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ABSTRACT 

Sea bass is a euryhaline fish that lives in a wide range of salinities and migrates 

seasonally from lagoons to the open sea. However, to date, the influence of water salinity on 

sea bass melatonin levels has not been reported. Here, we evaluated the differences in plasma 

and tissue melatonin contents and melatonin binding sites in sea bass under four different 

salinities: seawater (36 ‰), isotonic water (15 ‰), brackish (4 ‰) and freshwater (0 ‰). 

Melatonin content was evaluated in plasma, whole brain, gills, intestine and kidney, while 

melatonin binding sites were analyzed in different brain regions and in the neural retina. 

Plasma melatonin levels at mid-dark varied among salinities, with the lowest value occurring 

at seawater salinity (102 pg/ml), and the highest at freshwater (151 pg/ml). In gills and 

intestine, however, the highest melatonin values were found in the seawater group (209 and 

627 pg/g tissue, respectively). Melatonin binding sites in the brain also varied with salinity, 
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with the highest density being observed at the lower salinities in optic tectum, cerebellum and 

hypothalamus (30.3, 13.0, and 8.0 fmol/mg protein, respectively). Melatonin binding sites in 

the retina showed a similar pattern, with the highest values in the fish maintained in 

freshwater. Taken together, these results revealed that salinity influences melatonin 

production and modifies the density of binding sites, which would point to a role for this 

hormone in timing seasonal events in sea bass, including those linked to fish migration 

between waters of different salinities. 

 

Keywords: melatonin, melatonin binding sites, Dicentrarchus labrax, seasonality, salinity 

 

INTRODUCTION 

 Melatonin is the main product of the pineal organ of vertebrates, including fishes 

(Ekström and Meissl, 1997). In all species studied to date, melatonin is produced mainly 

during the dark phase of daily photocycle, with low levels during the light phase (Falcón, 

1999). This hormone is secreted into the blood and provides the organism with information 

regarding the time of day and the season of the year (Reiter, 1993), thus regulating the daily 

and seasonal rhythms in animals. In addition to this main role, melatonin acts on a wide 

variety of processes in fish, including food intake and locomotor activity (López-Olmeda et 

al., 2006), metabolism (Delahunty and Tomlinson, 1984) and the regulation of 

neuroendocrine factors (Falcón et al., 2007). 

Sea bass (Dicentrarchus labrax, L.) is a euryhaline fish capable of living in a wide 

range of salinities, from high salinity environments to freshwater as well as in environments 

that are subjected to variations in salinity such as estuaries (Chervinsky, 1974). Indeed, sea 

bass undergo seasonal migrations that involve changes in salinity: mating and spawning occur 

in the open sea during autumn and winter, while fish move to tidal lagoons and estuaries in 

spring (Lemaire et al., 2000; Varsamos et al., 2001). Therefore, sea bass have to cope with 

salinity changes in their habitat during their annual cycle, and have consequently developed 

physiological strategies to adapt to these variations (Claireaux and Lagardère, 1999). In sea 

bass, seasonal environmental factors that influence melatonin production have been studied, 

with special attention being paid to the effects of photoperiod and water temperature (García-

Allegue et al., 2001), and light intensity and spectrum (Bayarri et al., 2002). Furthermore, 

water salinity appears to be an important environmental factor influencing food intake and 

macronutrient selection in sea bass (Rubio et al., 2005). However, to date, the effects of 
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salinity on the melatonin system in this species have not been studied, particularly regarding 

this environmental factor in sea bass seasonal migrations in the wild. 

Melatonin actions are mediated through high- and low-affinity receptors. Previous 

studies have characterized high affinity receptors belonging to the superfamily of G-protein 

coupled receptors (Vanecek, 1998). Several subtypes of melatonin receptors have been 

identified, the MT1 and MT2 subtypes described in all vertebrates investigated, and the Mel 

1c subtype only present in non mammalian vertebrates (Witt-Enderby et al., 2003). A 

widespread distribution of melatonin receptors in central and peripheral tissues has been 

described, the higher densities occurring in the central nervous system (Falcón et al., 2007). In 

fish, melatonin binding sites in the brain and retina may show a daily rhythm in density and/or 

affinity, depending on the brain area and the species (Iigo et al., 2003; Bayarri et al., 2004b; 

Park et al., 2007). Moreover, seasonal variations in melatonin binding sites have also been 

observed, depending on the maturational state, in the masu salmon brain (Oncorhynchus 

masou) (Amano et al., 2003). Nevertheless, no study has focused on the possible influence of 

salinity on melatonin receptors in the fish brain and, thus, modulation of melatonin functions 

by the changes in water salinity. 

The aim of this research was to evaluate the influence of water salinity on melatonin 

concentration in plasma and several tissues (brain, gills, intestine and kidney), and the 

possible variations in the density of melatonin binding sites in central neural tissues of sea 

bass exposed to four different salinities, ranging from seawater to freshwater. 

 

MATERIALS AND METHODS 

Animals and housing 

 Sea bass (Dicentrarchus labrax L.) were obtained from the Spanish Institute of 

Oceanography at Mazarrón (Murcia, Spain) and reared at the facilities of the University of 

Murcia. Fish had an average body weight of 117 ± 37 g. b. w. (mean ± S. D.) and were kept in 

well aerated 500-l tanks equipped with biological and mechanical filters. Fish were 

acclimated to lab conditions during the month of May, and the experiments were performed 

during June. Water temperature was controlled at 23 ºC and the photocycle was set at 

12L:12D. Light was provided by “daylight” bulbs (Decor A 60W, Osram) placed at 70 cm 

from the water surface, where light intensity was 300 lx. Fish were fed with a commercial diet 

for sea bass (Excel 2P, Skretting, Nutreco Holding N.V., Netherlands). During the experiment 

common water quality criteria were assessed every day by means of commercial kits (Sera, 

Germany). 
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 The experiments were designed to evaluate the influence of decreasing water salinities 

on both plasma levels and tissue melatonin content, and melatonin receptors density in central 

neural tissues in sea bass. For this purpose, four salinities were chosen: 36 ‰ (seawater, SW); 

15 ‰ (isotonic water, IW); 4 ‰ (brackish water, BW); and 0 ‰ (freshwater, FW). Isotonic 

salinity for sea bass was set at 15 ‰, as has been previously described by Saillant et al. 

(2003). Fish were reared and the experiments were conducted ethically, following the Spanish 

legislation on Animal Welfare and Laboratory Practices. 

Commercial marine salt (SERA premium sea salt, Germany) was added to freshwater 

to reach the desired salinity. Salinity changes were made gradually within 2-3 days. When 

water salinity reached the desired salinity, fish were maintained during one week in these 

conditions and, after that period, samples for assays were collected. Fish were anaesthetized 

in clove essence at 50 ppm (Guinama, Valencia, Spain), blood samples were collected by 

caudal puncture and then fish were sacrificed by decapitation. Tissue samples from brain, 

intestine, gills and kidneys were collected, frozen immediately in dry ice and stored at -80 ºC 

until analysis. For each salinity, blood samples for melatonin were taken both at mid-light 

(ML) and mid-dark (MD) (n=8 for each point), while tissue samples for melatonin analysis 

were collected only at ML to avoid the influence of the nocturnal rise in circulating melatonin 

synthesized by the pineal gland. Brains were collected at ML and dissected into optic tectum, 

telencephalon, hypothalamus and cerebellum, and stored at -80 ºC until assayed for 

radiobinding. The eye cup was removed at ML and MD and placed under the binocular for 

removal of the neural retina, which was frozen until assayed. 

Melatonin analysis 

 Samples from brain, kidney, gut and gills were homogenized by sonication in a 

phosphate buffer saline with 0.01 % thimerosal (Sigma Aldrich Chemicals, St. Louis, USA). 

Melatonin was extracted from plasma and tissue homogenates using octadecyl C18 speedisk 

columns of 10 µm (J.T. Baker, NJ, USA) and eluted with methanol according to a previous 

procedure (Kulczykowska and Iuvone, 1998). Melatonin concentration was determined using 

a commercial radioimmunoassay kit (Melatonin direct RIA, RE 293 01, IBL Hamburg, 

Germany), and radioactivity was measured using a γ counter (Wallac 1470, Perkin Elmer, 

MA, USA). Melatonin concentration in tissues was expressed as picograms per gram of tissue 

(intestine, gill and brain) or as picograms per milligram of protein (kidney). The protein 

content in kidney was determined using a commercial Total Protein kit (Sigma Aldrich 

Chemicals). 
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Membrane preparation and binding assays 136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

 Membranes were prepared as described elsewhere (Bayarri et al., 2004b). Briefly, 

samples were sonicated in Tris:HCl buffer (50 mM, pH=7.4) and centrifuged, and membranes 

were resuspended in Tris buffer and stored at -80 ºC until the binding assays were performed. 

Total protein concentrations in the tissues were measured by Lowry’s method (1951), 

modified to microplates by reducing all the volumes to get a final volume of 300 µl. Binding 

assays were carried out in triplicate for each sample. Sample membranes (30-40 µg) were 

incubated with 2-[125I]iodomelatonin as radioligand (GE Healthcare, Spain) at 25 ºC for 90 

minutes. The reaction was stopped at 4 ºC by adding 750 µl of Tris buffer, and immediately 

vacuum filtered through 25 mm glass fibre filters (Millipore, APFC, USA) using a Millipore 

1225 cell harvester. Filters were washed with 4 ml of Tris:HCl buffer and then radioactivity 

was quantified using a γ counter (Wallac 1470, Perkin Elmer). Non-specific binding was 

quantified by adding an excess of unlabeled melatonin (1 μM) (Sigma Aldrich Chemicals), 

and these values were subtracted from total binding to obtain the specific binding of 2-

[125I]iodomelatonin in each sample. The specific binding capacity was expressed as 

femtomoles per milligram of proteins. 

Data analysis 

 Values are expressed as mean ± S.E.M. Statistical analysis was performed using 

SPSS® software. Data of melatonin in tissues and melatonin binding sites in each brain region 

were subjected to one-way ANOVA, followed by Duncan’s post hoc test. Data of plasma 

melatonin and density of melatonin binding sites were subjected to two-way ANOVA, 

followed by Duncan’s post hoc test. Statistical significance threshold was set at p<0.05. 

 

RESULTS 

 All groups showed significant differences between day and night plasma melatonin 

levels, with higher values during MD (two-way ANOVA, p<0.05) (Fig. 1). In addition, 

nocturnal plasma concentrations of melatonin varied significantly depending on water 

salinity, the mean values being higher at lower salinities, with FW and BW (151 ± 23 and 123 

± 9 pg/ml, respectively) showing significant differences with SW (102 ± 4 pg/ml) (two-way 

ANOVA, p<0.05). When day and night plasma melatonin values were compared by linear 

regression, increasing differences between ML and MD plasma melatonin were observed as 

salinity was reduced from SW to FW (Fig. 2). The statistical analysis of both regression lines 

revealed that MD melatonin increased significantly as salinity decreased (Spearman 

correlation, p<0.05), while ML melatonin did not change with salinity (p=0.2). 
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 Melatonin levels in tissues showed a wide range of variation between different tissues 

and different salinities (Fig. 3). Significant differences were found in the intestine (ANOVA, 

p<0.05), where melatonin increased threefold in SW compared with other groups. A similar 

profile could be observed in gills, where melatonin values were significantly higher in 

animals maintained in seawater, although such differences were less marked than in the 

intestine. Neither brain nor kidney melatonin levels showed significant differences at the 

different salinities tested. The highest levels of melatonin were found in the intestine in the 

SW group (up to 627 ± 89 pg/g tissue) (ANOVA, p<0.05). 

 The radioligand experiments revealed differences in binding capacities in the different 

brain regions, with optic tectum showing the highest density values, followed by the 

cerebellum, and the lowest values for telencephalon and hypothalamus (two-way ANOVA, 

p<0.05). When each region of the brain was analyzed for differences between salinities, the 

optic tectum showed increasing receptor densities with decreasing salinity levels (one-way 

ANOVA, p<0.05) (Fig. 4). Cerebellum, hypothalamus and telencephalon showed similar 

values in all groups (Fig. 4) (one-way ANOVA, p>0.05). 

 In the retina, the highest receptor density was found in the FW salinity (Fig. 5), 

showing higher statistically significant densities of melatonin binding sites than SW (12.3 vs 

8.2 fmol/mg protein at ML in the FW and SW, respectively; and 18.3 vs 8.0 fmol/mg protein 

at MD in the FW and SW, respectively) and IW (12.3 vs 9.1 fmol/mg protein at ML in FW 

and IW; and 18.3 vs 8.3 fmol/mg protein at MD in FW and IW, respectively) (two-way 

ANOVA, p<0.05). Although MD values in FW and BW tended to increase when compared 

with ML values, no significant differences were observed between ML and MD binding sites 

inside a same salinity (two-way ANOVA, p=0.11). 

 

DISCUSSION 

Our results revealed that the sea bass melatonin system is influenced not only by light 

or water temperature, but also by water salinity. In the present study, both circulating 

melatonin levels and melatonin binding sites in the optic tectum and neural retina of sea bass 

varied significantly depending on water salinity, showing the highest values at the lowest 

salinities. In contrast, the melatonin content of gills and intestine was significantly higher in 

fish exposed to full seawater. 

In sea bass, both daily and seasonal melatonin rhythms have been previously reported 

under different lighting conditions and at different times of the year (Sánchez-Vázquez et al., 

1997; García-Allegue et al., 2001). In addition, the influence of light intensity and spectrum 
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has been studied in this species (Bayarri et al., 2002). However, the influence of salinity, 

which changes as sea bass migrate seasonally to lagoons, on melatonin production had not 

been evaluated to date in this species. Salinity is an important environmental factor which 

affects fish growth (Boeuf and Payan, 2001), food intake and the pattern of macronutrient 

selection (Rubio et al., 2005). In the wild, sea bass have to cope with salinity changes 

throughout their life cycle, as they migrate to open sea during autumn-winter and return to 

coastal lagoons and estuaries during spring (Lemaire et al., 2000; Varsamos et al., 2001). 

Previous studies revealed a melatonin seasonal rhythm in this species, with low 

amplitude during autumn and winter, and high amplitude in spring and summer (García-

Allegue et al., 2001). Such seasonal variations of plasma melatonin indicate the time of the 

year and act as a synchronizer for annual rhythms (Reiter, 1993), as in the case of sea bass for 

seasonal migrations and reproduction. Curiously enough, lower levels of melatonin were 

found in higher salinities (coinciding in wild animals with migration to seawater during 

winter), while higher levels were recorded in lower salinities (coinciding with migration to 

lagoons during spring). Thus, water salinity might influence, together with photoperiod and 

water temperature, the amplitude of melatonin rhythms observed along seasons. Therefore, 

not only photoperiod and water temperature, but also salinity changes seem to contribute to 

the transduction of the seasonal environmental information into melatonin rhythms. 

Transitional changes in plasma melatonin levels during long-term adaptation to 

salinity changes have been reported in salmon (Gern et al., 1984). However, acute changes of 

salinity may occur during sea bass seasonal migrations, and thus an acute response of 

melatonin production could be enough to induce physiological changes linked to sea bass 

annual rhythms. 

 Apart from plasma, there are no studies on tissue melatonin in fish under different 

salinities. Herein, the melatonin content remained constant in brain and kidney at the different 

salinities, but in gills and intestine was higher in fish maintained in seawater. Melatonin has 

been found in the gastrointestinal tract (GIT) of several fish species (Bubenik and Pang, 1997; 

Kulczykowska et al., 2006). In addition, the presence of melatonin binding sites in peripheral 

tissues has been described in three different fish species, gilthead sea bream (Sparus aurata), 

rainbow trout (Oncorhynchus mykiss) and flounder (Platichthys flesus) (Kulczykowska et al., 

2006). Gastrointestinal melatonin has been suggested to play a paracrine function, as a 

regulator of feeding rhythms, satiety, intestinal motility and in connection with the 

osmoregulatory function, as a regulator of the transmembrane transport of electrolytes and 

ions (Bubenik, 2002; López-Olmeda et al., 2006). The gills are the main tissue involved in ion 
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transport and osmoregulatory processes in fish (Olson, 2002). However, little is known on 

melatonin function in gills and, to date, it has only been suggested that might act as an 

important site of melatonin uptake and excretion in fish (Kulczykowska et al., 2006). 

Melatonin binding sites in the brain and retina of sea bass have been previously 

described by Bayarri and coworkers (2004a, b). However, this is the first study, to our 

knowledge, that describes variations in melatonin binding sites in different brain areas of fish 

exposed to different salinities. Some fish show a circadian rhythm of melatonin binding sites 

and gene expression of melatonin receptors, as occurs in sea bream (Falcón et al., 1996), pike 

(Gaildrat et al., 1998), goldfish (Iigo et al., 2003) or golden rabbitfish (Park et al., 2007). 

These findings are similar to studies in mammals, and it has been hypothesized that melatonin 

down-regulates the expression of melatonin receptors, which would explain the differences in 

both rhythms (Witt-Enderby et al., 2003). However, recent studies in golden rabbitfish 

revealed that in this species both melatonin and melatonin receptor rhythms are in phase (Park 

et al., 2007), showing that melatonin receptor regulation by melatonin itself is a more 

complex process. Moreover, in the present study, both plasma melatonin concentration and 

binding site density in the retina and brain tissue increased in parallel with decreasing 

salinities. The physiological significance of this response is not clear. However, it should be 

also emphasized that density of melatonin receptors in brain and retina are influenced by 

melatonin synthesized in the pineal organ and retina. Therefore, in the absence of data on 

melatonin concentration at the sites of its synthesis, we can only speculate that melatonin up-

regulates the expression of its receptors and thus enhances its effect in both tissues. What is 

more, lack of the data on receptor affinities (Kd) makes any interpretation not conclusive. 

 In summary, this is the first study describing the influence of salinity on melatonin 

content in peripheral tissues as kidney, intestine and gills; and the first to report the influence 

of salinity on the density of melatonin receptors in several brain areas and the neural retina. 

During the year, sea bass melatonin rhythms decrease their amplitude in autumn-winter, while 

increase in spring. Curiously, sea bass migrates in winter to seawater, where melatonin is 

further decreased by the change in salinity, enhancing the seasonal melatonin signalling and 

describing salinity as a new signal for melatonin synthesis and annual adaptations. 
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FIGURE CAPTIONS 

Figure 1. Plasma melatonin levels at ML (white bars) and MD (dark bars), at the four 

salinities, FW (freshwater, 0 ‰), BW (brackish water, 4 ‰), IW (isotonic water, 15 ‰), and 

SW (seawater, 36 ‰). Values are expressed as mean ± S.E.M. (n=4). Data were compared 

using a two-way ANOVA, followed by Duncan post hoc test. Asterisks indicate statistically 

significant differences between ML and MD values, and different letters indicate statistically 

significant differences between salinities (p<0.05). 

 

Figure 2. Regression lines for plasma melatonin values at ML (white circles) and MD (black 

circles) related to salinity (in parts per mile, ppm). Equations for each line are in the right side 

of the figure. R2 values are 0.2863 and 0.6602 for ML and MD, respectively. 

 

Figure 3. Melatonin contents in sea bass brain (3A), intestine (3B), gills (3C) and kidney 

(3D), at ML at the four salinities (FW, BW, IW and SW). Values in brain, gills and intestine 

are expressed as picograms of melatonin per gram of tissue; and melatonin contents in kidney 

are expressed in picograms of melatonin per milligram of protein. Values are expressed as 

mean ± S.E.M. (n=4). Data from each tissue were subjected to one-way ANOVA, followed 

by Duncan post hoc test. Different letters indicate statistically significant differences 

(p<0.05). 

 

Figure 4. Density of melatonin binding sites in four regions of sea bass brain, optic tectum, 

telencephalon, hypothalamus, and cerebellum at ML at the four salinities: FW (white bars), 

BW (striped bars), IW (grey bars) and SW (black bars). Values are expressed as mean ± 

S.E.M. (n=7-8). Data from each region were subjected separately to one-way ANOVA, 
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followed by Duncan post hoc test. Asterisk indicate statistically significant differences 

(p<0.05). 
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Figure 5. Density of melatonin binding sites in the neural retina at ML (white bars) and MD 

(dark bars) at the four salinities (FW, BW, IW and SW). Values are expressed as mean ± 

S.E.M. (n=7-8). Data were compared using a two-way ANOVA, followed by Duncan post 

hoc test. Different letters indicate statistically significant differences between salinities 

(p<0.05). No significant differences were observed between ML and MD values in the same 

salinity. 
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