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Abstract 

 Square wave voltammetry (SWV) at disc and hemispherical microelectrodes is 

studied when the electroactive species show different diffusivities and/or take part in 

chemical equilibria in solution, under both transient and steady state conditions. Despite 

the use of microelectrodes, experiments in pulse techniques such as SWV frequently 

correspond to transient conditions since the pulse duration are typically very short 

(<100ms, f>5Hz). As will be shown, under such conditions the case of unequal diffusion 

coefficients gives rise to a complex behaviour of the SWV peak, the features of which 

deviate from the theory and criteria already established under the assumption of equal 

diffusion coefficients. Also, the theoretical treatment is notably more difficult and no 

analytical solution has been deduced for multipulse techniques. 

The effects of coupled chemical equilibria and, particularly, of unequal diffusion 

coefficients on SWV will be described in depth as a function of the electrode size and 

shape and they will be compared with those observed in differential double pulse 

voltammetry (DDPV). The main discrepancies in the peak height, width and position 

with respect to the case of equal diffusion coefficients will be studied. Also, appropriate 

methodologies and experimental conditions will be discussed for the determination of, 

formal potentials and equilibrium constants. 

 

Keywords: Square wave voltammetry; Microelectrodes; Unequal diffusion coefficients; 

Coupled chemical equilibria; Differential double pulse voltammetry  
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1. INTRODUCTION 

 Two difficulties that may arise in the modelling and interpretation of 

electrochemical experiments are differences between the diffusivities of the 

electroactive species as well as the incidence of homogeneous chemical processes 

coupled to the electron transfer. Thus, one and even two orders of magnitude 

differences in the diffusion coefficients have been reported between free species and 

species associated with large (bio)molecules or nanoparticles [1-5]. Examples of 

coupled chemical processes commonly-encountered in electrochemical studies include 

structural rearrangements [6], protonations [7, 8], ion pairing [9, 10] and complexations 

[11, 12]. 

 As an example of the situations above mentioned, in this work the case of the 

four-member square scheme given in Scheme I is tackled at disc and spherical 

electrodes of any size without any restrictions in the values of the diffusion coefficients 

of the different species: 

Scheme I 

The results obtained are applicable to a range of experimental systems where coupled 

chemical equilibria involve the reactant species (CeqErev-like reactions), the product 

species (ErevCeq-like reactions), both electroactive species (square scheme) or none of 

them (E mechanism). Moreover, the theory reported in this paper can be applied to the 

study of ion transfer processes at liquid|liquid macrointerfases [13, 14] and, as a first 

approach, at microinterfaces supported at micropores and microholes [15, 16]. Note that 
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notable differences between the diffusion coefficients of the target ion in each phase are 

frequently observed, especially when one of them is a liquid membrane [17] or room 

temperature ionic liquids [18-21] such that the results here reported are of interest in this 

field. 

The effect of a significant change in the effective diffusion coefficient of the 

electrolysed species on square wave voltammetry (SWV) will be deeply studied at disc 

and hemispherical electrodes and compared with the behaviour predicted in differential 

double pulse voltammetry (DDPV). Particular attention will be paid to electrodes of 

micrometer size, which are commonly employed in order to reduce capacitive effects 

and to perform measurements in small volumes and resistive media [22], and where the 

use of differential techniques is recommended with the aim of obtaining well-defined, 

peak-shaped signals of high sensitivity and reduced background effects [23-27].  

At microelectrodes, when the values of the effective diffusion coefficients are 

different, the surface concentration of the electroactive species are time-dependent even 

in the case of reversible electrode [28]. As a consequence, the theoretical description of 

the system is much more difficult. Thus, whereas simple, analytical expressions can be 

deduced for SWV whatever the electrode size and shape when the effective diffusion 

coefficients are [9, 23, 24], the use of numerical treatments is mostly necessary when 

the values of the diffusion coefficients differ significantly. 

The complications above-mentioned affects the experimental signal, the 

electrochemical response showing some important peculiarities that are not predicted 

when equal diffusion coefficients are assumed [23-25, 27, 29]. Thus, as will be shown, 

both the position and magnitude of the peaks are affected by the time-scale of the 

experiment and by the electrode size. On the one hand, this makes the interpretation and 

quantitative analysis of experiments more challenging, for which mathematical 
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solutions and qualitative criteria will be given here. On the other hand, the use of 

microelectrodes enables us to gain further insight into the system since simultaneous 

determination of the formal potential and diffusion coefficients of reactant and product 

species is feasible from SWV experiments with only one (disc or hemispherical) 

microelectrode even when the product species are not initially present, unlike what 

happens when macroelectrodes or electrodes of submicrometric size are employed.  

Other electrochemical techniques have also been considered to determine 

diffusion coefficients, such as double pulse chronoamperometry and reverse pulse 

voltammetry [30-35]. They show some advantages with respect to the determination 

from the peak current in SWV, DDPV [36] or cyclic voltammetry (CV) [37, 38], 

although the extraction of the formal potential is more difficult and less accurate given 

the non-peak shaped signal. Moreover, CV is more affected by capacitive and 

background effects than the subtractive techniques SWV and DDPV. Normal Pulse 

Voltammetry (NPV) and Derivative Voltammetry (DV) have also been considered to 

obtain diffusion coefficients [28]. In both techniques, the extraction of the values of the 

diffusion coefficients is based on the position of the current-potential curves, instead of 

on their magnitude as in CV, SWV and DDPV. This may compromise the accuracy of 

the study since the NPV response is sigmoidal and the experimental peak recorded in 

DV can show a low signal to noise ratio after the differentiation of the digitally acquired 

NPV curve [39]. 
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2. THEORY 

In order to model the electrochemical response of the system given in Scheme I, 

species L is assumed to be initially present in large excess with respect to the 

electroactive species such that its concentration does not change significantly upon the 

application of a voltammetric perturbation (i.e., ( ) *
L Lq,tc c ). Also, the homogeneous 

chemical processes are supposed to be very fast so that chemical equilibrium conditions 

apply at any position in solution (q) and time of the experiment (t):  

 

( )

( )

( )

( )

*
AL 1 L

A 2

*
BL 1 L

B 2

q,t

q,t

q,t

q,t

c k c
K

c k

c k c
K

c k

= =


= =



  (1) 

where 1k , 
1k   and 2k , 

2k   are the forward and backward rate constants of the 

homogeneous chemical reactions (see Scheme 1) and K  and K   are the effective 

equilibrium constants, which relate to the formal potentials as follows: 

 ( )0 0

A/B AL/BLexp
K F

E E
K RT

  
= − 
  

  (2) 

with 0

A/BE


 and 0

AL/BLE


 being the formal  potentials of the redox couples A/B and AL/BL, 

respectively. 

 Taking into account the above considerations, the problem corresponding to the 

variation of the species concentrations when applying a voltammetric perturbation ( )E t  

can be reduced to the following differential equation [9, 28] system: 

 

( )
( )

( )
( )
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eff AT

BT 2

eff BT

,
,

,
,

c q t
D c q t

t

c q t
D c q t

t


=  




 = 
 

 (3) 

where 
Tic  (i ≡A,B) are the total concentrations of the oxidized and reduced species: 
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the effective diffusion coefficients, effD  and effD , are defined as 
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and 2  is the Laplacian operator of diffusion [40] 
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 (6) 

The boundary value problem in terms of iTc  is given by 

s *
AT AT BT

, 0
       ;    0

, 0

q q t
c c c

q t

 = 
= =

→  
 (7) 

          s , 0q q t=               
( ) ( )

s s

AT BT2

N N

, ,
γ

q q q q

c q t c q t

q q
= =

    
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         (8) 

            
AT s BT s

η( , ) ( , )ωec q t c q t=  (9) 

where it has been assumed that  only species A and AL are initially present and  sq  

corresponds to the spatial coordinates at the electrode surface, Nq  is the coordinate 

normal to the surface, *
ATc  the total initial concentration of oxidized species, and 
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=


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It is important to highlight that from Eq. (9) it is possible to define the apparent formal 

potential as follows: 

 
0' 0'

app A/B

1
ln

ω

RT
E E

F

 
= +  

 
 (13) 

such that the problem given by Eqs. (3) and (7)-(9) is formally identical to that of a 

reversible E mechanism of the “pseudo” redox couple AT/BT that is characterized by 

0'

appE  and the diffusion coefficients effD  and effD . This conclusion is also reached when 

the possible homogeneous cross reaction between species in Scheme I is considered: 

 A+BL B+AL   (14) 

given that this reaction is chemically dependent on the equilibria A/AL and B/BL. 

 

2.1. Equal (effective) diffusion coefficients  

 When equal (effective) diffusion coefficients can be assumed, eff effD D D= = , 

which is reasonable for many processes in conventional solvents, it has been 

demonstrated that a general analytical expression can be derived for the response at disc 

and spherical electrodes of any radius 0r  when an arbitrary sequence of p potential 

pulses is applied [9] (
1 2, ... pE E E ):  

 ( )
p

1 *
p G AT m G 0

1

mp,
m

I FA Dc Z f r t=

=

=   (15) 

where GA  is the electrode area, mZ  is a function of the applied potential: 

 
1

m

1

m m 1

η

η η

1
           

1 ωe

1 1
2

1 ωe 1 ωe

Z

Z m
−

=
+

= − 
+ +

 (16) 

and ( )G 0 mp,f r t  is a function of time and the electrode geometry ‘G’: 
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where 

1

mp p i

p

i m

t t
−

=

= +   with i  being the duration of each potential pulse and 

0 τp pt  . 

From Eq. (15), the signal in any multipulse technique can be calculated by 

specifying the form of the potential-time perturbation. The waveform in cyclic square 

wave voltammetry can be described as (Figure 1A) [41]: 

( )

( )

p

p initial s SW

p N p 1

1
1 1 ;   1,  2,  , / 2       forward scan 

2

;    / 2 1,  ,        reverse scan  

p
E E Int E E p N

E E p N N− +

 +  
= + − + − =    

   
= = +  

 (18) 

 where sE  is the potential step in the staircase, SWE  the square wave amplitude, N the 

total number of pulses applied and Int(x) the integer part of the argument x (see Fig.1B). 

The SWV response is obtained from the difference between the current corresponding 

to a pulse with odd index ( fI ) and that of the consecutive pulse with even index ( bI ) 

that comprise the cycle c: 

 SWV 2 1 2 f b ; 1, 2..., / 2c cI I I I I c N− = − = − =             (19) 

so that from (15) one can obtains that: 

( )( ) ( )( )
2 1 2

1 *

SWV G AT

1 1

, 2 , 2 1
c c

m G G m G G

m m

I FA Dc Z f q c m Z f q c m
−

=

= =

 
 = −  − − +  

 
           (20) 

where 1,2..., / 2c N=  and   is the duration of each potential pulse such that the 

frequency value is given by: 1 2f /=   . 
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As shown in Figure 1B, in the DDPV method independent double potential 

pulses  1 2 1,E E E E= +  are applied, the initial conditions being restored afterwards. 

The current is sampled at the end of the first ( ( )1 1τI ) and second ( ( )2 1 2τ τI + ) pulses 

and the DDPV curve is calculated from ( ) ( )DDPV 2 1 2 1 1τ τ τI I I = + − . Taking into 

account that in DDPV the first pulse is typically much longer than the second one, 

1 2τ 50τ , the expression for the response at any electrode geometry simplifies to: 

 
( )

( )( )
( )

DDPV

*

G AT 0 2

1 2

1 2

1

η η

η η

ω e e
,

1 ωe 1 ωe
GFA D c f rI =

−
= 

+ +
  (21) 

 

2.2. Unequal (effective) diffusion coefficients  

 There are some experimental systems of notable interest where the assumption 

of equal effective diffusion coefficients may not be [1-5, 17-21] adequate. Depending 

on the electrode geometry, this may introduce higher complexity in the resolution of the 

mathematical problem.  

When eff effD D , the surface concentrations of the electroactive species are 

time-independent at macroelectrodes ( 0r → ) and so the superposition principle still 

applies. Therefore, the general equations presented above for γ 1=  are applicable by 

changing mηe  by mηe . The case of submicrometric-sized electrodes ( 0 0r → ) is also 

easy to tackle for eff effD D  given that steady state conditions are reached and the 

response at each potential pulse is independent of the previous ones. Taking this into 

account, the SWV steady state response at (hemi)spherical and disc submicrometric-

sized electrodes can be written as [22, 42]: 

 
( )

( ) ( )
sph UME AT eff
SWV 2 2

0

2c 2c 1

2c 1 2c

η η

η η

γ ω e eFA

1 γ ω e 1 γ ω e

2
*

-

c D
I

r

−−
 →

+ +
  (22) 
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( )

( ) ( )
disc UME

SWV AT eff 0 2 2

2c 2c 1

2c 1 2c

η η

η η

γ ω e e
4 F

1 γ ω e 1 γ ω e

2

*

-
I c D r

−−
 →

+ +
  (23) 

which coincides with the expressions obtained for DDPV with 
SW2E E =  (see 

Figure 1). 

 

2.2.1. Microelectrodes under transient conditions 

The problem and electrochemical response at microelectrodes under transient 

conditions gets notably difficult when the effective diffusion coefficients are unequal. A 

rigorous analytical solution has been obtained for the DDPV response at spherical 

electrodes of any size by using a modification of Koutecký´s dimensionless parameters 

method [36]. For SWV (and for DDPV at disc microelectrodes), finite difference 

numerical methods implemented in homemade programs have been used in this work. 

Regarding electrodes of spherical geometry, an exponentially expanding grid has been 

used for the spatial discretization with asymmetric 4-point approximation of the 

derivatives and the EXTRAP4 extrapolation algorithm for time integration [43]. In the 

case of disc microelectrodes, the DDPV and SWV responses have been simulated by 

making use of the alternating direction implicit (ADI) approach with an spatial grid in 

the (r,z)-domain with high density of nodes at the electrode surface and edge, 3-point 

difference approximations for the spatial derivatives and a regular time grid [44]. 
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3. RESULTS AND DISCUSSION 

 As mentioned in Section 2, the influence of coupled chemical equilibria on the 

voltammograms results in the change of the apparent formal potential of the redox 

couple according to Eq. (13). This effect is parameterised through the value of   ( Eq. 

(11)) such that large  -values are associated with situations where the complex of 

species A is more stable than that of species B, while the opposite corresponds to small 

values of  . Consequently, the increase of   leads to the shift of the voltammogram 

towards more negative potentials as a result of the hindering of the electroreduction of 

the oxidized species [9, 36] species, which can be employed for the determination of the 

equilibrium constants from experimental values of 0'

appE  obtained at different 

concentrations of species L [9]. On the other hand, the peak current and width are 

insensitive to the  -value. Therefore, for the sake of generality, hereinafter the 

potential-axis in the figures will be referred to the value of the apparent formal potential 

0

appE


. 

Next, the influence of unequal diffusion coefficients on the SWV response will 

be analyzed in depth, describing how it affects the magnitude and shape of the peaks as 

well as their dependence with the experimental variables such as the electrode 

geometry, the time-scale of the experiments and the pulse amplitude. In Figure 2, one 

can see the influence of the ratio between the effective diffusion coefficients 

( )eff eff/D D =  at spherical and disc electrodes of different radii. Regardless of the 

electrode size and geometry, both in SWV and DDPV the position of the peak is 

dependent on   and it shifts towards more negative potentials as   increases. However, 

the peak current is only affected by effD  at medium-size microelectrodes (Fig. 2B) such 

that the peak height increases with   (that is, as effD  decreases). This behaviour has 
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been verified for other typical values of SWV and DDPV amplitudes (not shown). On 

the other hand, neither at planar electrodes (Fig. 2A) nor at ultramicroelectrodes 

(UMEs, Fig. 2C) is 
peakI  sensitive to effD . Therefore, an appropriate microelectrode 

size must be selected in order to determine   from the peak height.  

At ultramicroelectrodes (Fig. 2C), the SWV and DDPV curves with 

SW / 2E E=   are equivalent since steady state conditions hold and the system loses the 

‘memory’ of previous pulses. Note that the current density at disc microelectrodes is 

larger than at spherical ones. The following ratio is found under steady state conditions: 

 

disc UME

peak disc s

sph UME

peak sph d

/ A 4

/ A

I r

I r


=

 
  (24) 

where sr  and dr  are the radius of the (hemi)spherical and disc electrodes, respectively. 

Obviously, the same response is obtained at both geometries when the electrode size is 

sufficiently large (Fig. 2A) since diffusion is linear.  

With respect to the position of the voltammograms, it is observed that the peak 

potential (
peakE ) is not significantly affected by the electrode geometry though it 

depends on the time-scale of the experiment and the electrode size when the (effective) 

diffusion coefficients differ. A comparison between the peak potentials in SWV 

( )SWV

peakE and DDPV ( )DDPV

peakE  and the half-wave potential ( 1/2E ) is shown in Figure 3 for 

three different  -values (10, 1 and 0.1). The values of the peak potential coincide with 

1/2E  at macroelectrodes ( 1  ; SWV 2

0 eff/r D =   , DDPV 2

0 eff 2/r D =  ), where the 

following expression holds [22]: 

 
SWV,plane DDPV,plane plane 0

peak peak 1/2 app

1
ln

RT
E E E E

F

  
= = = +  

 
  (25) 
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as well as at ultramicroelectrodes under steady state conditions ( 1  ), independently 

of the electrode geometry: 

 
SWV,UME DDPV,UME UME 0

peak peak 1/2 app 2

1
ln

RT
E E E E

F

  
= = = +  

 
  (26) 

On the other hand, at microelectrodes under transient conditions a significant 

discrepancy (>11 mV) between 1/2E  and the peak potential in SWV can be observed 

under the conditions of Figure 3. Therefore, one must be cautious in the identification of 

the value of the peak potential (in SWV and DDPV) with that of the half-wave potential 

when microelectrodes are employed and the effective diffusion coefficients are expected 

to differ. Moreover, Figure 3 shows that the experimental determination of the peak 

potential in SWV (or DDPV) with various pulse durations (i.e., SW frequencies) and/or 

electrode radii enables us to extract the apparent formal potential (Eq.(13)) as well as 

the ratio between the effective diffusion coefficients (Eq.(10)) [28]. 

The influence of the pulse amplitude on the SWV ( SWE ) and DDPV ( E ) 

curves is analyzed in Figure 4. It is observed that the increase of SWE  and E  leads to 

higher peak currents whereas the peak potential remains unaffected. A broad plateau is 

obtained for very large pulse amplitudes in both techniques, the determination of the 

position of the voltammogram becoming less accurate under such conditions where 

capacitive effects are also likely to be very distorting. The current density of the plateau 

for SWV and  = 1 at microspheres (Fig. 4B) coincides with the value predicted by [41]: 

 
( )

plateau

SWV

d 0

1.21
τ

I D

I r

  
= +   (27) 

whereas the plateau current density corresponding to microdiscs (Fig. 4A) is slightly 

higher. This difference increases as 0r  shrinks in both techniques according to: 
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ds

disc

peak disc

sph

peak sph

macro      micro      UMEs ( )

4/ A
      1     

/ A

r r

I

I

− − =


 



  (28) 

In the insets of Figure 4, the amplitude-normalized peak current [45] in SWV 

( )( )SWV SWV

peak d SW/I I E =    and DDPV ( )( )DDPV DDPV

peak d 2/I I E =     is plotted versus the 

pulse amplitude. A monotonous decrease of SWV  and DDPV  with the pulse amplitude 

is observed, in contrast with the behaviour of quasi- or irreversible electron transfers 

where a maximum has been predicted [45]. This maximum is dependent on the degree 

of reversibility and, therefore, the study of the variation of the peak current with the 

amplitude allows for characterization the electrode kinetics. 

 Figure 5 shows the variation of the half-peak width ( 1/2W ) of the SWV and 

DDPV curves with the pulse amplitude ( SWE  and E ), for spherical and disc 

microelectrodes under transient  conditions. Grey solid lines correspond to the 1/2W -

values predicted for any γ -value at macroelectrodes and under steady state conditions  

as well as for microelectrodes when 1 =  [27]: 

 
( )

( )

j j j j j

j j j j j

2
2 2 2

j

1/2
2

2 2 2

1 e 4e 1 e 4e 4e
ln ; j SWV,DDPV

1 e 4e 1 e 4e 4e

RT
W

F

    

    

 
+ + + + + − 

=  
 + + − + + −
 

   (29) 

with SW

SW

FE

RT
 =  and 

DDPV
2

F E

RT


 = .  

In all cases, 1/2W  increases with the pulse amplitude whatever the value of  , the 

electrochemical technique and the electrode geometry. The latter is found to have a non-

significant influence on 1/2W . Regarding the effect of γ , this is much more apparent in 

DDPV than in SWV where the value of SWV

1/2W  is almost uniquely determined by SWE . 

Thus, Eq. (29) applies reasonably well at microelectrodes with 1  , the deviations 
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being always smaller than 10 mV under the conditions considered in Figure 5A. This 

fact is very convenient since it enables us to use the experimental SWV

1/2W -value as an 

indicator of deviations from full reversibility and/or the occurrence of ohmic drop 

effects almost independently of the electrode geometry, the SW frequency and the 

values of diffusion coefficients. 

The effect of varying the staircase potential ( sE ) on the SWV curve is analyzed 

in Figure 6 at macroelectrodes (Fig. 6A), spherical microelectrodes (Fig. 6B) and disc 

microelectrodes (Fig. 6C) for different values of  . The position of the voltammograms 

is not affected by the value of sE  at macroelectrodes whereas the influence on the peak 

current is the same for any ratio eff eff/D D . Thus, slightly larger values of 
peakI  are 

found when sE  is increased (4.5% increase from 2sE =  to 10sE = ). On the other hand, 

the variation of the peak height with sE  is a function of the  -value at microelectrodes. 

As can be seen in Figures 6B and 6C, the influence on the peak current is qualitatively 

analogous for spherical and disc microelectrodes. Hence, the decrease of sE  leads to a 

higher SWV response when   > 1 and the opposite is observed when   < 1. The 

variation is negligible when eff effD D=  ( 1 = ).  

Cyclic square wave voltammograms at disc and spherical electrodes are shown 

in Figure 7 for different electrode sizes. At macro- (Fig.7A) and ultramicroelectrodes 

(Fig.7C) the peak heights for the forward ( 0SE  ) and reverse ( 0SE  ) scans are the 

same for any values of the diffusion coefficients (i.e., any value of  ). However, at 

intermediate-size electrodes (Fig.7B) a different behaviour is observed for 1   (i.e., 

eff effD D  ). Thus, the peak current in the normal scan is higher than that in the reverse 

one when 1  , whereas the opposite situation is observed when 1  . These results 



17 

 

are observed for any typical SE -value (2-10 mV). Therefore, SWV curves in cyclic 

mode offer very easy detection of differences between species diffusivities from visual 

examination of the two peaks provided that medium-size microelectrodes are employed. 

Also, by fitting of experimental values of the forward and reverse peak currents and the 

peak position, the simultaneous determination of   and 0

appE


 is possible.  

Note that different magnitudes of the forward and reverse peaks are also 

predicted when the electrode process is not fully reversible [46]. These two situations 

(non-reversible electron transfer vs unequal diffusion coefficients) can be discriminated 

attending to the value of the half-peak width of the SWV peak that, as discussed above, 

is described with small error by Eq. (29) when the electrode reaction is reversible. 
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4. CONCLUSIONS 

 A theoretical study of square wave voltammetry (SWV) when the (effective) 

diffusion coefficients of the oxidized and reduced species are notably different               

( eff effD D ) has been performed, the results having been compared with those in 

differential double pulse voltammetry (DDPV). 

At macroelectrodes and ultramicroelectrodes (steady-state conditions), when 

only the oxidized (or reduced) species are initially present the effect of unequal 

diffusion coefficients reduces to the shift of the peak potential with respect to the case 

eff effD D= , which coincides with the half-wave potential and it can be quantified with 

simple analytical expressions. 

At microelectrodes under transient conditions, the occurrence of unequal 

diffusivities has more profound impact. Both the SWV peak position and peak 

magnitude are affected by the diffusion coefficient of the product of the electrode 

reaction ( effD ): the larger the effD -value, the smaller the peak height and the peak 

overpotential. Also, the influence of the experimental variables and technique 

parameters is unusual when eff effD D , the peak potential varying with the duration of 

the potential pulses (i.e., with the SW frequency) and with the microelectrode size. 

Moreover, a notable difference may exist between the half-wave potential and the peak 

potential.  

All the above makes the rigorous, quantitative analysis of experimental SWV 

peaks more complex, the use of numerical simulations being required in most cases. As 

a “counterpart”, the simultaneous determination of the (effective) diffusion coefficients 

of the different species along with the (apparent) formal potential is feasible with only 

one microelectrode by fitting of the values of the peak current(s) and peak potential at 

different SW frequencies. 
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FIGURES 

Figure 1. Potential-time perturbation applied in A) cyclic square wave voltammetry 

(SWV) and B) differential double pulse voltammetry (DDPV) in normal and reverse 

modes (solid and dashed lines, respectively).  
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Figure 2. Influence of the ratio between the effective diffusion coefficients                           

( eff eff/D D = ) on the SWV and DDPV voltammograms for spherical and disc 

electrodes and different  -values ( SWV 2

0 eff/r D =  , DDPV 2

0 eff 2/r D =  ).                 

SWV: S 10mVE = − , SW 25mVE = . DDPV: 1 2/ 100  = , 50mVE = − , 5

eff 10D −=

cm2 s-1. ( ) *

d AT eff /I t FAc D t=  .     
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Fig. 3. Comparison between the variation of DDPV

pE , SWV

pE , and E1/2 with                         

( SWV NPV 2

0 eff/r D =  =  , DDPV 2

0 eff 2/r D =  ) for different  -values at A) spherical 

microelectrodes and B) disc microelectrodes.  
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Fig. 4. SWV and DDPV voltammograms at spherical and disc microelectrodes for 

different pulse amplitude values and   values. 5

eff 10D −= cm2 s-1, 5sE = −  mV , 

1 2/ 100  = , 2 2

0 eff 0 eff 2/ / 2r D r D =  =  = . Insets: variation of the amplitude 

normalized peak current in SWV ( ( )SWV SWV

peak d SW/I I E =   ) and DDPV 

( )( )DDPV DDPV

peak d 2/I I E =    with the pulse amplitude. ( ) *

d AT eff /I t FAc D t=  . 
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Fig.  5. Variation of the half-peak width ( 1/2W ) of SWV and DDPV voltammograms 

with the amplitude pulse at microspheres and microdiscs under transient conditions. (A) 

2

0 effr / D =  =  0.32 (for 10 = ) and 50.4 (for 0 1. = ); (B) 2

0 eff 2r / D =  =  1.8 (for 10 = ) 

and 200 (for 0 1. = ). Values of γ indicated on the graphs. 
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Fig. 6. Effect of the staircase potential (absolute value indicated on the graphs) on SWV 

at A) macroelectrodes, B) spherical microelectrodes and C) disc microelectrodes. 

SW 25mVE = , 5

eff 10D −= cm2 s-1, SWV 2

0 eff/r D =  . ( ) *

d AT eff /I t FAc D t=  .  
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Fig. 7. Cyclic square wave voltammograms for spherical and disc A) macroelectrodes, 

B) microelectrodes and C) ultramicroelectrodes. SW 25mVE = , 10sE = mV, 

p vertex 200E E− = mV, 5

eff 10D −= cm2 s-1, 2

0 eff/r D =  , ( ) *

d AT eff / τI t FAc D=  . The 

different values of   are indicated on the graphs. 
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