Accepted Manuscript

Altered materno-fetal transfer of 13C-polyunsaturated fatty acids in obese pregnant women

A. Gázquez, M.T. Prieto-Sánchez, J.E. Blanco-Carnero, M. Ruíz-Palacios, A. Nieto, D. van Harskamp, J.E. Oosterink, H. Schierbeek, J.B. van Goudoever, H. Demmelmair, B. Koletzko, E. Larqué

PII: S0261-5614(19)30187-6

DOI: https://doi.org/10.1016/j.clnu.2019.04.014

Reference: YCLNU 3870

To appear in: Clinical Nutrition


Received Date: 21 December 2018

Revised Date: 8 April 2019

Accepted Date: 11 April 2019

Please cite this article as: Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, Ruíz-Palacios M, Nieto A, van Harskamp D, Oosterink JE, Schierbeek H, van Goudoever JB, Demmelmair H, Koletzko B, Larqué E, Altered materno-fetal transfer of 13C-polyunsaturated fatty acids in obese pregnant women, *Clinical Nutrition*, https://doi.org/10.1016/j.clnu.2019.04.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Ref.: Ms. No. YCLNU-D-18-01434R2
- 2
- 3 Altered materno-fetal transfer of ¹³C-polyunsaturated fatty acids in obese

4 pregnant women

- 5 A. Gázquez¹⁻², M.T. Prieto-Sánchez³, J.E. Blanco-Carnero³, M. Ruíz-Palacios², A.
- 6 Nieto³, D. van Harskamp⁴, J.E. Oosterink⁴, H. Schierbeek⁴, J.B. van Goudoever⁴⁻⁵, H.
- 7 Demmelmair¹, B. Koletzko¹ and E. Larqué².
- 8 ¹LMU Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional
- 9 Medicine, Dr. von Hauner Children's Hospital, Munich, Germany.
- 10 ² Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-
- 11 Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia,

12 Murcia, Spain.

- ³ Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-
- 14 UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia,
- 15 *Spain*.
- ⁴Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam,
- 17 *The Netherlands.*
- 18 ⁵Department of Paediatrics, Free University of Amsterdam, Amsterdam, The Netherlands.
- 19 **Corresponding Author**: Dr. Elvira Larqué.
- 20 Department of Physiology. Faculty of Biology, University of Murcia. Campus de
- 21 Espinardo, 30100 Murcia, Spain.
- 22 E-mail: elvirada@um.es. Phone: +34-868-884239. Fax: +34-868-883963.
- 23 Trial Registry Number: **ISRCTN69794527**

ACCEPTED MANUSCRIPT

Ref.: Ms. No. YCLNU-D-18-01434R2

24 Abbreviations: AUC, area under the curve; BMI, body max index; CE, cholesterol

- esters; DHA, docosahexaenoic acid; FA, fatty acid; GC-C-IRMS, gas chromatography
- 26 combustion isotope ratio mass spectrometry; GDM, gestational diabetes mellitus;
- 27 HOMA, homeostatic model assessment for insulin resistance, LA, linoleic acid; LC-
- 28 PUFA, long-chain polyunsaturated fatty acid; LD, lipid droplets; NEFA, non-esterified
- 29 fatty acids; OA, oleic acid; PL, phospholipids; TG, triglycerides.
- 30

31 Abstract

32

Background & Aims: Maternal obesity at conception is considered a major predictor
of offspring obesity. This could by driven at least in part by an altered placental fat
transfer. However, the pathophysiological mechanisms involved are not fully
understood. We investigated the *in vivo* materno-fetal transfer of fatty acids (FAs) in
obese pregnant women using stable isotopes.

Methods: Ten obese and ten normo-weight pregnant women (control) received orally a 38 bolus of ¹³C-labelled FAs 12h before elective caesarean section: oleic acid (¹³C-OA), 39 linoleic acid (¹³C-LA) and docosahexaenoic acid (¹³C-DHA). Maternal blood samples 40 were collected at -12 (basal), -8, -4, -2, 0 hours relative to the time of cesarean section. 41 42 At the time of birth, arterial and venous cord bloods as well as placental tissue were collected. FAs composition was determined by gas-liquid chromatography and isotopic 43 enrichment by gas chromatography-combustion-isotope ratio mass spectrometry. 44 **Results:** Maternal plasma insulin and placental weight tended to higher values in obese 45 pregnant women although they did not present serum hyperlipidemia. Higher 46 concentrations of ¹³C-LA and ¹³C-DHA were found in non-esterified FAs fraction in 47 maternal plasma of obese mothers. The ratio of placental uptake for ¹³C-LA and ¹³C-48 DHA was lower in obese women compared to normal weight pointing toward a limited 49 capacity of FA placental transfer, especially of essential FAs. Maternal insulin was 50 associated to this lower placenta/maternal plasma ratio for both 13 C-LA (R= -0.563, 51 P=0.012) and ¹³C-DHA (R= -0.478, P=0.033). In addition, the ratio cord/maternal 52 plasma of ¹³C-LA was significantly lower in obese women compared to controls. 53

ACCEPTED MANUSCRIPT

Ref.: Ms. No. YCLNU-D-18-01434R2

- 54 **Conclusions:** In conclusion, obese mothers without hyperlipidemia showed a reduced
- 55 materno-fetal transfer of polyunsaturated FAs which could affect fetal development.
- 56 This affect dietary recommendation for obese pregnant women.
- 57
- 58 Keywords: placenta, labelled fatty acids, docosahexaenoic acid, linoleic acid, obesity.
- 59

60 **1. Introduction**

61

62	Obesity and overweight prevalence has reached epidemic proportions during the
63	last few decades, now affecting more than a third of populations in both developed and
64	developing countries (1-3). Accordingly, there is also an increasing number of obese
65	women becoming pregnant, along with a large number of women with high gestational
66	weight gain (4-5). Obesity with a body max index (BMI) >30 kg/m ² at conception and
67	in the first trimester of pregnancy is considered one of the strongest early predictors of
68	childhood obesity (6-7). Ample evidence has linked nutrition and metabolic
69	environment during pregnancy with fetal development and long-term health outcomes
70	in the offspring, indicating that obesity programming starts already in utero (8-9).
71	Maternal obesity promotes a lipotoxic placental environment and altered fetal
72	lipid concentrations and modifies gene expression at term, e.g. with regards to
73	inflammatory signalling, oxidative stress and energy metabolism (10-12). Maternal
74	obesity is associated with increased child risks for disadvantaged neurodevelopment,
75	obesity, cardiovascular diseases and diabetes, and shortened life expectancy (13-14).
76	Expression of some genes involved in fatty acid (FA) transfer and lipid metabolism is
77	enhanced in placental tissue of obese women, e.g. FA transporter protein 1, perilipin 2,
78	and FAT/CD36, while expression of the FA transporter protein 4 gene was decreased
79	(12,15-18). It is important to determine whether placental changes may affect materno-
80	fetal FA transfer.

Previous studies with stable isotopes in gestational diabetes mellitus (GDM)
demonstrated an impaired materno-fetal transfer of docosahexaenoic acid (DHA) (1920), whereas the transfer of other non-long chain polyunsaturated FAs (LC-PUFA) was
not affected by GDM although tended to increase (21). GDM and obesity are often

linked, however little is known about the effects of maternal obesity without diabetes on 85 the placental function and transfer of FAs to the fetus (17). LC-PUFAs, especially 86 DHA, are of critical importance for the visual and neuronal development of infants (22). 87 In a recent cohort of 435 mother-infant pairs, the pre-pregnancy BMI affected the fetal 88 lipid profile with decreased cord n-6 LC-PUFAs and DHA (23). However, Segura et al. 89 reported an increase in placental LC-PUFAs in obese mothers, although the sample size 90 91 was small (18). In addition, there are discrepancies in placental total FA content in obese placentas and several studies but not all reported higher fat content in this tissue 92 93 (18,24). We studied for the first time the in vivo metabolism and materno-fetal transfer of 94

We studied for the first time the *in vivo* metabolism and materno-fetal transfer of FAs labelled with stable isotopes in obese and normal weight pregnant women administered 12h before elective caesarean section. Better knowledge on the maternofetal transfer of FAs in pregnancies with obesity may have potential implications on effective dietary recommendations for obese pregnant women.

100	2.	Methods	

1	n	1
т	υ	т

102 *2.1. Subjects*

103

104	10 obese pregnant women (pre-pregnancy BMI $>$ 30 kg/m ²) and 10 normal
105	weight women (pre-pregnancy BMI 20-25 kg/m^2) were recruited at term in the
106	Obstetrics and Gynecology Service of the Virgen de la Arrixaca Clinical Hospital
107	(Murcia, Spain). All participants fulfilled the following inclusion criteria: singleton
108	pregnancy, age 18-40 years, plan to undergo elective caesarean section at term,
109	omnivorous diet, no DHA supplements (last trimester), non-smoking and normal fetal
110	Doppler scan within the normal reference range (25) on the day before caesarean
111	section. Women with any health problem or pregnancy complications were excluded.
112	All women had a negative result in their O'Sullivan test in the second trimester, so
113	GDM patients were not included. All procedures followed were in accordance with the
114	Helsinki Declaration of 1975 as revised in 1983. Written informed consent was obtained
115	from all participating women. The protocol of this study was approved by the Ethics
116	Committee of the Virgen de la Arrixaca Clinical Hospital, Murcia, Spain.

117

118 2.2. Stable isotope tracer administration

119

Three free FAs uniformly labelled with ¹³C stable isotope (ISOLIFE S.L.,
Wageningen, The Netherlands) were administered orally on a small piece of bread 12h
before elective caesarean section: ¹³C-oleic acid (OA, 18:1n-9, 0.5 mg/kg body weight);
¹³C-linoleic acid (LA, 18:2n-6, 0.5 mg/kg) and ¹³C-DHA (22:6 n-3, 0.1 mg/kg). The
labelled FAs were given at 9:00h in the morning and the caesarian section took place

125	12h later (21:00h). Subjects received a breakfast free of DHA and remained fasted until
126	the surgery. This schedule was set during the day in order not to disturb the mothers
127	night's sleep. In previous studies, 12h post-administration has been shown to be a good
128	model for the study of FA metabolism in pregnant women that allows the incorporation
129	of the tracers in the four plasma lipid fractions (26).
130	
131	2.3. Blood and placenta sampling
132	
133	Maternal blood samples were collected before tracer intake (basal time at -12h
134	respect to delivery) and every four hours (-8h and -4h), with an additional point at -2h
135	prior to the caesarean section (0h), using a venous line placed in the forearm of the
136	subject. We collected 10mL of maternal blood at each time point except for the sample -
137	2h before delivery when only 5mL blood were taken. Directly after birth, 2mL of each
138	cord venous and arterial blood were collected. All blood samples were collected into
139	EDTA-coated tubes and centrifuged for 3min at 1200g to separate plasma and red blood
140	cells. Samples were stored at -80°C until analysis.
141	An aliquot of placental tissue was taken from the four imaginary quadrants of
142	the tissue, rinsed in cold 0.9% NaCl solution, immediately frozen in liquid nitrogen and
143	stored at -80°C until analysis.
144	
145	2.4. Plasma biochemical analysis
146	
147	Maternal plasma biochemical parameters at delivery and venous cord insulin
148	were analyzed by chemioluminescence (DIAsource INSIRMA, Nivelles, Belgium).
149	Glucose, serum total cholesterol, triglycerides (TG), LDL cholesterol and HDL
	8

150	cholesterol were quantified by an automatic analyzer (Roche-Hitachi Modular PyD
151	Autoanalyzer, Mannheim, Germany).
152	The homeostatic model assessment (HOMA) index for insulin resistance was
153	calculated according to the following formula: (glucose mg/dL * insulin μ U/mL) / 405.
154	
155	2.5. Placental lipid droplets isolation
156	
157	Lipid droplets (LD) were isolated from placental tissue as previously described (27).
158	Briefly, 5g of placenta were gently rinsed with cold 0.9% NaCl to eliminate blood. Samples
159	were transferred to 12mL buffer (25mM tricine, 250mM sucrose, 0.2mM phenylmethylsulfonyl
160	fluoride, pH 7.6) and homogenized using a T25 digital Ultra-Turrax® (IKA, Staufen, Germany)
161	disperser for 1min followed by homogenization in a tissue grinder Potter-Elvehjem (25 times).
162	Homogenates were centrifuged (3,000g, 10min, 4°C). Supernatants were transferred to an Ultra-
163	Clear centrifuge tube (Beckman Coulter, CA, USA) and 2mL buffer (20mM HEPES, 100mM
164	KCl, 2mM MgCl ₂ , pH 7.4) were loaded on the top of the tissue homogenate. The supernatants
165	were again centrifuged (288,000g, 54min, 4°C) in a Beckman Optima XL100 ultracentrifuge
166	equipped with a swinging bucket SW41Ti rotor (Beckman Coulter, CA, USA). After
167	centrifugation, the floating white band containing LD was collected.
168	
169	2.6. Analysis of fatty acid concentrations and enrichments
170	
171	FAs were analyzed in maternal plasma samples from all time points, placental
172	tissue and LD, venous and arterial cord plasma. Total lipids from 250μ L of plasma and
173	0.8g of placental tissue were extracted into 3mL (plasma) or 6mL (placenta)
174	chloroform-methanol (2:1 v/v) according to the modified Folch method (28). Free
175	pentadecanoic acid, dipentadecanoyl phosphatidylcholine, tripentadecanoin and

176	cholesterylpentadecaoate (Sigma-Aldrich, Steinheim, Germany) were added as internal
177	standards. The lipid extract was dried down under nitrogen flow, redissolved in $400 \mu L$
178	chloroform-methanol (1:1 v/v) and applied to silica gel plates (Merck, Darmstadt,
179	Germany) for the isolation of lipid classes. Phospholipids (PL), non-esterified FAs
180	(NEFA), TG and cholesterol esters (CE) were isolated by development of the plates in
181	N-heptane/diisopropylether/glacial acetic acid (60:40:3, by vol). Synthesis of FAs
182	methyl esters was performed with 3N methanolic HCl (Supelco, PA, USA) at 90°C for
183	1h (29). A direct isolation and transesterification method was applied for NEFA
184	quantification in plasma samples (30). After drying under a gentle stream of nitrogen
185	the samples were redissolved in hexane containing butylated hydroxytoluene (2g/L) and
186	stored at -20°C until gas chromatography combustion isotope ratio mass spectrometry
187	analysis (GC-C-IRMS). ¹³ C enrichment of FAs was measured by GC-C-IRMS (Delta
188	XP, Thermo Electron, Bremen, Germany) equipped with a BPX70 (30m x 0.25mm x
189	0.25um) GC column (SGE, Milton Keynes, United Kingdom). The injection volume
190	varied amongst the samples, to achieve AUCs for all methylated FAs within the linear
191	dynamic range of the instrument. The procedure was slightly adapted from one
192	previously described (31).

193

194 2.7. Expression of results

195

From the ${}^{13}C/{}^{12}C$ ratio of the samples measured by GC-C-IRMS, the $\delta^{13}C$ relative to the international Pee Dee Belemnite standard and the ${}^{13}C$ -FAs molar percent excess was calculated (32), which represented the FA ${}^{13}C$ -enrichment. The concentration of the labelled FAs (µmoL/L or nmoL/g ${}^{13}C$ -FA) was calculated by multiplying the absolute concentrations of the FAs by their molar percent excess values.

ACCEPTED MANUSCRIPT

Ref.: Ms. No. YCLNU-D-18-01434R2

- For maternal plasma concentrations of 13 C-FAs, the area under the curve (AUC; µmol 13 C-FA x h/L) was calculated by integrating the measured 13 C-FAs concentration until delivery over time according to the trapezoidal rule.
- The distribution ratio (%) of the tracer FAs between mother and fetus was
 estimated by the calculation of the tracer concentration in venous cord blood relative to
- AUC in maternal plasma. The distribution ratio of tracer FAs between placental tissue
- and maternal plasma AUC was calculated as the percentage of the tracer concentration
- 208 in placenta relative to AUC in maternal plasma. Similarly, distribution ratios were also
- 209 calculated using enrichment values between venous cord blood/maternal plasma and
- 210 placenta/maternal plasma. More details on calculations of enrichments of maternal
- 211 plasma and placenta or cord blood can be found in Larqué et al. 2017 (33).
- 212

213 2.8. Statistical analysis

214

The results are expressed as means \pm SEM. Obese and control groups were compared using t-test. Pearson correlations were also performed. The significance level was set at *P*<0.05. Statistical analysis was performed with SPSS software version 23.0 (SPSS, IL, USA).

220 **3. Results**

221	Maternal serum TG and cholesterol levels were similar between both groups,
222	which implies we enrolled "healthy obese" women without dyslipidaemia (Table 1).
223	Maternal BMI was significantly higher in obese than control pregnant women both
224	before pregnancy and at delivery (P<0.001) (Table 1). Placental weight tended to be
225	higher in the obese group ($P=0.051$), along with a trend towards higher insulin serum
226	concentrations ($P=0.090$) and HOMA index ($P=0.093$). The small sample size included
227	due to the demanding study procedures limited statistical power regarding describing
228	differences of anthropometrical measurements on the neonates (Table 1).
229	The maternal blood concentrations of labelled FAs were stable or slightly
230	decreasing by the time of delivery in both groups after 12h of administration (Figure 1).
231	No differences were found for ¹³ C-FA concentrations in total lipids of maternal plasma
232	(AUC) (Table 2). However, ¹³ C-DHA concentration in plasma NEFA was significantly
233	higher in the obese group compared to controls, following ¹³ C-LA the same trend
234	(P=0.058) (Table 2). These discrepancies were not produced by different dilution of the
235	tracers in the maternal unlabelled FA pools since both groups of pregnant women
236	presented similar NEFA concentrations in plasma (Table 1).
237	In placenta, the tracer concentrations per gram of tissue were similar between
238	groups in both total lipids and placental lipid fractions (Table 2 and Figure 2A).
239	Nevertheless, obese placentas tended to higher unlabelled fat content ($P=0.127$) (Table
240	1) while ¹³ C-FA concentration in placental LD followed the opposite sense, especially
241	for DHA (P=0.182, Figure 2B). Surprisingly, the placenta/maternal plasma ratio
242	showed lower FAs uptake in obese subjects, mainly for ¹³ C-LA and ¹³ C-DHA (Figure
243	2C and 2D). The differences were statistically significant when expressed as
244	enrichment ratios (Figure 2D). Maternal insulin was associated to this lower

245	placenta/maternal plasma ratio for both ¹³ C-LA (R= -0.563, P =0.012) and ¹³ C-DHA
246	(R= -0.478, $P=0.033$), indicating a likely role of this molecule in the uptake process of
247	FA from plasma by the placenta.
248	No differences were found for ¹³ C-FA concentrations in venous cord plasma,
249	although ¹³ C-DHA tended to a lower value in the obese subjects ($P=0.069$, Figure 3A).
250	Similar results were observed in artery cord plasma (Figure 3B). Arterio-venous
251	difference, which indicates an approximation of the tracer amount retained in the fetal
252	metabolism, was similar between obese and control subjects for all studied FAs (¹³ C-
253	OA: Obese $0.005 \pm 0.002 \mu$ mol/L <i>vs</i> . Control: $0.004 \pm 0.005 \mu$ mol/L, <i>P</i> =0.886; ¹³ C-LA:
254	Obese $0.010 \pm 0.003 \mu$ mol/L vs. Control: $0.007 \pm 0.007 \mu$ mol/L, P=0.692 ; ¹³ C-DHA:
255	Obese $0.002 \pm 0.001 \mu \text{mol/L}$ vs. Control: $0.003 \pm 0.001 \mu \text{mol/L}$, P=0.620).
256	Materno-fetal transfer of ¹³ C-LA across the placenta, indicated by the ratio
257	between cord venous and maternal plasma AUC, was significantly lower in obese
258	mothers than in controls (Figure 3C), not only using concentration ratio but also
259	enrichment ratio (Figure 3D). A similar trend was observed for ¹³ C-DHA although no
260	statistical differences were found (Figure 3C and 3D).

261 **4. Discussion**

262

282

263	Studies on the mechanisms regulating the delivery of lipids to the human fetus
264	are critical to improve our understanding on fetal nutrition. This study evaluated the
265	incorporation and metabolism of stable isotope labelled-FAs (OA, LA and DHA) in
266	maternal, placenta and fetal compartments in "healthy" obese and normal weight
267	pregnant women. Obese mothers did not present hyperlipidaemia, and both groups
268	showed similar serum NEFA, cholesterol and TG levels. This should be taken in
269	consideration, since not all obese subjects develop hyperlipidemia and usually healthy
270	and unhealthy obese subjects are mixed. In fact, similar TG levels have been reported in
271	obese mothers and in normal weight mothers (34), while GDM mothers usually present
272	elevated TG levels (35-36).
273	In the present study there were no major differences between groups in the
274	incorporation of the administered tracer FAs in maternal plasma. Obese women
275	presented higher ¹³ C-DHA and ¹³ C-LA concentration in plasma NEFA compared to
276	controls. The second half of gestation is characterised by a catabolic state that induces
277	an increase of NEFA and glycerol levels in plasma (37). Nevertheless, the lack of
278	differences in total unlabelled plasma NEFA concentration between both groups could
279	be due to the relative "healthy" state of obese subjects in this study. The higher ${}^{13}C$ -
280	DHA and ¹³ C-LA concentration in maternal plasma NEFA could indicate an impaired
281	PUFA placental uptake in these subjects. In fact, maternal insulin was inversely

283 peripheral insulin resistance (HOMA) in obese women may enhance insulin anabolic

associated to their ratio of placental uptake, as occurs in GDM (38). The trend to higher

effect in the placenta, altering structure and FA transport as occurs in GDM (39).

Total ¹³C-FA concentrations in placenta were similar in both groups of pregnant women but obese placentas showed a trend towards higher concentration of unlabelled FAs, which agrees with findings of higher fat accumulation in overweight and obese placentas (10,24). An increase of inflammation molecules, PPAR- γ , (40-42) or higher fat synthesis from high glucose supply (43) may promote heavier placentas with higher fat content.

¹³C-LA and ¹³C-DHA placental uptake ratio was lower in obese women than in 291 292 controls and they were negatively correlated to maternal insulin level, possibly as a 293 compensatory mechanism to limit the total materno-fetal FA transfer. LD are intracellular structures that store neutral lipids (TG and CE), and they are implicated in 294 the regulation and hydrolysis of cell fat stores (44). There were not differences in¹³C-FA 295 concentrations in placental LD but since they pointed to lower values in obese placentas 296 (Figure 2B), an endogenous origin of placental fat depots from maternal glucose in 297 obese placentas might occur. Thus, placenta de novo lipogenesis will dilute the apparent 298 enrichment of ¹³C-FA within placental LD pool. This might contribute to counteract 299 300 excessive maternal fat uptake by the placenta in these glucose-tolerant obese women. 301 Calabuig-Navarro et al. recently reported higher mRNA and protein expression of FA 302 esterification regulators along with a decreased FA oxidation capacity in placentas from 303 obese women (24). It is unknown whether women with more severe obesity, 304 hyperlipidemia and marked insulin resistance could present higher placental fat uptake 305 of non-LC-PUFAs as occurs in patients with GDM (21). Further studies are needed to 306 evaluate the impact of different degrees of obesity and insulin resistance in placenta 307 metabolism and function.

308 Brass and colleagues reported a sex effect on OA and arachidonic acid placental 309 uptake in obese women, while no sex differences were observed for DHA uptake (45).

Other authors also found different placental adaptations to maternal weight status (BMI and gestational weight gain) depending on fetal sex (46). In our study, 6 neonates were males in the obese group and only 3 in the control group (n=10/group). We cannot discard an implication of fetal sex in the rate of FAs uptake by the placenta, but due to the low numbers of subjects per group we cannot elucidate any possible sex related effect on placental FA transfer.

We found significant lower materno-fetal transfer of ¹³C-LA in normolipidemic 316 obese subjects compared to controls, with a similar trend for 13 C-DHA (P=0.148). In 317 fact, ¹³C-DHA concentration in cord venous plasma of obese mothers was almost 318 significantly lower respect to normal weight women (P=0.069), while its concentration 319 in total lipids of maternal plasma or placenta were not different (Table 2). This may 320 support in part an impaired materno-fetal transfer of this FA. Since ¹³C-DHA increased 321 significantly in plasma NEFA of obese subjects, an altered transfer of DHA in this lipid 322 fraction could affect obese pregnancies. These results are in agreement with decreased 323 cord blood DHA reported in obese mothers in a recent cohort study (23). Dubé and 324 colleagues also found lower LA transport in freshly isolated cytotrophoblast cells from 325 326 obese women relative to controls, although these differences were not observed using syncytiotrophoblast cells (17). An impaired materno-fetal transfer of essential and LC-327 328 PUFAs, especially DHA, during pregnancy could be considered as an important risk 329 factor for nervous, visual and immune development later in life (47). It has been 330 reported that children whose mothers were severely obese before pregnancy have decreased cognition and language scores (48) as well as adverse psychosocial 331 332 development at 6 years of age (49). It is tempting to speculate that an increased polyunsaturated FAs intake during pregnancy might overcome placental function 333 alterations in obese pregnant women and improve child outcomes, which should be 334

explored further. Arterio-venous ¹³C-FA concentration differences, which reflect fetal retention and metabolism, were similar in obese and normal weight women, although with large standard deviations. Thus, we do not find indications for a change in fetal metabolism of transferred ¹³C-FAs despite altered placental metabolism and transfer of FAs with maternal obesity.

One of the most important strengths of the present study is that timing of 340 caesarean sections were exactly scheduled which allowed us to collect representative 341 AUC maternal blood samples along the 12 hours of the study, as well as placental and 342 343 cord blood samples at a defined time interval after tracer administration. Limitations include the small sample size as a consequence of the very demanding study protocol 344 with caesarean sections at night, and the inclusion of obese mothers without 345 346 hyperlipidaemia and marked insulin resistance, which could have influenced the results obtained. 347

348

We conclude that placental metabolism is altered in normolipidemic obese 349 pregnant women reducing the materno-fetal transfer of LA and DHA, when compared 350 351 to normal weight women. Placental lipogenesis from glucose might reduce the placental lipid uptake in these subjects to counteract excessive lipid transfer. It is uncertain 352 353 whether hyperlipidemic obese women placenta may still retain placental lipid uptake. It 354 appears prudent that obese pregnant women limit their intake of both sugars and saturated fats while increasing polyunsaturated FAs consumption, which should be 355 further evaluated. 356

357

359	Acknowledgments
360	We thank all medical doctors of the Gynecology and Anesthesia Services of the
361	University "Vírgen de la Arrixaca" Clinical Hospital (Murcia, Spain) for their support
362	in performing the timed caesarean sections. We are also grateful to all of the
363	participating pregnant women.
364	
365	Statement of Autorship
366	A. Gázquez, M.T. Prieto-Sánchez, J.E. Blanco-Carnero, M. Ruíz-Palacios, A.
367	Nieto, J.B. van Goudoever, H. Demmelmair, B. Koletzko and E. Larqué designed
368	research; A. Gázquez, M.T. Prieto-Sánchez, J.E. Blanco-Carnero and M. Ruíz-Palacios
369	performed research; A. Gázquez, D. van Harskamp, J.E. Oosterink and H. Schierbeek
370	analyzed data; A. Gázquez performed statistical analysis, A. Gázquez and E. Larqué
371	wrote the paper and had primary responsibility for final content.
372	
373	Conflict of Interest Statement
374	All authors read and approved the final manuscript. None of the authors reported any
375	conflicts of interest.
376	
377	Funding Sources
378	This work is financially supported in part by the Commission of the European
379	Communities, Projects Early Nutrition (FP7-289346), DYNAHEALTH (H2020-
380	633595) and LIFECYCLE (H2020-SC1-2016-RTD), the European Research Council
381	Advanced Grant META-GROWTH (ERC-2012-AdG 322605), and the Excellence
382	Network for Maternal and Child Health and Development (RED SAMID III, RD
383	16/0022/0009).

385 6. References

387	1.	WHO. Obesity and overweight Fact Sheet. Internet:
388		http://www.who.int/mediacentre/factsheets/fs311/en/.
389	2.	Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United
390		States, 2009-2010. NCHS Data Brief 2012:1-8.
391	3.	James PT, Rigby N, Leach R. The obesity epidemic, metabolic syndrome and
392		future prevention strategies. Eur J Cardiovasc Prev Rehabil 2004;11:3-8.
393	4.	Gilmore LA, Klempel-Donchenko M, Redman LM. Pregnancy as a window to
394		future health: Excessive gestational weight gain and obesity. Semin Perinatol
395		2015;39:296-303.
396	5.	Heslehurst N, Ells LJ, Simpson H, Batterham A, Wilkinson J, Summerbell CD.
397		Trends in maternal obesity incidence rates, demographic predictors, and health
398		inequalities in 36,821 women over a 15-year period. BJOG 2007;114:187-94.
399	6.	Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon
400		SH, Amini SB. Perinatal risk factors for childhood obesity and metabolic
401		dysregulation. Am J Clin Nutr 2009;90:1303-13.
402	7.	Whitaker RC. Predicting preschooler obesity at birth: the role of maternal
403		obesity in early pregnancy. Pediatrics 2004;114:e29-36.
404	8.	Barker DJ. The developmental origins of adult disease. Eur J Epidemiol
405		2003;18:733-6.
406	9.	Gluckman PD, Hanson MA, Pinal C. The developmental origins of adult
407		disease. Matern Child Nutr 2005;1:130-41.
407		disease. Matern Unita Nutr 2005;1:130-41.

ACCEPTED MANUSCRIPT

Ref.: Ms. No. YCLNU-D-18-01434R2

- 408 10. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A, Gomez-
- 409 Acevedo H, Shankar K. Maternal obesity is associated with a lipotoxic placental
 410 environment. Placenta 2014;35:171-7.
- 411 11. Edlow AG, Hui L, Wick HC, Fried I, Bianchi DW. Assessing the fetal effects of
- 412 maternal obesity via transcriptomic analysis of cord blood: a prospective case-
- 413 control study. BJOG 2016;123:180-9.
- 414 12. Hirschmugl B, Desoye G, Catalano P, Klymiuk I, Scharnagl H, Payr S,
- 415 Kitzinger E, Schliefsteiner C, Lang U, Wadsack C, et al. Maternal obesity
- 416 modulates intracellular lipid turnover in the human term placenta. Int J Obes
- 417 (Lond) 2017;41:317-23.
- 418 13. Valsamakis G, Kyriazi EL, Mouslech Z, Siristatidis C, Mastorakos G. Effect of
- 419 maternal obesity on pregnancy outcomes and long-term metabolic

420 consequences. Hormones (Athens) 2015;14:345-57.

- 421 14. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in
 422 relation to infant birth weight and offspring overweight/obesity: a systematic
- 423 review and meta-analysis. PLoS One 2013;8:e61627.
- 424 15. Scifres CM, Chen B, Nelson DM, Sadovsky Y. Fatty acid binding protein 4
- regulates intracellular lipid accumulation in human trophoblasts. J ClinEndocrinol Metab 2011;96:E1083-91.
- 427 16. Altmae S, Segura MT, Esteban FJ, Bartel S, Brandi P, Irmler M, Beckers J,
- 428 Demmelmair H, Lopez-Sabater C, Koletzko B, et al. Maternal Pre-Pregnancy
- 429 Obesity Is Associated with Altered Placental Transcriptome. PLoS One
- 430 2017;12:e0169223.
- 431 17. Dube E, Gravel A, Martin C, Desparois G, Moussa I, Ethier-Chiasson M, Forest
 432 JC, Giguere Y, Masse A, Lafond J. Modulation of fatty acid transport and

ACCEPTED MAI Ref.: Ms. No. YCLNU-D-18-01434R2 433 metabolism by maternal obesity in the human full-term placenta. Biol Reprod 2012;87:14, 1-1. 434 18. Segura MT, Demmelmair H, Krauss-Etschmann S, Nathan P, Dehmel S, Padilla 435 MC, Rueda R, Koletzko B, Campoy C. Maternal BMI and gestational diabetes 436 alter placental lipid transporters and fatty acid composition. Placenta 437 438 2017;57:144-51. Pagan A, Prieto-Sanchez MT, Blanco-Carnero JE, Gil-Sanchez A, Parrilla JJ, 19. 439 Demmelmair H, Koletzko B, Larque E. Materno-fetal transfer of 440 441 docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2013;305:E826-33. 442 20. Wijendran V, Bendel RB, Couch SC, Philipson EH, Cheruku S, Lammi-Keefe 443 444 CJ. Fetal erythrocyte phospholipid polyunsaturated fatty acids are altered in pregnancy complicated with gestational diabetes mellitus. Lipids 2000;35:927-445 31. 446 Larque E, Pagan A, Prieto MT, Blanco JE, Gil-Sanchez A, Zornoza-Moreno M, 447 21.

- 448 Ruiz-Palacios M, Gazquez A, Demmelmair H, Parrilla JJ, et al. Placental fatty
- acid transfer: a key factor in fetal growth. Ann Nutr Metab 2014;64:247-53.
- 450 22. Innis SM. Fatty acids and early human development. Early Hum Dev
 451 2007;83:761-6.
- Cinelli G, Fabrizi M, Rava L, Ciofi Degli Atti M, Vernocchi P, Vallone C,
 Pietrantoni E, Lanciotti R, Signore F, Manco M. Influence of Maternal Obesity
 and Gestational Weight Gain on Maternal and Foetal Lipid Profile. Nutrients
 2016;8.

456 24. Calabuig-Navarro V, Haghiac M, Minium J, Glazebrook P, Ranasinghe GC, Hoppel C, Hauguel de-Mouzon S, Catalano P, O'Tierney-Ginn P. Effect of 457 maternal obesity on placental lipid metabolism. Endocrinology 2017. 458 25. Parra-Cordero M, Lees C, Missfelder-Lobos H, Seed P, Harris C. Fetal arterial 459 and venous Doppler pulsatility index and time averaged velocity ranges. Prenat 460 Diagn 2007;27:1251-7. 461 Gil-Sanchez A, Largue E, Demmelmair H, Acien MI, Faber FL, Parrilla JJ, 462 26. Koletzko B. Maternal-fetal in vivo transfer of [13C]docosahexaenoic and other 463 464 fatty acids across the human placenta 12 h after maternal oral intake. Am J Clin Nutr 2010;92:115-22. 465 Hernandez-Albaladejo I, Ruiz-Palacios M, Gazquez A, Blanco JE, Parrilla JJ, 27. 466 Largue E. A method for lipid droplet isolation from human placenta for further 467 analyses in clinical trials. Acta Obstet Gynecol Scand 2014;93:1198-202. 468 28. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and 469 purification of total lipides from animal tissues. J Biol Chem 1957;226:497-509. 470 Carnielli VP, Wattimena DJ, Luijendijk IH, Boerlage A, Degenhart HJ, Sauer 471 29. 472 PJ. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr 473 474 Res 1996;40:169-74. 475 30. Husek P, Simek P, Tvrzicka E. Simple and rapid procedure for the determination 476 of individual free fatty acids in serum. Anal Chim Acta 2002;465:433-9. 31. Demmelmair H, Baumheuer M, Koletzko B, Dokoupil K, Kratl G. Metabolism 477 478 of U13C-labeled linoleic acid in lactating women. J Lipid Res 1998;39:1389-96. Brossard N, Pachiaudi C, Croset M, Normand S, Lecerf J, Chirouze V, Riou JP, 479 32. Tayot JL, Lagarde M. Stable isotope tracer and gas-chromatography combustion 480

		Ref.: Ms. No. YCLNU-D-18-01434R2
481		isotope ratio mass spectrometry to study the in vivo compartmental metabolism
482		of docosahexaenoic acid. Anal Biochem 1994;220:192-9.
483	33.	Larque E, Demmelmair H, Koletzko B. Materno-fetal Lipid Kinetics. 1st. ed. In:
484		Schierbeek H, ed. Mass spectrometry and stable isotopes in nutritional and
485		pediatric research. New Jersey: John Wiley & Sons, Inc, 2017:197-212.
486	34.	Martino J, Sebert S, Segura MT, Garcia-Valdes L, Florido J, Padilla MC,
487		Marcos A, Rueda R, McArdle HJ, Budge H, et al. Maternal Body Weight and
488		Gestational Diabetes Differentially Influence Placental and Pregnancy
489		Outcomes. J Clin Endocrinol Metab 2016;101:59-68.
490	35.	Sanchez-Vera I, Bonet B, Viana M, Quintanar A, Martin MD, Blanco P, Donnay
491		S, Albi M. Changes in plasma lipids and increased low-density lipoprotein
492		susceptibility to oxidation in pregnancies complicated by gestational diabetes:
493		consequences of obesity. Metabolism 2007;56:1527-33.
494	36.	Koukkou E, Watts GF, Lowy C. Serum lipid, lipoprotein and apolipoprotein
495		changes in gestational diabetes mellitus: a cross-sectional and prospective study.
496		J Clin Pathol 1996;49:634-7.
497	37.	Catalano P, deMouzon SH. Maternal obesity and metabolic risk to the offspring:
498		why lifestyle interventions may have not achieved the desired outcomes. Int J
499		Obes (Lond) 2015;39:642-9.
500	38.	Prieto-Sanchez MT, Ruiz-Palacios M, Blanco-Carnero JE, Pagan A, Hellmuth
501		C, Uhl O, Peissner W, Ruiz-Alcaraz AJ, Parrilla JJ, Koletzko B, et al. Placental
502		MFSD2a transporter is related to decreased DHA in cord blood of women with
503		treated gestational diabetes. Clin Nutr 2017;36:513-21.

504	39.	Ruiz-Palacios M, Ruiz-Alcaraz AJ, Sanchez-Campillo M, Larque E. Role of
505		Insulin in Placental Transport of Nutrients in Gestational Diabetes Mellitus. Ann
506		Nutr Metab 2017;70:16-25.
507	40.	Cetin I, Parisi F, Berti C, Mando C, Desoye G. Placental fatty acid transport in
508		maternal obesity. J Dev Orig Health Dis 2012;3:409-14.
509	41.	Lager S, Ramirez VI, Gaccioli F, Jang B, Jansson T, Powell TL. Protein
510		expression of fatty acid transporter 2 is polarized to the trophoblast basal plasma
511		membrane and increased in placentas from overweight/obese women. Placenta
512		2016;40:60-6.
513	42.	Zhu MJ, Ma Y, Long NM, Du M, Ford SP. Maternal obesity markedly increases
514		placental fatty acid transporter expression and fetal blood triglycerides at
515		midgestation in the ewe. Am J Physiol Regul Integr Comp Physiol
516		2010;299:R1224-31.
517	43.	Dowling D, McAuliffe FM. The molecular mechanisms of offspring effects
518		from obese pregnancy. Obes Facts 2013;6:134-45.
519	44.	Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid
520		droplets is a phospholipid monolayer with a unique Fatty Acid composition. J
521		Biol Chem 2002;277:44507-12.
522	45.	Brass E, Hanson E, O'Tierney-Ginn PF. Placental oleic acid uptake is lower in
523		male offspring of obese women. Placenta 2013;34:503-9.
524	46.	Mando C, Calabrese S, Mazzocco MI, Novielli C, Anelli GM, Antonazzo P,
525		Cetin I. Sex specific adaptations in placental biometry of overweight and obese
526		women. Placenta 2016;38:1-7.

ACCEPTED MANUSCRIPT

Ref.: Ms. No. YCLNU-D-18-01434R2

- 527 47. Lauritzen L, Hansen HS, Jorgensen MH, Michaelsen KF. The essentiality of
- 528long chain n-3 fatty acids in relation to development and function of the brain
- 529
 and retina. Prog Lipid Res 2001;40:1-94.
- 530 48. Torres-Espinola FJ, Berglund SK, Garcia-Valdes LM, Segura MT, Jerez A,
- 531 Campos D, Moreno-Torres R, Rueda R, Catena A, Perez-Garcia M, et al.
- 532 Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring
- 533 Neurodevelopment at 6 and 18 Months of Age--A Follow Up from the PREOBE
- 534 Cohort. PLoS One 2015;10:e0133010.
- 535 49. Jo H, Schieve LA, Sharma AJ, Hinkle SN, Li R, Lind JN. Maternal
- prepregnancy body mass index and child psychosocial development at 6 years of
- age. Pediatrics 2015;135:e1198-209.
- 538
- 539
- 540

Figure 1. Time course ¹³C-fatty acids concentrations in maternal plasma of obese and normal weight pregnant women. A) ¹³C-Oleic acid (¹³C-OA). B) ¹³C-Linoleic acid (¹³C-LA). C) ¹³C-Docosahexaenoic acid (¹³C-DHA). Time point 0 indicates the time of caesarean section; tracers were administered 12h before surgery. Control group (open squares), n=10 and obese group (black squares), n=10. Results are expressed as means \pm SEM. Common superscript letters indicate similar values between different time points. Significant differences when P<0.05.

549

Figure 2. A: ¹³C-fatty acid concentrations in placental non-esterified fatty acid fraction 550 $(^{13}C-OA P=0.11, ^{13}C-LA P=0.13, ^{13}C-DHA P=0.19)$. B: ^{13}C -fatty acid concentrations in 551 placental lipid droplets (LD). C: Placental ratio between ¹³C-fatty acid concentrations in 552 total lipids of placenta and maternal plasma. D: Placental ratio between ¹³C-fatty acid 553 enrichments in total lipids of placenta and maternal plasma. Control group (open bars), 554 n=10 and obese group (black bars), n=10. Results are expressed as means \pm SEM. 555 *Indicates statistically significant differences (P<0.05) between control and obese 556 group. OA, oleic acid; LA, linoleic acid; DHA, docosahexaenoic acid. 557

558

Figure 3. A: ¹³C-fatty acid concentrations in cord venous plasma (¹³C-DHA P=0.069); B: ¹³C-fatty acid concentrations in cord artery plasma. C: Placental ratio between ¹³Cfatty acid concentrations in cord venous and maternal plasma (¹³C-DHA P=0.148). D: Placental ratio between ¹³C-fatty acid enrichments in cord venous and maternal plasma (¹³C-DHA P=0.169). Control group (open bars), n=10 and obese group (black bars),

- 564 n=10. Results are expressed as means \pm SEM. *Indicates statistically significant
- 565 differences (P<0.05) between control and obese group. OA, oleic acid; LA, linoleic

566 acid; DHA, docosahexaenoic acid.

567 Table 1. Characteristics of the mothers and neonates at delivery.

	Control (n=10)	Obese (n=10)	Р
Maternal Age (years)	33.80 ± 1.87	34.50 ± 2.31	0.807
Gestational Age (weeks)	38.50 ± 0.28	38.40 ± 0.42	0.838
Maternal Pregestational BMI (kg/m ²)	22.51 ± 0.50	32.22 ± 0.92	<0.001
Maternal BMI at delivery (kg/m ²)	28.22 ± 0.57	35.63 ± 1.18	<0.001
Placental Weight (g)	612.86 ± 58.06	755.00 ± 42.82	0.051
Maternal Glucose (mg/dL)	59.80 ± 2.48	62.10 ± 6.271	0.377
Maternal Insulin (µU/mL)	9.47 ± 1.50	14.73 ± 2.68	0.090
HOMA index	1.39 ± 0.24	2.40 ± 0.55	0.093
Maternal TG (mmol/L)	1.94 ± 0.25	1.95 ± 0.17	0.973
Maternal plasma NEFA (mmol/L)	0.90 ± 0.11	0.91 ± 0.07	0.938
Maternal total cholesterol (mmol/L)	6.77 ± 0.40	6.31 ± 0.39	0.399
Maternal LDL cholesterol (mmol/L)	3.81 ± 0.31	3.37 ± 0.42	0.385
Maternal HDL cholesterol (mmol/L)	2.06 ± 0.24	2.00 ± 0.18	0.834
Maternal total FA (mmol/L)	14.54 ± 1.02	14.52 ± 0.98	0.986
Placental total FA (nmol/g)	32.57 ± 2.35	37.21 ± 1.99	0.127
Cord venous total FA (mmol/L)	3.27 ± 0.38	3.13 ± 0.36	0.776
Birth Weight (g)	3241 ± 134	3512 ± 169	0.203
Birth Length (cm)	49.80 ± 0.54	50.50 ± 0.71	0.418
Neonatal Cephalic Circumference (cm)	34.50 ± 0.34	34.65 ± 0.47	0.787
Neonatal Abdominal Circumference (cm)	33.75 ± 0.61	35.10 ± 0.74	0.170
Cord Glucose (mg/dL)	32.80 ± 5.19	46.63 ± 5.85	0.105
Cord Insulin (µU/mL)	6.16 ± 0.57	5.86 ± 0.42	0.676

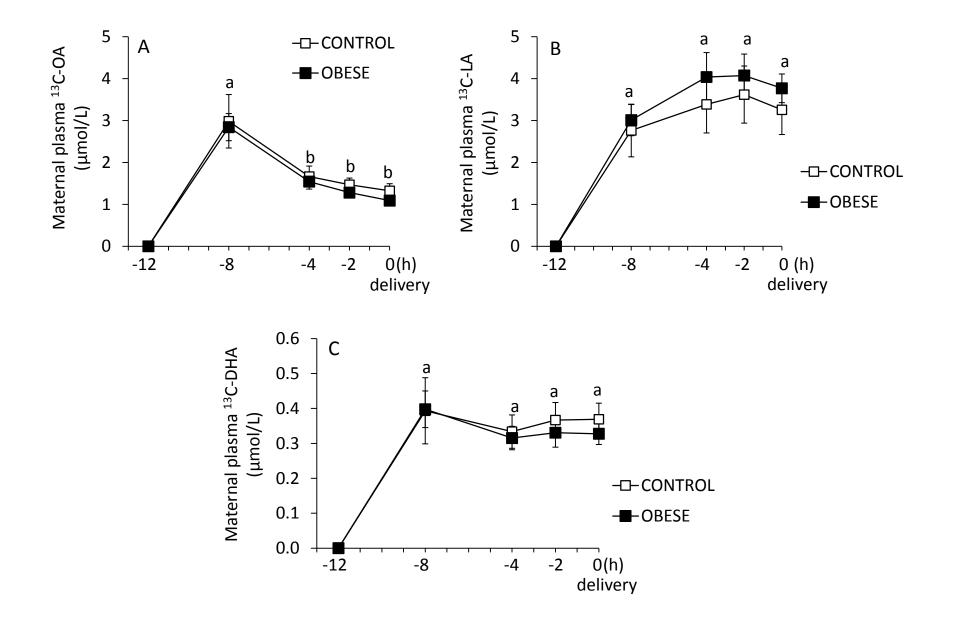
⁵⁶⁸

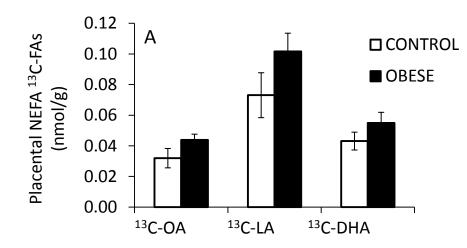
Results are expressed as means \pm SEM. Significant differences when *P* <0.05. BMI,

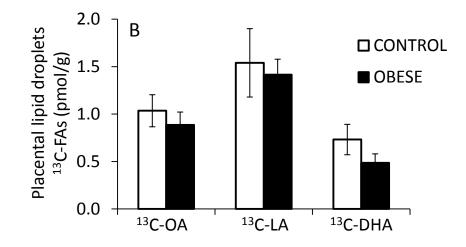
570 body mass index; FA, fatty acids; HDL, high density lipoproteins; HOMA, homeostatic

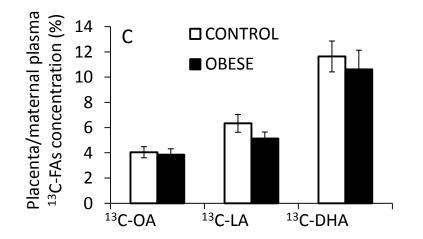
- model assessment; NEFA, non-esterified fatty acids; LDL, low density lipoproteins; 571
- TG, triglycerides. 572

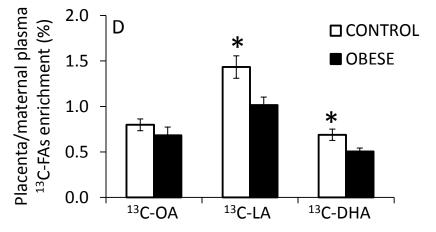
Ref.: Ms. No. YCLNU-D-18-01434R2


	¹³ C-Oleic acid			¹³ C-Linoleic acid		¹³ C-Doc	¹³ C-Docosahexaenoic acid		
	Control	Obese	Р	Control	Obese	Р	Control	Obese	Р
Plasma ¹³ C-FA AUC (μmol x h/L)									
Total lipids	20.92 ± 3.67	19.34 ± 1.70	0.687	30.94 ± 6.38	35.83 ± 4.04	0.503	3.61 ± 0.65	3.53 ± 0.38	0.90
Phospholipids	2.78 ± 0.89	2.02 ± 0.19	0.402	19.09 ± 5.36	21.25 ± 2.66	0.708	2.22 ± 0.38	1.85 ± 0.18	0.35
Triglycerides	16.18 ± 3.38	14.84 ± 1.48	0.694	8.48 ± 1.69	9.34 ± 1.44	0.684	1.46 ± 0.46	1.49 ± 0.20	0.94
Non-esterified FA	1.25 ± 0.19	1.29 ± 0.13	0.865	0.83 ± 0.08	1.19 ± 0.16	0.058	0.09 ± 0.01	0.18 ± 0.04	0.04
Cholesterol esters	1.42 ± 0.35	1.32 ± 0.26	0.804	3.29 ± 0.82	4.36 ± 0.73	0.313	0.02 ± 0.01	0.02 ± 0.01	0.60
Plasma ¹³ C-FA enrichment (MPE %)	0.04 ± 0.01	0.05 ± 0.01	0.649	0.06 ± 0.01	0.07 ± 0.01	0.356	0.05 ± 0.01	0.07 ± 0.01	0.10
Placenta ¹³ C-FA concentration (nmol/g)									
Total lipids	0.74 ± 0.04	0.69 ± 0.03	0.322	1.66 ± 0.17	1.69 ± 0.09	0.855	0.38 ± 0.04	0.35 ± 0.04	0.54
Phospholipids	0.66 0.03	0.60 0.02	0.168	1.52 0.13	1.53 0.07	0.990	0.30 0.03	0.26 0.08	0.37
Triglycerides	0.03 0.01	0.02 0.01	0.764	0.04 0.01	0.04 0.01	0.506	0.03 0.01	0.03 0.01	0.50
Cholesterol esters	0.01 0.01	0.01 0.01	0.663	0.02 0.01	0.02 0.01	0.731	0.01 0.01	0.01 0.01	0.26
Placenta ¹³ C-FA enrichment (MPE %)	0.03 0.01	0.03 0.01	0.144	0.07 0.01	0.07 0.01	0.788	0.03 0.01	0.03 0.01	0.67


573 Tab	le 2. ¹³ C-fatty acid concentration a	and enrichment in both plas	sma and placenta of ob	bese and normal weight pregnant wo	omen.
---------	--	-----------------------------	------------------------	------------------------------------	-------


574 Results are expressed as means \pm SEM. Significant differences when P < 0.05. AUC, area under the curve; FA, fatty acid. AUC was calculated


using ¹³C-FA concentrations from the four time points of plasma sampling (-8h, -4h, -2h, 0h). Plasma enrichment was calculated as mean of the


576 four ¹³C-FA MPE measures. Control n=10, Obese n=10.

