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Abstract 

 A new transfer mechanism is considered in which two different ionic species of 

the same charge can be transferred across a soft interface while they interconvert with 

each other in the original phase through a homogeneous chemical reaction: the aqueous 

complexation-dissociation coupled to transfer (ACDT) mechanism. This can correspond 

to a free ion in aqueous solution in the presence of a neutral ligand that complexes it 

leading to a species that can be more or less lipophilic than the free ion. As a result, the 

transfer to the organic phase can be facilitated or hindered by the aqueous-phase 

chemical reaction. 

 Rigorous and approximate explicit analytical solutions are derived for the study 

of the above mechanism via normal pulse voltammetry, derivative voltammetry and 

chronoamperometry at macrointerfaces. The solutions enable us to examine the process 

whatever the species’ lipophilicity and diffusivity in each medium and the kinetics and 

thermodynamics of the chemical reaction in solution. Moreover, when the chemical 

reaction is at equilibrium, explicit expressions for cyclic voltammetry and square wave 

voltammetry are obtained. With this set of equations, the influence of the different 

physicochemical phenomena on the voltammetric response is studied as well as the 

most suitable strategies to characterization them. 

 

Keywords: Ion transfer; Liquid|liquid interface; Chemical reactivity; Mass transport; 

Voltammetry 
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1. INTRODUCTION 

 The study of ion transfer processes across the interface between two immiscible 

electrolyte solutions (ITIES) has great interest and impact in many fields, such as 

liquid/liquid electrochemistry and liquid/liquid extraction, with important implications 

in the development of electrochemical sensors and the design of drugs 1, 2. In addition, 

the interface between the two phases (usually an aqueous and an organic solutions) can 

be used as a simple model for ion transport at biological membranes, constituting a 

biomimetic medium suitable for studying processes fundamental in bio-catalysis or 

cellular respiration 3. Thus, one of the parameters that can be extracted by 

electrochemical techniques is the standard Gibbs energy of the ion transfer, which is 

directly related to the ion's lipophilicity 1. The diffusivity of the ion in each phase as 

well as its concentration can also be extracted in a fast, inexpensive and simple way 4-11. 

These properties determine the distribution of the ionic species in biological systems 

and their potential application as a drug or drug carrier. 

 According to the above, the electrochemical methods are very powerful in the 

study of the transfer of ionic species across soft interfaces. Given the dynamic nature of 

real systems and of voltammetric techniques, the rigorous modelling of such processes 

requires taking into account the influence of the species' chemical reactivity and 

diffusivity in each phase. Thus, the heterogenous processes of ion transfer can be 

coupled with homogeneous chemical reactions (as occurred with the analogous electron 

transfer processes 12-14), such as in the so-called facilitated or assisted ion transfer 

mechanisms. For example, in the TOC mechanism the ion transfer is promoted by a 

ligand present in the organic solution; i.e. there is a chemical reaction following the 

charge transfer that stabilizes the ion 15 (equivalent to the EC mechanism in electron 

transfer processes). Other possible transfer routes are the ACT mechanism (a chemical 
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reaction preceding the ion transfer, equivalent to the so-called CE mechanism) and the 

TIC mechanism (ion transfer by an interfacial chemical reaction) 16.  

 Electrochemical techniques can also be employed to characterize the 

thermodynamics (equilibrium constant) and the kinetics (rate constants) of the chemical 

reaction(s) (except for the TIC mechanism, where the current response is only a 

function of thermodynamic parameters 17) and to elucidate the reaction mechanism 18-21. 

In previous works, we have reported analytical expressions for the voltammetric 

response of the TOC and TIC mechanisms at macrointerfaces, as well as for the case of 

any number of chemical reactions at equilibrium preceding and following the ion 

transfer 22-25. These theoretical developments have been employed to characterize the 

transfer of several protonated amines facilitated by the ionophore dibenzo-18-crown-6 

from water to a solvent polymeric membrane 11, 26.  

In this work, a new transfer mechanism is considered in which two different 

ionic species taking part in a chemical reaction with a neutral species can be transferred: 

the aqueous complexation-dissociation coupled to transfer (ACDT) mechanism (see 

Scheme I). This can correspond, for example, to the transfer of a free metal and its 

complex, provided that the ligand is neutral. From this mechanism two general 

scenarios can be envisaged: the situation where the complex is more lipophilic (and so 

the complexation “facilitates” the ion transfer) and that where the complex is less 

lipophilic (and then complexation “hinders” the transfer). In the limit when only one of 

the species can be transferred within the electrochemical window, the above two 

situations would correspond to the so-called ACT mechanism (aqueous complexation 

followed by transfer 18) and to the ADT mechanism (aqueous dissociation followed by 

transfer 27). Therefore, the theory reported here (which can also be applied to the study 

of equivalent electron transfer reaction schemes) can assist in getting further 
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physicochemical insight into ion transfer mechanisms in real systems, with potential 

impact in speciation studies, such as the determination of the availability of metals 

complexes and their corresponding beneficial or toxic properties 28-31. Many 

experimental and modelling approaches to speciation and bioavailability/toxicity are 

based on equilibrium principles 27. In contrast, the consideration of mass transport and 

chemical kinetic effects in the present theory for the ACDT mechanism enables us to 

analyze the dynamic aspects of speciation in a general and rigorous way. This is 

particularly interesting given that natural aquatic systems are generally subject to 

changing conditions and are practically never at chemical equilibrium 27, 32-35.  

Rigorous and approximate explicit analytical equations for the 

chronoamperometric, normal pulse voltammetry (NPV) and derivative voltammetry 

(dNPV) responses of the ACDT mechanism are deduced under non-equilibrium 

conditions. A general expression is also reported for any voltammetric technique (such 

as cyclic voltammetry and square wave voltammetry) under total equilibrium 

conditions. In all cases, the influence of the difference between the formal transfer 

potentials  of the ion and the complex on the shape and position of the voltammograms 

are analyzed. Moreover, different criteria are proposed for qualitative and quantitative 

kinetic and thermodynamic studies based on the variation of the electrochemical 

response with time and with the ligand concentration.  
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2.  THEORY 

2.1 Influence of the chemical kinetics: application of a constant potential 

Let us consider the reversible transfer of cationic species from an aqueous 

solution (w) to an organic phase (o) in the form of two chemical species Mz+ and MLz+

(ACDT mechanism) 

Scheme I 

The above scheme can correspond to a free metal ion Mz+  and its complex MLz+  in 

solution. In Scheme I, 1k   (M-1 s-1) and 2k  (s-1) are the forward and backward rate 

constants of the chemical reaction and z+

W 0

O M

'   and z+

W 0

O ML

'   are the formal ion transfer 

potentials of species Mz+ and MLz+ , respectively. Moreover, the ligand L is assumed 

to be a neutral species present in a large excess in the aqueous solution, such that the 

kinetics of the chemical reaction can be considered of (pseudo)first order    

(
*

1 1 Lk k c= (s-1)). Under these conditions, the conditional or apparent equilibrium 

constant of complexation can be defined as follows 

 
*

ML 1 L *
L

M 2

*

c*

c k c
K K c

c k


= = =   (1) 
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with *

ic (M) being the initial equilibrium concentration of species i ( , ,i M ML L= ) in 

water and cK (M-1) the equilibrium constant based on concentrations. 

When a constant potential difference E  is applied between both phases with a 

length  , supposing that diffusion is the only effective mass transport mechanism, the 

variations of the concentrations of the different species with the distance to the interface 

x  and with the electrolysis time t  ( 0 t   ) are described by the following 

differential equation system 

 

( ) ( )
( ) ( )
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M
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c x t c x t
D k c x t k c x t

t x

c x t c x t
D k c x t k c x t

t x

c x t c x t
D

t x

c x t c x t
D

t x

 
= − + 

  
  

= + −  


  =
 


  =
  

  (2) 

where 
iD

 is the diffusion coefficient of species i  in  phase   ( ,w o= ). The 

boundary conditions associated to the system (2) are given by 

* *
0, 0

   c c ; c c    
, 0

w w

M M ML ML

x t

x t

 = 
= =

→ −  
  (3) 

0, 0
   c c 0   

, 0

o o

M ML

x t

x t

 = 
= =

→  
  (4) 

0, 0x t=   

 
0 0

w o
w oM M
M M

x x

c c
D D

x x
= =

    
=   

    
  (5) 

 
0 0

w o
w oML ML
ML ML

x x

c c
D D

x x
= =

    
=   

    
  (6) 

 ( ) ( ) 10 0 eo w

M Mc c =   (7) 
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 ( ) ( ) 20 0 eo w

ML MLc c =   (8) 

with 

 ( )z+

W 0

1 O M

'zF
E

RT
 = −     (9) 

 ( )+

W 0

2 O ML

'zF
E

RT
 = −     (10) 

where F, R and T have their usual meanings. Moreover, the current measured can be 

calculated by means of the following expression 

 
0 0

w w
w wM ML
M ML

x x

c c
I zFA D D

x x
= =

     
= − +    

     
  (11) 

where A is the interfacial area. 

Now, we assume that the diffusion coefficients in a given phase are equal                          

( w w

M ML wD D D= =  and o o

M ML oD D D= = ) but different for the aqueous and organic 

solutions ( w oD D ). Indeed, important differences are frequently observed in the 

diffusivity of ionic species in transfer processes between two immiscible electrolyte 

solutions, such as water and RTILs or solvent polymeric membranes 11, 36-38. By 

defining two new variables 14 

 
w w

M MLc c = +   (12) 

 ( ) ( )1 2k k tw w

M MLKc c e
+

 = −   (13) 

with   referring to the perturbation of the chemical equilibrium and   to the total 

concentration in the aqueous solution, Eqs. (2)-(8) are transformed as follows 
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* * *
0, 0
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, 0

M ML
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c c

x t


 = 
= = + =

→ −  
  (15) 

0, 0
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, 0

o o

M ML

x t
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 = 
= =
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  (16) 
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1
o

t o M

x x w x

D c
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1
o
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−
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with 

 1 2k k = +   (21) 

Moreover, the current response is given by 

 
0

w

x

I zFAD
x =

 
= −  

 
  (22) 

By following a mathematical procedure analogous to that employed in reference 

39,  based on Koutecký’s dimensionless parameters method 40, 41 (see Appendix B), the 

following rigorous expression for the current is obtained 
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where 

 o

w

D

D
 =   (24) 

dI  is the diffusion-limited current of a simple ion transfer process at macrointerfaces 12 

 *

d
wD

I zFAc
t

=


  (25) 

and  ( )S   is given by 
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where 

2
1

0

1
p

p
 = −   (27)

( )( )( )

( )
( )

1 2

1 2

1 2 1 2

2

0

1
2 j

1 2i

1
1

! 1 1 1

1
        1

!

j

j

j

i

i

p

j p K e e

K e Kep
Ke e e e K

j i p

 

 

   




 






−

=

 
= − −  

+ + + 

   + + +   + + + +
 −  
  



j > 1    (28) 

 t =   (29) 
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2.1.1 Kinetic steady state aproximation (kss)  

When the kinetics of the coupled chemical reaction is fast enough, it is adequate 

to suppose that the equilibrium perturbation is independent of the electrolysis time 42  

 0ss

t


=


  (31) 

with ss  being defined as  

 w w

ss M MLKc c = −   (32) 

By taking into account Eqs.(31) and (32), the system (2) leads to the following 

differential equation for the variable ss  

 
( )

( )
2

2
0ss

ss

w

x
x

x D

  
−  =


  (33) 

the solution of which is given by 

 ( ) ( )0 e r

x

ss ssx  =    (34) 

where 0x   in the aqueous phase and r  is the thickness of the linear reaction layer 

where the chemical equilibrium is disturbed 

 w
r

D
 =


  (35) 

Thus, by applying Koutecký’s dimensionless parameter method and considering Eq.(34)

, the expression for the current under the kss approach is obtained 
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where 
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  (38) 

and   is defined by Eq.(29). The validity of the approximate solution (36) has been 

analyzed by comparison with the rigorous one (Eq.(23)), finding that the error decreases 

as   increases and 0 '  decreases. In regard to the influence of K, the error increases 

as the proportion of the most lipophilic species decreases (i.e. it increases with K if  

0' 0   and it decreases if 0' 0  ). For example, for 0.2 5K   and 0 ' 200   

mV, both solutions coincide for 3.2   with a difference smaller than 5% and for 

14   with a difference smaller than 1%, independently of the value of  .  

 

2.1.2 Particular case: only the ion Mz+  (or the complex MLz+ ) is transferred 

 

                                                                                                                       Scheme II 

Under these conditions, when only the ion is transferred (aqueous dissociation 

followed by transfer (ADT), see Scheme II), the rigorous expression for NPV can be 

easily deduced from Eq.(23) by making +

W 0

O ML

' →+  (i.e. 2 0e → ) 
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and zp  being defined in Eq. (30). In addition, from (36) one obtains the kss 

approximate solution for the current 
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where ( )
zM
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 is given by Eq.(37), with 
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Eqs.(39)-(43) coincide with those reported in previous works for the equivalent CE-

mechanisms in electron transfer processes 43, 44. Analogous expressions for the case 

where MLz+  is the only species transferred (aqueous complexation followed by transfer 

(ACT), see Scheme II) are also deduced by making +

W 0

O M

' →+  (i.e. 1 0e → ) in 

Eqs.(23) and (36). Such expressions are equivalent to (39)-(43) by replacing 1  by 2  

and K  by 1/ K  .  

 

2.2 Total equilibrium conditions (te): application of any voltammetric technique 

When the chemical kinetics in the aqueous phase is very fast in comparison with 

diffusion, we can assume that the chemical equilibrium is maintained at any time and 

any point in the aqueous solution. Under these conditions, the expression for the current 

greatly simplifies by making → ( ( ) 1kssF  → ) in Eq.(36), in a such way that it is 

obtained that 
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This equation corresponds to a single wave, the half-wave potential of which is  

 ( )
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z+

te w

1/2 o ML

1
ln ln 1 ln

zF

o RT
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E K K e
zF zF zF







   

=  + + + − +  
   

  (45) 

with 

 z+ z+

0 W 0 W 0

O OML M

' ' ' =   −    (46) 

Furthermore, the assumption of total equilibrium conditions enables us to derive an 

analytical expression for the current response when any sequence of p potential steps 

1 2, ,... pE E E  is applied. Thus, it can be demonstrated that the interfacial concentrations 

associated with each potential pulse are only dependent on the value of the applied 

potential and independent of the previous potential pulses. Therefore, the superposition 

principle can be applied 45 in a such way that the current corresponding to the p-th 

potential step can be written as     
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( ) ( )z+

W 0

2 O ML

' ; 0
i

i

zF
E i

RT
 = −      (51) 

Note that the general solution (47) can be applied to any voltammetric technique. For 

example, the normalized expressions for staircase cyclic voltammetry (SCV) and square 

wave voltammetry (SWV) are as follows  

( )
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(53) 

where E  is the pulse step in SCV (with 0.01E   mV the cyclic voltammogram 

(CV) is obtained 46) and   is the duration of each applied potential in SWV (the 

frequency is defined as 1/ 2f = ). Moreover, ( )iG   and  a  are given by 
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Fv

a
RT

=   (55) 

with v  being the scan rate in CV. 
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2.2.1 Particular case: only the ion Mz+  (or the complex MLz+ ) is transferred 

 Under these conditions, by making 2 0e →  in Eqs. (44)-(45), the NPV current 

and the half wave potential when only the free ion is transferred (ADT mechanism) are 

given by 

 
1

1

d

e

1 e

ADT

teI

I K






=

+ + 
  (56) 

 ( ), w

1/2 o

1
ln ln 1z

te ADT o
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+

  
=  + + + 

 
  (57) 

Moreover, the general solution (47) for an arbitrary sequence of potentials can also be 

used in this particular case, by making 2 0e →  in the expressions of the surface 

concentrations (Eq.(48)). Hence, the CV and SWV responses are also given by Eqs. 

(52)-(53) with  
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( ) ( )i
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0

1

1

1
; 0

1
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G i
K e
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= 
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  (58) 

Analogous expressions for the case where MLz+  is the only species transferred (ACT 

mechanism) are also deduced by making +

W 0

O M

' →+  (i.e. 1 0e → ) in Eqs.(44)-(45), 

(48) and (54). Such expressions are equivalent to (52)-(53) and (56)-(58) by replacing 

z+

w

o M

o 
  by z+

w

o ML

o 
  ( 1  by 2 ) and K  by 1/ K  .  
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3. RESULTS AND DISCUSSION 

3.1. Chemical kinetics: normal pulse voltammetry (NPV), differential voltammetry 

(dNPV) and chronoamperometry 

 The effect of the chemical kinetics on the NPV voltammograms is parameterized 

here by the variable  , defined as t =  (Eq.(29)). The increment of the chemical rate 

constant   ( 1 2k k = + ) or the duration   of the potential pulse ( 0 t   ) results in 

higher values of  . Therefore, the "effective" chemical kinetics can be varied 

experimentally by changing the duration of the applied potentials. Note that this is 

qualitatively equivalent to changing the scan rate in cyclic voltammetry and the 

frequency in square wave voltammetry. Thus, the decrease of the scan rate in CV or the 

frequency in SWV is analogous to the use of longer pulse times in NPV. Furthermore, 

the value of   can also be modified by means of the initial concentration of ligand        

( *

Lc  ), since *

1 1 Lk k c= . 

The influence of   is analysed in Figs. 1 and 2, where NPV-voltammograms are 

plotted for a ratio of diffusion coefficients / 0.001o wD D = . Note that this large 

difference between the diffusivity of the ionic species in phases w and o is not 

uncommon in the present context given than 2- and even 3-order-of-magnitude 

differences have been reported between the D-values in conventional solvents and 

solvent polymeric membranes or room temperature ionic liquids 11, 36-38. An apparent 

equilibrium constant K = 2 is considered (that is, 
* * / 3Mc c=  and 

* *2 / 3MLc c= ) and 

several values of the difference between the formal ion transfer potentials  

( z+ z+

0 W 0 W 0

O OML M

' ' ' =   −  ), taking into account that the transfer of the complex can be 

thermodynamically less favourable (
0 ' 0  , Fig. 1) or more favourable (

0 ' 0  , 

Fig. 2) than the transfer of the free species.   
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 As can be seen in Figs. 1A and 2A, when the difference 0'  is large       

( )0' 2 0mV0 =  and two waves can be distinguished, the first signal is related to the 

transfer of the most lipophilic species, i.e. the species with less positive formal transfer 

potential ( Mz+  in Fig.1A and MLz+  in Fig.2A). Hence, the limiting current of the first 

wave ( 1

limI ) is larger in Fig. 2A than in Fig. 1A since initially MLz+  is present in a 

higher concentration according to the chemical equilibrium constant considered (

* *2ML Mc c= ). As the  -value is higher, the magnitude of the first wave increases. This 

can be understood by the faster interconversion between Mz+  and MLz+ . As discussed 

in Section 2.1.2, under the 
0' -values in Figs. 1A and 2A, the limiting current of the 

first wave (
1

limI ) and their half-wave potential ( 1

1/2E ) are identical to those obtained for 

the equivalent CE-mechanism (Eqs. (39)-(43)) with the species transferred being Mz+  

in Fig.1A and MLz+ in Fig.2A. 

The voltammograms also undergo a transition from a double wave to a single 

one as the  -value is increased. In the limit of very fast kinetics, they coincide with the 

response predicted under total equilibrium conditions (grey line, Eq.(44)), the limiting 

current of the wave being proportional to the sum of the initial concentrations of species 

Mz+ and MLz+ in water (
*c ). On the other hand, when the value of   is small  

( 0.01  ), the voltammograms show two waves corresponding to the “independent” 

transfer of each species, which are centred on the corresponding half-wave potential 

given by 14     

 
W 0

1/2, O

' 1
ln   ( , )z z

j j

RT
E j M ML

zF




+ + 
=  + = 

 
  (59) 

Note that the variation of the signal shape with the pulse duration is a simple criterion to 

discriminate between the mechanism depicted in Scheme I and the situation where there 
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is no interconversion between species Mz+  and MLz+ , that is, the chemical process does 

not take place (at least within the voltammetric time-scale). Also note that the above 

conclusions are qualitatively applicable to other voltammetric techniques and the 

corresponding current-potential curves have an analogous behaviour as the time-scale of 

the experiment is changed. 

The value of the difference 0'  also has an effect on the NPV-voltammograms, 

as shown in Figs. 1B, 1C, 2B and 2C. Thus, smaller differences between the formal 

transfer potentials give rise to the overlapping of the two waves. Hence, the effect of the 

chemical kinetics is less apparent and so more difficult to detect experimentally. The 

response finally turns into a single signal when 
0' 0 →  (see Figs. 1C and 2C), which 

is insensitive to the  -value since under these conditions it is fulfilled that 1 2  = =  

(see Eqs.(9) and (10)) in a such way that Eq.(23) leads to the following expression for 

the current-potential response: 

 
0 0

d

e

1 e
E

I

I



 =




=

+ 
  (60) 

which corresponds to a single sigmoidal curve (Figs. 1C and 2C). As can be inferred 

from Eq. (60), the current is independent of the chemical reaction since both species 

have identical lipophilicity and they are transferred at the same potential  

( z+ z+

W 0 W 0

O OM ML

' '  =  ). In fact, the above expression coincides with that obtained for an ion 

transfer reaction without any kinetic constraints in the aqueous phase 14. 

The effect of the equilibrium constant is showed in Fig.3, for 
0' = 200 mV and 

/ 0.001o wD D =  (note that the conclusions are qualitatively analogous for any other 

values of 
0'  and /o wD D ). As expected, when 1K  or 1K  the curves tends to 

those corresponding to the simple transfer of the complex or the free species, 
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respectively, given that under such conditions they are practically the only species 

present in the aqueous medium. On the other hand, two waves are obtained for non-

extreme values of K when total equilibrium conditions are not achieved (Figs. 3A and 

3B). As can be seen, lower K-values result in a higher limiting current of the first signal 

( 1

limI ), due to the increment of the initial concentration of the most lipophilic species 

Mz+ . The variation of the limiting current with K is less notorious for large  -values, 

since the chemical reaction provides a higher amount of species Mz+ . Note that even if 

the initial concentration of the most lipophilic species is not very large in solution (e.g. 

K = 10 in Fig. 3B), its corresponding electrochemical signal can be significant if the 

interconversion ML Mz z+ +  is fast. This point is important for the correct 

interpretation of electrochemical signals in speciation studies.  

For large  -values such that total chemical equilibrium conditions are attained 

(Fig. 3C), a single curve is obtained independently of the values of K and 
0'  (see also 

Figs.1 and 2) according to Eq.(44), the position of which is given by Eq.(45). Thus, the 

voltammogram shifts towards more positive potentials as the equilibrium constant takes 

larger values, since the proportion of the less lipophilic species (i.e., the complexed 

species in this figure) increases with K (see Eq.(1)).  

The effect of the variation of the concentration of species L (
*

Lc ) is showed in 

Fig.4. The value of 
*

Lc  modifies the value of both the apparent equilibrium constant          

( *

c LK K c= ) and the “effective” rate constant of complexation ( *

1 1 Lk k c= ), in a such way 

that both K and 1k  increase with 
*

Lc . Taking the above two effects into account, NPV-

curves have been plotted in Fig. 4.A for different concentrations of ligand (assuming 

that 
*

Lc  is in a large excess with respect to *c  in all the cases) and cK = 10 M-1 (
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1c 2K k / k= ). As can be seen, given that 0 ' 0   (i.e., z+ z+

W 0 W 0

O OML M

' '    ), higher 

concentrations of the ligand result in a lower limiting current of the first wave ( 1

limI ) and 

the shift of the voltammogram towards more positive potentials. This is a consequence 

of the increase of the concentration of species MLz+ , which has been considered to be 

less lipophilic than Mz+ (the opposite behaviour would be observed if MLz+  were the 

most lipophilic species). Obviously, the voltammograms would be insensitive to the 

value of *

Lc  in the absence of the homogeneous chemical reaction (i.e., 1 ). 

The study of the variation of the position of the signal and of the value of 
1

limI  

(provided that the difference of formal transfer potentials is large enough) can be used 

to determine the rate and equilibrium constants. In Figs. 4B and 4C, the variation of 
1

limI  

and the position of the signal (parameterized by means of the potential 
halfE

 
at which 

the normalized current takes the value / 0.5dI I = ) with 
*

Lc  have been plotted for 

different values of 1k   and 2k , maintaining the ratio 1k  / 2k (= cK ) constant. The shape of 

the curves is very similar for any cK  value, the influence of which is the shift of the 

curve towards smaller 
*

Lc -values as cK  increases (not shown). The rate constants and 

the real equilibrium constant can be extracted by fitting the variation of 
1

limI  and 
halfE  

with *

Lc  within the adequate range of ligand concentrations ( *

c LK c   approximately 

between 1 and 10). The two limit values of the curves in Figs. 4B correspond to the 

half-wave potentials of species Mz+  (very small ligand concentration) and MLz+ (very 

high ligand concentration), which are given by Eq.(59). Therefore, when the range of 
*

Lc  

is not limited by the nature of the ligand and/or by its solubility, the half-wave 

potentials of the ion transferred can be determined directly from these two limit values.   
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The theory developed for the ACDT mechanism depicted in Scheme I also 

allows us to study the current-potential response in derivative voltammetry (dNPV), 

obtained by differentiation of the experimental NPV curve. A notable advantage of this 

technique is the higher resolution that it offers when the signals are overlapped. In Fig. 

5A, the influence of   on the dNPV-voltammograms is shown for 0' = 200mV. As 

discussed from the NPV curves, the increment of   leads to the transition of the signal 

from two peaks centred at the corresponding half-wave potentials to a single peak. The 

latter coincides with the response obtained under total equilibrium conditions (grey line) 

with Epeak being given by Eq.(45). Furthermore, the peak current of the first signal 

increases with   whereas the second peak undergoes the opposite behaviour. Note that 

the two peak potentials take more positive values as the chemical interconversion is 

faster. 

The influence of the equilibrium constant on the dNPV response is examined in 

Fig. 5B, for 
0' = 200mV and   = 1. In this case the effect is also analogous to that 

observed in NPV (see Fig. 3A). Thus, the voltammograms show two peaks when K 

takes intermediate values, the magnitude of the first one (transfer of Mz+ ) decreasing 

with K whereas the second signal increases as K is larger. In addition, the two peaks 

converge into a single one when K →  (simple transfer of species MLz+ ) or 0K →  

(simple transfer of species Mz+ ). This figure illustrates the idea mentioned above that 

the conclusions reached for the NPV signal are qualitatively applicable to other 

voltammetric techniques. 

Let us move now to the study of the chronoamperometric response; i.e. the 

current-time curves (I vs t) obtained under the application of a constant potential. In Fig. 

6, the influence of the chemical kinetics and of the equilibrium constant on the I-t 

response is analyzed for 
0' = 200 mV, upon the application of a potential  
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( W 0

O

' 200zM
E  +− = mV) that corresponds to the limiting current of the first wave of the 

NPV curve (see Fig. 1A). 

With regard to the effect of   (Fig.6A), one can observe that the increment of 

this variable results in larger values of the current, reaching the limit of total equilibrium 

for very fast kinetics (see inset in Fig.6A). Thus, the plot of 1

lim / dI I  versus   is a 

sigmoid with two limit values corresponding to the simple transfer of species Mz+   

(lower limit, slow chemical kinetics) and the ion transfer under total equilibrium 

conditions (upper limit, fast chemical kinetics). The position of this sigmoid is a 

function of the K-value, since it determines the initial concentrations of each species and 

so the value of current obtained (the smaller the apparent equilibrium constant, the 

higher the current measured). 

The effect of K is shown in Figs. 6B and 6C, where the current density-time 

curves are plotted for two different values of   and several apparent equilibrium 

constants (indicated on the graphs). As can be observed, the decrease of K leads to 

higher values of the current density, according to the increase of the initial concentration 

of the free species. Moreover, for a fixed value of K, the current density takes larger 

values as    increases, since the chemical reaction is able to provide a larger amount of 

species Mz+ . Note that the plots 
1

lim / dI I   vs  t   are constants when 0K →   or  K →

, since under these conditions there is practically a single species present in the aqueous 

medium and the chronoamperogram follows a Cottrelian behaviour 12. Thus, 
1

lim / 1dI I   

for very small K-values (
* *

Mc c= ) and  
1

lim / 0dI I   for extremely high K-values (
* 0Mc =

). On the other hand, deviations from the Cottrell equation are observed for intermediate 

values of K (Figs. 6B and 6C) and  (Fig. 6A). 
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3.2. Total equilibrium conditions: cyclic voltammetry (CV) and square wave 

voltammetry (SWV) 

 As discussed in Section 2.3, under total equilibrium conditions (very fast 

kinetics), an analytical equation can be obtained for any voltammetric technique 

(Eq.(47)), such as cyclic voltammetry (CV) and square wave voltammetry (SWV). In 

Figs. 7A and 7B, the influence of the scan rate ( v ) in CV and of the frequency ( f ) in 

SWV are shown. Unlike the cases in Fig. 1 (under the influence of the chemical 

kinetics), the time scale of the experiment has no influence on the shape of the 

voltammograms. The only effect of v  and f  is the increment of the peak current 

whereas the position and shape of the signal are not altered. Note that this effect is also 

observed when there are no chemical reactions coupled to the ion transfer processes 12, 

13, 47, such that, as expected, the variation of the response with the experimental time-

scale cannot be used to detect the occurrence of the chemical reaction. 

 The presence of the coupled chemical process can be probed by varying the bulk 

concentration of ligand 
*

Lc . In Figs. 7C and 7D, one can observe that the only influence 

of the 
*

Lc -value on the CV and SWV-voltammograms under total equilibrium conditions 

is the shift of the voltammograms. For 
0 ' 0   (i.e. the complex is less lipophilic than 

the free species) the shift takes place towards more positive potentials as 
*

Lc  is 

increased, whereas the shape of the response is not affected (compare with the results 

shown in Fig. 4A). This is a consequence of the very fast kinetics of interconversion 

between Mz+ and MLz+ , such that the presence of ligand only influences the value of 

the apparent equilibrium constant K. Obviously, the shift of the voltammograms would 

take place towards less positive potentials if MLz+  were the most lipophilic ionic 

species (
0 ' 0  , not shown) and the position of the signal would remain unaffected if 
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there were not any coupled chemical reaction. Therefore, the variation of the signal with 

*

Lc  is a direct and straightforward way to detect the presence of the chemical process as 

well as to distinguish the degree of lipophilicity of the two ionic species.  

Variable *

Lc -experiments can also be performed to quantify the value of the real 

equilibrium constant cK . The shift of the voltammograms can be quantified through the 

values of the peak potential of the forward peak in CV ( CV

p,forwardE ) and the peak potential 

in SWV ( SWV

peakE ). The latter coincides with the half-wave potential under equilibrium 

conditions 48 (Eq.(45)), whereas the forward peak potential in CV differs from this by 

28.5  mV  at 25ºC for 1z =   12:  

 

0'

0 '

*
SWV 0'

peak *1/2,

*
CV 0'

p,forward *1/2,

        ln
1

ln 1.109   
1

z

z

zF

RT
c L

M
c L

zF

RT
c L

M
c L

RT K c e
E E

zF K c

RT K c e RT
E E

zF K c zF









+

+





 
+  − =  −

 + 
 


  
+  − =  − +

 +  
  

  (61) 

with 1/2,ME  being defined by Eq.(59). By fitting the variations of the peak potentials 

with the ligand concentration (see Figs. 7E and 7F) one can determine cK  and the 

difference between the half-wave potentials (which coincides in this case with the 

difference between the formal transfer potentials). Note that according to Eqs. (61) the 

influence of the coupled chemical reaction on the position of the signal depends on the 

charge of the free and complexed ions (z). 

 Finally, the influence of the charge of the ionic species is analyzed in Fig. 8. Fig. 

8A shows that the forward peak current in CV is affected by z, such that ,

CV

p forwardI   is 

proportional to 
3/2

z , as described for single charge transfer processes (the Randles-

Sevckic equation 12). Thus, the ratio between the slopes of the two plots depicted in Fig. 
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8A is 23/2 (= 2.8). In addition, the peak-to-peak separation for z = 2 ( 29 mV ) is half 

of that corresponding to z = 1 ( 58 mV ), as it is also well-known for simple charge 

transfer processes 12.  

Regarding the effect in SWV, one can observe that the peak current increases 

with the ion charge z (Fig. 8B). Indeed, the peak current is a function of the product 

swz E  (with swE  being the square wave amplitude), in a such way that for a given 

swz E -value the same value of /SWV

peakI z  is obtained 47 (see grey lines in Fig. 8B). The 

half-peak width ( 1/2W ) of the SWV-curve is also a function of the charge of the ions 

(Fig. 8C). These 1/2W -values have been calculated from the following equation reported 

for a simple ion transfer 49 that, as expected from Eq. (53), also describes the ACDT 

mechanism under total equilibrium conditions: 
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( )

SW SW SW SW SW

SW SW SW SW SW

2
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+ + + + + − 

=  
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  (62) 

where 

 sw sw

z F
E

RT
 =   (63) 

Therefore, the half-peak width is a function of |z| and swz E  such that equal swz E  

values lead to the same value of 1/2z W  47 (see grey lines in Fig. 8C). As can be 

observed in Fig. 8C, ( ) ( )1/2 1/21 / 2 2W z W z= =   when the value of the amplitude is 

small but this ratio tends to unity as swE  takes higher values. 
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4.  CONCLUSIONS 

 Analytical explicit equations have been reported for the response in different 

voltammetric techniques of two ionic species that interconvert through a chemical 

reaction and both can be transferred from water to an organic solution, solvent 

polymeric membrane or ionic liquid (the ACDT mechanism). Rigorous and 

approximate explicit solutions are presented for normal pulse voltammetry (NPV), 

derivative voltammetry (dNPV) and chronoamperometry including the effects of the 

chemical kinetics and also of the likely different diffusion coefficients in each phase. 

Moreover, a general expression has also been obtained for any voltammetric technique 

when the chemical kinetics is very fast (chemical equilibrium conditions).  

The above equations enable us to study the variation of the features of the 

electrochemical response with the time scale of the experiment and with the 

concentration of ligand for any value of the difference between the formal transfer 

potentials of the free and complexed species. Different criteria and procedures have 

been proposed for the detection of the chemical process coupled to the ion transfers, as 

well as for the determination of the equilibrium and rate constants and the lipophilic 

character and charge of both ionic species. Thus, the theory reported here enables the 

rigorous analysis of the dynamic aspects of chemical speciation in voltammetric studies 

as well as deeper understanding of the voltammetric response and the different 

physicochemical processes behind it (heterogeneous charge transfer, mass transport and 

chemical interconversion). 
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Appendix A. Symbols  

A              interfacial area 

*c              initial total concentration in the aqueous solution ( * * *

M MLc c c= + ) 

ic           concentration profile of species i (i = M, ML, L,) in the phase  ( ,w m = ) under  

              the application of a constant potential  

*

ic              bulk concentration of species i (i = M, ML, L) 

( ), 0w j

Tc     total surface concentration in the aqueous solution associated with the j-th potential  

               pulse applied in multipulse techniques, under the assumption of total equilibrium  

               conditions ( ( ) ( ) ( ), , ,0 0 0w j w j w j

T M MLc c c= + ) 

iD             diffusion coefficient of species i (i = M, ML) in phase   ( ,w m = ) 

D             diffusion coefficient in phase   ( ,w m = ) 

E               applied potential in normal pulse voltammetry (NPV) and chronoamperometry 

Ej              applied potential in the j-th potential pulse in multipulse techniques 

1

1/2E            half-wave potential of the first wave in NPV 

1/2,iE          half-wave potential of the simple ion transfer of species i (i = M, ML) 

1/2

teE            half-wave potential under the assumption of total equilibrium conditions 

,

1/2

te ADTE      half-wave potential under  the assumption of total equilibrium conditions when Mz+   

              is the only species transferred 

halfE          potential at which the NPV-current takes half of its maximum value ( / 0.5dI I = ) 

,

CV

p forwardE   forward peak potential in cyclic voltammetry (CV) 

SWV

peakE         peak potential in square wave voltammetry (SWV) 

sE            potential step of the staircase in SWV 
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swE        square wave amplitude in SWV 

f          SW frequency 

F           Faraday constant 

I            current response in NPV 

CVI        current response in CV 

dI          diffusion-limited current of a single transfer process of an ion at concentration *c  

kssI         solution for the current response in NPV under the kss approach 

ADT

kssI      solution for the current response in NPV under the kss approach when Mz+  is the only  

           species  transferred 

0 0E
I
 =

     solution for the NPV response when Mz+  and MLz+  have the same lipophilicity 

1

limI         limiting current of the first wave obtained in NPV for 0' 120   mV 

,

CV

p forwardI     forward peak current in CV 

SWV

peakI       peak current in SWV 

rigI          rigorous solution for the current response in NPV 

ADT

rigI    rigorous solution for the current response in NPV when Mz+  is the only species      

           transferred 

teI      solution for the current response in NPV under the assumption of total equilibrium  

          conditions 

ADT

teI   solution for the current response in NPV under the assumption of total equilibrium  

          conditions when Mz+  is the only species transferred 

,te jI      current associated with the j-th potential pulse applied in multipulse techniques, under  

          the assumption of total equilibrium conditions  
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1k           forward rate constant of the complexation reaction (M-1 s-1) 

1k            effective forward rate constant of the complexation reaction  (s-1) ( *

1 1 Lk k c=  ) 

2k            backward rate constant of the complexation reaction (s-1) 

cK           equilibrium constant based on concentrations (M-1) 
*

1

* *

2

ML
c

M L

c k
K

c c k

 
= = 

 
 

K             apparent equilibrium constant of complexation 
* *

1

*

2

ML L

M

c k c
K

c k

 
= = 

 
 

R             molar gas constant 

t               electrolysis time 

T              absolute temperature 

v               scan rate in CV 

1/2W           half-peak width of the square wave voltammogram 

x               distance to the interface 

z               electrical charge of species z+M  and MLz+  

r              thickness of the linear reaction layer 

E            pulse step in NPV and CV 

SWVI        current response in SWV  

W 0

O

'
i        formal ion transfer potential of species i (i = Mz+ , MLz+ ) 

( )W 0 W 0

O O

0 ' ''
z z

ML M
+ +=   −     difference between the formal transfer potentials of species Mz+  

and  

           MLz+  

              effective chemical rate constant ( 1 2k k = + ) 

          sum of the concentrations of the free and complexed ions in the aqueous solution as  

             a function of time and distance to the interface (
w w

M MLc c = + ) 

              duration of each potential applied in NPV and in SWV 
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j             duration of the j-th potential pulse applied in multipulse techniques 

              perturbation of the chemical equilibrium ( ( ) ( )1 2k k tw w

M MLKc c e
+

= − ) 

ss     perturbation of the chemical equilibrium under kinetic steady state conditions  

           ( )w w

ss M MLKc c = −                                               

ψCV
        normalized SCV signal 

*
ψ SCV

SCV

w

I

zFAc aD

 
=  

 

 

ψSWV
       normalized SWV signal 

*
ψ SWV

SWV

w

I

zFAc D

 
=  

 

 

              effective chemical kinetics ( t = ) 
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Appendix B  

 In order to solve the equation system (14), the following changes of variables are 

made 

 
; ,

2

x
s w o

D t

t






=  =


 = 

  (B1) 

with 0x   for the aqueous phase (w) and 0x   for the organic solution (o). Thus, the 

system (14) and the conditions (15)-(20) become 
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According to Koutecký’s method 40, 41, the solutions ( ),x t , ( ),x t , ( )o ,Mc x t  

and   ( )o ,MLc x t  are given by  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

o o

o o

0

o o

o o

0
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j

M M j
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j

ML ML j
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x t s s
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  (B9) 

that introduced in (B2) lead to the following set of homogeneous differential equation 

system in a single variable s  ( ,w o = ) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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The functions which are solutions of the system (B10) have the following form 
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  (B11) 

where ja , jb , jc  and jd  are constants that are determined by application of the boundary 

value problem, L2j are numeric series of s potencies and iψ  are  Koutecký’s functions 40, 

41, 50  
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 The initial and bulk conditions (Eqs. (B3)-(B4)) establish that 

 

*

0 0   ( ) ; ( ) 0

( ) 0

               ( ) 0    

( ) 0
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in a such way that by taking into account that the function  e
 can be expressed as 
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the surface conditions (Eqs. (B5)-(B8)) are transformed as follows 
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According to Eq. (22), for the final expression of the current we are only interested in 

coefficients 
jb  included in functions 

j  (Eq. (B11)) corresponding to the variable   

(Eq. (B9)), which are obtained by equating the last two equations in (B14): 
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By introducing the following definition for convenience: 
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with zp  being defined in Eq (30), the expression for the current (23) is finally obtained. 
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                  Figure 1. Effect of the chemical kinetics on the NPV-voltammograms (Eqs. (23), (36) 

and (44)) when the free ion is more lipophilic than the complex ( 0' 0  ). 

22, / 0.001,o wK D D= = = 1s = , 1z = , 25 ºCT = . *

d /wI zFAc D=  . 
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                  Figure 2. Effect of the chemical kinetics on the NPV-voltammograms (Eqs. (23), (36) 

and (44)) when the free ion is less lipophilic than the complex ( 0' 0  ). 

22, / 0.001,o wK D D= = = 1s = , 1z = , 25 ºCT = . *

d /wI zFAc D=  . 
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                  Figure 3. Influence of the equilibrium constant ( * */ML MK c c= ) on the NPV-

voltammograms (Eqs.(23), (36) and (44)) for different chemical kinetics. 

0' 200mV = , 2 / 0.001o wD D = = , 1s = , 1z = , 25 ºCT = . *

d /wI zFAc D=  . 

 



39 

 

                  Figure 4. Effect of the ligand concentration ( *

Lc  ) on the NPV-voltammograms (A, 

Eqs.(23) and (36)), 
halfE  (B) and 1

limI  (C) .
0' 200mV = , 2 / 0.001o wD D = = , 1s =

, 1z = , 25 ºCT = , c* = 10µM. 
1

1 2/ 10cK k k M −= =  , 
*

d /wI zFAc D=  . 
1/2, zM

E +  is 

given by Eq.(59). 
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                  Figure 5. Influence of the chemical kinetics (A) and the equilibrium constant (B) on the 

dNPV-voltammograms, obtained by differentiation of the corresponding NPV curves 

(Eqs. (23), (36) and (44)). 0' 200mV = , 2 / 0.001o wD D = = , 1s = , 1z = , 

25 ºCT = . *

d /wI zFAc D=   
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                  Figure 6. Effect of the chemical kinetics and the equilibrium constant on the 

chronoamperometric response (Eqs. (23), (36) and (44)). 0' 200mV = , 
2 0.001 = , 

z+

W 0

O M

' 200 mVE − = , 1z = , 25 ºCT = . *

d /wI zFAc D t=   
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Figure 7. Influence of the scan rate (A), frequency (B) and ligand concentration (C-F) 

on the CV and SWV curves (Eqs. (52)-(53)), forward peak potential in CV and peak 

potential in SWV under total equilibrium conditions. A = 12.5 cm2, 0' 200mV = , 

2 / 0.001o wD D = = , 1z = , 25 ºCT = , ΔE = 0.01 mV, Esw = 25 mV, Es = 2 mV.  A-B: 

c* = 1 mM, Kc = 10 M-1, *

L 0.2 Mc = . C-D: c* = 0.1 mM, Kc = 10 M-1, v = 20 mV s-1,   f = 

10Hz.  E-F: c* = 0.1mM, v = 20 mV s-1, f = 10Hz. z+1/2,M
E  is given by Eq.(59). 
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Figure 8. A) Influence of the charge z of the ionic species on the forward peak current 

in CV and B-C) the peak current and half-peak width in SWV under total equilibrium 

conditions. A = 12.5 cm2, 0' 200mV = , 2 / 0.001o wD D = = , 25 ºCT = , c
* = 1mM, K 

= 2, ΔE = 0.01mV, Es = 2 mV,  f = 10Hz.  
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