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Feeding cycles entrain biological rhythms, which enables animals to anticipate feeding times and so
maximizes food utilization. In this article the effect of mealtime on locomotor activity, blood glucose, gastric
pH and digestive enzymes was studied in two groups of seabream (Sparus aurata): one group received a
single daily meal at random times either during the light or the dark (random feeding, RF), whereas the
other group received the meal during the light period every day at the same time (periodic feeding, PF). PF
fish showed strong synchronisation of locomotor activity to the light phase (97.9±0.2% of their total daily
activity during daytime). In addition, the locomotor activity rhythm of PF fish showed a statistically
significant daily rhythm (pb0.05) for a period of 24 h, whereas RF fish did not display a statistically
significant rhythm. Blood glucose levels were higher in RF fish during the 8 h following feeding. Gastric pH
showed a postprandial decrease in both groups, but RF fish showed a lower daily average value (4.31±0.21
compared with 5.52±0.20). Amylase and alkaline protease activity increased some hours before mealtime in
PF fish, whereas amylase activity increased 1 h after feeding and alkaline protease showed no statistically
significant differences in RF fish. Acid protease activity showed no statistically significant differences in any
group. Taken together, these results demonstrate that altering the feeding time affects the physiology and
behaviour of seabream, which have the capacity to prepare themselves for a forthcoming meal.
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1. Introduction

The light–dark and feeding cycles are the most important factors
that entrain biological rhythms in animals. In wild conditions, food is
not continuously available, but is restricted in both place and time
(López-Olmeda and Sánchez-Vázquez, 2010). When meals are
delivered at the same time every day, an increase in the locomotor
activity may be observed several hours before the mealtime. This
phenomenon is known as food anticipatory activity (FAA) and persists
even with the lack of food (Mistlberger, 1994). FAA not only involves
behaviour but also other physiological variables which allow the
animals to optimise their digestive andmetabolic processes (Davidson
and Stephan, 1999; Stephan, 2002). If the organism is able to anticipate
an approaching meal, food acquisition and nutrient utilisation will be
improved. Indeed, several fish species maintained under a periodic
feeding regime have shown synchronization of their behavioural and
physiological rhythms to mealtimes (López-Olmeda and Sánchez-
Vázquez, 2010). For instance, goldfish (Carassius auratus) showed
their anticipation to feeding time by increasing their locomotor
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activity, amylase activity and secretion of neuropeptide Y a few
hours before mealtime (Vera et al., 2007).

Daily and seasonal variations in feeding behaviour have been
reported in self-fed seabream (Paspatis et al., 2000; Velázquez et al.,
2004). Daily rhythms of locomotor activity, as well as hormones
(cortisol and melatonin) have been reported in seabream (López-
Olmeda et al., 2009b; Sánchez et al., 2009) but, to date, little is known
on digestive rhythms in this species. Under farming conditions, food
availability is often restricted to a single meal a day and the efficient
use of nutrients has economic as well as environmental implications
(food waste). This situation is easily reproducible in the laboratory by
establishing a feeding cycle. As in other carnivorous teleosts and
vertebrates, the proteolysis of ingested food in seabream (Sparus
aurata) takes place first in the stomach through the action of pepsin in
an acidic environment. Progressive acidification in the lumen of the
stomach has been reported to occur from late larvae to juveniles in
several teleosts such as barramundi (Lates calcarifer) (Walford and
Lam, 1993), Japanese flounder (Paralichthys olivaceus) (Rønnestad
et al., 2000), turbot (Scophthalmus maximus) (Hoehne-Reitan et al.,
2001), gilthead seabream (Yúfera et al., 2004) and red porgy (Pagrus
pagrus) (Darias et al., 2005), although no such decreasing patternwith
age has always been observed (Yúfera andDarias, 2007). Twodifferent
digestion strategies have been described in vertebrates, including fish.
of behaviour and digestive physiology in gilthead
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Some groups or species maintain a permanent low pH luminal
environment in the stomach in both fasted and fed animals, while
others tend to recover a neutral pH after the digestion and between
meals (Papastamatiou and Lowe, 2004). A decline in gastric pH from
nearly-neutral values after food ingestion has been described in a few
species of Cottids (Western, 1971), Sparids (Deguara et al., 2003;
Yúfera et al., 2004) and Salmonids (Sugiura et al., 2006; Bucking and
Wood, 2009). In mammals, circadian variations of digestive variables,
including gastric pH, have been widely reported (Zabielski, 2004), but
in teleost fish, neither the daily rhythms of gastric pH nor the effect of
feeding time on gastric pH variations have been described to date.

The alkaline digestion stage in fish is carried out in the intestine by
means of hydrolytic enzymes (lipase, carbohydrase and alkaline
protease) synthesized in the pancreas and secreted into the lumen.
The activity of digestive enzymes in fish has been extensively studied
in relation with the influence of diet composition, food quantity and
the feeding habits of the species on its digestive enzyme system
(Reimer, 1982; Hidalgo et al., 1999; Zambonino-Infante and Cahu,
2007; Pérez-Jiménez et al., 2009). The activity of the main digestive
enzymes such as proteases and amylase may be one of the most
important parameters that determine the effectiveness of a given diet,
optimising growth and food utilization (Lemieux et al., 1999; Debnath
et al., 2007; Mohanta et al., 2008). On the other hand, very few studies
have focused on the effect of mealtime on the daily profile of digestive
enzymes (Vera et al., 2007). In fish, anticipation of amylase activity,
but not proteases, to feeding time has previously been described in
goldfish (Carassius auratus) fed periodically, though the daily rhythms
of these enzymes were not described (Vera et al., 2007).

Carbohydrates are the cheapest source of energy for terrestrial
animals, although the use of dietary carbohydrates by fish appears to
be related to their digestive and metabolic systems, since herbivorous
and omnivorous fish utilize higher levels of carbohydrates than
carnivorous fish, such as Salmonids (Wilson, 1994). Seabream is one
of the most important Mediterranean cultured species and has been
described as a carnivorous fish (Gamito et al., 2003). A recent study
reported higher blood glucose levels in seabream fed randomly
compared with fish fed periodically (Sánchez et al., 2009). When
seabreamwere allowed to self-feed either during the dark or the light
phase, however, no effect of feeding time on glucose levels was
reported (López-Olmeda et al., 2009b). Glucose daily rhythms in this
fish species have been previously described (Pavlidis et al., 1997) but,
to date, the effect of a singlemeal provided either periodic or randomly
remains unknown.

Thus, the aim of this study was to investigate the effect of meal
timing (periodic vs. random) on seabream behaviour (daily rhythms
of locomotor activity) and daily rhythms of food digestive activity
such as blood glucose, gastric pH and the activity of the digestive
enzymes, amylase, alkaline protease and acid protease.

2. Materials and methods

2.1. Animals and housing

Seabream (n=72) of 83±4.80 g initial mean body weight were
obtained from a local farm (Culmarex S.A., Aguilas, Murcia) and were
reared at the facilities of the University of Murcia located at the Naval
Base of Algameca (E.N.A., Cartagena, Spain). Fish were kept in 500-
l tanks supplied with aeration and filtered seawater from an open
system. The photoperiodwas set at 12:12 h light:dark (LD) with lights
on at 8:00 h and water temperature at 18 °C.

2.2. Experimental design

Fish were reared and manipulated following the Spanish legisla-
tion on Animal Welfare and Laboratory Practices. The experimental
Please cite this article as: Montoya, A., et al., Feeding time synchronise
seabream (Sparus aurata), Aquaculture (2010), doi:10.1016/j.aquacultu
protocol was approved by the National Committee and the Committee
of the University of Murcia on Ethics and Animal Welfare.

Fish were divided into 4 tanks (18 fish per tank) and two
experimental groups (2 tanks per group)were designedwith different
feeding schedules: fish were fed once a day at 14:00 h (PF group) (in
the middle of the light phase) or once a day at a random time (RF
group). Fish were fed 1% (wet weight) of the biomass once a day with
an experimental diet that was formulated according to the macronu-
trient requirements of this species (Couto et al., 2008) and contained
40% protein, 15% fat, 20% carbohydrate, 2% vitamins andminerals, 4.6%
sodium alginate as binder and 15.5% cellulose as filler. Casein and
gelatine (6:1) were used as protein sources, dextrin as carbohydrate
and a mixture of fish oil and soybean oil (3:1) as fat. In addition, the
diet was supplemented with vitamins and minerals and had sodium
alginate as binder and cellulose as filler. Each tank was equipped with
an automatic feeder (EHEIM, model 3581, Germany). Random feeding
times were programmed weekly using a timer (Data Micro, Orbis,
Spain), which set feeding interval between 12 and 36 h, so on average
RF fish received the same amount of food per 24 h as PF fish.

Seabream were maintained under these experimental conditions
for two weeks and, after this period, samples began to be collected.
Samplingwas performed every 4 h during a 24 hour cycle (6 sampling
points), with the first sampling point being 1 h after food delivery for
each experimental group. As two aquaria were used per group,
sampling was performed alternately after 8 h. In order to avoid the
effect of different feeding times, animals of the RF group were fed at
14:00 h on the sampling day. Fish were anesthetized with eugenol
(clove oil essence, Guinama, Valencia, Spain) dissolved in water at a
concentration of 50 μl/l. Blood was collected by caudal puncture with
heparinised sterile syringes. Blood samples were collected in less than
5 min to avoid the increase in glucose levels originated by manipula-
tion (Rotllant and Tort, 1997). Blood was centrifuged at 3000 rpm for
15 min at 4 °C and, after centrifugation, plasma was separated and
frozen at −80 °C until analysis. After blood collection, fish were
sacrificed by decapitation, gastric pHwasmeasured and samples from
stomach and intestine for enzymatic analyses were collected and
stored at −80 °C. Sampling during the dark phase was performed
under a dim red light (λN600 nm).

2.3. Data analyses

Blood glucose concentration was measured immediately after its
extraction by means of a glucometer (Glucocard G-meter, Menarini,
Italy), which used the method of the glucose oxidase, as reported by
López-Olmeda et al. (2009b). Gastric pH measurements were taken
immediately after fish slaughter by means of a pH microelectrode
(WPI, Minicombo, pH 660) (Yúfera et al., 2004). The tip of the
microelectrode (diameter 660 μm)was inserted in a small slit made in
the stomach. Tissue samples of stomach andmidgut for the enzymatic
analyses were collected, removing food under digestion when it was
present. Tissueswere homogenized bymeans of a potter with distilled
water (250 mg tissue/ml) at 4 °C. The homogenates were centrifuged
twice at 12,000 rpm for 15 min at 4 °C and the supernatants were
collected for use in the assays tomeasure enzymatic activities. Samples
from stomach were used to measure acid protease activity, and
samples from intestine were used to measure amylase and alkaline
protease. The concentration of soluble protein in samples was
determined by the Bradford method, using bovine serum albumin as
standard (Bradford, 1976). Amylase activity was determined accord-
ing to the Somogy–Nelson method using soluble starch (2%) as
substrate (Robyt and Whelan, 1968). Alkaline protease activity was
measured by the casein method, using 1% casein as substrate (Kunitz,
1947; Walter, 1984). Acid protease activity was determined with a
similar method to that used for alkaline protease, using 0.5%
haemoglobin as substrate. The extracts were incubated at pH 2
(Anson, 1938). One unit of amylase activitywas defined as the amount
s daily rhythms of behaviour and digestive physiology in gilthead
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of enzyme able to produce 1 mg of maltose per minute and mg of
protein. One unit of protease activity was defined as 1 mg of tyrosine
released per minute and mg of protein.

Locomotor activity wasmeasured bymeans of an infrared photocell
(Omron, mod E3S-AD62, Kyoto Japan) immersed in the tank under the
feeder and 3 cm from the water surface. This location of the photocell
was selectedaccording toprevious researchwhich showed that FAAand
food synchronisation are best observed near the water surface
(Sánchez-Vázquez et al., 1997). A computer connected to the photocells
counted and stored the number of lightbeam interruptions in 10 min
intervals. Locomotor activity recordswere analysed and are represented
as actograms, mean waveforms and periodograms with chronobiology
software El Temps (version 1,228; Prof. Díez-Noguera, University of
Barcelona). The periodogram analysis relies on the chi-square distribu-
tion to distinguish stochastic oscillations from true rhythms, providing
QP value for a period (P) that has a probability distribution of chi-square
with P-1 degrees of freedom (Refinetti, 2004). QP indicates the
percentage of variance of the rhythm explained by the period. The
level of significance was set at pb0.05. The periodogram indicates the
percentage of variance of the rhythmexplained by each analyzed period
within a range of 20 to 28 h. The highest percentage is associated with
the real value of the period (tau). Data of glucose, gastric pH, amylase
andproteases fromeachgroupwere subjected toCosinor analysis to test
for the existence of statistically significant daily rhythms in each
parameter. Cosinor analysis is based on least squares approximation of
time series data with a cosine function of known period of the type
Y=Mesor+Amplitude⁎ cos ((2π(t−Acrophase)/Period), where
Mesor is the time series mean; amplitude is a measure of the amount
of temporal variability explained by the rhythm; period (τ) is the cycle
length of the rhythm, i.e., 24 h for circadian rhythms; and acrophase is
the time of the peak value relative to the designated time scale. Cosinor
analysis also provided a statistical value for a null hypothesis of zero
amplitude. Therefore, if for a statistical significance of pb0.05, this null
hypothesis was rejected, the amplitude could be considered as differing
from 0, thereby constituting evidence for the existence of a statistically
significant rhythm of the given period under consideration.

Statistical analyses were performed using SPSS® software. Data
from the daily rhythms of glucose, gastric pH and enzymatic activity of
both treatments, were subjected to a Levene's test to check for
homogeneity of variances, and then, were subjected to one-way
ANOVA followed by Duncan's post hoc test. In addition, daily average
values for glucose, gastric pH and enzymatic activity were compared
between feeding groups (random vs. periodic) by means of a t-test.
Values are reported as the mean+S.E.M., and were obtained from
direct measurements of individual fish (n=6).

3. Results

3.1. Locomotor activity rhythms

PFfish showed a strong synchronization to the light phase of the LD
cycle, displaying 97.9±0.2% of the total daily activity detected at the
water surface during daytime, with a periodicity of 24 h (Fig. 1A). In
contrast, RF fish did not show a clear daily activity pattern (Fig. 1B),
displaying 72.6±4.6% of their total daily activity during the light phase
and an arrhythmic pattern (Fig. 1B). Fish fed periodically displayed
more activity during the light phase than those fed randomly (t-test,
pb0.05).

3.2. Blood glucose daily rhythms

No statistical differences could be observed in the blood glucose
daily rhythm of seabream subjected to periodic feeding (ANOVA,
pN0.05) (Fig. 2). RF fish, in contrast, showed an increase in blood
glucose 4 h after feeding, which was maintained 8 h after the
mealtime. Glucose levels in this group returned to basal values 12 h
Please cite this article as: Montoya, A., et al., Feeding time synchronise
seabream (Sparus aurata), Aquaculture (2010), doi:10.1016/j.aquacultu
after feeding (Fig. 2). A blood glucose daily rhythm was observed in
the RF group (COSINOR, pb0.05), with the acrophase located 7 h after
feeding (Table 1). In addition, the daily average blood glucose
concentration of the RF group was higher than in the PF group
(4.36±0.33 and 3.24±0.23 mmol/l for RF and PF fish, respectively)
(t-test, pb0.05).
3.3. Digestive physiology

3.3.1. Gastric pH
Gastric pH of fish subjected to periodic feeding showed a decrease

4 h after feeding time and in themiddle of the dark cycle, to 4.51±0.62
and 3.87±0.30, respectively. The pH values ranged from6 to 7 the rest
of the day (ANOVA, pb0.05) (Fig. 3). Fish fed randomly showed a
decrease in their gastric pH 4 h after feeding, as also observed in the PF
group, with the pH reaching values of 3.50±0.29. The low pH levels
weremaintained longer in the RF group, until the end of the dark cycle.
RF fish showed a gastric pH daily rhythm (COSINOR, pb0.05), with the
acrophase fixed at the beginning of the light cycle (Table 1). Daily
gastric pH values for both experimental groups differed statistically
(5.52±0.20 and 4.31±0.21 for PF and RF fish, respectively) (t-test,
pb0.05).
3.3.2. Amylase activity
Fish subjected to periodic feeding anticipated the mealtime in the

form of amylase secretion, with the highest amylase activity being
observed 4 h before feeding (186.16±37.99 U/mg protein) (Fig. 4). In
this group, a decrease in amylase was observed after feeding until the
middle of the dark phase (ANOVA, pb0.05) (Fig. 4). A daily rhythm in
amylase activity was observed in this group (COSINOR, pb0.05), with
the acrophase located at light onset (Table 1). In contrast, fish
subjected to random feeding showed highest amylase activity 1 h
after mealtime (96.74±16.71 U/mg protein) (ANOVA, pb0.05). RF
fish showed an arrhythmic pattern in amylase production, with lower
amplitude than PF fish (Table 1) (COSINOR, pN0.05). In addition, PF
fish showed higher daily amylase activity levels than RF fish (t-test,
pb0.05) (116.06±9.79 and 74.07±8.45 U/mg protein) for PF and RF
groups, respectively).
3.3.3. Alkaline protease activity
The PF group showed higher alkaline protease activity during the

light phase, with the highest levels being found 1 h after mealtime
(1.36±0.50 U/mg protein) (ANOVA, pb0.05) (Fig. 5). In addition,
anticipation to mealtime in alkaline protease secretion was observed in
this group, with the levels of this enzyme increasing 4 h before feeding
(1.24±0.59 U/mg protein). A daily rhythm in alkaline protease was
found in this group (COSINOR, pb0.05), with the acrophase located 2 h
after light onset. In contrast, in the random feeding group, no
statistically significant differences could be reported in the alkaline
protease activity levels (ANOVA, pN0.05). The daily average of alkaline
protease levels in the RF fish were lower than the levels reported for PF
fish (t-test, pb0.05) (0.82±0.17 and 0.34±0.05 U/mg protein for PF
and RF fish, respectively).
3.3.4. Acid protease activity
No statistically significant differences were found neither in daily

acid protease levels (ANOVA, pN0.05) nor in the daily average acid
protease activity between the two experimental groups (t-test,
pN0.05). In addition, no daily rhythms in the acid protease activity
were observed (COSINOR, pN0.05). The daily average acid protease
activity was 8.88±1.14 and 9.56±0.92 (U/mg protein) for PF and RF
fish, respectively.
s daily rhythms of behaviour and digestive physiology in gilthead
re.2010.06.023
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Fig. 1. Representative actograms, mean waveforms and chi-square periodograms of locomotor activity of seabream subjected to periodic feeding (A) and random feeding (B). For
convenient visualization, data in the actograms have been double-plotted (48 h). The y-axis progresses in single days with each day being plotted twice (day 1 on the right side is
repeated on day 2 on the left side). Top right: the waveform, where the height of each point represents the number of infrared lightbeam interruptions for each period of 10 min
during the 24 h cycle, is represented as the mean+S.D. Bottom right: the chi-square periodogram (confidence-level 95%), where the periodicity of the locomotor daily rhythm is
represented as the significant peak at the top of the periodogram (min). The periodogram indicates the percentage of variance of the rhythm explained by each analyzed period
within a range of 20 to 28 h. The horizontal line represents the threshold of significance, set at p=0.05. The bars above each actogram and waveform represent the light regime:
white and black bars represent the light and dark phase of the cycle (12:12 LD), respectively.
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Fig. 2. Daily profiles of blood glucose in seabream subjected to periodic feeding (open
circles) and random feeding (grey triangles). Values represent the mean+S.E.M. (RF)
or the mean-S.E.M. (PF) (n=6/time point). White and black bars above the graph
represent light and darkness, respectively. Black arrow indicates time of food delivery.
Different letters indicate statistically significant differences between times of day and
treatments (one-way ANOVA, pb0.05).
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4. Discussion

Our findings point to a strong effect of the feeding schedule on the
daily behavioural and digestive physiology of seabream. Fish
subjected to PF-feeding synchronized their locomotor activity to the
light phase with a periodicity of 24 h, whereas RF fish did not show
such a clear diurnal behaviour and displayed sustained activity along
the 24 h. Furthermore, blood glucose levels were higher during the 8 h
following mealtime in the RF fish. In addition, a postprandial decrease
in the gastric pH could be observed in both groups, although fish fed
randomly showed a lower daily average level. Moreover, an increase
in amylase and in alkaline protease could be detected some hours
before mealtime in PF fish, but not in RF fish.

Fish subjected to periodic feeding showed a strong light synchro-
nization and a rhythmic pattern of locomotor activity close to the
water surface, which synchronized to the feeding phase. In contrast,
the randomly fed group showed an arrhythmic pattern of locomotor
activity at this place of the tank as well as a sustained activity along
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Table 1
Cosinor values for blood glucose, gastric pH and digestive enzyme activity in the two
experimental groups: RF, randomly fed; and PF, periodically fed fish. Mesor and
amplitude are expressed in mmol/l for glucose and U/mg protein for digestive enzymes.
The reference phase for the acrophase is referred to the time of day and is expressed in
hours.

PF-feeding RF-feeding

Glucose Acrophase (h:m) 23:47±5:25 20:51±3:33
Amplitude (mmol/l) 0.66±0.66 1.57±0.80
Mesor (mmol/l) 3.19±0.45 4.32±0.57
p N.S. *

Gastric pH Acrophase (h:m) 10:16±5:53 8:41±3:31
Amplitude 0.57±0.58 0.85±0.55
Mesor 5.53±0.4 4.35±0.39
p N.S. *

Amylase Acrophase (h:m) 8:16±2:20 18:24±5:36
Amplitude (U/mg prot) 47.80±23.01 20.93±22.86
Mesor (U/mg prot) 125.58±16.61 72.59±16.99
p ** N.S.

Alcaline protease Acrophase (h:m) 9:58±3:52 17:47±3:19
Amplitude (U/mg prot) 0.63±0.43 0.06±0.16
Mesor (U/mg prot) 0.95±0.34 0.34±0.12
p * N.S.

Acid protease Acrophase (h:m) 1:26±4:54 17:06±3:34
Amplitude (U/mg prot) 0.07±0.06 0.019±0.05
Mesor (U/mg prot) 0.15±0.4 0.17±0.04
p N.S. N.S.

N.S. non significant.
*pb0.05.
**pb0.01.
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the 24 h of the day, which could indicate that fish were continuously
expecting or searching for food. This result contrasts with those of a
previous study in which seabream subjected to random feeding
displayed strict diurnal activity (Sánchez et al., 2009). However, it
should be noted that in that study seabream were fed randomly only
during the day, while in our trial fish were fed randomly either during
the day or at night. In addition, the photocell in the study by Sánchez
et al. (2009) was located at the bottom of the tank, while in our study
the photocell was located at the water surface, where FAA could be
observed more clearly (Sánchez-Vázquez et al., 1997). The stronger
influence of feeding than of LD cycles was previously reported in sea
bass (Dicentrarchus labrax), when both synchronizers were provided
with different periods (conflicting zeitgebers) (Sánchez-Vázquez et al.,
1995). In that report feeding restricted to the light or dark phase
shifted the daily pattern of behaviour to diurnal or nocturnal,
respectively. These results highlight the strong influence of feeding
time on fish behavioural patterns, which may cause arrhythmicity
when food is randomly distributed during the day or night.

Daily variations in blood glucose in fish strongly depend on
feeding, since they disappear in fasted fish (Polakof et al., 2007).
Traditionally, the magnitude and duration of the glucose peak after
feeding has been related to diet composition, meal frequency and
feeding habits of the fish species (Moon, 2001). Daily variations of
blood glucose have previously been described in seabream fed
periodically 3 times a day at a daily rate of 2–3% of body weight,
Fig. 4.Daily profiles of amylase in seabream subjected to periodic feeding (open circles)
and random feeding (grey triangles). Values represent the mean+S.E.M. (PF) or the
mean-S.E.M. (RF) (n=6/time point). White and black bars above the graph represent
light and darkness, respectively. Black arrow indicates time of food delivery. Different
letters indicate statistically significant differences between times of day and treatments
(one-way ANOVA, pb0.05).
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Fig. 5. Daily profiles of alkaline protease in seabream subjected to periodic feeding
(open circles) and random feeding (grey triangles). Values represent the mean+S.E.M.
(PF) or the mean-S.E.M. (RF) (n=6/time point). White and black bars above the graph
represent light and darkness, respectively. Black arrow indicates time of food delivery.
Different letters indicate statistically significant differences between times of day and
treatments (one-way ANOVA, pb0.05).
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with values ranging from 4 and 6 mmol/l and a peak between 5 and
9 h after the first meal (Pavlidis et al., 1997). In our study, fish were
fed a single daily meal of 1% of body weight, and showed blood
glucose levels ranging from 2.5±0.2 and 4.6±0.8 mmol/l, which are
close to values reported previously. Nevertheless, RF fish showed a
two fold increase in blood glucose after feeding, which did not occur
in PF fish. This result is in agreement with the study carried out by
Sánchez et al. (2009), where higher glucose levels were reported in
seabream fed randomly, suggesting poor regulation of blood glucose.
Fish have been described as glucose intolerant, since hyperglycaemia
persists several hours after feeding and in many cases reduces growth
(Moon, 2001). Daily rhythms in glucose may be related with daily
rhythms in glucose tolerance. In fact, a recent study carried out in
goldfish reported differences in glucose tolerance with regard to
mealtime (López-Olmeda et al., 2009a). Although the daily rhythm in
glucose tolerance in seabream remains unexplored, the hyperglycae-
mia observed in RF fish could be the result of a loss of synchronization
of the glucose tolerance in these randomly fed fish. Further research is
required to test this hypothesis.

In fish with a stomach, the enzymatic digestion starts in this section
of the digestive tract, where the gastric glands secrete the pepsinogen
and hydrochloric acid which decreases pH, inducing the conversion of
pepsinogen to pepsin. A postprandial decrease in gastric pH has been
described in adults and early juvenile of seabream (Deguara et al., 2003;
Yúfera et al., 2004). In the present research, the daily gastric pH profile
of both groups decreased significantly 4 h after mealtime coinciding
with the observationsmade in a previous study carried out in seabream
(Deguara et al., 2003). However, 8 h after mealtime gastric pH
increased in the PF group, but not in the RF group, and it decreased
again 12 h after the meal. Such 12 h fluctuation in gastric pH has been
reported in rainbow trout (Sugiura et al., 2006), although the driving
mechanisms remain unclear. In our trials, seabream subjected to
random feeding showed a significant daily rhythm of acid secretion
with the acrophase around lights on. This group showed lower pH
levels than the PF fish, which indicated increased acid secretion in order
to be ready to digest the unpredictable forthcoming meal. Studies
carried out on gastric pH variations in free swimming elasmobranches
revealed that leopard sharks (Triakis semifasciata) (Papastamatiou and
Lowe, 2004) and blacktip reef sharks (Carcharhinus melanopterus)
(Papastamatiou et al., 2007) fed continuously in the wild and display
continuous gastric acid secretion, which enables them to be in a state of
continuous physiological readiness.

In this study, an increase in both amylase and alkaline protease
activitywas observedbeforemealtime infish fed periodically,whereas
fish subjected to random feeding did not show such anticipation. As
both enzymes are synthesised in the pancreas, the similar alkaline
Please cite this article as: Montoya, A., et al., Feeding time synchronise
seabream (Sparus aurata), Aquaculture (2010), doi:10.1016/j.aquacultu
protease and amylase activity profiles obtained suggest synchroniza-
tion of pancreatic secretion to mealtime. Our results concerning
amylase activity agree with a study carried out in goldfish, in which
amylase activity increases in anticipation of meal time in fish fed
periodically, but not in fish fed randomly (Vera et al., 2007). In that
report, however, alkaline protease did not show anticipation to meal
time, whereas a postprandial increase was observed in both groups. It
should be noted that differences between reports in alkaline protease
activity may be related to the fact that goldfish is omnivorous, while
seabream is a carnivorous species.

In the present research, a significant daily rhythm both in amylase
and in alkaline protease activity was detected in PF fish, but not in RF
fish. These results suggest that scheduled feeding provides temporal
integration and entrains both amylase and alkaline protease activity.
Reports on daily rhythms in amylase or protease activity are scarce. A
study carried out in larvae of African catfish (Clarias gariepinus), which
had been feeding exogenously for 7 days, failed to detect the rhythmic
production of proteolytic activity during a 24 h cycle (García-Ortega
et al., 2000). These larvae were fed along the LD cycle (every 4 h),
which could explain the lack of feeding synchronization observed in
that study.

Taken together, these results emphasize the importance of
mealtime in fish behaviour, metabolism and digestion: locomotor
activity, blood glucose, gastric pH, amylase and protease digestive
enzymeswere all affected by the feeding regime (periodic vs. random).
These findings should be given proper consideration when designing
meal timetables for seabream in aquaculture.
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