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Estimation of Actual Evapotranspiration using TDTM model and 

MODIS derived variables 

Abstract: The objective of this paper is to contribute to improve ETa estimation in 

semiarid environments by proposing two variations to the TDMT model. These 

variations are based on the use of MODIS products from TERRA or AQUA 

satellites and on the use of NDVI instead of EVI, to estimate the fraction of 

vegetation cover. The proposed changes were validated with the original 

methodology for the 2012-2014 period with data obtained from two flux towers 

(ES-LJu and ES-Amo). The best results were obtained when using the alternative 

methodology (RMSE of 0.64-0.67 mm in ES-Lju and of 0.97-1.02 mm in ES-

Amo). Additionally, a correction of the temporal systematic errors of the model 

based on Random Forest is proposed.  With this correction, RMSE of 0.31-0.35 

mm in ES-Lju and 0.30-0.34 mm in ES-Amo were obtained. The spatial 

distribution obtained with this corrected model is the most consistent with the 

characteristics of the study area. 

Keywords: actual evapotranspiration; MODIS; TDTM; flux towers; Random 

Forest 

1. Introduction 

Actual evapotranspiration (ETa) is the amount of water evaporated and transpired under 

existing conditions. It is one of the most important processes in the water cycle and is 

differently influenced by various meteorological variables, such as precipitation, 

temperature or humidity of the soil and air, in different climatic regions (Yaseen et al. 

2020), in addition to other factors such as vegetation cover and soil conditions. Accurate 

estimation of ETa is of particular interest in semi-arid regions, where water scarcity 

represents the main obstacle to agricultural production, economic well-being or 

sustainable development (Jamshidi et al. 2019a, Jamshidi et al. 2019b). An accurate and 

spatially distributed estimation of ETa is essential to improve water resources 

management (Yang et al. 2012), drought monitoring and assessment (Senay et al. 2013, 
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Lorenz et al. 2017), irrigation scheduling (Pereira et al. 2015), soil and water salinity 

problems associated with irrigated agriculture management in semi-arid areas (Minhas et 

al. 2020), calibration and validation of hydrological models (Herman et al. 2018) or the 

quantification of aquifer recharge (Beigi and Tsai 2014). 

The estimation of ETa is rather complicated due to the large number of factors 

involved (Glenn et al. 2007). ETa can be measured at local scale using 

micrometeorological methods (Bowen ratio and eddy covariance system) or soil water 

balance (lysimeters). However, this approach is limited to areas smaller than 1 km2 (Allen 

et al. 2011). The availability of the variables needed to estimate ETa as remote sensing 

products has boosted the development of new methods more feasible and cost-effective 

both at regional (Xiong et al. 2015) and global scales (Mu et al. 2011).  

Kalma et al. (2008), Li et al. (2009) and Zhang et al. (2016) review such methods. 

Most of them are based on the surface energy balance (SEB methods), in which ETa is 

estimated as a residual of the surface energy balance. The SEB methods are divided into 

one-source and two-source methods. The latter allows to discriminate between soil 

evaporation and vegetation transpiration. Examples of one-source SEB methods are: 

Surface Energy Balance Algorithm for Land (SEBAL)   (Teixeira et al. 2009a, Teixeira 

et al. 2009b, Rahimpour and Rahimzadegan 2021), Mapping Evapotranspiration at High 

Resolution with Internalized Calibration (METRIC) (Allen et al. 2007a, Allen et al. 

2007b, Jamshidi et al. 2019a), Simplified Surface Energy Balance Index (S-SEBI) 

(Roerink et al. 2000), Surface Energy Balance System (SEBS) (Su 2002, Jamshidi et al. 

2019b) and operational Simplified Surface Energy Balance (SSEBop) (Senay et al. 2013, 

Niyogi et al. 2020, Rahimpour and Rahimzadegan 2021). Two-Source Methods (TSM) 

include: TSM scheme (TSMN) (Norman et al. 1995), Atmosphere-Land Exchange 

Inverse (ALEXI) (Anderson et al. 2007), flux disaggregation approach of ALEXI 
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(disALEXI) (Norman et al. 2003) and Three-Temperature (3T) (Xiong and Qiu 2014, 

Xiong et al. 2015).  

Empirical methods based on the Penman-Monteith equation, such as MOD16  

(Mu et al. 2011, Gavahi et al. 2020, Wang et al. 2021) or Priestley-Taylor (Niyogi et al. 

2020, Pourmansouri and Rahimzadegan 2020)  have also been developed; MOD16 being 

one of the most widely used. 

Another approach is the use of graphical methods  based on the interpretation of 

the scatter plot of surface temperature and vegetation indices (hereinafter Ts-VI space) 

(Zhu et al. 2017). Generally, the Ts-VI space is triangular, so these graphical methods are 

also known as triangle methods. 

The Time-Domain Triangle Method (TDTM) is based on the interpretation of the 

scatter plot between the daily thermal amplitude and the Enhanced Vegetation Index 

(EVI) (Minacapilli et al. 2016). All the input data required, with the exception of air 

temperature, are derived from satellite imagery (MODIS sensor), which makes it suitable 

for estimating ETa in arid and semi-arid areas. It is based on the triangle method, first 

developed by Price (1990)  and later modified by Jiang and Islam (2001) to allow its use 

with remotely sensed imagery. The feature space characteristic of the triangle method is 

defined by the daily thermal amplitude (difference between the surface temperature 

estimated by the MODIS sensor in the daytime and nighttime images of the TERRA 

satellite) and the EVI. The TDTM model was applied in Sicily (Italy) and its results were 

validated using ETa values estimated from the variables measured in 2 flux towers 

(Minacapilli et al. 2016). 

The objective of this paper is to contribute to improve ETa estimation in semi-

arid environments proposing three main innovations. First and foremost, the proposal of 

two variations of the TDTM model based on an alternative methodology for the 
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calculation of the vegetation cover fraction (FC) using NDVI instead of EVI and on the 

use of MODIS products from the AQUA and TERRA satellites. The second innovation 

is the use of Random Forest for the correction of systematic errors. The third is the 

proposal of the study itself as a framework to estimate ETa in a spatially distributed way 

from freely available information. We compare the accuracy of the modifications and of 

the original TDTM method by using observed ETa values at a daily scale in the period 

2012-2014 and in 2 flux towers, which are part of the FLUXNET network, located in the 

province of Almeria, in the vicinity of the study area.  

2. Methodology 

2.1. Study area 

Our study was carried-out in the area managed by the River Segura Water Authority 

(DHS) (Figure 1). It is a semiarid area with scarce and irregular precipitation, high 

temperature, and high potential evapotranspiration. The mean annual precipitation is 375 

mm/year (CHS 2015), being therefore one of the driest regions in continental Europe. 

However, its spatial distribution is closely related to relief, the highest precipitation values 

are registered in the extreme northwestern of the DHS with an annual average slightly 

higher than 1000 mm. Precipitation descends drastically in a northwest-southeast 

direction reaching 200-250 mm/year in the southwestern coast of the study area. On the 

other hand, the annual potential evapotranspiration in DHS ranges between 1100 and 

1400 mm / year, registering in most of the DHS (83%) values between 1200 and 1300 

mm / year with an average of 1258 mm (Gomariz-Castillo 2016). ). Despite the scarcity 

of water, agriculture is an important economic sector. Population density and intensive 

irrigated agriculture represent a significant water demand. 
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Figure 1. Study area and location of the flow towers used to validate the TDTM model 

and the proposed variations. 

Altitude strongly influences the spatial distribution of temperature. The annual 

average temperature increases gradually from the Northwest mountain ranges (10 ºC) to 

the coast (18 ºC). The proximity to the sea softens summer and winter temperatures in the 

coast, while continental climatic features appear towards the interior area because of the 

distance to the sea and the presence of successive mountain alignments (Conesa-García 

and Alonso-Sarría 2006). Cloudiness increases in the equinoctial seasons, since 

anticyclonic situations are common in winter and summer. 

The soils of the study area are characterized by a large diversity because of the 

combination of climatic, lithological, topographic, anthropic and biotic factors. Leptosols, 

Regosols, Fluvisols and Cambisols are the most common soil type in DHS. 
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Scrubs and grasslands occupy, according to data from the Corine Land Cover 

2018 project, the 27 % of the DHS and are their most common vegetation type. This data 

is important, since this is the area that most closely resembles the vegetation present in 

the 2 flow towers used. After scrubs and grasslands, forests and permanent crops with 

18.5% each one, are the most common land cover in DHS. 

2.2. Remote sensing data 

The following MODIS derived products (version 6) are needed to apply the TDTM 

model: MOD11A1 (Wan et al. 2015a), MYD11A1 (Wan et al. 2015c), MOD11A2 (Wan 

et al. 2015b), MYD11A2 (Wan et al. 2015d), MOD13Q1 (Didan 2015), MYD13Q1 

(Myneni et al. 2015) and MCD43A3 (Schaaf and Wang 2015). Table 1 lists their main 

characteristics. The layers of these products were obtained using the MODIStsp R 

(Myneni et al. 2015), which allows to automate their download and processing. The data 

acquired by the MODIS sensor are grouped into 1200 x 1200 km tiles. The study area of 

this work corresponds to tile v5h17. 

Table 1. Main characteristics of the products derived from the MODIS sensor: Tsup,day is 

daily temperature; ε0 is emissivity;  α is albedo; NDVI is the normalized difference 

vegetation index; and EVI is the enhanced vegetation index. 

Sensor Platform Layer Name Spatial resolution 

(km) 

Temporal resolution 

(days) 

MODIS Terra Tsup,day MOD11A1 1 1 

MODIS Aqua Tsup,day MYD11A1 1 1 

MODIS Terra ε0 MOD11A2 1 1 

MODIS Aqua ε0 MYD11A2 1 1 

MODIS Terra and Aqua α MCD43A3 0.5 1 (Average 16 days) 

MODIS Terra NDVI,EVI MOD13Q1 0.25 16 

MODIS Aqua NDVI,EVI MYD13Q1 0.25 16 
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2.3. Flux towers data 

Data from two flux towers located in scrub areas in the province of Almeria, bordering 

the study area (Figure 1), were used to validate the estimated values of ETa : Amoladeras 

(ES-Amo) and Llano de los Juanes (ES-LJu). Both are part of the FLUXNET (Pastorello 

et al. 2020). The characteristics of ES-LJu are described in Serrano-Ortiz et al. (2007) 

and Serrano-Ortiz et al. (2009) whereas those of ES-Amo are described in López-

Ballesteros et al. (2017). Both are surrounded by scrub areas, the soil type in ES-LJu is a 

Lithic Haploxeroll (aridic soil moisture) and Leptosol in ES-Amo. So, both flux towers 

can be representative of the environment in most of the River Segura basin. Observed 

ETa data from both flux towers for the period 2012 - 2014 were used. The series is 

complete for ES-LJu, but only 57% of the days are available for ES-Amo. In addition to 

the ETa data, the managers of both flux towers also provided air temperature data, which 

will be used as input for the calculation of ETa using the 3T and TDTM models in both 

flux towers. 

In both flux towers, latent heat flux (LHF) measurements are made every 30 

minutes, so each instantaneous observation averages the 30-minute interval prior to the 

observation. These values were aggregated for the period from dawn to dusk to obtain 

ETa values on a daily scale assuming, as in Cleugh et al. (2007) and García et al. (2014), 

that ETa during the night period is negligible. 

Figure 2 shows the daily values of ETa in the ES-LJu and ES-Amo flux towers in 

the 2012-2014 period. ES-Amo. Table 2 shows the monthly average daily ETa for ES-

LJu and ES-Amo. The highest values are reached between April and July (especially in 

June). In the rest of the months the average daily ETa is less than 0.5 mm. 
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Figure 2. Daily ETa values measured in the ES-LJu y ES-Amo flux towers (2012-2014). 

Table 2. Monthly average of daily ETa (mm d-1) in ES-LJu and ES-Amo flux tower 

(2012-2014). The percentage of missing data for each month is shown in parentheses for 

ES-Amo. 

 Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

ES-LJu 0.29 0.33 0.48 0.75 0.95 1.05 0.6 0.4 0.38 0.43 0.34 0.27 

ES-Amo 0.42 0.52 0.56 0.4 0.38 0.35 0.31 0.22 0.4 0.41 0.47 0.34 

% (27) (26) (32) (41) (64) (70) (53) (49) (63) (49) (30) (14) 

2.4. TDTM model 

This section describes the methodology used to estimate ETa with the TDTM model using 

surface temperature data obtained at both the TERRA and AQUA satellite passage times. 

A flowchart of this methodology is shown in Figure 3. 
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Figure 3. TDTM model flow chart. 

In the TDTM model, the calculation of the real daily evapotranspiration (mm d-1) 

is carried out using the Priestley-Taylor equation (Priestley and Taylor 1972): 

 𝐸𝑇𝑎,𝐷 = 𝜙 ∙ [
𝑅𝑛−𝐺

28.4
∙

𝛥

𝛥+𝛾
] (1) 

Where 𝜙 is the Priestley-Taylor parameter (Equation (2)); Rn is the daily mean 

net radiation (Equation (6)); G is the daily mean heat flux (Equation (10)); 𝛥 is the slope 

of the saturated vapour pressure versus air temperature curve (kPa ºC-1) (Equation (11)) 

and 𝛾 is the psychrometric constant (kPa ºC-1) (Equation (12)). The factor 28.4 is used to 

convert the available energy (Rn - G) from (W/m2) to mm d-1. In Equation (1), 
𝛥

𝛥+𝛾
 

represents the evaporative fraction (ratio of actual evapotranspiration to available 

energy). 

2.4.1. Priestley-Taylor parameter calculation 

Equations (2) to (4) show the process to estimate the 𝜙 parameter for each pixel according 

to Minacapilli et al. (2016): 
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 𝜙𝑖,𝑗 =
𝛥𝑇𝑠𝑖,𝑗,𝑚𝑎𝑥−𝛥𝑇𝑠𝑖,𝑗

𝛥𝑇𝑠𝑖,𝑗,𝑚𝑎𝑥−𝛥𝑇𝑠𝑖,𝑗,𝑚𝑖𝑛
∙ (𝜙𝑚𝑎𝑥 − 𝜙𝑖,𝑗,𝑚𝑖𝑛) + 𝜙𝑖,𝑗,𝑚𝑖𝑛 (2) 

 𝜙𝑖,𝑗,𝑚𝑖𝑛 = 𝜙𝑚𝑎𝑥 ∙ 𝐹𝑐,𝑖,𝑗 (3) 

The suffixes i,j refer to the generic pixel; 𝛥𝑇𝑠𝑖,𝑗,𝑚𝑎𝑥 and 𝛥𝑇𝑠𝑖,𝑗,𝑚𝑖𝑛 are the daily 

maximum and minimum thermal amplitude in the analysed period. In this case the daily 

thermal amplitude is defined as the difference between the surface temperature provided 

by the MODIS sensor in the daytime and nighttime passage times of the TERRA and 

AQUA satellites; and 𝛥𝑇𝑠𝑖,𝑗 is the daily thermal amplitude. Minacapilli et al. (2016) 

justify this variation on the grounds that the daily surface thermal amplitude is a good 

estimator of the resistance of the surface to external temperature variations. Therefore, a 

wet soil will have a higher resistance to temperature variation than a dry soil, and 

therefore a lower thermal amplitude. 

The parameter 𝜙𝑚𝑎𝑥 in the original Priestley-Taylor equation is assumed to be 

equal to 1.26 (Priestley and Taylor 1972). However, Minacapilli et al. (2016) propose to 

use a value of 1.35 in semi-arid areas. This paper will compare the results obtained with 

both values.  

In this study, the fraction of vegetation cover for each pixel (𝐹𝑐).  is obtained using 

2 methods: 1) The reference method proposed by Minacapilli et al. (2016) that is based 

on the EVI index (Equation (4)) and 2) the method proposed by Carlson et al. (1995), 

based on the NDVI index (Equation (5)). The second methodology has been widely used 

to estimate ETa in semiarid environments (Tang et al. 2010, Tian et al. 2013, Zhou et al. 

2014) and has been applied in this work, due to poor results obtained with the reference 

methodology in a preliminary study. Onwards the first and second methodologies will be 

called FC-EVI and FC-NDVI respectively. 
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𝐹𝑐,𝑖,𝑗 = [
𝐸𝑉𝐼𝑖,𝑗−𝐸𝑉𝐼𝑖,𝑗,𝑚𝑖𝑛

𝐸𝑉𝐼𝑖,𝑗,𝑚𝑎𝑥−𝐸𝑉𝐼𝑖,𝑗,𝑚𝑖𝑛
]
0.46

 (4) 

 𝐹𝑐,𝑖,𝑗 = [
𝑁𝐷𝑉𝐼𝑖,𝑗−𝑁𝐷𝑉𝐼𝑖,𝑗,𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
]  (5) 

𝐸𝑉𝐼𝑖,𝑗 is the EVI value to each pixel; 𝐸𝑉𝐼𝑖,𝑗,𝑚𝑎𝑥, 𝐸𝑉𝐼𝑖,𝑗,𝑚𝑖𝑛 are the maximum and 

minimum EVI values estimated for each pixel over the entire study period, 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is 

equal to 0.86 (Prihodko and Goward 1997), 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 is equal to 0.2 (Tang et al. 2010) 

and 𝑁𝐷𝑉𝐼𝑖,𝑗 is the NDVI corresponding to each pixel. 

2.4.2. Surface net radiation and heat flux from the ground 

To calculate the net radiation (Rn) we used the methodology proposed by Minacapilli et 

al. (2016) with some variations: 

 𝑅𝑛 = 𝑅𝑠𝑠↓ − 𝑅𝑠𝑠↑ + 𝑅𝑠𝑙↓ − 𝑅𝑠𝑙↑ = (1 − 𝛼) ∙ 𝑅𝑠𝑠↓ + 𝑇𝑎,𝑎𝑣𝑔
4 ∙ 𝜖0 ∙ 𝜖𝑎 ∙ 𝜎 − 𝑇𝑎𝑣𝑔

4 ∙ 𝜖0 ∙ 𝜎    (6) 

𝑅𝑠𝑠↓, 𝑅𝑠𝑠↑, 𝑅𝑠𝑙↓ and 𝑅𝑠𝑙↑ represent in W/m2 the incoming shortwave, outgoing 

shortwave, incoming longwave and outgoing longwave radiation, respectively. 𝑇𝑎,𝑎𝑣𝑔 is the daily 

mean air temperature and 𝑇𝑎𝑣𝑔 is the daily mean surface temperature (obtained from the average 

of the surface temperature estimated in the nighttime and daytime passes of both satellites). 𝛼, 𝜖𝑎 

and 𝜖0 are the albedo, air emisivity and soil emisivity, respectively. 

Daily  𝑇𝑎,𝑎𝑣𝑔 layers were obtained  from Ruiz-Álvarez et al. (2020). The method 

used to obtain 𝑇𝑎,𝑎𝑣𝑔 values also differs from the one used in the original TDTM model. 

Minacapilli et al. (2016) obtained 𝑇𝑎,𝑎𝑣𝑔 is from the incoming longwave solar radiation 

and atmospheric emissivity whereas Ruiz-Álvarez et al. (2020) obtained it using machine 

learning based predictive models. 
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 The Daily Downward Surface Shortwave Flux (DIDSSF LSA-09) SEVIRI 

product were not used as 𝑅𝑠𝑠↓ layers as in Minacapilli et al. (2016). They were obtained 

following the methodology described in Allen et al. (2006):  

  𝑅𝑠𝑠↓ = 𝜏 ∙ 𝑅𝑎 (7) 

 𝑅𝑎 =
𝐺𝑆𝐶∙𝑑𝑇∙[𝜔𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛿+𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜔]

𝜋
 (8) 

Where Ra is the extraterrestrial radiation, 𝜏 is the atmospheric transmissivity, 𝐺𝑆𝐶  

is the solar constant (1367 W/m2), 𝑑𝑇 is the inverse of the relative Earth-Sun distance,  𝜔 

is the angle of radiation at sunset (radians),  𝜑 is the latitude in radians and 𝛿 is the solar 

declination. Both  𝛿  and 𝑑𝑇 depend on the Julian day (Allen et al., 2006). Finally, 𝜔 is 

obtained according to Allen et al. (2006) as: 

 𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠[−𝑡𝑎𝑛𝜑𝑡𝑎𝑛𝛿] (9) 

The heat flux from the ground is obtained as: 

 𝐺 = 𝑅𝑛 ∙ [𝛤𝑐 + (1 − 𝐹𝑐) ∙ (𝛤𝑠 − 𝛤𝑐)] (10) 

The parameter 𝛤𝑐 is equal to 0.05 (Monteith and Unsworth 2013) and 𝛤𝑆 is equal 

to 0.315 (Kustas and Daughtry 1990). 

2.4.3. Calculation of 𝛥 and 𝛾 

Equations (11) and (12) show the calculation of the slope of the saturated vapour pressure 

versus air temperature curve (𝛥) and of the psychrometric constant (𝛾) (Allen et al. 2006): 

 𝛥 =
4098[0.6108∙𝑒𝑥𝑝(

12.27∙𝑇𝑎,𝑎𝑣𝑔

𝑇𝑎,𝑎𝑣𝑔+273.3
)]

(𝑇𝑎,𝑎𝑣𝑔+273.3)
2  (11) 
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 𝛾 = 0.0000665 ∙ 𝑃 (12) 

𝑇𝑎,𝑎𝑣𝑔 is the daily mean air temperature in ºC and P is the atmospheric pressure 

(Equation (13)) whose spatially distributed values are obtained from the elevation above 

sea level (z) in metres, according to Allen et al. (2006). 

 𝑃 = 101.3 ∙ [
293−0.0065∙𝑧

293
]
5.26

 (13) 

In summary, tTwo variations to the methodology proposed by Minacapilli et al. 

(2016) to estimate Eta are proposed: Changing both the surface temperature used 

(estimated using TERRA or AQUA) and  the method to calculate the fraction of 

vegetation cover used (FC-EVI or FC-NDVI). Below are shown the main characteristics 

and the name (between parenthesis) of each of the proposed variations and of the 

reference methodology: 

• Reference methodology: use of FC-EVI and TERRA (TDTM-EVI-O model). 

• 1st Variation: use of FC-EVI and AQUA (TDTM-EVI-Y model). 

• 2nd Variation: use of FC-NDVI and TERRA (TDTM-NDVI-O model). 

• 3rd Variation: use of FC-NDVI and AQUA (TDTM-NDVI-Y model). 

2.4.4. Correction of model errors 

In order to correct systematic errors related to the daily thermal amplitude, especially in 

Summer, we used a Random Forest (RF) model (Breiman 2001) to reproduce this effect 

and correct the ETa values. RF is a machine learning classification and regression model 

that does not make any assumption about the data to be modelled and can fit non-linear 

regressions. RF has two parameters that the user needs to set; however, the method is 

quite insensitive to their values, being the default values optimal in most cases (Liaw and 
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Wiener 2002), so those default values were used. 

The error was the dependent variable, and two predictors were used: 1) Difference 

between the daily thermal amplitude (dif-AT-Y for AQUA and dif-AT-O for TERRA) 

and 2) a cosine transformation of julian day (cdayt):  

 𝑐𝑑𝑎𝑦𝑡 = 𝑐𝑜𝑠 ([𝑡𝐷 − 𝑡𝐶] ∙
2𝜋

365
) (14) 

Where tD is the julian day and 𝑡𝐶  is the julian day of the coldest day in the year; 

this predictor is a harmonic function ranging from -1 in the hottest day to 1 in the coolest 

day. The objective is to check if the error depends on the period of the year. 

This correction was only applied to the results obtained for the models TDTM-

NDVI-Y and TDTM-NDVI-O, as the results obtained by these models are more accurate 

than the results of the models TDTM-EVI-Y and TDTM-EVI-O. 

2.5. Goodness of fit 

The following statistics were used to analyse the fit of the modelled values of ETa: 

• Root Mean Square Error (RMSE), which is defined as: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)2
𝑛
𝑖=1  (15) 

• Percentage Bias (PBIAS), which is defined as: 

 𝑃𝐵𝐼𝐴𝑆 =
∑ (𝐸𝑖−𝑂𝑖)
𝑛
𝑖=1

∑ (𝑂|𝑖)𝑛
𝑖=1 ∙100

 (16) 

• Mean Absolute Error (MAE), which is defined as: 

 𝑀𝐴𝐸 =
1

𝑛
∑ [𝐸𝑖 − 𝑂𝑖]
𝑛
𝑖=1  (17) 
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𝐸𝑖 and 𝑂𝑖 are respectively the modelled and observed values of ETa. 

3. Results  

ETa values were obtained using the TDTM model, for all days with available surface 

temperature (both at the daytime and nighttime pass of the TERRA and AQUA satellites), 

vegetation indices (NDVI and EVI), albedo and with an average cloudiness fraction 

during the daytime lower than 20%. These conditions are met in 302 days in the ES-LJu 

flux tower, but only in 225 days in ES-Amo. The goodness-of-fit analysis of the modelled 

values of ETa were performed only for those days with modelled values of ETa for both 

satellites. 

Table 3 shows the error statistics of the different variations of the proposed TDTM 

model. The fit for both satellites is very similar. Likewise, no significant differences are 

observed between the two values used for 𝜙𝑚𝑎𝑥, with slightly better results being 

obtained when a value of 1.26 is used. However, when considering the methodology used 

to obtain vegetation cover fraction, important differences are observed. A much better fit 

is obtained with Carlson et al. (1995) approach than with Minacapilli et al. (2016) original 

methodology. RMSE ranges from 0.65 to 0.97 in the first case and from 1.29 to 2.75 in 

the second case. 

Table 3. Summary of the goodness of fit statistics of the ETa values estimated from the 

different variations proposed. 

 ES-LJu ES-Amo 

 ϕmax = 1.26 ϕmax = 1.35 ϕmax = 1.26 ϕmax = 1.35 

Model MAE RMSE PBIAS MAE RMSE PBIAS MAE RMSE PBIAS MAE RMSE PBIAS 

TDTM-NDVI-Y 0.52 0.68 81 0.58 0.75 93 0.68 0.90 147 0.73 0.97 165 

TDTM-NDVI-O 0.50 0.65 79 0.56 0.72 91 0.66 0.89 140 0.71 0.96 157 

TDTM-EVI-Y 2.15 2.51 381 2.38 2.75 420 0.98 1.29 229 1.07 1.40 252 

TDTM-EVI-O 2.18 2.53 386 2.35 2.75 416 1.00 1.32 233 1.09 1.43 257 
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The largest errors in the estimation of ETa for both satellites occur in Summer and 

with daily thermal amplitude values below the mean monthly thermal amplitude. On these 

days there is an overestimation of the ETa. This tendency also appears, but less 

importantly, in the rest of the year. The reason of this overestimation is that the TDTM 

model assumes that areas with lower thermal amplitudes than the mean value for that day 

of the year would have wetter soils. However, this assumption is not fulfilled in the 

usually dry summers on the study area. 

Figure 4 shows the effects of both variables when modelling the error of the 

TDTM-NDVI-Y and TDTM-NDVI-O models with RF. Errors increase gradually as 

cdayt approaches - 1, so the highest errors occur in Summer. The more negative are dif-

AT-Y or dif-AT-O the higher the error, so they are minimize when these differences are 

close to zero or positive. 

 

Figure 4. Effects of the predictors used in the RF model to correct the TDTM-NDVI-Y 

and TDTM-NDVI-O model. 

The calibration of the RF model used to correct the error of TDTM-NDVI-Y and 

TDTM-NDVI-O models was carried out for every day with data in the years 2012 and 

2013 (207 from ES-LJu and 131 from ES-Amo). As cloudiness is more common in the 
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study area in autumn, spring and winter, 42% of the data used in the calibration/validation 

process belong to the Summer period. The validation was carried out using the available 

data for 2014 (95 days from ES-LJu and 81 from ES-Amo). 

To obtain corrected Eta values, the errors predicted by RF are subtracted from the 

ETa values estimated with the TDTM-NDVI-Y and TDTM-NDVI-O models. 

Corrections improved significantly the performance of both models in the two 

flux-towers (Table 4). Figure 5 shows a box plot with the observed and modelled values 

for both satellites, both for the TDTM-NDVI-Y and TDTM-NDVI-O models (O and Y 

in the Figure 5) and for the correction we proposed (O-corr and Y-corr in the Figure 5). 

 

Figure 5. Comparison of the statistics obtained for the TDTM-NDVI-Y and TDTM-

NDVI-O models and their respective corrections. Values of the validation series, 

corresponding to the year 2014. 

Table 4. Summary of the goodness of fit statistics of the ETa values estimated from the 

different variations proposed. 

 No corrected Corrected 

Model/Flux tower MAE RMSE PBIAS MAE RMSE PBIAS 

TDTM-NDVI-Y/ES-LJu 0.54 0.67 87 0.28 0.35 12 

TDTM-NDVI-O/ES-LJu 0.5 0.64 83 0.24 0.31 10 

TDTM-NDVI-Y/ES-Amo 0.85 1.02 253 0.24 0.3 47 

TDTM-NDVI-O/ES-Amo 0.79 0.97 233 0.27 0.34 46 
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Figure 6 compares the cumulative ETa values for the year 2014 obtained using 

TDTM-NDVI-O models and the proposed corrections, and the cumulative ETa values 

estimated in the flux towers. Figure 6 also shows daily ETa values both observed and 

estimated. The results obtained for the TDTM-NDVI-Y model are very similar. It is 

salient the strong reduction in the systematic bias present in the non-corrected 

estimations. 

 

Figure 6. Accumulated ETa (mm) during the year 2014 for the days that meet the criteria 

established in this work. Observed data (OD), data estimated with TDTM-NDVI-O and 

with TDTM-NDVI-O-corr are shown. 

Table 4, and Figures 5 and 6 show the noteworthy improvement in the fit of the 

estimated values after applying the proposed correction. Although the difference between 

the estimated values from both satellites for the whole data set is very small, Table 5 

shows that on a daily scale there are differences between the estimated values for both 

satellites. This table includes different percentiles of the differences between the modelled 

TDTM-NDVI-Y and TDTM-NDVI-O values and their respective corrections for both 

flux towers. These differences are reduced after correction. No differences appear among 

the two satellites, so they could be used indistinctly. The existence of differences between 

the modelled values on a daily scale would make it advisable to study in the future the 

use of different criteria for the selection of the ETa values from one satellite or the other 

on those days for which both are available. 
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Table 5. Percentiles of the differences between estimated values for both satellites using 

TDTM-NDVI-Y and TDTM-NDVI-O models and their corrections. 

Flux tower min P10 P25 P50 P75 P90 max 

No corrected 

ES-LJu 0.02 0.03 0.07 0.14 0.26 0.38 1.04 

ES-Amo 0.01 0.03 0.09 0.15 0.26 0.4 0.73 

Corrected 

ES-LJu 0.01 0.03 0.1 0.32 0.64 0.96 1.47 

ES-Amo 0.01 0.03 0.12 0.22 0.55 0.91 1.33 

 

On the other hand, a positive PBIAS was obtained for all the proposed variations 

and for both flux towers, which indicates an overestimation of ETa, although in TDTM-

NDVI-Y-corr and TDTM-NDVI-O-corr models in the ES-LJu flux tower this 

overestimation is very small (PBIAS = 10 - 12). The highest PBIAS values were obtained 

for the TDTM-EVI-(Y-O) models with for 𝜙𝑚𝑎𝑥 = 1.35 in the ES-LJu flux tower (PBIAS 

= 416-420). 

The spatial distribution of ETa values in Spring and Autumn according to the 

TDTM-NDVI-(O-Y) method (Figures 7 and 8) is coherent with the characteristics of the 

study area. The highest values of ETa are recorded in the mountain areas where rainfall 

is more intense and the NDVI index is higher (higher evaporation and transpiration). In 

winter, very low values of ETa are obtained using TDTM-NDVI-(O-Y), with few 

exceptions they do not exceed 0.5 mm, which is consistent with the coldest time of the 

year. Finally, summer values are the highest and are similar in many areas to those 

obtained for the same period in the ES-LJu flux tower. In general, the values of ETa 

obtained from the AQUA satellite data are slightly higher than those obtained from the 

TERRA satellite. 
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Figure 7. ETa,D maps produced by the TDTM models in Spring (upper row) and Summer 

(lower row). 

 

 

Figure 8. ETa,D maps produced by the TDTM models in Autumn (upper row) and  Winter 

(lower row). 

ETa estimations obtained using the TDTM-NDVI-Y or TDTM-NDVI-O models 

are much better than those obtained with the TDTM-EVI-Y or TDTM-EVI-O models in 

both flux towers. The reason is that the maximum values of NDVI (0.35 in ES-LJu and 

0.42 in ES-Amo), producing FC values between 0 and 0.05 in ES-LJu and between 0 and 
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0,11 in ES-Amo. Because of these low values of FC, 𝜙 values depend mainly on the daily 

thermal amplitude and reach the smallest values in Summer, when the daily thermal 

amplitude is higher. This effect reduces the overestimation of ETa. However, this effect 

does not appear when using the original methodology of the TDTM method to obtain FC 

(Equation (4)). 

Figure 9 was obtained with ES-LJu and ES-Amo data for the TERRA satellite 

with 𝜙𝑚𝑎𝑥=1.26. The orange dots show the 𝜙 parameter estimated using NDVI, while 

the blue dots show 𝜙 estimated with the original, EVI based, methodology. In ES-Amo 

the values of 𝜙 are slightly lower than in ES-LJu, while they are similar when obtained 

with TERRA or AQUA satellites. Figure 9 also shows that the 𝜙 parameter based on 

NDVI has a clear temporal pattern, with the highest values in months with low insolation 

and the lowest values in the months with the highest insolation and, therefore, the greatest 

daily thermal amplitude. The high values of the 𝜙 parameter in the coldest months do not 

cause an overestimation of the ETa because the available energy (Rn - G) is very low. 

 

Figure 9. 𝜙 values in relation with the methodlogy used to calculate FC. 
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In the original (TDTM-EVI) methodology, Equation (4) produces FC values that 

range between 0 (for minimum EVI) and 1 (for maximum EVI). Moreover, with EVI 

values just 0.03 higher than the minimum EVI the FC value is above 0.5. This means, as 

can be seen in Figure 9, that on most days the parameter 𝜙 is above 0.5, reaching values 

close to 𝜙𝑚𝑎𝑥 in late spring and early summer, when, as occurs in ES-LJu and many 

points of the DHS, the EVI values are close to the maximum EVI value. When this occurs, 

the very high 𝜙 values cause a significant overestimation of ETa (Figure 10). Such Figure 

represents daily ETa values obtained with ES-LJu data, TDTM-EVI-Y and TDTM-

NDVI-Y methods and with 𝜙𝑚𝑎𝑥=1.26. The blue dots represent the values obtained using 

the TDTM-EVI method and the orange dots present the values obtained using the TDTM-

NDVI method, and the green dots (TF) represent the ETa values measured at the ES-LJu 

flux tower. 

 

Figure 10. Daily ETa values and TDTM-NDVI-Y and TDTM-EVI-Y estimations in the 

ES-LJu flux tower. 

4. Discussion 

Minacapilli et al. (2016) obtained, averaging two flux towers, a BIAS of -0.4 mm and an 

RMSE of 0.70 mm, the latter value being considerably lower than the RMSE of 2.75 mm 

obtained in the present study for ES-LJu and also lower, although with a smaller 

difference, than the RMSE of 1.43 mm obtained for ES-Amo. However, our results with 
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TDTM-NDVI-O and TDTM-NDVI-Y have similar RMSE to theirs (0.73 mm for ES-LJu 

and 0.96 mm for ES-Amo). The locations of flux towers are not comparable, olive and 

orange tree crops in Minacapilli et al. (2016) whereas ES-LJun is located in a shrubland 

area and ES-Amo in a grassland area. Furthermore, we obtained ETa values only for clear 

days, unlike Minacapilli et al. (2016) where ETa values were obtained for all days, in the 

form of 8-day average values. 

The ES-LJu flux tower has been used in numerous studies to obtain ETa. A 

summary of the results obtained in these studies is shown in Table 6. The TDTM-NDVI-

O-corr method we used has the lowest RMSE value of all the methods compared. The 

TDVI quantile 99.99-0.001% method, based on the Temperature-Vegetation Dryness 

Index (TDVI) and the Priestley-Taylor equation, is the most similar to the TDTM-NDVI 

model. The PML-measured SWC method is based on the Penman-Monteith-Leuning 

equation (Leuning et al. 2008) and the LAI index. Morillas et al. (2013)  applied it based 

on field measurements of net radiation, which can lead to an overestimation of ETa 

values. Furthermore, this method requires the optimisation of two parameters, which may 

hamper its use at regional scales. Although the SEBAL method, is one of the methods 

with lower RMSE, it has the main disadvantage of requiring the calculation of 

aerodynamic drag. The MOD16 and LSA-SAF-MSG methods are two of the most widely 

used global models for obtaining ETa. Hu et al. (2015) obtained the worst results in 

Europe for both methods in semi-arid areas such as the DHS, being the only areas where 

they obtain a correlation coefficient of less than 0.8. The MIKE-SHE SVAT scheme 

(Brisson et al. 2003) is the only hydrological model that appears in the table. It requires 

a large number of meteorological variables and parameters related to vegetation and soil, 

which makes its application at regional scales complex (Andersen 2008). 
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Table 6. RMSE of ETa estimated in the ES-LJu flux tower in other studies. 

Method Temporal 

scale 

RN 

calculatio

n 

RMSE 

(mm) 

Temporal 

range 

Reference 

TDTM-NDVI(O-Y) 1 day Modelled 0.64-0.67 2012-2014 This study 

TDTM-NDVI-corr(O-Y) 1 day Modelled 0.31-0.35 2012-2014 This study 

TVDI quantile 99.99-0.001% 8 days Field data 0.64 2008 Garcia et al. (2014) 

PML-measured SWC 1 day Field data 0.33 2005-2007 Morillas et al. (2013) 

SEBAL 1 day Modelled 0.34 2005-2006 Andersen (2008) 

MOD16 8 days Modelled 0.4 2011 Hu et al. (2015) 

LSA-SAF MSG 8 days Modelled 0.68 2011 Hu et al. (2015) 

MIKE SHE SVAT 30 min Modelled 0.37 2005-2006 Andersen (2008) 

 

For the ES-Amo station, we only found results from the global models MOD16 

and LSA-SAF MSG. With RMSE values in 2011 of 0.33 and 0.46 mm, respectively. 

These values are similar to the RMSE of 0.30 and 0.34 mm obtained in this study for the 

TDTM-NDVI-Y-corr and TDTM-NDVI-O-corr models. 

5. Conclusions 

This paper proposes a framework to estimate ETa in a spatially distributed manner in 

semiarid Mediterranean environments using the TDTM model and two variations of it, 

and to identify which has the best fit to the validation data. The correction of systematic 

errors using Random Forest (RF) is also proposed. Validation data come from two flux 

towers located in scrubland semiarid areas. One of them: ES-LJu has been widely used 

for the validation of ETa estimation models using remotely sensed data. 

According to the validation results, the original TDTM method is significantly 

worse than in the literature. However, the results obtained with the proposed variation 

corrected with RF (TDTM-NDVI-corr(-O-Y) models) are very promising for both flux 
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towers (RMSE between 0.31 and 0.35). Especially considering the simplicity of the 

model implementation.  

A detailed analysis of the validation results shows that the uncorrected models, 

TDTM-EVI(-O-Y) and TDTM-EVI(-O-Y), have a similar fit independently of the 

satellite used. Similarly, neither the use of the original Priestley-Taylor value nor the 

proposed by Minacapilli et al. (2016) for semi-arid areas lead to a change in the fit. 

However, an improvement in the fit is observed when using NDVI as an alternative to 

estimate FC (TDTM-NDVI-(O-Y) variations). 

However, ETa modelled by the TDTM-NDVI-(O-Y) variations is overestimated 

in days when the daily thermal amplitude is lower than the monthly mean thermal 

amplitude, especially in the hottest period of the year. A RF model was proposed to 

analyse these errors taking into account both factors. 

RF correction significantly improved the fit (TDTM-NDVI-corr(-O-Y) 

variations), reducing the bias and decreasing the dispersion of the errors with respect to 

the observed values. Regarding the temporal distribution of the errors, it is clear how the 

largest differences occur in summer in all variations, being corrected to a large extent 

when using cdayt and dif_AT as covariates in RF. Regarding the spatial distribution of 

the results obtained in the variations, we observe a pattern consistent with the 

characteristics of the study area, with higher values in mountainous areas, in accordance 

with the existing rainfall pattern in the DHS, which increases in a SE-NW direction. 

However, although the results obtained demonstrate the improvement using the 

proposed variations, in future work, it would be necessary to evaluate the TDTM-NDVI-

(-O-Y) models with a larger number of observed data, ideally with different vegetation 

and climate conditions, in order to confirm this conclusion and to implement this 

correction at a regional scale. 
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