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ORIGINAL ARTICLE

Daily rhythms of lipid metabolic gene expression in zebra fish liver:
Response to light/dark and feeding cycles

J. F. Paredes, J. F. López-Olmeda, F. J. Martı́nez, and F. J. Sánchez-VázquezQ1

Department of Physiology, Faculty of Biology, Regional Campus of International Excellence ‘‘Campus Mare Nostrum’’,
University of Murcia, Murcia, Spain

Despite numerous studies about fish nutrition and lipid metabolism, very little is known about the daily rhythm
expression of lipogenesis and lipolysis genes. This research aimed to investigate the existence of daily rhythm
expressions of the genes involved in lipid metabolism and their synchronization to different light/dark (LD) and
feeding cycles in zebra fish liver. For this purpose, three groups of zebra fish were submitted to a 12:12 h LD cycle. A
single daily meal was provided to each group at various times: in the middle of the light phase (ML); in the middle of
the dark phase (MD); at random times. After 20 days of acclimation to these experimental conditions, liver samples
were collected every 4 h in one 24-h cycle. The results revealed that most genes displayed a significant daily rhythm
with an acrophase of expression in the dark phase. The acrophase of lipolytic genes (lipoprotein lipase – lpl,
peroxisome proliferator-activated receptor – ppar� and hydroxyacil CoA dehydrogenase – hadh) was displayed
between ZT 02:17 h and ZT 18:31 h. That of lipogenic genes (leptin-a – lepa, peroxisome proliferator-activated
receptor – ppar�, liver X receptor – lxr, insulin-like growth factor – igf1, sterol regulatory element-binding protein –
srebp and fatty acid synthase – fas) was displayed between ZT 15:25 h and 20:06 h (dark phase). Feeding time barely
influenced daily expression rhythms, except for lxr in the MD group, whose acrophase shifted by about 14 h
compared with the ML group (ZT 04:31 h versus ZT 18:29 h, respectively). These results evidence a strong
synchronization to the LD cycle, but not to feeding time, and most genes showed a nocturnal acrophase. These
findings highlight the importance of considering light and feeding time to optimize lipid metabolism and feeding
protocols in fish farming.

Keywords: Danio rerio, lipogenesis, lipolysis

INTRODUCTION

The Earth’s rotation generates a predictable environ-

ment of natural cyclic changes of light and temperature.

This natural pressure has fostered the evolution of

biological clocks that keep track of time, and provide

organisms with an anticipatory temporal framework for

optimal physiological and behavioral activities. The

mechanism of these clocks requires daily adjustments,

achieved through the input provided by environmental

factors or synchronizers, the most important of which

are light/dark (LD) (Panda et al., 2002)Q2 , temperature

(Rensing & Ruoff, 2002) and feeding (Mistlberger, 2009)

cycles.

A biological process’s rhythmicity is explained by the

existence of a self-sustained pacemaker. In vertebrates,

the most important is the central pacemaker, also called

the light-entrainable oscillator (LEO), which is

synchronized by LD cycles. In mammals, reptiles and

birds, a master circadian LEO has been found in the

suprachiasmatic nucleus of the hypothalamus (SCN)

(Bertolucci et al., 2008; Shibata & Tominaga, 1991; Welsh

et al., 2010). The existence of a food-entrainable oscil-

lator (FEO) in vertebrates has also been hypothesized,

but its anatomical location remains unknown, although

some hypothalamic and brainstem nuclei locations have

been suggested (Blum et al., 2012; Challet et al., 2009;

Davidson 2009). In fish, evidence indicates the presence

of these two different oscillators (light-entrainable

oscillator – LEO and FEO), although their exact location

and relationship are still not completely understood

(López-Olmeda et al., 2010).

Circadian regulation controls most physiological

activities during the course of a day (Panda et al.,

2002). Q2Recent comparative analyses of the

Correspondence: F. J. Sánchez-Vázquez. Department of Physiology, Faculty of Biology, Regional Campus of International
Excellence ‘‘Campus Mare Nostrum’’, University of Murcia, 30100 Murcia, Spain. Tel: +34 868887004. Fax: +34 868883963.
E-mail: javisan@um.es

Submitted July 15, 2015, Returned for revision September 9, 2015, Accepted October 2, 2015

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Deleted Text
AQ2: Please clarify whether the reference referred to as for Panda et&nbsp;al. (2002) in the text should be (2002a) or (2002b).

Deleted Text
AQ2: Please clarify whether the reference referred to as for Panda et&nbsp;al. (2002) in the text should be (2002a) or (2002b).

Deleted Text
AQ1: Please check whether the author names (first name followed by last name), affiliations and correspondence details are correct as presented in the proofs.



transcriptome, metabolome and proteome have

revealed clock-dependant control in a number of meta-

bolic pathways in the mouse liver (Eckel-Mahan et al.,

2012; Mauvoisin et al., 2014; Panda et al., 2002;Q2 Robles

et al., 2014; Storch et al., 2002). Such clock regulation

covers multiple activities like lipogenesis, xenobiotic

detoxification, cholesterol synthesis, ribosome biogen-

esis, mitochondrial respiration, sleep-wake rhythms,

hormone secretion or cognitive tasks (Dibner et al.,

2010; Gerstner et al., 2009; Jouffe et al., 2013; Mauvoisin

et al., 2014; Menet & Rosbash, 2011; Peek et al., 2013;

Sahar & Sassone-Corsi, 2012). In mammals, the lipid

metabolism displays rhythms controlled by a circadian

clock (Alila-Johansson et al., 2004; Bertolucci et al., 2008;

Bitman et al., 1990; Escobar et al., 1998; Piccione et al.,

2003). Growing evidence suggests that the central

pacemaker controls daily rhythms of peripheral tissues

through output cues, such as systemic signals (Bass &

Takahashi, 2010; Masri & Sassone-Corsi, 2010), to hence

orchestrate the clock system as a whole. Interestingly,

the hepatocyte circadian clock is highly susceptible to

factors other than the LD cycle; e.g. variations in

nutrient composition like a high-fat diet (Eckel-Mahan

et al., 2013; Janich et al., 2014; Pendergast et al., 2013)

and food intake timing, and to the extent that antagon-

istic feeding times (mid-light food intake versus mid-

dark food intake) reset the liver peripheral clock almost

completely, and induce alterations in rhythmic gene

expressions and circadian phase changes (Arble et al.,

2009; Damiola et al., 2000; Hughes et al., 2009; Paredes

et al., 2014; Stokkan et al., 2001; Vollmers et al., 2009;

Yoshida et al., 2012). These alterations appear in clock

gene expressions in the liver (peripheral oscillator),

which is synchronized by feeding time, but not in the

brain (central pacemaker), which is synchronized by the

LD cycle (Vera et al., 2013). Therefore, it is necessary to

study how feeding time affects gene expression in the

liver in more depth in order to understand the coopera-

tive forces that operate between the core clock system

and its integration into systemic signal controlling

tissue-specific oscillations caused, for instance, by dif-

ferent food intake timing. Such studies are necessary in

order to prevent disruptions in the circadian clock that

might lead to pathologies such as obesity, neurological

diseases and cancer (Janich et al., 2014).

Lipid metabolism in fish can be studied at the

molecular level by referring to the expression of lipo-

genesis and lipolysis genes. Several of these genes play

an essential role in lipogenesis: liver X receptor (lxr),

which regulates the transcription of the genes involved

in fatty acid synthesis (Repa et al., 2000; Schultz et al.,

2000), cholesterol homeostasis (Zhang & Mangelsdorf,

2002; Steffensen & Gustafsson, 2004; Tontonoz &

Mangelsdorf, 2003), and carbohydrate metabolism

(Laffitte et al., 2003; Mitro et al., 2007); sterol regulatory

element-binding protein (srebp), which regulates the

genes involved in sterol biosynthesis and fatty acid

synthesis (Horton et al., 2002); peroxisome proliferator-

activated receptor-g (ppar�), a critical gene in adipo-

genesis (Grimaldi et al., 2010) and triglyceride metabol-

ism (Rivera-Zavala et al., 2011); fatty acid synthase (fas);

insulin-like growth factor 1 (igf1), involved in growth

processes and signals in lipid metabolism, such as ppar�

and srebp (Piccinetti et al., 2013); leptin-a (lepa), a

satiety hormone implicated in energy balance and

glucose homeostasis. Some genes have been described

to play an essential role in lipolysis in fish, such as

lipoprotein lipase (lpl), which facilitates the uptake of

fatty acid and its oxidation or storage as triglycerides

(Saera-Vila et al., 2007); peroxisome proliferator-

activated receptor a (ppar�), which fosters fatty acid

oxidation (Szántoóvá et al., 2011); hydroxyacyl CoA

dehydrogenase (hadh), which mediates in fatty

acid metabolism by catalyzing the third step in beta-

oxidation (Schulz et al., 2011).

The aim of this research was to elucidate the

existence of a daily rhythm of the expression of the

genes involved in lipid metabolism and their synchron-

ization to LD (12 L:12D) and feeding cycles in zebra fish

liver. Three different feeding regimes were used: a single

daily meal delivered at mid-light (ML), mid-darkness

(MD) or random feeding (RD) time points. The syn-

chronization of daily behavioral rhythms (locomotor

activity) to light and feeding times was also investigated.

MATERIAL AND METHODS

Animals and housing
Wild-type zebra fishes (N¼ 90; 0.62 ± 0.20 g body weight)

were housed at the Fish Chronobiology Laboratory of

the University of Murcia in a 9 -l glass aquaria. A

photoperiod was set at a 12 h:12 h LD cycle, with lights

on (Zeitgeber time 0, ZT0) at 9.00 a.m. Light was

provided by LED lamps with a light intensity on the

water surface of 0.84 W m�2 (200 lx). Water temperature

was controlled at 26 �C throughout the acclimation and

experimental periods. Fishes were fed with commercial

feed (Tropical Fish Flakes, Casone, Parma, Italy).

Experimental design
Fishes were reared and manipulated following Spanish

legislation on Animal Welfare and Laboratory Practices.

Experimental protocols were performed following the

Guidelines of the European Union (2010/63/UE) and

Spanish legislation (Royal Decree 1201/2005 and Law

32/2007) for the use of laboratory animals, and were

approved by the National Committee and the Ethics and

Animal Welfare Committee of the University of Murcia

(Spain). The experiments fulfilled the ethical standards

required by the journal (Portaluppi et al., 2010).

Zebra fish were divided into three groups and were

fed once a day at different times: in the middle of the

light phase (ML), in the middle of the dark phase (MD)

or at random times (RD). In each experimental group,

fish were divided into six tanks per feeding regime (five

fish per tank, total N¼ 30) so that each tank was

2 J. F. Paredes et al.
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sampled at a different sampling time. Food was

provided by an automatic feeder (Eheim GmbH & Co.

KG, model 3581, Deizisau, Germany). The feeders of the

ML and MD groups were set to deliver food at the same

time every day (ZT6 and ZT18 for ML and MD,

respectively), whereas food was delivered randomly

once a day to the RD group. The feeding interval for

the RD group was set between 12 and 36 h. So on

average, the RD group received the same amount of

food every 24 h as the ML and MD groups. Feeders were

adjusted to provide food at 1.5% of fish body weight.

Locomotor activity was measured by an infrared

photocell (E3Z-D67, Omron, Kyoto, Japan), which was

placed under the feeder in each aquarium, 3 cm below

the water surface. Each photocell was connected to a

computer, which counted and stored the number of

light beam interruptions at 10 min intervals with

specialized software (DIO96USB, University of Murcia,

Murcia, Spain).

After 20 days of being fed according to the different

feeding regimes (ML, MD and RD), zebra fish fasted for

24 h and were then sampled at ZT1, 5, 9, 13, 17 and 21 h.

The fish (n¼ 5) from one tank per group were sampled

at each time point. Fish were killed by submersion in ice

water (5 parts ice/1 part water, 0–4 �C). Liver samples

were collected, frozen immediately in dry ice and stored

at �80 �C until processed. Sampling in the dark phase

was performed under a dim red light (�4600 nm).

Gene expression assays
Liver was homogenized using Trizol reagent according

to the manufacturer’s instructions (Invitrogen, Carlsbad,

CA) with a tissue homogenizer (POLYTRON, PT1200,

Kinematica, Lucerne, Switzerland). Total RNA purity

and concentration were determined by spectrometry

(Nanodrop ND-1000, Thermo Fisher Scientific Inc.,

Wilmington, DE). Then, 1mg of RNA was treated with

amplification grade DNase I (1 unit/mg RNA, Invitrogen)

to prevent genomic DNA contamination, and was

retrotranscribed with the QuantiTect Reverse

Transcription kit (Qiagen, Venlo, The Netherlands).

For this study, we selected a number of genes which

play key roles in lipid metabolism processes as regards

lipogenesis–lipolysis (Table 1). Real-time quantitative

PCR was performed using the SYBR Green PCR Master

Mix (Applied Biosystems, Foster City, CA) in an ABI

Prism 7500 apparatus (Applied Biosystems) according to

the following protocol: 95 �C for 10 min, followed by 40

cycles at 95 �C for 15 s and 60 �C for 1 min. Each PCR well

contained a final 20 ml volume: 5ml of cDNA, 10 ml of the

qPCR Master Mix and 5ml of each forward and reverse-

specific primer. Samples were run in duplicate. The

primers of each gene were designed with Primer3Plus

(Untergasser et al., 2012) and were tested to verify their

efficiency by means of a standard curve (Table 2).

Reaction specificity was validated by analyzing the

melting curve. The relative expression of all the genes

was calculated by the 2�DDCT method (Livak &

Schmittgen, 2001) using Danio rerio elongation factor

1 alpha (ef1�) as a housekeeping gene.

Data analysis
Fish locomotor activity was analyzed and rendered in

actograms by the El Temps chronobiology software

(v.1.275, Dr. Dı́ez-Noguera, University of Barcelona,

Spain). The cosinor analysis (CSR software, 3.0.2) was

performed to determine whether the daily expression of

the studied genes fitted cosine function Y¼M + A * [Cos

(�� + �)] to reveal the existence of any statistically

significant daily rhythm, where M is mesor, A is

amplitude, � is angular frequency (360�/24 h for circa-

dian rhythms), � is the time period (24 h) and � is the

acrophase. The cosinor analysis also provided a statis-

tical value for the null hypothesis of zero amplitude; for

a statistical significance of p50.05, the null hypothesis

was rejected, and amplitude was considered different

from zero.

The statistical differences of the lipid gene expression

between the various sampling times were subjected to a

one-way ANOVA, followed by Tukey’s post hoc test. Each

gene from each feeding regime was independently

analyzed. ANOVA tests were performed with the SPSS

TABLE 1. Gene names and functions.

Gene Name Gene function

Lepa Leptin-a Satiety hormone. Energy balance and glucose homeostasis

srebp Sterol regulatory element-binding protein Regulates genes involved in sterol biosynthesis and fatty

acid synthesis

lxr Liver X receptor Prolipogenic functions

Igf1 Insulin-like growth factor Growth process and signals involved in lipid metabolism

(ppar� and srebp)

ppar� Peroxisome proliferator-activated receptor-� Nuclear receptor critical in adipogenesis, insulin sensitivity,

and inflammatory response

fas Fatty acid synthase Fatty acid synthesis

lpl Lipoprotein lipase Facilitates the uptake of fatty acids and their oxidation or

storage as triglycerides

ppar� Peroxisome proliferator-activated receptor-� Foster fatty acid oxidation

hadh Hydroxyacil CoA deshydrogenase Involved in fatty acid metabolic processes Catalyzes the

third step in the beta-oxidation

Rhythms of lipid metabolism in zebra fish 3
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TABLE 2. Zebrafish primer sequence for real-time PCR.

Gene Gene name F/R Primer sequence (50–30)

fas ENSDARG00000087657 F AAGGTCTTTTGCGTCTGCTG

R TGCTGTTTTCAAGCGCAGTG

Lpl ENSDARG00000087697 F AAACAGCACCGTGTCTTTCC

R TTGCGAATGTGGAAGGTGTC

srebp ENSDARG00000063438 F TCCTCCATCAACGACAAGATCC

R ACACACACGCTGACTTGTTC

lxr ENSDARG00000043170 F AGCTGCTTCCTTTGAACGTG

R TCGCCAAAACCTGCTTGATG

igf1 ENSDARG00000094132 F TCCGTCTCCTGTTCGCTAAATC

R TTTGGGTCTCCAGCAAAAGC

pparg ENSDARG00000031848 F AGACAAAGCTTCGGGGTTTC

R AATCGCGTTGTGTGACATGC

ppara ENSDARG00000031777 F CTTCGTCATTCACGACATGG

R AAGCGTACTGGCAGAAAAGG

lepa ENSDARG00000091085 F AACTGCAGGCAAAGACCATC

R GCGGGAATCTCTGGATAATG

hadh ENSDARG00000060594 F TGACATTGGTGCCGTTTTCG

R TGACAAGGGGTAAACTGGTTCC

ef-1 ENSDARG00000020850 F CCTTCGTCCCAATTTCAGG

R CCTTGAACCAGCCCATGT

FIGURE 1. Representative actograms of activity from the zebra fish in a 12:12 LD cycle, fed once a day at ML (A), MD (B) or RD times (C).

For convenient viewing, the data were double-plotted (48 h), the y-axis progresses in single days with each day plotted twice (day 1 on the

right side is repeated on day 2, on the left side). Activity was binned every 10 min, and the height of each point represents the number of

interruptions of the infrared light beam. The bars above each actogram represent the light regime; open and black bars represent light and

dark, respectively, of the LD cycle. The arrows at the top of the actograms indicate the feeding time for the groups with fixed feeding times

(ML and MD).
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v.19 software (IBM, Armonk, NY). Level of significance

was set at p50.05 for all the statistical analyses.

RESULTS

Locomotor activity rhythm
The daily activity rhythms of zebra fish varied depend-

ing on the feeding regime. The fish fed at ML or RD

displayed a clear diurnal activity rhythm with 88.57 and

90.08%, respectively, of their activity being displayed in

the light phase of the LD cycle. Those fed at MD

exhibited lower diurnal activity, with 62.54% of their

activity displayed in the light phase (Figure 1). The zebra

fish exposed to feeding cycles (i.e. ML or MD) displayed

food anticipatory activity (FAA), defined as an increase

in locomotor activity over several hours (2–3 h) before

mealtime, followed by a decrease after feeding

(Figure 2). The RD group, however, failed to show FAA

and fish synchronized only to the LD cycle and

displayed a diurnal pattern.

Daily rhythms of the expression of lipid metabolism
genes
The expression of most of the studied genes displayed a

statistically significant daily rhythm (Cosinor p50.05),

and nearly all their acrophases were located in the dark
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FIGURE 2. Mean waveforms of locomotor activity from the zebra

fish in a 12:12 LD cycle fed once a day at ML (A), MD (B) or RD

times (C). Each point was calculated as the mean ± SD of 10-min

binned data across all the experimental days shown in each

actogram in Figure 1. The gray area indicates the mean light beam

interruptions, while the continuous line and white area indicate

the SD. The bars above the mean waves represent the light (open

bars) and dark (black bars) phases of the LD cycle. The black

arrows in the ML and MD groups indicate mealtimes.

lepa
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FIGURE 3. Map of the acrophases of the genes analyzed in this

research. The acrophase is indicated by different symbols accord-

ing to the experimental group: white circles for the ML group, black

circles for the MD group and gray squares for the RD group. The

fiducial limits (set at 95%) are indicated by the lateral bars. The

name of each analyzed factor is indicated on the left of the graph.

The white and black bars above the graph represent the light

period and the dark period, respectively.
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phase (Figure 3, Table 3), regardless of the feeding

regime.

The lipogenic genes analyzed (lepa, srebp, lxr, igf1,

ppar� and fas) in the zebra fish liver showed significant

rhythmicity, whose expression peak (Figures 3 and 4)

and acrophase (Table 3) were displayed between ZT

15:25 h and 20:06 h (dark phase). However, the acro-

phase of the rhythmic expression of lxr in the MD group

was observed in the light phase (ZT 4:31 h).

Interestingly, lxr expression displayed a nocturnal

rhythm in the ML and RD groups, with the acrophase

located at mid-dark (ZT 18:29 h and 18:00 h, respect-

ively). The ML group exhibited significant rhythms of

lepa, srebp, lxr and ppar�, the RD group presented

significant rhythms of lepa, srebp, lxr, igf and ppar�, as

did MD group for lxr, igf and ppar�. The expression of

fas displayed no significant rhythmicity in any of the

study groups (Cosinor, p40.05) (Figures 3 and 4, Table

3). Besides the existence of significant daily rhythmicity,

most genes also showed statistically significant differ-

ences between the time points (one-way ANOVA,

p50.05) (Figure 4).

The genes associated with lipolytic metabolism (lpl,

ppar� and hadh) (Figure 5) displayed significant daily

rhythms of expression with an acrophase in the dark

phase between ZT 18:31 h and ZT 02:17 h (Figures 3 and

5, Table 3). The expression of ppar� displayed a similar

profile in all three groups: a significant daily rhythm

with an acrophase around MD (ZT 18:02–18:31 h). As

regards lpl and hadh, the other two lipolytic genes,

significant rhythmicity was observed only in the animals

fed at ML and randomly (RD). Regardless of significant

rhythmicity existing, significant differences were found

for the expression levels of the three studied lipolytic

genes among the time points in all three groups (one-

way ANOVA, p50.05) (Figure 5).

DISCUSSION

The control mechanisms of liver lipid metabolism in

vertebrates have been the objective of much research for

many years. Nevertheless, their rhythmic nature and

synchronization to light and feeding cycles are far from

being fully understood. Overall, the maximum expres-

sion peaks of the analyzed lipogenic metabolic genes

(lepa, srebp, lxr, igf and ppar�) were observed in the

dark phase, while the genes linked to lipolytic metab-

olism (lpl, ppar� and hadh) showed higher expression

levels around the second half of the dark phase of the LD

cycle. Interestingly, light appeared as the dominant

synchronizer in the studied genes rather than other

zeitgebers, such as feeding time, except for lxr, whose

rhythms were shifted by the feeding schedule.

The activity rhythm in the ML and MD groups

synchronized to the feeding regime and showed FAA,

unlike RD which did not. This result is consistent with

TABLE 3. Cosinor analysis board for hepatic genes of zebrafish fed at ML, MD and at RD during an LD cycle.

Gene Feeding time Significance (P) Mesor (fold change) Amplitude (fold change) Acrophase (ZT hours)

lepa ML * 18.6 ± 5.3 23.0 ± 9.0 18:35 ± 1:38

MD NS – – –

RD * 6.0 ± 3.6 7.3 ± 6.4 15:25 ± 8:37

srebp ML * 5.9 ± 3.0 6.2 ± 5.3 17:19 ± 3:57

MD NS – – –

RD ** 12.2 ± 5.5 15.5 ± 10.0 16:29 ± 2:39

lxr ML * 1.3 ± 0.4 0.8 ± 0.7 18:29 ± 3:41

MD ** 1.0 ± 0.3 0.6 ± 0.4 04:31 ± 3:23

RD ** 4.4 ± 1.1 4.2 ± 1.9 18:00 ± 1:43

igf1 ML NS – – –

MD ** 4.0 ± 1.7 3.1 ± 3.0 21:11 ± 5:48

RD ** 11.9 ± 3.9 9.8 ± 6.8 18:00 ± 3:16

ppar� ML ** 39.8 ± 11.6 52.8 ± 21.6 16:32 ± 1:30

MD ** 5.3 ± 1.5 4.3 ± 2.6 20:06 ± 2:33

RD ** 8.8 ± 2.1 6.0 ± 3.7 19:20 ± 2:47

fas ML NS – – –

MD NS – – –

RD NS – – –

lpl ML ** 14.4 ± 1.4 4.5 ± 2.6 21:16 ± 2:00

MD NS – – –

RD * 4.8 ± 2.4 5.6 ± 4.4 23:30 ± 3:25

ppar� ML * 3.28 ± 1.2 2.2 ± 2.2 18:31 ± 5:02

MD ** 3.8 ± 1.2 3.0 ± 2.1 18:31 ± 2:30

RD ** 132.7 ± 47.6 178.8 ± 82.2 18:02 ± 1:45

hadh ML ** 18.6 ± 5.3 23.0 ± 9.0 18:35 ± 1:38

MD NS – – –

RD ** 4.0 ± 1.5 4.1 ± 2.8 02:17 ± 9:05

NS, Non-significant.

*p50.05, **p50.01.

Errors are the mean ± fiducial limits set at 95%.
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the behavioral shift toward nocturnal activity reported

previously in other fish species fed at night (Azzaydi

et al., 2007; Feliciano et al., 2011; López-Olmeda et al.,

2010; Montoya et al., 2010a, b; Sánchez-Vázquez et al.,

2001; Vera et al., 2007). The results of the above works

revealed the existence of a ‘‘natural’’ diurnal activity

rhythm in zebra fish with an activity shift toward

nocturnalism when fed at night. Recent data have also

described zebra fish activity as a mechanism with high

plasticity whose pattern, in specific circumstances (mid-

dark feeding), can shift toward night activity (del Pozo

et al., 2011; López-Olmeda et al., 2010). The display of

FAA reveals the presence of an ancestral evolutionary

response that provides the ability to anticipate a forth-

coming meal by modulating behavioral and physio-

logical outputs to improve nutrient utilization

(Comperatore & Stephan, 1987; López-Olmeda et al.,

2010; Strubbe & Van Dijk, 2002).

Considerable evidence in mammals has indicated

that lipid metabolism obeys a circadian clock (Alila-

Johansson et al., 2004; Bertolucci et al., 2008; Bitman

et al., 1990; Eckel-Mahan et al., 2012; Escobar et al.,

1998; Mauvoisin et al., 2014; Panda et al., 2002Q2 ; Piccione

et al., 2003; Robles et al., 2014; Storch et al., 2002). In

addition, the results of several research works have

suggested that LD and feeding cycles are powerful

synchronizers of central (brain) and peripheral (liver)

biological clocks. For the latter two, there is increasing

awareness that peripheral clocks are highly susceptible,

to the extent that the working pattern decouples from

the central master clock (SCN) to obey other synchro-

nizing cues (Damiola et al., 2000; Hara et al., 2001;

Schilber, 2009; Stokkan et al., 2001), and becomes tissue-

specific for particular physiological processes (Betancor

et al., 2014). According to several reports (Eckel-Mahan

et al. 2013; Pendergast et al. 2013; Sánchez-Vázquez

et al. 2001), the liver is the most sensitive tissue to food

intake, composition and timing, so much so that it

drastically alters its daily rhythmicity (with regard to

clock gene expression). Similarly according to our

results, the rhythmicity of lxr shifted in the MD group.

This nuclear receptor is involved in lipogenic gene

regulation and is responsive to oxysterols, which are

oxidized derivatives of cholesterol and are involved in

cholesterol homeostasis (Schroepfer, 2000). This gene

also plays an important role in adipocyte differentiation

through the activation of ppar�, srebp and fas (Seo et al.,

2004). These data suggest that the daily rhythm expres-

sion of lxr may vary depending on physiological func-

tions other than lipogenesis; i.e. the oxidative state that

fluctuates with feeding time (ML, MD or RD). Yet for the

other studied genes, feeding time was found to have

barely any influence. The results reveal that most of the

hepatic genes analyzed in zebra fish adjusted to an LD

synchronizer, with a nocturnal acrophase for lipogenic

and lipolytic genes at around Ø¼ZT18:00 h and
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Ø¼ZT20:30 h, respectively. Similarly, Szántóvá et al.

(2011) in Wistar rats, and Paredes et al. (2014) in gilthead

seabream observed that light best controlled hepatic

lipid metabolic gene expression. Sigurgeirsson et al.

(2013) also reported up-regulation in lipogenic genes

during the dark period, which is indicative of a rela-

tionship with sleep-wake dynamics. These data suggest

that the activities of the studied genes are under the

direct control of a master LEO central clock. It does not

escape our notice that anabolic and catabolic activities

operate at different times of the day, and accomplish

their respective metabolic roles efficiently (Bolliet et al.,

2000; Lal et al., 1999). We can state that lipogenesis and

lipolysis rhythms did not vary with feeding time;

consequently, these results allowed us to suggest that

feeding in the lipogenesis phase may lead to fish

fattening. In line with this, Garaulet & Gomez-Abellan

(2014) also stated that timing of food intake in human

beings plays a crucial role in fat storage because adipose

tissue genes are displayed in a specific temporal order

by either accumulating or mobilizing fat. Thus, the

distribution of food energy in fat stores depends on the

time of food intake.

In summary, this article describes for the first time

daily rhythms of expression of lipid metabolic genes in

zebra fish liver and their synchronization to LD and

feeding cycles. Further investigation to comprehend the

time-line operating mechanism from RNA expression to

the absorption, transport and metabolism of lipids is

warranted. Besides, further research into circadian

tissue-specific functioning and its connection with the

master central clock will help us understand the

intermingled network mechanism of the circadian

system as a whole. Nevertheless, our results provide

significant insight into the molecular metabolic mech-

anisms by highlighting evident light control with high

nocturnal values for most of the investigated genes.

Interestingly, feeding time barely influenced the daily

rhythms of gene expression. This knowledge also pro-

vides a practical approach to optimize lipid metabolism

when manipulating feeding and light cycles in fish

farming.
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