problem 2.2, since these counting arguments are available only for finite fields. This strategy is applied
successfully in the proof Theorem 4.3.

6 Desiderata and open questions

Despite Theorem 3.2 gives a negative answer to the modular isomorphism questions in its general form, many
interesting questions on this topic remain unanswered. Some of these questions appear in the recent survey
[Mar22]. The most natural (and interesting) class of groups for which the modular isomorphism problem is
still open is the class of p-groups of odd order.

Problem 6.1. Settle the modular isomorphism problem for p > 2.

The groups of Theorem 3.2 have nilpotency class 3, and another natural class of groups for which there
is still hope to obtain a positive answer to the modular isomorphism problem is the class of groups with
nilpotency class 2.

Problem 6.2. Settle the modular isomorphism problem for groups of nilpotency class 2.

In the other extreme of the duality complexity of the p-power map/complexity of the commutator map,
we find the groups with exponent p, for which the modular isomorphism problem is still open.

Problem 6.3. Settle the modular isomorphism problem for groups of exponent p.

These being the most natural and general open questions on the modular isomorphism problem, some
others, more specific —and hence maybe easier to approach— can be the following. In spite of all the work
in Parts III and IV, the modular isomorphism problem remains open for 2-generated p-groups with cyclic
derived subgroup for p > 2.

Problem 6.4. Settle the modular isomorphism problem for 2-generated p-groups with cyclic derived subgroup
for p > 2.

About this last problem, we observe that the groups in Theorem 3.2 are 2-generated with cyclic derived
subgroup of order p2. However, for p > 2, MIP has positive answer for the subclass of groups with this
property (Theorem 3.6). Similarly, the groups of Theorem 3.2 have center of index p3, and again for the
class of groups with this property MIP has positive answer (Theorem 2.9). Thus, apparently, groups providing
a negative answer to MIP for p > 2 will be (in case they exist) quite different from examples for p = 2. We
pose one last, and extremely specific, question about 2-generated groups with cyclic derived subgroups.

Problem 6.5. Settle the modular isomorphism problem for the groups in Theorem 3.7(2).

Now we focus on more general questions, not specialized to any class of finite p-groups. We already
mentioned that we do not know whether Theorem 5.1 generalizes to arbitrary fields of characteristic p. In
order to do so, it suffices to solve the following problem in the positive.

Problem 6.6. Decide whether kG ∼= kH implies k (NAb(G)) ∼= k (NAb(H)) or not.

Furthermore, regarding these “changes of field”, we can simply ask the following.
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Problem 6.7. Let k be a field of characteristic p, let k0 be its prime field, and let G and H be finite p-groups.
Decide whether kG ∼= kH implies k0G ∼= k0H or not.

We conclude with a few structural questions, related to the structure of the modular group algebras of
finite p-groups, as well to the reduction results for the modular isomorphism problem. One of the most
natural features of a finite p-group G is its nilpotency class, but how it relates to the algebra structure of
kG is still mysterious, and not understood in general.

Problem 6.8. Decide whether the nilpotency class of a finite p-group is determined by its modular group
algebra.

While whether a p-group has nilpotency class 2 or not is determine by the group algebra Theorem 2.5(21),
it is still unknown whether being metabelian is determined. This shows that the relation between the modular
group algebra and the derived length is less understood, making the following problem even harder.

Problem 6.9. Decide whether the derived length of a finite p-group is determined by its modular group
algebra.

Given a finite group G, we can consider an indecomposable decomposition G = G1 × G2 × · · · × Gn,
where each Gi is indecomposable as a direct product of proper subgroups. Then both the number n are the
list of isomorphism types of the Gi’s (up to reordering) are group theoretical invariants of G, by the Krull-
Schmidt theorem for finite groups. Settling in the positive the following problem would widely generalize
Theorem 2.10 and Theorem 5.1:

Problem 6.10. Let k be the field of p elements, let G and H finite p-groups, and let G = G1×G2×· · ·×Gn
be an indecomposable decomposition of G. Decide whether kG ∼= kH implies that H has an indecomposable
decomposition H = H1 ×H2 × · · · ×Hn such that kGi ∼= kHi for each i, or not.

Observe that this problem is considerably weaker than the modular isomorphism problem. A positive
answer to Problem 6.10 would imply that the modular isomorphism problem can be reduced to the same
problem over p-groups which are indecomposable as direct product of proper subgroups. This would take
the reduction strategy (at least in the sense of direct products) to its optimal outcome.

The group algebra of a direct product of groups is isomorphic to the tensor product (over the base field)
of the group algebras of each group; formally,

k(G×H) ∼= kG⊗k kH,
for each pair of finite groups G and H and each field k. However, under the assumptions that G is a finite
p-group and k is a field of characteristic p, it is unknown whether a non-trivial decomposition of the group
algebra as a tensor product of proper subalgebras implies the existence of a decomposition of the group
as a direct product of proper subgroups. Here by non-trivial decomposition as tensor product we mean a
decomposition A = A1 ⊗k A2 such that the dimension of Ai over k is strictly greater than 1 for i = 1, 2.
This appears as a question in [CK95].

Problem 6.11. Decide whether the group algebra of an indecomposable finite p-group over a field of char-
acteristic p is indecomposable as non-trivial tensor product of k-algebras or not.

In the spirit of Problem 6.10, A. Jaikin asked the author, during a seminar in the ICMAT, whether a
tensor product version of the Krull-Schmidt theorem could hold for local augmented algebras with nilpotent
Jacobson radical. Formally:

Problem 6.12. Let k be a field of characteristic p and let A be a local k-algebra with nilpotent Jacobson
radical of codimension 1 (e.g., the group algebra of a finite p-group over a field of characteristic p). Suppose
that A = A1 ⊗k · · · ⊗k An = B1 ⊗k · · · ⊗k Bm, for subalgebras Ai and Bj that are indecomposable as a tensor
product of proper subalgebras. Decide whether n = m and Ai ∼= Bi for each i (up to a possible reordering of
the Bi’s) or not.

The author has tackled this problem during a great part of the last year, in the concrete case where A is
the group algebra of a finite p-group, together Problem 6.10, with (excluding a couple of fleeting moments
of mathematical self-delusion) scarce success. It is to be noted that positive answer to Problem 6.12, under
the additional hypothesis that A is the group algebra of a finite abelian p-group over a field of characteristic
p, has existed for more than twenty years [CK95].
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Normale Supérieure 3e série, 71 (1954), no. 2, 101–190 (fr). MR 19,529b

Page 18



[Leo74] Y. K. Leong, Odd order nilpotent groups of class two with cyclic centre, Journal of the Aus-
tralian Mathematical Society 17 (1974), 142 – 153.

[Leo79] , Finite 2-groups of class two with cyclic centre, Journal of the Australian Mathematical
Society 27 (1979), 125 – 140.

[Mar22] L. Margolis, The Modular Isomorphism Problem: A Survey, Jahresber. Dtsch. Math. Ver.
(2022).
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Part I

in which we try to understand the 2-generated groups with cyclic derived

subgroup, in the hope we would later understand their group algebras.
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in which we solve the modular isomorphism problem.
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Part III

in which we start the study of the modular isomorphism problem

over the groups described in Part I, for p > 2.
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Part IV

in which we continue the study of the modular isomorphism problem

over the groups of Part I started in Part III.
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ON THE MODULAR ISOMORPHISM PROBLEM FOR

2-GENERATED GROUPS WITH CYCLIC DERIVED SUBGROUP

DIEGO GARCÍA-LUCAS AND ÁNGEL DEL RÍO

Abstract. We continue the analysis of the Modular Isomorphism Problem for 2-generated p-groups with

cyclic derived subgroup, p > 2, started in [8]. We show that if G belongs to this class of groups, then the

isomorphism type of the quotients G/(G′)p
3

and G/γ3(G)p are determined by its modular group algebra.

In fact, we obtain a more general but technical result, expressed in terms of the classification [4]. We also
show that for groups in this class of order at most p11, the Modular Isomorphism Problem has positive

answer. Finally, we describe some families of groups of order p12 whose group algebras over the field with

p elements cannot be distinguished with the techniques available to us.

The class of 2-generated finite p-groups with cyclic derived subgroup, despite its apparent simplicity, has
proven to be a rich class of p-groups, specially regarding the Modular Isomorphism Problem: the only known
indecomposable groups to fail to satisfy the statement of this problem are 2-groups that belong to this class
(see [7]), while for p > 2, the situation being quite different, the problem is still to be decided. Our main
result settles the Modular Isomorphism Problem in the positive for groups of this class under additional
constraints on the size of the initial terms of the lower central series:

Theorem A. Let p be an odd prime, let k be the field with p elements and let G be a 2-generated finite
p-group with cyclic derived subgroup. If kG ∼= kH for some group H, then

(1) G/γ3(G)p ∼= H/γ3(H)p and

(2) G/(G′)p
3 ∼= H/(H ′)p

3

.

This result fails for p = 2 because the counter-example in [7] is formed by groups with derived subgroup of
order 4. The proof of Theorem A is based upon a more technical result in terms of the invariants described
in [4], that resumes the work started in [8]. Namely, with the notation in Section 2, we prove the following
theorem.

Theorem B. Let p be an odd prime, let k be the field with p elements and let G be a 2-generated finite
p-group with cyclic derived subgroup and

inv(G) = (p,m, n1, n2, o1, o2, o
′
1, o
′
2, u

G
1 , u

G
2 ).

If kG ∼= kH for some group H, then H is also a 2-generated finite p-group with cyclic derived subgroup and

inv(H) = (p,m, n1, n2, o1, o2, o
′
1, o
′
2, u

H
1 , u

H
2 )

such that

uG2 ≡ uH2 mod p,

and one of the following holds:

(1) uG1 ≡ uH1 mod p.
(2) o1o2 > 0, n1 + o′1 = n2 + o′2 and at least one of the following conditions fails:

• uG2 ≡ uH2 ≡ 1 mod po1+1−o2 ,
• n2 + o′2 = 2m− o1.
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2020 Mathematics Subject Classification. 20D15.

Key words and phrases. Finite p-groups, modular group algebra, invariants, Modular Isomorphism Problem.
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2 DIEGO GARCÍA-LUCAS AND ÁNGEL DEL RÍO

Observe that if G and H are as in the previous theorems, then G ∼= H if and only if inv(G) = inv(H), so
Theorem B is another step towards a solution of the Modular Isomorphism Problem for our target class of
groups. As an application we obtain a positive answer for the Modular Isomorphism Problem for 2-generated
p-groups with p > 2 having cyclic derived subgroup and order at most p11. Moreover, for groups of order
p12 we also obtain a positive solution except for p− 2 families of containing p groups each.

The paper is organized as follows. In Section 1 we establish the notation and prove some general auxiliary
results. In the remainder of the paper, p is an odd prime and all the groups are 2-generated finite p-groups
with cyclic derived subgroup. In Section 2 we recall the classification of such groups from [4] and establish
some basic facts for these groups and their group algebras. In Section 3 we prove Theorems A and B. Finally,
in Section 4 we prove the mentioned results about groups of small order.

1. Preliminaries

Throughout the paper, p denotes an odd prime number, k is the field with p elements, G is a finite p-group
and N is a normal subgroup of G. The group algebra of G over k is denoted by kG and its augmentation
ideal is denoted by I(G). It is a classical result that I(G) is also the Jacobson ideal of kG. If C is a subset

of G then Ĉ =
∑
c∈C c ∈ kG. It is well known that the center Z(kG) is the k-span of the class sums Ĉ

with C running on the set Cl(G) of conjugacy classes of G. The rest of group theoretical notation is mostly
standard: [g, h] = g−1h−1gh for g, h ∈ G, |G| denotes the order of G, Z(G) its center, {γi(G)}i≥1 its lower
central series and G′ = γ2(G) its commutator subgroup. For n ≥ 1, we denote by Cn the cyclic group of
order n. Moreover, if g ∈ G and X ⊆ G then |g| denotes the order of g and CG(X) the centralizer of X
in G. For a subgroup A of G, we denote An = 〈an : x ∈ A〉. If A is normal cyclic subgroup of G, then
I(Ap

n

) = I(A)p
n

and hence (I(A)kG)p
n

= I(A)p
n

kG = I(Ap
n

)kG.
We take the following the following notation from [4] for integers s, t and n with n ≥ 0:

S (s | n) =
n−1∑

i=0

si.

We will use the following elementary lemma.

Lemma 1.1. If G is a finite p-group with cyclic derived subgroup and p > 2, then every conjugacy class of
G is a coset modulo a subgroup of G′.

Proof. Let C be a conjugacy class of G, let g ∈ C and H = {[x, g−1] : x ∈ G}. Then C = Hg and hence it is
enough to prove that H is a subgroup of G′. As G′ is cyclic and H ⊆ G′, it is enough to prove that if h ∈ H
then hi ∈ H for every non-negative integer i. Let h = [x, g−1] with x ∈ G. Then hx = hr for some integer

r with r ≡ 1 mod p. Therefore, using [4, Lemma 2.1], we have [xi, g−1] = x−i(xi)g
−1

= x−i(xg
−1

)i =
x−i(xh)i = hS(r|i). This proves that H contains all the elements of the form hS(r|i) with i ≥ 0. By [8,
Lemma 2.2] we deduce that H contains hi for every non-negative integer. �

Let n be a positive integer. We set

Ωn(G) =
〈
g ∈ G : gp

n

= 1
〉

and Ωn(G : N) =
〈
g ∈ G : gp

n ∈ N
〉
.

Observe that Ωn(G : N) is the only subgroup of G containing N such that

Ωn(G : N)/N = Ωn(G/N).

The next lemma collects some well-known results about the Modular Isomorphism Problem which will be
used throughout the paper.

Lemma 1.2. The Modular Isomorphism Problem has a positive solution for G if one of the following holds:

(1) G is abelian [5].
(2) G is metacyclic [1, 13].
(3) G is 2-generated of class 2 [3].
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1.1. The Jennings series. We denote Dn(G) the n-th term of the Jennings series of G, i.e.

Dn(G) = {g ∈ G : g − 1 ∈ I(G)n} =
∏

ipj≥n
γi(G)p

j

.

It is straightforward (see [6, Lemma 4.10]) that

(1.1) G ∩ (1 + I(G)n + I(N)kG) = Dn(G)N.

Each quotient Dn(G)/Dn+1(G) is elementary abelian and, if t is the smallest non-negative integer with
Dt+1(G) = 1, then a Jennings set of G is a subset {g11, . . . , g1d1

, g21, . . . , g2d2
, . . . |gt1, . . . , gtdt} of G such

that gi1Di+1(G), . . . , gidiDi+1(G) is a basis of Dn(G)/Dn+1(G) for each i. Observe that |G| = p
∑t

i=1 di . If
x1, . . . , xn are the elements of a Jennings set of G, in some order, then

B = {(x1 − 1)e1 · · · (xn − 1)en : 0 ≤ ei ≤ p− 1 and
n∑

i=1

ei > 0}

is a basis of I(G), called a Jennings basis of I(G) associated to the given Jennings set. We denote Bn =
B ∩ I(G)n, which is a basis of I(G)n.

Lemma 1.3. There is a Jennings set S of G such that N ∩S is a Jennings set of N .

Proof. We argue by induction on |N |. If |N | = 1, then there is nothing to prove. Now suppose that the result
holds for normal subgroups of order pn, and assume that N has order pn+1. Since G is a p-group, the center
of G intersects N non-trivially, so we can choose a subgroup L ⊆ N ∩ Z(G) of order p. By the induction
hypothesis, we can choose a Jennings set S̄ of G/L such that S̄ ∩(N/L) is a Jennings set of N/L. Let S be
a set of representatives of the elements of S̄ in G. Clearly, the representatives of elements in N/L are in N .
For some i we have that L ⊆ Di(G) but L 6⊆ Di+1(G), and for some j, that L ⊆ Dj(N) but L 6⊆ Dj+1(N).
Observe that S is almost a Jennings basis of G except it does not contain representatives of a basis of
Di(G)/Di+1(G), only of a maximal linear subspace which is a direct complement of L. Similarly, S ∩N is
almost a Jennings basis of N except it does not contain representatives of a basis of Dj(N)/Dj+1(N), only
of a maximal linear subspace which is a direct complement of L. Hence it suffices to take the Jennings set
S ∪ {l}, where l is a generator of L. �

The following equality is [14, Theorem A] and its symmetric analogue:

(1.2) Dn+1(N) = G ∩ (1 + I(N)nI(G)) = G ∩ (1 + I(G)I(N)n).

It can be generalized as follows.

Lemma 1.4. If n and m are positive integers, then

(1 + I(G)n + I(N)mI(G)) ∩G = Dn(G)Dm+1(N) = (1 + I(G)n + I(G)I(N)m) ∩G.
Proof. We prove only the first identity, the second being analogous. Since (1 + I(G)n) ∩ G = Dn(G) and
(1 + I(N)mI(G)) ∩G ⊇ (1 + I(N)m+1) ∩G = Dm+1(N), the right-to-left inclusion is clear. Thus it suffices
to prove the converse. Taking quotients modulo Dn(G)Dm+1(N), it is enough to prove that

(1.3) Dn(G)Dm+1(N) = 1 implies (1 + I(G)n + I(N)mI(G)) ∩G = 1.

By Lemma 1.3, there is a Jennings set S of G such that N ∩S is a Jennings set of N . Ordering the
elements of S so that those in N are placed first we obtain a Jennings basis B of I(G) associated to S
containing a Jennings basis B0 of I(N) associated to N ∩S . Recall that the set Bn = B ∩ I(G)n is a basis
of I(G)n. Moreover, the set Bm

0 = B ∩ I(N)mI(G) is a basis of I(N)mI(G), and coincides with the set of
elements of B of the form xy with x ∈ B0 ∩ I(N)m and y ∈ I(G). Then the following implication is clear: if
y ∈ B occurs in the support in the basis B of an element x ∈ I(G)n + I(N)mI(G), then y ∈ Bn ∪Bm

0 .
Moreover, it is clear (1 +Bn)∩G ⊆ (1 + I(G)n)∩G = Dn(G) and (1 +Bm

0 )∩G ⊆ (1 + I(N)mI(G))∩G =
Dm+1(N) by (1.2). Thus (1 + Bn ∪Bm

0 ) ∩G ⊆ Dn(G)Dm+1(N).
We prove (1.3) by induction on m. Suppose first that m = 1 and that Dn(G)D2(N) = 1, so (1.1) yields

(1 + I(G)n + I(N)I(G)) ∩G ⊆ (1 + I(G)n + I(N)kG) = Dn(G)N = N.

So, if 1 6= g ∈ (1 + I(G)n + I(N)I(G))∩G, then g ∈ N . Since N is elementary abelian, g− 1 ∈ I(N) \ I(N)2.
Thus the support of g− 1 in the basis B0 contains an element of the form h− 1, with 1 6= h ∈ N . Then, by
the two previous paragraphs, h ∈ (1 + Bn ∪B1

0) ∩G ⊆ Dn(G)D2(N) = 1, a contradiction.
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For m > 1, the induction step is similar. Suppose that Dn(G)Dm+1(N) = 1, so Dm(N) is elementary
abelian. Take

1 6= g ∈ (1 + I(G)n + I(N)mI(G)) ∩G ⊆ (1 + I(G)n + I(N)m−1I(G)) = Dn(G)Dm(N) = Dm(N).

Since B0 ∩ I(Dm(N)) is a Jennings basis of I(Dm(N)) and g − 1 ∈ I(Dm(N)) \ I(Dm(N))2, we have that
the support of g − 1 in this basis (and hence in the basis B) contains an element of the form h − 1, with
1 6= h ∈ Dm(N). However, h ∈ (1 + Bn ∪Bm

0 ) ⊆ Dn(G)Dm+1(N) = 1, a contradiction. �

1.2. The relative lower central series. The lower central series of N relative to G is the series defined
recursively by

γG1 (N) = G and γGn+1(N) = [γGn (N), N ].

We consider also the sequence of ideals of kG defined recursively by setting

J1(N,G) = I(N)I(G) and J+1(N,G) = I(N)Ji(N,G) + Ji(N,G)I(N).

This can be also defined with a closed formulae:

(1.4) Jn(N,G) = I(N)nI(G) +
n−1∑

i=1

I(N)n−iI(G)I(N)i.

From I(N)kG = kGI(N) and (1.4) it easily follows that

(1.5) I(N)nI(G) ⊆ Jn(N,G) ⊆ I(N)nkG.

Lemma 1.5. The following is a well defined map:

ΛnN = ΛnN,G :
I(N)kG

I(N)I(G)
−→ I(N)p

n

kG

Jpn(N,G)
, x+ I(N)I(G) 7→ xp

n

+ Jp
n

(N,G).

Proof. Let x ∈ I(N)kG and y ∈ I(N)I(G). Then (x + y)p
n − xpn =

∑
i ai where each ai is a product of p

elements of {x, y} with at least one equal to y. Hence each ai ∈ I1 . . . Ipn , where each Ii is either I(N)kG
or I(N)I(G), and at least one of the Ii’s is of the second type. Since I(N)I(G) ⊆ I(N)kG, I1 . . . Ipn ⊆
I(N)p

n−jI(G)I(N)j for some 0 ≤ j ≤ pn, and hence, by (1.4), I1 . . . Ipn ⊆ Jp
n

(N,G). Therefore (x+ y)p
n −

xp
n ∈ Jp

n

(N,G), so ΛnN is well defined. �

The ambient group G will be always clear from the context so we just write ΛnN . In particular,

ΛnG :
I(G)

I(G)2
→ I(G)p

n

I(G)pn+1

is the usual map used in the kernel size computations (see [9]).
The first statement of the next lemma is just a slight modification of a well-known identity (see [12,

Lemma 2.2]), while the second one is inspired, together with the definition of the ideals Ji(N,G), by the first
section of [2]. For the convenience of the reader we include a proof.

Lemma 1.6. Let L and N be normal subgroups of G. Then the following equations hold

I(L)I(N)kG+ I(N)I(L)kG = I([L,N ])kG+ I(N)I(L)kG,(1.6)

Jn(N,G) =
n∑

i=1

I(N)n+1−iI(γGi (N))kG.(1.7)

Proof. Since the terms at both sides of (1.6) are two-sided ideals of kG, the equation follows from

(g − 1)(h− 1) = hg([g, h]− 1) + (h− 1)(g − 1) for g, h ∈ G.
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In order to prove (1.7) we proceed by induction on n. For n = 1 there is nothing to prove, and the
following chain of equations

Jn+1(N,G) = Jn(N,G)I(N) + I(N)Jn(N,G)

=
n∑

i=1

I(N)n+1−iI(γGi (N))kGI(N) + I(N)
n∑

i=1

I(N)n+1−iI(γGi (N))kG

=
n∑

i=1

I(N)n+1−i [I(γGi (N))I(N)kG+ I(N)I(γGi (N))kG
]

(by (1.6) with L = γGi (N)) =
n∑

i=1

I(N)n+1−i (I(γGi+1(N))kG+ I(N)I(γGi (N))kG
)

=
n+1∑

i=1

I(N)n+2−iI(γGi (N))kG

completes the induction argument. �

Lemma 1.7. Let N be a normal subgroup of G.

(1) If γGi (N) ⊆ Di(N) for every i ≥ 2 then for every n ≥ 1 we have Jn(N,G) = I(N)nI(G).
(2) If [G,N ] ⊆ Np then γGi (N) ⊆ Di(N) for every i ≥ 2.

Proof. (1) Suppose that γGi (N) ⊆ Di(N) for i ≥ 2. Since Di(N) ⊆ 1 + I(N)i, it follows that if i ≥ 2 then
I(γGi (N)) ⊆ I(N)i and hence, using (1.7) we have

Js(N,G) = I(N)sI(G) +

s∑

i=2

I(N)s+i−1I(γGi (N))kG ⊆ I(N)sI(G) + I(N)s+1kG ⊆ I(N)sI(G).

This, together with (1.5), completes the proof.
(2) Suppose that [G,N ] ⊆ Np. Then γG2 (N) = [G,N ] ⊆ Np ⊆ D2(N). Then arguing by induction on

i, for every i ≥ 3 we obtain γGi (N) = [γGi−1(N), N ] ⊆ [Di−1(N),D1(N)] ⊆ Di(N), because (Di(N))i is an
Np-series. �

1.3. Canonical subquotients and maps. Let G be a class of groups. Roughly speaking, we say that a
certain assignation defined on G is canonical if it “depends only on the isomorphism type of kG as k-algebra”.
More precisely, suppose that for each G in G we have associated a subquotient UG of kG as k-space. We say
that G 7→ UG is canonical in G if every isomorphism k-algebras ψ : kG→ kH, with G and H in G, induces

an isomorphism ψ̃ : UG 7→ UH in the natural way. If (G 7→ U
(x)
G )x∈X is a family of canonical subquotients

in G then we also say that G 7→∏
x∈X U

(x)
G is canonical in G. In this case every isomorphism ψ : kG→ kH

with G and H in G induces an isomorphism
∏
x∈X U

(x)
G →∏

x∈X U
(x)
H in the natural way.

Lemma 1.8. The following assignations are canonical in the class of p-groups:

• G 7→ I(Ωn(G : G′))kG.
• G 7→ I(Ωn(G : Z(G)G′))kG.

Proof. See [8, Proposition 2.3(1) and Lemma 3.6]. �

Lemma 1.9. [8, Theorem 4.2(1)] The assignation G 7→ I(CG(G′))kG is canonical in the class of p-groups
with cyclic derived subgroup and p odd.

We note that, if G 7→ I(NG)kG is canonical in G, where NG is a normal subgroup of G, then an easy
induction on n shows that G 7→ Jn(NG, G)) is canonical in G too.

Now suppose that for each G in G we have associated a map fG : UG → VG, with U and V products of
canonical subquotients in G. We say that G 7→ fG is canonical if for every isomorphism ψ : kG → kH the
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following square is commutative

UG

ψ̃

��

fG // VG

ψ̃

��
UH

fH

// VH

For example, the assignation G 7→ ΛnG described above is canonical in the class of finite p-groups, and so is
G 7→ ∆G, where ∆G is the natural projection:

∆G :
I(G′)kG

I(G′)I(G)
−→ I(G′)kG+ I(G)3

I(G)3
, x+ I(G′)I(G) 7→ x+ I(G)3.

Observe that ∆G is well defined homomorphism of k-algebras because I(G′) ⊆ I(G)2.
In order to simplify notation, instead of writing “G 7→ AG is canonical” we just write “AG is canonical”,

where AG is either a product of subquotients or a map between canonical products of subquotients.
For mnemonic purposes we use variations of the symbols Λn and Υn for maps of the kind x 7→ xp

n

.
Moreover we will encounter a number of projection maps of the kind x + I 7→ x + J for ideals I ⊆ J , for
which we use variations of the symbols ∆, ζ and ν, with the hope they help the reader to recall the domain:
∆ refers to derived subgroup, ζ to center and ν to some normal subgroup N . Other projection maps are
denoted with variations of π and η.

2. 2-generated finite p-groups with cyclic derived subgroup

The non-abelian 2-generated finite p-groups with cyclic derived subgroup have been classified in [4] in terms
of numerical invariants. For the reader’s convenience, we include in the following theorem a simplification
of this classification for the case p > 2.

Theorem 2.1 ([4]). For a list of non-negative integers I = (p,m, n1, n2, o1, o2, o
′
1, o
′
2, u1, u2) where p > 2 is

a prime number, let GI be the group defined by

GI =
〈
b1, b2, a = [b2, b1] | apm = 1, abi = ari , bp

ni

i = auip
m−o′i

〉
,

where

(2.1) r1 = 1 + pm−o1 and r2 =

{
1 + pm−o2 , if o2 > o1;

rp
o1−o2

1 , otherwise.

Then I 7→ [GI ], where [GI ] denotes the isomorphism class of GI , defines a bijection between the set of lists
of integers (p,m, n1, n2, o1, o2, o

′
1, o
′
2, u1, u2) satisfying conditions (I)-(V I), and the isomorphism classes of

2-generated non-abelian groups of odd prime-power order with cyclic derived subgroup.

(I) p is prime and n1 ≥ n2 ≥ 1.
(II) 0 ≤ oi < min(m,ni), 0 ≤ o′i ≤ m− oi and p - ui for i = 1, 2.

(III) One of the following conditions holds:
(a) o1 = 0 and o′1 ≤ o′2 ≤ o′1 + o2 + n1 − n2.
(b) o2 = 0 < o1, n2 < n1 and o′1 + min(0, n1 − n2 − o1) ≤ o′2 ≤ o′1 + n1 − n2.
(c) 0 < o2 < o1 < o2 + n1 − n2 and o′1 ≤ o′2 ≤ o′1 + n1 − n2.

(IV ) o2 + o′1 ≤ m ≤ n1 and one of the following conditions hold:
(a) o1 + o′2 ≤ m ≤ n2.
(b) 2m− o1 − o′2 = n2 < m and u2 ≡ 1 mod pm−n2 .

(V ) 1 ≤ u1 ≤ pa1 , where a1 = min(o′1, o2 + min(n1 − n2 + o′1 − o′2, 0)).
(V I) One of the following conditions holds:

(a) 1 ≤ u2 ≤ pa2 .
(b) o1o2 6= 0, n1 − n2 + o′1 − o′2 = 0 < a1, 1 + pa2 ≤ u2 ≤ 2pa2 , and u1 ≡ 1 mod p;

where

a2 =





0, if o1 = 0;

min(o1, o
′
2, o
′
2 − o′1 + max(0, o1 + n2 − n1)), if o2 = 0 < o1;

min(o1 − o2, o
′
2 − o′1), otherwise.
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For every non-abelian 2-generated finite p-group Γ with cyclic derived subgroup and p odd, let inv(Γ)
denote the unique list satisfying the conditions of the previous theorem such that Γ is isomorphic to Ginv(Γ).
An explicit description of inv(Γ) can be found in [4] and also in [8]. In these references the list inv(Γ) has
two additional entries σ1 and σ2 which for p > 2 always equal 1, so we drop them.

In this section Γ is a 2-generated finite p-group with cyclic derived subgroup, and we set

inv(Γ) = (p,m, n1, n2, o1, o2, o
′
1, o
′
2, u1, u2).

Hence Γ is given by the following presentation

Γ =
〈
b1, b2 | a = [b2, b1], abi = ari , bp

ni

i = auip
m−o′i

〉
,

where r1 and r2 are as in (2.1). By [8, Lemma 3.5],

(2.2) γn(Γ) =
〈
ap

(n−2)(m−max(o1,o2))
〉
, for n ≥ 2.

In particular [Γ,Γ′] = γ3(Γ) ⊆ 〈ap〉 = (Γ′)p, and hence, by Lemma 1.7,

Jn(Γ′,Γ) = I(Γ′)nI(Γ) for every n ≥ 1.

By [8, Lemma 2.2], there is a unique integer δ satisfying

(2.3) 1 ≤ δ ≤ po1 and S
(
r2 | δpm−o1

)
≡ −pm−o1 mod pm.

Moreover, p - δ. By [8, Lemma 3.7]

(2.4) Z(Γ) =
〈
bp

m

1 , bp
m

2 , c
〉
, where c =

{
bδp

m−o2

1 a, if o1 = 0;

b−δp
m−o2

1 bδp
m−o1

2 a, otherwise.

Observe that

(2.5) n < ni implies bp
n

i 6∈ Dpn+1(Γ)Γ′, for i = 1, 2.

Furthermore, for every n ≥ 0,

(2.6) Dpn(Γ) = Γp
n

.

To prove this t suffices to show that ipj ≥ pn implies γi(Γ)p
j ⊆ Γp

n

. This is clear if j ≥ n. Otherwise, j < n,

i ≥ 2 and i−2 ≥ pn−j−2 ≥ n−j, since p ≥ 3. Using (2.2) we obtain that γi(Γ)p
j

=
〈
ap

j+(i−2)(m−max(o1,o2))
〉
⊆

〈
ap

n〉 ⊆ Γp
n

. Thus (2.6) follows.
Moreover,

(2.7) n1 = m implies o1o2 = 0.

To see this, observe that if o1o2 > 0 and n1 = m then m > n2 by condition (III), so n2 = 2m − o1 − o′2
by condition (IV ). Thus, by conditions (II) and (III), o1 − o2 < n1 − n2 = o1 + o′2 − m ≤ o1 − o2, a
contradiction.

In the rest of this section we assume the following:

(2.8) o1 6= o2, 0 < max(o′1, o
′
2) < m and n2 ≥ 2.

In the next section we will see that this is the only case of interest, as if any of these conditions fails, then
the Modular Isomorphism Problem has a positive solution for Γ.

Observe that if n < m − 1 then I(Γ′)p
n

kΓ/I(Γ′)p
n

I(Γ) is a one-dimensional k-space generated by the
class of ap

n − 1. Moreover the image of ∆Γ is spanned by a − 1 + I(Γ)3. As p is odd, Γp = D3(Γ), and as
max(o′1, o

′
2) < m, a 6∈ Γp. Thus a− 1 6∈ I(Γ)3. Then, we have the following

Lemma 2.2. ∆Γ is an isomorphism.

Lemma 2.3. Ĉ ∈ I(Γ)(p−1)pm for each non-central conjugacy class C of Γ.
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Proof. By hypothesis o′i > 0 for some i ∈ {1, 2}. In that case m ≤ ni + o′i − 1, by condition (IV ). Thus, it

is enough to show that if o′i > 0, then Ĉ ∈ I(Γ)(p−1)pni+o′i−1

.
If x is an indeterminate over k and n ≥ 1 then we have

pn−1∑

i=1

xi =
xp

n − 1

x− 1
= (x− 1)p

n−1.

Hence, using Lemma 1.1 for each C ∈ Cl(Γ) such that |C| > 1, and g ∈ C, there exists 0 ≤ n < m such that

Ĉ =

pm−n−1∑

i=0

aip
n

g = (ap
n − 1)p

m−n−1g = (ap
n − 1)(p−1)pm−n−1

(ap
n − 1)p

m−n−1−1g

= (ap
m−1 − 1)(p−1)(ap

n − 1)p
m−n−1−1g,

and this element belongs to I(Γ)(p−1)pni+o′i−1

, as the hypothesis o′i > 0 implies

ap
m−1

= bp
ni+o′i−1

i ∈ D
pni+o′

i
−1(Γ).

�

In the remainder of the section we consider a series of subquotients of kΓ and maps which, by construction,
are canonical in the class of 2-generated finite p-groups with cyclic derived subgroup satisfying (2.8), and
will play a central rôle in the proof of our main results.

Recall from [11, Lemma 6.10] that

(2.9) Z(I(Γ)) = I(Z(Γ))⊕


 ⊕

C∈Cl(Γ),|C|>1

kĈ


 .

Observe that as oi < m for i = 1, 2, c ∈ D2(Γ), where c is as in (2.4), hence c−1 ∈ I(Γ)2. Then Lemma 2.3
and (2.9) yield

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
=

I(Z(Γ)) + I(Γ)p
m

I(Γ)pm

=
k(c− 1) + k(c− 1)2 + · · ·+ k(c− 1)

pm−1
2 + I(Γ)p

m

I(Γ)pm
.

(2.10)

Hence,

Z(I(Γ)) + I(Γ)3

I(Γ)3
=
k(a− 1) + I(Γ)3

I(Γ)3

since c− a ∈ I(Γ)3, and, for o = max(o1, o2),

(2.11)
Z(I(Γ)) + I(Γ)p

m−o+1 + I(Γ′)kΓ

I(Γ)pm−o+1 + I(Γ′)kΓ
=





k(bp
m−o2

1 −1)+I(Γ)p
m−o2+1+I(Γ′)kΓ

I(Γ)p
m−o2+1+I(Γ′)kΓ

, if o1 = 0;

k(bp
m−o1

2 −1)+I(Γ)p
m−o1+1+I(Γ′)kΓ

I(Γ)p
m−o1+1+I(Γ′)kΓ

, if o1 6= 0.

This subquotient of kΓ is one-dimensional by (2.5) and [6, Lemma 4.10].
Then we consider the canonical maps

ζ1
Γ :

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
→ Z(I(Γ)) + I(Γ)3

I(Γ)3
, w + I(Γ)p

m 7→ w + I(Γ)3,

and

ζ2
Γ :

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
→ Z(I(Γ)) + I(Γ)p

m−o+1 + I(Γ′)kΓ

I(Γ)pm−o+1 + I(Γ′)kΓ
, w + I(Γ)p

m 7→ w + I(Γ)p
m−o+1 + I(Γ′)kΓ.
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It is immediate that for x1, . . . , x(pm−1)/2 ∈ k,

ζ1
Γ




pm−1
2∑

i=1

xi(c− 1)i + I(Γ)p
m


 = x1(a− 1) + I(Γ)3

and

ζ2
Γ




pm−1
2∑

i=1

xi(c− 1)i + I(Γ)p
m


 =

{
x1(bp

m−o2

1 − 1) + I(Γ)p
m−o+1 + I(Γ′)kΓ, if o1 = 0;

x1δ(b
pm−o1

2 − 1) + I(Γ)p
m−o+1 + I(Γ′)kΓ, if o1 6= 0.

The first implies that Im (ζ1
Γ) = Im (∆Γ).

For each n ≥ 1 let

CΓ =
I(CΓ(Γ′))kΓ + I(Γ)2

I(Γ)2
=

{
k(b1−1)+I(Γ)2

I(Γ)2 , if o1 = 0;
k(b2−1)+I(Γ)2

I(Γ)2 , if o1 6= 0.

Then

(2.12) ΛnΓ(CΓ) =





k(b1−1)p
n

+I(Γ)p
n+1

I(Γ)pn+1 , if o1 = 0;

k(b2−1)p
n

+I(Γ)p
n+1

I(Γ)pn+1 , if o1 6= 0.

Let Λ̃nΓ : CΓ → ΛnΓ(CΓ) be the restriction of ΛnΓ to CΓ. By (2.5),

(2.13) if either o1 = 0 and n < n1 or o1 6= 0 and n < n2, then Λ̃nΓ is an isomorphism.

Observe that m− o < ni for i = 1, 2. Indeed, if m− o ≥ ni then, as o > 0 and o′2 < m, by condition (2.8),

i = 2 and n2 = 2m− o1 − o′2 > m− o1 ≥ m− o, a contradiction. Thus Λ̃m−oΓ is an isomorphism and hence

Λm−oΓ (CΓ) is one-dimensional. Therefore we have isomorphisms

CΓ
Λ̃m−o

Γ−→ Λm−oΓ (CΓ)
πΓ−→ Z(I(Γ)) + I(Γ)p

m−o+1 + I(Γ′)kΓ

I(Γ)pm−o+1 + I(Γ′)kΓ
(2.14)

where πΓ is another natural projection, i.e. πΓ

(
x+ I(Γ)p

m−o+1
)

= x+ I(Γ)p
m−o+1 + I(Γ′)kΓ.

3. Proof of the main results

Recall that p is an odd prime integer and k the field with p elements. For the remainder of the paper,
we fix the following notation. Let G denote a 2-generated finite p-group with cyclic derived subgroup, let
H denote another group and let ψ : kG → kH be an isomorphism of k-algebras. By [8, Theorem C], H is
2-generated with cyclic derived subgroup, and inv(G) and inv(H) coincide in all but the last entries. So we
may write

inv(G) = (p,m, n1, n2, o1, o2, o
′
1, o
′
2, u

G
1 , u

G
2 ) and inv(H) = (p,m, n1, n2, o1, o2, o

′
1, o
′
2, u

H
1 , u

H
2 ).

To give a positive answer to the Modular Isomorphism Problem in this case we should prove that G ∼= H, or
equivalently that uGi = uHi for i = 1, 2. Unfortunately, we are only able to prove the statement of Theorem B,
namely that uG2 ≡ uH2 mod p and, under some extra assumptions, that uG1 ≡ uH1 mod p.

By statements (2) and (3) of Lemma 1.2, we may assume that the groups G and H are not metacyclic,
and both are of class at least 3. The first is equivalent to max(o1, o2) > 0 and the second is equivalent to
max(o′1, o

′
2) < m. In particular, m ≥ 2. Moreover n2 ≥ 2, as otherwise n2 < m and condition (IV ) yields

1 = n2 = 2m−o1−o′2, but this last quantity is strictly greater than 1 because max(o1, o
′
2) < m, by condition

(II) and since Γ is not metacyclic. We also have that o1 6= o2 by condition (III). Finally, if o′i = 0 for some
i ∈ {1, 2}, then uGi = 1 = uHi by conditions (V ) and (V I); therefore we can assume that max(o′1, o

′
2) > 0.

Thus the conditions in (2.8) hold, so we can freely use the statements of the previous section.
In order to deal with G and H simultaneously, in the remainder of the paper Γ denotes a 2-generated

finite p-group with cyclic derived subgroup such that

inv(Γ) = (p,m, n1, n2, o1, o2, o
′
1, o
′
2, u

Γ
1 , u

Γ
2 ).
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3.1. Proof of Theorem B. Recall that o = max(o1, o2). We let

NΓ =

{
Ωm−o−1(Γ : Z(Γ)Γ′), if either o1 = 0 or o2 = 0 and o′1 ≥ o′2;

Ωn2−1(Γ : Γ′), otherwise

and

NΓ =
I(NΓ)kΓ ∩ I(Γ)p

I(NΓ)I(Γ)
.

By Lemma 1.8, the subquotients I(NΓ)kΓ, Jn(NΓ,Γ) and NΓ are canonical. Moreover,

(3.1) NΓ = 〈a, d, e〉 , where (d, e) =





(bp1, b
po2+1

2 ), if o1 = 0;

(bp2, b
po1+1

1 ), if o2 = 0 and o′1 ≥ o′2;

(bp2, b
pn1−n2+1

1 ), otherwise;

and NΓ is spanned by the classes of d− 1 and e− 1.

Lemma 3.1. For every n ≥ 0, Jn(NΓ,Γ) = I(NΓ)nI(Γ).

Proof. Suppose first that either o1 = 0 or o2 = 0 and o′1 ≥ o′2. Then γΓ
1 (NΓ) = Γ, γΓ

2 (NΓ) = (Γ′)p, and
γΓ
i (NΓ) = 1 for i ≥ 3. Since Γ′ ⊆ NΓ and , it follows that

I(NΓ)n−1I((Γ′)p)kΓ ⊆ I(NΓ)n−1+pkΓ ⊆ I(NΓ)nI(Γ).

Then the desired equality follows from (1.7).
Suppose that o1 6= 0 and either o2 6= 0 or o′1 < o′2. Then again γΓ

1 (NΓ) = Γ, γΓ
2 (NΓ) = (Γ′)p and

I(NΓ)n−1I((Γ′)p)kΓ ⊆ I(NΓ)nI(Γ). For i ≥ 3, an easy induction argument, using the description of NΓ in

(3.1), shows that γΓ
i (NΓ) = (Γ′)p

1+(i−2)k

, where k = n1 − n2 + 1 + m − o1 if o2 = 0, and k = 1 + m − o2

otherwise. Either way k ≥ 2 and hence

I(NΓ)n+1−iI(γΓ
i (NΓ))kΓ ⊆ I(NΓ)n+1−iI((Γ′)p

1+(i−2)k

)kΓ ⊆ I(NΓ)n+1−i+p1+(i−2)k

kΓ ⊆ I(NΓ)nI(Γ).

Then again (1.7) yields the desired equality. �

Denote

` =

{
n1 + o′1 − 2, if o1 = 0;

n2 + o′2 − 2, otherwise.

Combining Lemma 3.1 and (1.2) and using regularity it is easy to obtain

(3.2) Γ ∩ (1 + Jp
`

(NΓ,Γ)) = 1.

The next lemma covers most cases of Theorem B.

Lemma 3.2. The following hold:

(1) uG2 ≡ uH2 mod p.
(2) If o1o2 = 0 then uG1 ≡ uH1 mod p.

Proof. Let t ∈ {1, 2} with t = 2 in case o1o2 6= 0, and let s be the other element of {1, 2}, i.e. {s, t} = {1, 2}.
We have to prove that uGt ≡ uHt mod p. If at = 0 then uGt = uGt = 1, so we assume that at 6= 0. In
particular, o′t > 0 and os > 0. Therefore

t =

{
1, if o1 = 0;

2, otherwise.

So, ` = nt + o′t − 2. If t = 1 then n1 + o′1 + o2 > n2 + o′2, by condition (V ), as a1 > 0. If t = 2 and o′1 ≥ o′2
then, by condition (V I), o′2− o′1 ≤ 0 < a2 ≤ o′2− o′1 + max(0, o1 +n2−n1) and hence n1 + o′1 < n2 + o′2 + o1

and o2 = 0.
We claim that for x, y ∈ k

(3.3) Λ`NΓ
(x(d− 1) + y(e− 1) + I(NΓ)I(Γ)) = xuΓ

t (ap
m−1 − 1) + Jp

`

(NΓ,Γ).
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Indeed, if t = 1 then o1 = 0, o′1 > 0, n1 + o′1 + o2 > n2 + o′2, ` = n1 + o′1 − 2, d = bp1 and e = bp
o2+1

2 . Thus

Λ`NΓ
(x(d− 1) + y(e− 1) + I(NΓ)I(Γ)) = x(bp

n1+o′1−1

1 − 1) + y(bp
n1+o′1+o2−1

2 − 1) + Jp
`

(NΓ,Γ)

= xuΓ
1 (ap

m−1−1 − 1) + Jp
`

(NΓ,Γ).

Suppose that t = 2. Then o′2 > 0, o1 > 0 and ` = n2+o′2−2. If o′2 ≤ o′1 then o2 = 0 and n2+o′2+o1 > n1+o′1,
and (3.3) follows as in the previous case. If o′2 > o′1 then

Λ`NΓ
(x(d− 1) + y(e− 1) + I(NΓ)I(Γ)) = x(bp

n2+o′2−1

2 − 1) + y(bp
n1+o′2−1

1 − 1) + Jp
`

(NΓ,Γ)

= xuΓ
2 (ap

m−1−1 − 1) + Jp
`

(NΓ,Γ).

This finishes the proof of (3.3).

By (3.2) and (3.3), Λ`NΓ
(NΓ) is one dimensional spanned by the class of ap

m−1 − 1. Moreover, as o′t > 0,

au
Γ
t p

m−1

= dp
` ∈ Np`

Γ and hence the natural projection defines an isomorphism

∆′Γ :
I(Γ′)p

m−1

kΓ

I(Γ′)pm−1I(Γ)
→ Λ`NΓ

(NΓ).

Using (3.1) and (2.12) it is easy to see that the natural projections

ηΓ : NΓ →
I(NΓ)kΓ + I(Γ)p+1

I(Γ′)kΓ + I(Γ)p+1
and Λ1

Γ(CΓ)→ I(NΓ)kΓ + I(Γ)p+1

I(Γ′)kΓ + I(Γ)p+1

make sense, their images coincide and the second map is injective. Thus the natural projection induces
an isomorphism Λ1

Γ(CΓ) → ηΓ(NΓ). On the other hand, by (2.13), Λ̃1
Γ : CΓ → Λ1

Γ(CΓ) is an isomorphism.
Composing these isomorphisms we obtain an isomorphism

Λ̂1
Γ : CΓ → Im (ηΓ), w + I(Γ)2 7→ wp + I(Γ′)kΓ + I(Γ)p+1.

This provides another canonical map

νΓ = (Λ̂1
Γ)−1 ◦ ηΓ : NΓ → CΓ, w + I(NΓ)I(Γ) 7→ (Λ̂1

Γ)−1(w + I(Γ′)kΓ + I(Γ)p+1).

Define the linear map

µΓ : CΓ →
I(Γ′)p

m−1

kΓ

I(Γ′)pm−1I(Γ)

sending the class of x(bt − 1) to the class of xuΓ
t (ap

m−1 − 1). A straightforward calculation shows that the
following diagram commutes.

NΓ

νΓ

��

(∆′Γ)−1◦Λp`

NΓ // I(Γ′)p
m−1

kΓ

I(Γ′)pm−1 I(Γ)

CΓ
µΓ

77

As the vertical map is surjective, µΓ is the unique map making the previous commutative. Then µΓ is
canonical, since the other maps in the diagram are so.

Consider the following equation where X stands for an element of k.

(3.4) X ·
(

Λp
m−1

Γ′ ◦∆−1
Γ ◦ ζ1

Γ

)
= µΓ ◦ (Λ̃p

m−o

Γ )−1 ◦ π−1
Γ ◦ ζ2

Γ.

Here, given a map f with codomain in a vector space over k and x ∈ k, x · f denotes the map given by
(x · f)(w) = xf(w), for each w in the domain of f . The unique solution for equation (3.4) is X = δuΓ

t 1k.
Since all the maps involved are canonical, the solution when Γ = G coincides with the solution when Γ = H.
Furthermore, p - δ and thus uGt ≡ uHt mod p, as desired. �

Most of the remaining cases of Theorem B are covered by the next lemma.

Lemma 3.3. If n1 + o′1 6= n2 + o′2, then uG1 ≡ uH1 mod p.

Page 46
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Proof. By Lemma 3.2 we may assume that o1o2 6= 0. Hence condition (III) and the hypothesis imply
n1 + o′1 > n2 + o′2. As in the proof of Lemma 3.2 we may assume that a1 > 0 and hence o′1 > 0. Consider
the subgroup

MΓ = Ωn2−m+o1(Γ : Γ′) =
〈
bp

n1−n2+m−o1

1 , bp
m−o1

2 , a
〉
.

Recall that c = b−δp
m−o2

1 bδp
m−o1

2 a and Z(I(Γ))+I(Γ)p
m

I(Γ)pm
is spanned by the classes of c−1, (c−1)2, . . . , (c−1)

pm−1
2 .

The natural projection

ζ3
Γ :

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
→ Z(I(Γ)) + I(Γ)p

m−o2+1 + I(MΓ)kΓ

I(Γ)p
m−o2+1 + I(MΓ)kΓ

maps the class of x(c−1)+y(c−1)2 + . . . to the class of −xδ(bp
m−o2

1 −1), which is non-zero if x 6= 0 because
n1 − n2 +m− o1 > m− o2. So Im (ζ3

Γ) is 1-dimensional.
Now consider the composition

Λ̂m−o2

Γ :
I(Γ)

I(Γ)2

Λ
m−o2
Γ−→ I(Γ)p

m−o2

I(Γ)p
m−o2+1

−→ I(Γ)p
m−o2

+ I(MΓ)kΓ

I(Γ)p
m−o2+1 + I(MΓ)kΓ

where the second map is the natural projection. It maps x(b1−1)+y(b2−1) to x(bp
m−o2

1 −1), so Im (Λ̂m−o1

Γ ) =
Im (ζ3

Γ).

The image of Λ
n1+o′1−1
Γ is the subspace of I(Γ)p

n1+o′1−1

/I(Γ)p
n1+o′1−1+1 spanned by the class of ap

m−1 − 1.
It coincides with the image of the natural projection

I(Γ′)p
m−1

kΓ

I(Γ′)pm−1I(Γ)
→ I(Γ)p

n1+o′1−1

I(Γ)p
n1+o′1−1+1

.

Thus this natural projection yields an isomorphism ∆̃Γ : I(Γ′)p
m−1

kΓ

I(Γ′)pm−1 I(Γ)
→ Im (Λ

n1+o′1−1
Γ ).

Let µΓ : Im (ζ3
Γ)→ I(Γ′)p

m−1
kΓ

I(Γ′)pm−1 I(Γ)
be the map that sends the class of x(bp

m−o1

1 −1) to the class of xu1(ap
m−1−

1). Then it is easy to see that the following diagram commutes

I(Γ)
I(Γ)2

∆̃−1
Γ ◦Λ

n1+o′1−1

Γ //

Λ̂
m−o2
Γ

��

I(Γ′)p
m−1

kΓ

I(Γ′)pm−1 I(Γ)

Im (ζ3
Γ)

µΓ

66

As the vertical map is surjective, µΓ is the unique map making the previous commutative, so µΓ is canonical.
Then −δuΓ

1 1k is the unique solution of the equation

X · (Λp
m−1

Γ′ ◦∆−1
Γ ◦ ζ1

Γ) = µΓ ◦ ζ3
Γ.

Arguing as at the end of the proof of Lemma 3.2 we conclude that uG1 ≡ uH1 mod p. �

The proof of Lemma 3.3 fails if n1 +o′1 = n2 +o′2, because in that case ker(Λ̂m−o2

Γ ) 6⊆ ker(∆−1
Γ ◦Λ

n1+o′1−1
Γ ),

and hence there is no map µΓ such that µΓ ◦ Λ̂m−o2

Γ = ∆−1
Γ ◦Λ

n1+o′1−1
Γ . However, some special subcases can

be handled with slight modifications of the previous arguments.
For a non-negative integer n define the map

Υn
Γ :

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
−→ Z(I(Γ)) + I(Γ)p

n+m

+ I(Γ′)p
m−1

I(Γ)

I(Γ)pn+m + I(Γ′)pm−1I(Γ)

w + I(Γ)p
m 7→ wp

n

+ I(Γ)p
n+m

+ I(Γ′)p
m−1

I(Γ).

It is well defined because the elements of Z(I(Γ)) are central.

Lemma 3.4. If o1o2 > 0, n1 + o′1 = n2 + o′2 = 2m − o1 and uG2 ≡ uH2 ≡ 1 mod po1+1−o2 , then uG1 ≡ uH1
mod p.
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Proof. As in previous proofs we may assume that a1 6= 0 and hence 0 < o′1. As o1o2 > 0 implies n1 > n2,

necessarily 1 ≤ o′1 < o′2. Recall that Z(Γ) =
〈
bp

m

1 , bp
m

2 , c
〉

, where c = b−δp
m−o2

1 bδp
m−o1

2 a.

We claim that

(3.5) (δuΓ
2 + 1)pm+o2−o1−1 ≡ 0 mod pm.

To prove this, it suffices to show that δ ≡ −1 mod po1+1−o2 . As vp(r2 − 1) = m − o2, m − o1 ≥ 1 =
m + 1 − o2 − vp(r2). Hence [4, Lemma A.2] yields S (r2 | δpm−o1) ≡ δpm−o1 mod pm+1−o2 . Thus (2.3)
implies that δ ≡ −1 mod po1+1−o2 . This proves (3.5).

Next we claim that

(3.6) cp
n1+o′1−1−m+o2

= a−δu
Γ
1 p

m−1

.

Indeed, first observe that condition implies

(3.7) n1 + o′1 − 1 = 2m− o1 − 1 ≥ 2m− o2 + n2 − n1 = 2m− o2 − o′2 + o′1 ≥ 2m− o2 − o′2 ≥ m− o2.

Thus the exponent in the left side of (3.6) is a positive integer. Observe that
〈
bp

m−o2

1 , bp
m−o1

2 , a
〉

is a regular group with derived subgroup
〈
ap

2m−o1−o2
〉

. As m − o′2 + 2m − o1 − o2 = 3m − o1 − o2 − o′2 ≥
2m− o1 > m (since o2 + o′2 ≤ m), we derive that

cp
m−o′2 = b−δp

2m−o2−o′2
1 bδp

2m−o1−o′2
2 ap

m−o′2 = b−δp
2m−o2−o′2

1 bδp
n2

2 ap
m−o′2 = b−δp

2m−o2−o′2
1 a(δuΓ

2 +1)pm−o′2 .

As bp
2m−o2−o′2

1 ∈ Z(Γ) and recalling (3.7) we get

cp
n1+o′1−1−m+o2

= (cp
m−o′2 )p

n1+o′1−1−(2m−o2−o′2)

= b−δp
n1+o′1−1

1 a(δuΓ
2 +1)pn1+o′1−1−m+o2

= a−δu
Γ
1 p

m−1

a(δuΓ
2 +1)pm+o2−o1−1

= a−δu
Γ
1 p

m−1

,

where the last equality follows from (3.5). This proves (3.6).

Using (3.6) we obtain that Υ
n1+o′1+o2−m−1
Γ maps the class of

∑ p−1
2

i=1 xi(c − 1)i, with xi ∈ k, to the class

of −x1δu
Γ
1 (ap

m−1 − 1). If x1 6= 0, then the latter is not the class zero, by Lemma 1.4. Then the natural

projection defines an isomorphism πΓ : I(Γ′)p
m−1

kΓ

I(Γ′)pm−1 I(Γ)
→ Im (Υ

n1+o′1+o2−m−1
Γ ). So we have a canonical map

π−1
Γ ◦Υ

n1+o′1+o2−m−1
Γ :

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
→ I(Γ′)p

m−1

kΓ

I(Γ′)pm−1I(Γ)
,

mapping the class of
∑ p−1

2
i=1 xi(c − 1)i to the class of x1(−δuΓ

1 )(ap
m−1 − 1). But we also have the canonical

map

Λm−1
Γ′ ◦∆−1

Γ ◦ ζ1
Γ :

Z(I(Γ)) + I(Γ)p
m

I(Γ)pm
→ I(Γ′)p

m−1

kΓ

I(Γ′)pm−1I(Γ)

that maps the class of
∑ p−1

2
i=1 xi(c − 1)i to the class of x1(ap

m−1 − 1). Thus the unique element x ∈ k such

that π−1
Γ ◦Υ

n1+o′1+o2−m−1
Γ = x · (Λm−1

Γ′ ◦∆−1
Γ ◦ ζ1

Γ) is −δuΓ
1 1k. Since all the maps are canonical, this has to

be the same for Γ = G and Γ = H. Hence uG1 ≡ uH1 mod p. �

Theorem B follows at once from Lemmas 3.2, 3.3 and 3.4.

3.2. Proof of Theorem A. Since ψ(I(G′)kG) = I(H ′)kH, we have that ψ(I((G′)p
n

)kG) = I((H ′)p
n

)kH
for each n ≥ 1. Hence ψ induces isomorphims ψn : k(G/(G′)p

n

)→ k(H/(H ′)p
n

).

We first proof Theorem A(1). By (2.2), γ3(G) = (G′)p
m−max(o1,o2)

. Hence, ψm−max(o1,o2)+1 is an iso-
morphism k(G/γ3(G)p) ∼= k(H/γ3(H)p). Hence we can assume that |γ3(G)| = |γ3(H)| = p, so necessarily
max(o1, o2) = 1. This means that {o1, o2} = {0, 1}, by condition (III). Thus a1 ≤ o2 and a2 ≤ o1. Then
1 ≤ uΓ

i < p for i ∈ {1, 2} and Γ ∈ {G,H} by conditions (V ) and (V I). Therefore uG1 = uH1 and uG2 = uH2 by
Theorem B, and the result follows. This proves Theorem A(1).
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To prove Theorem A(2) we need one more result, which allows us to recover uΓ
i modulo a higher power

of p in very special situations (see Lemma 3.5). For that, we define

qΓ = min{n ≥ 0 : Ω1(Γ′) ∩Dpn(Γ) = 1}.
We claim that

(3.8) qΓ =





m, if o′1 = o′2 = 0;

n2 + o′2, if 0 = o′1 < o′2;

max(n1 + o′1, n2 + o′2), if o′1 > 0.

Indeed, first recall that n1 ≥ m by condition (IV ). Moreover, n2 + o′2 ≥ m, since otherwise, by the same
condition, n2 = 2m − o1 − o′2, so m < 2m − o1 = n2 + o′2 ≤ m, a contradiction. Clearly, m ≤ qΓ, since

1 6= ap
m−1 ∈ Ω1(Γ′) ∩ Dpm−1(Γ). Moreover, using regularity and (2.6) we derive that if n ≥ m, then

Dpn(Γ) =
〈
bp

n

1 , bp
n

2

〉
. If o′1 = o′2 = 0, then Dpm(Γ)∩Ω1(Γ′) = 1, so qΓ = m. Suppose that 0 = o′1 < o′2. Then

ap
m−1 ∈ D

pn2+o′2−1(Γ), but D
pn2+o′2 (Γ) =

〈
bp

n2+o′2
1

〉
, which does not intersect with Γ′. Thus qΓ = n2 + o′2.

Finally suppose that o′1 > 0. Then ap
m−1 ∈ D

pmax(n1+o′1,n2+o′2)−1(Γ) because if n2 + o′2 > n1 + o′1 then o′2 > 0

since n1 ≥ n2. As D
pmax(n1+o′1,n2+o′2)(Γ) = 1, we conclude that qΓ = max(n1 + o′1, n2 + o′2). This finishes the

proof of (3.8).

Lemma 3.5. Let t be a positive integer such that t ≤ 2m− 1− qG.

(1) Suppose that o1 = 0 and n1 = 2m− o2 − o′1. If uG1 ≡ uH1 ≡ −1 mod pt, then uG1 ≡ uH1 mod pt+1.
(2) Suppose that o2 = 0 and n2 = 2m− o1 − o′2. If uG2 ≡ uH2 ≡ 1 mod pt, then uG2 ≡ uH2 mod pt+1.

Proof. Suppose first that the hypotheses of (1) hold. If a1 ≤ t then uG1 = uH2 = −1 + pa1 . Thus we may
assume that t < a1 and in particular t < o′1. Then qΓ = max(n1 +o′1, n2 +o′2). Write uΓ

1 = −1+vΓ
1 p

t. Recall

that Z(Γ) =
〈
bp

m

1 , bp
m

2 , c = bp
m−o2

1 a
〉

, by (2.4). As o1 = 0, [b1, a] = 1 and hence

(bp
m−o2

1 a)p
m−o′1 = bp

n1

1 ap
m−o′1 = a(uΓ

1 +1)pm−o′1 = av
Γ
1 p

m−o′1+t

.

Therefore

(bp
m−o2

1 a)p
m−t−1

= ((bp
m−o2

1 a)p
m−o′1 )p

o′1−t−1

= av
Γ
1 p

m−1

.

Then Υm−t−1
Γ maps the class of x(c − 1) + y(c − 1)2 + . . . to the class of xvΓ

1 (ap
m−1 − 1). Observe that

ap
m−1 6∈ D2m−t−1(Γ) since 2m− t−1 ≥ qΓ. Hence (ap

m−1 −1) 6∈ I(Γ)p
2m−t−1

+I(Γ′)p
m−1

I(Γ), by Lemma 1.4.
Thus Im (Υm−t−1

Γ ) has dimension 1, and the natural projection

ωΓ :
I(Γ′)p

m−1

kΓ

I(Γ′)pm−1I(Γ)
→ Im (Υm−t−1

Γ )

is an isomorphism. If x ∈ k, then

(ωΓ)−1 ◦Υm−t−1
Γ = x · (Λm−1

Γ′ ◦∆−1
Γ ◦ ζ1

Γ)

if and only if x = vΓ
1 · 1k. As this holds both for Γ = G and for Γ = H and all the maps are canonical, we

conclude that vG1 ≡ vH1 mod p, so uG1 ≡ uH1 mod pt+1. This finishes the proof of (1).
Under the assumptions of (2), the congruence in (2.3) yields δ ≡ −1 mod po1 , and hence Z(Γ) =〈
bp

m

1 , bp
m

2 , c = b−p
m−o1

2 a
〉

. Then setting uΓ
2 = 1 + vΓ

2 p
t and arguing as above we obtain (b−p

m−o1

2 a)p
m−tΓ−1

=

a−v
Γ
2 p

m−1

. The rest of the proof is completely analogous to the previous case. �

Lemma 3.6. If n2 ≤ 2, then G ∼= H.

Proof. Recall that we are assuming that (2.8) holds, so m ≥ 2 and we may assume that n2 = 2. If m = 2
then |γ3(Γ)| = p, and hence the result follows from Theorem A(1). Thus we assume m ≥ 3. Then n2 < m,
and by condition (IV ), 2 = n2 = 2m − o1 − o′2 and uΓ

2 ≡ 1 mod pm−2. Then 2(m − 1) = o1 + o′2. Since
o1 < m by condition (II), and o′2 < m by (2.8), we derive that o1 = o′2 = m−1. As oi+o′i ≤ m by condition
(II), also o′1 ≤ 1 and o2 ≤ 1. Therefore 1 ≤ uΓ

1 ≤ p. Then Theorem B implies that uG1 = uH1 or condition

Page 49



ON THE MODULAR ISOMORPHISM PROBLEM FOR 2-GENERATED GROUPS WITH CYCLIC DERIVED SUBGROUP15

(2) in the theorem holds. In the latter case o1o2 > 0 and n1 + o′1 = n2 + o′2 = m + 1. The former implies
n1 > m by (2.7). Therefore o′1 = 0, so uG1 = 1 = uH1 .

Observe that 1 ≤ uΓ
2 ≤ pa2 , for otherwise, o2 = 1 and n1 +o′1−m−1 = n1−n2 +o′1−o′2 = 0 < a1 ≤ o′1 ≤ 1

by condition (V I), so n1 = m and o1o2 > 0, in contradiction with (2.7). If o2 = 1, then a2 ≤ o1−o2 = m−2,
so 1 ≤ uΓ

2 ≤ pm−2 and hence uG2 = uH2 . Thus we assume o2 = 0. Suppose that o′1 = 0. Then by (3.8)
qΓ = n2 + o′2 = m + 1. Thus m − 2 ≤ 2m − 1 − qΓ = m − 2. Therefore Lemma 3.5(2) with t = m − 2
yields that uG2 ≡ uH2 mod pm−1, i.e., uG2 = uH2 . Now suppose that o′1 = 1. Since n1 ≥ m by condition
(IV ), qΓ = n1 + 1. If n1 > m, then by condition (V I) a2 = o′2 − o1 + max(0,m + 1 − n1) = m − 2 and
1 ≤ uΓ

2 ≤ pm−2, so uG2 = uH2 . Hence we assume n1 = m. Then qΓ = m+1 and m−2 ≤ 2m−1−qΓ = m−2.
Thus, again Lemma 3.5(2) with t = m− 2 yields uG2 ≡ uH2 mod pm−1, i.e., uG2 = uH2 . �

Observe that Lemma 3.6 is equivalent to the following proposition which may be of interest by itself. We
do not know whether the hypothesis p > 2 is needed.

Proposition 3.7. Let G be a 2-generated finite p-group with cyclic derived subgroup. Suppose that p > 2

and (G/G′)p
2

is cyclic. If kG ∼= kH for some group H then G ∼= H.

We are finally ready to prove Theorem A(2). Via the isomorphism ψ3 introduced at the beginning of

Section 3.2, we can assume that (G′)p
3

= 1 = (H ′)p
3

, i.e., m ≤ 3. If n2 ≤ 2, then the result follows from
Lemma 3.6, so we assume 3 ≤ n2. If |γ3(G)| ≤ p, then the result follows from Theorem A(1). Thus we

assume |γ3(G)| = |γ3(H)| = p2, so m = 3. Then γ3(G) = (G′)p
m−max(o1,o2)

, by (2.2), which implies that
max(o1, o2) = 2. By condition (III), we have three possibilities: 0 = o1 < o2 = 2, 0 = o2 < o1 = 2 and
1 = o2 < o1 = 2.

Suppose that 0 = o1 < o2 = 2. Then uG2 = 1 = uH2 , by condition (V I). Since m = 3 and o2 + o′1 ≤ m by
condition (IV ), we have that o′2 ≤ 1, so 1 ≤ uΓ

1 ≤ p for Γ ∈ {G,H}. Thus uG1 = uH1 , by Theorem B.
Suppose that 0 = o2 < o1 = 2. Then uG1 = 1 = uH1 by condition (V ). Recall that m = 3 ≤ n2. Then

o′2 + 2 = o′2 + o1 ≤ m = 3 by condition (IV ), so o′2 ≤ 1. Hence 1 ≤ uΓ
2 ≤ p for Γ ∈ {G;H}, by condition

(V I). Thus uG2 = uH2 by Theorem B.
Finally suppose that 1 = o2 < o1 = 2. By condition (II), o′1 ≤ 1, and since n2 ≥ m, by condition (IV ),

o′2 ≤ 1. Then 1 ≤ uΓ
1 ≤ p. Observe that neither condition (2) in Theorem B nor condition (V I)(b) holds

since, by condition (III), in any of these cases 1 = o1 − o2 < n1 − n2 = o′2 − o′1 ≤ 1, a contradiction.
Therefore 1 ≤ uΓ

2 ≤ p and, by Theorem B, we derive that uG1 = uH1 and uG2 = uH2 .

4. Applications to groups of small order

Recall that p is an odd prime and k is the field with p elements. We first solve the Modular Isomorphism
Problem for our target groups when their order is at most p11.

Proposition 4.1. Let G be a 2-generated p-group with cyclic derived subgroup such that |G| ≤ p11. If
kG ∼= kH for some group H, then G ∼= H.

Proof. We may assume that G is neither metacyclic nor of class at most 2. Thus conditions (2.8) are
satisfied and hence we can use all the results in previous sections. Let G and H be a 2-generated p-
groups (p > 2) with cyclic derived subgroup of order at most p11, with kG ∼= kH and the usual notation
inv(Γ) = (p,m, n1, n2, o1, o2, o

′
1, o
′
2, u

Γ
1 , u

Γ
2 ) for Γ ∈ {G,H}. If m ≤ 3, the result follows from Theorem A(1).

Thus we assume m > 3. Then n1 ≥ m > 3 by condition (IV ). We can assume that n2 ≥ 3 by Lemma 3.6.
Thus |Γ| = pn1+n2+m = p11. Therefore n2 = 3 and m = n1 = 4. As n2 < m, by condition (IV ) uΓ

2 ≡ 1
mod p and 8 − o1 − o′2 = 2m − o1 − o′2 = n2 = 3, so o1 + o′2 = 5. Since o1 < m and o′2 < m because Γ is
not metacyclic, we derive that {o1, o

′
2} = {3, 2}. Then, by (2.7), o2 = 0. Thus uG1 = 1 = uH1 . It also follows

that a2 ≤ 2, so 1 ≤ uΓ
2 ≤ p2. Since 2 ≤ o1, by condition (IV ), o′1 ≤ 2. Thus qΓ ≤ max(n1 + o′1, n2 + o′2) ≤ 6.

Write t = 1, so t = 1 = 2m− 1− qΓ. Therefore, by Lemma 3.5(2), uG2 ≡ uH2 mod p2. Thus uG2 = uH2 . �
For groups of order p12, we can solve the Modular Isomorphism Problem except for p−2 families of groups

of size p each one:

Proposition 4.2. Let G be a 2-generated finite p group with cyclic derived subgroup and |G| ≤ p12. If
kG ∼= kH for some group H, then one of the following holds:

(1) G ∼= H.
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(2) There exist i ∈ {1, . . . , p− 2} and uG1 , u
H
1 ∈ {i+ jp : 0 ≤ j ≤ p− 1} such that

inv(G) = (p, 4, 4, 4, 0, 2, 2, 2, uG1 , 1) and

inv(H) = (p, 4, 4, 4, 0, 2, 2, 2, uH1 , 1).

Proof. By Theorem A and Proposition 4.1, we may assume that |G′| > p3 and |G| = p12. Moreover we can
assume that neither G nor H is metacyclic nor of class at most 2. With the notation of Theorem B, inv(G)
equals inv(H) except the last two entries, (uΓ

1 , u
Γ
2 ), where Γ ∈ {G,H}. Moreover, we can assume n2 ≥ 3 by

Lemma 3.6. Then either n2 = 3, m = 4 and n1 = 5, or n2 = m = n1 = 4.
Suppose that m = 4, n1 = 5 and n2 = 3. By condition (IV ), uΓ

2 ≡ 1 mod p and 3 = n2 = 2m− o1 − o′2,
so 5 = o1 + o′2, and hence {o1, o

′
2} = {2, 3} because o1 < m and o′2 < m.

Suppose that o′2 = 3. Then o1 = 2, o2 ≤ m − o′2 = 1 and o′1 ≤ m − o1 = 2. Assume that o2 = 1. Then
a2 ≤ o1 − o2 = 1. If condition (V I)(b) does not hold, then Theorem B yields uG2 = uH2 . Thus suppose this
condition holds. Then uΓ

1 ≡ 1 mod p and 5 + o′1 = n1 + o′1 = n2 + o′2 = 6, so o′1 = 1. Hence 1 ≤ uΓ
1 ≤ p, and

we get uG1 = uH1 = 1. Moreover a2 = min(o1 − o2, o
′
2 − o′1) = 1. Thus uΓ

2 ∈ {1, 1 + p}. Summarizing, after
exchanging G and H, if necessary,

inv(G) = (p, 4, 5, 3, 2, 1, 1, 3, 1, 1);

inv(H) = (p, 4, 5, 3, 2, 1, 1, 3, 1, 1 + p).

But then a straightforward computation, using (2.4), shows that Z(G) has exponent p2 while the exponent
of Z(H) is p3, in contradiction with a result of Ward [15] (see [10, Lemma 2.7]). Now assume o2 = 0. Then
a1 = 0, so uG1 = 1 = uH1 . Observe that a2 = min(o1, 3−o′1) ≤ 2. Moreover 3−o′1 = o′2−o′1 ≤ n1−n2 = 2, so
1 ≤ o′1. If o′1 = 1 then qΓ = 6, and setting t = 1 = 2m− 1− qΓ, Lemma 3.5(2) yields uG2 = uH2 . Otherwise,
i.e. if o′1 ≥ 2, then a2 ≤ 1, and uG2 = uH2 by Theorem B.

Now suppose that o′2 = 2. Then o1 = 3, o2 ≤ m− o′2 = 2 and o′1 ≤ m− o1 = 1. We claim that uG1 = uH1 .
Indeed, if o′1 = 0 then uG1 = 1 = uH1 , and if o′1 = 1 then condition (2) of Theorem B does not hold, and
hence that theorem yields the claim. Moreover a2 ≤ o′2 = 2 and if condition (V I)(b) holds, then o2 > 0 and
o′1 ≥ a1 > 0 so that a2 ≤ 1. Thus 1 ≤ uΓ

2 ≤ 2p < p2. Observe that qΓ = max(5 + o′1, 5) ≤ 6. Then set
t = 1 ≤ 2m− 1− qΓ, and Lemma 3.5(2) yields that uG2 = uH2 .

Finally, suppose that m = n1 = n2 = 4. By condition (III) we have that o1 = 0. Then uG2 = 1 = uH2 .

Moreover a1 = min(o′1, o2 + o′1 − o′2). If a1 ≤ 1, then uG1 = uH1 by Theorem B. Thus we assume a1 ≥ 2,
i.e., 2 ≤ o′1 ≤ 3 and 2 ≤ o′1 + o2 − o′2. If o2 ≤ 1 then |γ3(Γ)| ≤ p, and G ∼= H by Theorem A(1). Thus we
suppose o2 ≥ 2. Since o′1 + o2 ≤ m = 4, we derive that o′1 = o2 = 2. Hence a1 = o′1 = 2, and o′2 ≥ o′1 = 2,
by condition (III). Since o2 + o′2 ≤ m = 4, necessarily o′2 = 2. Hence we have that

inv(Γ) = (p, 4, 4, 4, 0, 2, 2, 2, uΓ
1 , 1)

with 1 ≤ uΓ
1 ≤ p2. Moreover, by Theorem A(2), we have that uG1 ≡ uH1 mod p. Hence there is an integer

1 ≤ i ≤ p − 1 such that uΓ
1 = i + jΓp, for some integers 0 ≤ jG, jH ≤ p − 1. Finally, assume i = p − 1, so

uΓ
1 ≡ −1 mod p. Since qΓ = 6, setting t = 1 = 2m− 1− qΓ, Lemma 3.5(1) yields that uG1 = uH1 . �

Remark 4.3. Observe that Theorem B shows that kG ∼= kH implies uG1 ≡ uH1 mod p in almost all situa-
tions. A pair of groups G and H of minimal size with uG1 6≡ uH1 mod p and not covered by this theorem (i.e.,
such that it is still open whether they have isomorphic group algebras or not) consists in groups of order 317

and

inv(G) = (3, 5, 7, 5, 1, 1, 2, 1, 1, 3, 1, 2);

inv(H) = (3, 5, 7, 5, 1, 1, 2, 1, 1, 3, 2, 2).
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in which we study the modular isomorphism problem

for groups of nilpotency class 2 with cyclic center.
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