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A B S T R A C T   

The aim of this study was twofold: a) to build models using machine learning techniques on data from an 
extensive screening battery to prospectively predict lower extremity soft tissue (LE-ST) injuries in non-elite male 
youth soccer players, and b) to compare models' performance scores (i.e., predictive accuracy) to select the best 
fit. A sample of 260 male youth soccer players from the academies of five different Spanish non-professional 
clubs completed the follow-up. Players were engaged in a pre-season assessment that covered several personal 
characteristics (e.g., anthropometric measures), psychological constructs (e.g., trait-anxiety), and physical fitness 
and neuromuscular measures (e.g., range of motion [ROM], landing kinematics). Afterwards, all LE-ST injuries 
were monitored over one competitive season. The predictive ability (i.e., area under the receiver operating 
characteristic curve [AUC] and F-score) of several screening models was analysed and compared to select the one 
with the highest scores. A total of 45 LE-ST injuries were recorded over the season. The best fit screening model 
developed (AUC = 0.700, F-score = 0.380) allowed to successfully identify one in two (True Positive rate = 53.7 
%) and three in four (True Negative rate = 73.9 %) players at high or low risk of suffering a LE-ST injury 
throughout the in-season phase, respectively, using a subset of six field-based measures (knee medial displace-
ment in the drop jump, asymmetry in the peak vertical ground reaction force during landing, body mass index, 
asymmetry in the frontal plane projection angle assessed through the tuck jump, asymmetry in the passive hip 
internal rotation ROM, and ankle dorsiflexion with the knee extended ROM). Given that these measures require 
little equipment to be recorded and can be employed quickly (approximately 5–10 min) and easily by trained 
staff in a single player, the model developed might be included in the injury management strategy for youth 
soccer.   

1. Introduction 

Despite the numerous health-related benefits, the participation in a 
very physically demanding team sport such as soccer (i.e., associated 
football) results in a notable increase in injury risk [1]. Epidemiological 
studies have reported that the frequency and severity of injuries among 
youth soccer players accelerate and peak during adolescence [2,3], 
when periods of rapid and non-uniform growth in skeletal structures are 
experienced, leading to alterations in both physical performance and 
motor control/function [4,5]. Thigh muscle/tendon strains (hamstring 
and quadriceps) and knee and ankle ligament sprains and tears (anterior 

cruciate ligament [ACL] of the knee, anterior inferior tibiofibular liga-
ment of the ankle) are the most commonly diagnosed types of injury in 
youth soccer players [1,6]. These lower extremity soft tissue (LE-ST) 
injuries frequently result in players missing sport participation for an 
extensive period of time [6]. In addition, young players who sustain LE- 
ST injuries during soccer participation may experience important re-
sidual symptoms that can have major negative consequences in their 
long-term athlete development and limit their ability to engage in ex-
ercise and athlete activities later in life [7]. Consequently, soccer-related 
LE-ST injuries can counter the beneficial health related effects of sport 
participation at a young age if a child or adolescent is unable to continue 
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participating because of the effects of injury [8]. 
Most of the LE-ST injuries documented in youth soccer have shown a 

non-contact mechanism [1] and hence, they might be considered as 
preventable [9]. Thus, the implementation of multicomponent strategies 
aimed at mitigating the risk of injury in such cohorts is a big challenge 
that coaches and physical trainers need to consider. It has been sug-
gested that for an injury prevention measure to be highly effective, its 
design must be targeted on each player's individual needs [10]. There-
fore, the use of a valid field-based screening method that allows coaches 
and physical trainers to profile injury risk and identify those factors that 
impact most on the likelihood of sustaining a LE-ST injury in each of 
their youth soccer players may be a valuable tool to help design tailored 
preventive measures. 

There is a general agreement that LE-ST injury is a multifactorial 
phenomenon in which several factors of different nature (e.g., personal 
characteristics, psychological constructs, neuromechanical parameters) 
might interact among them in a non-linear fashion (complex relation-
ships) and have an impact on the likelihood (i.e., risk) of this one ap-
pears (or not) in an athlete (i.e., soccer players) [11–14]. Likewise, 
epidemiological studies in soccer have documented that the LE-ST injury 
is an imbalanced phenomenon so that in a typical team the number of 
players who sustain a LE-ST every competitive season (minority class) is 
much lower than the non-injured players (majority class) [15]. Most of 
the screening models available currently to make prospective pre-
dictions on new cases of LE-ST injuries in soccer have been built using 
traditional statistical techniques (mainly binary logistic regression) that 
were not originally conceived to manage complex (non-linear) and 
imbalanced phenomena (as the LE-ST is) [16–18]. Furthermore, these 
models have been designed using information coming from one in 
isolation or a few factors (no more than six) assessed in a limited sample 
of soccer players. Consequently, it is not surprising that these traditional 
models present inadequate performance scores (i.e., predictive accu-
racy) so that in most of them a clear bias (for many reasons) toward the 
majority class (known as the negative class) is shown, and therefore, 
there is a higher misclassification rate for the minority class instances 
(called the positive examples), which represent the most important 
concept [19]. In other words, these models usually report high speci-
ficity (also called true negative rate [non-injured players who were well- 
classified]) but very low sensitivity (also called true positive rate 
[injured players who were well-classified]). Therefore, it has been 
argued that the complexity of injury means a broader statistical and 
conceptual approach is needed to make more accurate prospective 
predictions of new cases of injuries and better understand relationships 
between risk factors [14,20]. 

In the last five years, a growing number of studies have used 
contemporary Machine Learning algorithms (mainly classification [e.g., 
Random Forest and ADTree] and regression algorithms [e.g., Naïve 
Bayes and Neural Networks]) which have been specifically designed to 
deal with imbalanced problems where a large number of factors are 
involved and resampling methods (e.g., K-fold cross validation, leave- 
one-out, bootstrapping) to build screening models to profile athletes' 
injury risk in team sport showing, in most of the cases, promising pre-
dictive accuracy [11–13]. Only two recent studies [14,21] have devel-
oped screening models using field-based tests to predict injuries through 
the use of decision tree based classifiers (XGBoost [21] and bagging 
ensemble method with a J48con decision tree as base classifier [14]) in 
youth soccer players. In particular, these two studies have built models 
to classify youth players into two groups, positives (high risk of injury) 
and negatives (low risk of injury), based on anthropometric (e.g., age, 
standing and sitting height, body mass), physical fitness (e.g., sprint and 
jump [vertical and horizontal] performance, agility, lower back and 
posterior chain flexibility) and neuromuscular (e.g., tuck jump knee 
valgus angle, unilateral landing peak vertical ground reaction force and 
asymmetry) measures in elite young male players from the youth 
academies of six English [14] and seven Belgium [21] premier league 
soccer clubs, reporting moderate to high levels of sensitivity and 

specificity, respectively. Furthermore, these studies [14,21] have also 
identified interactions of asymmetry, knee valgus angle and body size as 
contributing factors to an injurious profile in elite youth soccer players. 

However, it should be acknowledged that a limitation of any pre-
diction model developed through the use of classification algorithms is 
that its generalisation to individuals with different characteristics (e.g., 
sport background, exposure to causal factors of injury, physical perfor-
mance) to those who were employed in its building and validation 
process may be sub-optimal. In this sense, the well-documented differ-
ences in several physical performance measurements [22] between elite 
and non-elite (i.e., sub-elite or amateur) youth soccer players may lead 
to a dramatic reduction in the ability of these two currently available 
screening models to predict LE-ST injuries in the latter cohort. Given 
that a large proportion of the young participants play for non- 
professional clubs, engaged in local and regional leagues, and that the 
injury incidence and severity is still high in this cohort [1], studies 
aimed at building injury risk factor models to identify non-elite youth 
soccer players at high risk of LE-ST injury are urgently warranted. 

Therefore, the aim of this study was twofold: a) to build models using 
machine learning techniques on data from an extensive screening bat-
tery to prospectively predict LE-ST injuries in non-elite male youth 
soccer players, and b) to compare models' performance scores (i.e., 
predictive accuracy) to select the best fit. 

2. Materials and methods 

This study was carried out following the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines [23]. The TRIPOD checklist is provided in online 
supplementary file 1. 

2.1. Participants 

A total sample of 301 male youth soccer players from the academies 
of five different Spanish non-professional soccer clubs were recruited for 
this study. All players were engaged in regional (non-national) youth 
soccer leagues of the south-east of Spain. Participants routinely 
completed from two (most of the weeks in the U11–12 age group) to 
three (most of the weeks in U13–14, U15–16, and U17–19 age groups) 
training sessions (90 min each) per week on non-consecutive days and 
played one competitive match (match duration: U11–12 = 60 min, 
U13–14 = 70 min, U15–16 = 80 min, U17–19 = 90 min) per week 
(usually at the weekend) during the season. Participants were included 
in this study if they met the following criteria: 1) they were free from 
pain, illness and/or injury during the whole data collection phase and 2) 
they were regularly involved in soccer training and competition. Players 
who conveyed the presence of orthopaedic problems that did not allow 
them to carry out one or more of the field-based tests, or who were 
transferred to a different club and were not available for follow-up 
testing at the end of 9-months were excluded. Coaches, parents and 
children were informed in both oral and written forms, and parental 
consent to participate in the study was obtained together with assent 
from participants. Ethical approval was granted by the Ethics and Sci-
entific Committee of the University of Murcia (ID: 1551/2017) in 
accordance with the Declaration of Helsinki. 

Finally, a sample of 260 male youth soccer players of four different 
age categories (age-based categories [n]: U11–12 [78], U13–14 [69], 
U15–16 [50], U17–19 [63]) completed this study (Table 1). Forty-one 
players were removed from the initial sample of 301 young based on 
the exclusion criteria (n = 11 players reported a presence of pain and 
orthopaedic problems, n = 14 players did not provide the required 
signed informed consent before the start of the study, and n = 16 players 
were transferred to another club or left their club before the end of the 
follow up period). 
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2.2. Study design 

This study used a prospective cohort design. Particularly, all LE-ST 
injuries sustained in training and competition during a period of 9 
months following the initial assessment session (in-season phase) were 
tracked for all players. Participants were required to attend their 
respective club's training facilities during the pre-season phase 
(September) of the years 2017 (n = 175 players) and 2018 (n = 85 
players) to undergo an assessment of several personal characteristics, 
psychological constructs, and physical fitness/neuromuscular measures. 

2.3. Procedure 

The assessment session was split into three different parts. The first 
part was designed to get data concerning the participants' personal or 
individual characteristics. Secondly, a number of psychological con-
structs related to anxiety and mood state were evaluated. Finally, in the 
third part several physical performance, neuromuscular capability and 
biomechanical measures were assessed through 10 field-based tests. All 
measures were taken by six trained and experienced testers (one master 
and two PhD students and three senior researchers with three, six and 
more than ten years of experience, respectively), coordinated by the 
principal investigator (FJR-P) to guarantee standardisation of protocols. 
All measurements have demonstrated moderate to good reliability 
(intraclass correlation coefficients [ICCs] > 0.80 and standard error of 
measurements expressed as percentage [%SEM] < 10 %) as it has been 
described elsewhere [24–29]. 

2.3.1. Personal or individual characteristics 
Personal or individual measures (player position [goalkeeper, de-

fender, midfielder or forward], years of playing soccer, training fre-
quency, dominant leg [determined by the player's preferred kicking leg], 
self-reported 12 months LE-ST time loss injury history [yes or no], and 
chronological age) were recorded using an ad hoc questionnaire. 

Anthropometric measures (body mass, stature [i.e., standing height], 
sitting height, body mass index [BMI], and leg and tibia lengths) and 
maturity status were also measured. Body mass was measured on a 
calibrated physician scale (SECA 799, Hamburg, Germany). Standing 
and sitting height were recorded to the nearest 0.1 cm on a measurement 
platform (SECA 799, Hamburg, Germany) with seated height measured 
using a box. Leg length was calculated as the length measured in cen-
timetres from the anterior superior iliac spine to the most distal portion 
of the medial tibial malleolus [25]. Tibia length was defined as the 
distance between the lateral knee joint line and the lateral malleolus 
[30]. Stage of maturation was calculated in a non-invasive manner using 
a regression equation comprising measures of age, body mass, standing 
height and sitting height [31]. Using this method, maturity offset 
(calculation of years from peak height velocity [PHV]) was determined 
(for more information on the personal or individual risk factors recor-
ded, please see online supplementary file 2). 

2.3.2. Psychological constructs 
The Spanish version of the State-Trait Anxiety Inventory (STAI) 

questionnaire was used to measure the current state and trait anxiety of 
the players [32]. This questionnaire consists of 40 items (20 for state and 
20 for trait). The state items describe how the athletes feel just at the 

specific moment when the questionnaire is completed, whereas the trait 
items describe the athletes' general anxiety level. For the purposes of this 
research, only the trait anxiety was analysed. 

Mood states were evaluated using the Spanish adapted version for 
adolescent athletes of the Profile of Mood States (POMS) scale [33]. This 
version comprises seven different psychological factors (tension, 
depression, anger, vigour, fatigue, confusion, and friendliness) in a 33- 
item scale. 

The Spanish version of the Psychological Characteristics Related to 
Sport Performance questionnaire (CPRD) was used to measure the 
following psychological characteristics: stress control, influence of per-
formance evaluation, motivation, team cohesion and mental skills [34]. 
The questionnaire consists of 55 items graded in a 5-option Likert scale 
(from totally disagree to totally agree) (for more information on psy-
chological risk factors recorded, please see online supplementary file 3). 

2.3.3. Physical fitness, neuromuscular capability and biomechanical 
measures 

Players completed a standardised dynamic warm-up, which included 
whole body exercises emphasising dynamic mobilisation and gradually 
progressing in intensity [35], before the physical performance, neuro-
muscular capability and biomechanical measures were taken. In 
particular, these measures were concurrently recorded using a rando-
mised circuit style approach (due to time constraints) (Fig. 1) from six 
jump tests, a linear 30 m sprint test, the ROM-Sport battery, Y-Balance 
test and Illinois agility test. 

2.3.3.1. Jump tests. Four vertical and two horizontal jump tests were 
performed and several measures of performance, kinematic and kinetic 
variables and neuromuscular parameters were extracted from them. 
Three to five attempts of each jump test were performed. For each 
variable, the best absolute score recorded in the attempts carried out was 
selected for the subsequent analysis (for more information on measures 
obtained from the Jump tests, please see online supplementary file 4). 

2.3.3.1.1. Vertical jump tests. Tuck jump assessment (TJA). Tuck 
jumps were performed in place for 10 consecutive seconds following the 
procedure previously suggested by Myer et al. [36]. Each participant's 
technique was assessed at frontal and sagittal planes. A 2-dimensional 
video cameras (model: Lumix DMC-FZ200; Panasonic, Japan) were 
positioned in both planes at a height of 0.70 m and a distance of 5 m 
from the landing area to capture the test and grade each player's tech-
nique retrospectively. Afterwards, frontal plane projection angles 
(FPPA) at the point of maximum knee flexion were analysed, and the 
presence of knee valgus was subjectively classified as minor (< 10◦), 
moderate (10◦–20◦) or severe (> 20◦) following the methodology 
described by Read et al. [27]. Additionally, hip flexion (HF), knee 
flexion (KF), and ankle flexion (AF) was assessed at initial contact and 
peak maximum flexion in the sagittal plane [29]. All scores were marked 
by two experienced testers in 2-D landing kinematic assessments. 

Drop vertical jump (DVJ). A double leg drop vertical jump from a box 
height of 40 cm and without arm swing was performed on a contact 
platform connected to the Ergo tester (Ergo Jump Bosco System, Italia) 
unit [37]. Both jump height and reactive strength index (RSI = jump 
height/contact time) were considered to assess stretch-shortening cycle 
(SSC) function and hence, recorded. A 2-dimensional landing kinematic 
analysis following the methodology described for the TJA was also 

Table 1 
Descriptive anthropometric values (mean ± standard deviation) by age group.  

Group N Age (years) Body mass (kg) Stature (cm) Leg length (cm) Maturity offset 

U11–12  78 11.1 ± 0.5 39.8 ± 7.4 148.1 ± 6.6 72.8 ± 4.2 − 2.4 ± 0.6 
U13–14  69 13.3 ± 0.4 51.9 ± 8.6 162.3 ± 7.8 80.8 ± 5.4 − 0.7 ± 0.6 
U15–16  50 15.0 ± 0.5 62.6 ± 8.5 173.2 ± 6.3 84.9 ± 3.9 1.1 ± 0.6 
U17–19  63 17.3 ± 0.8 68.7 ± 8.4 176.6 ± 7.3 86.2 ± 5.5 2.6 ± 0.7 

U: under. 
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carried out. In addition to the FPPA, the knee medial displacement 
(KMD) (expressed as the displacement measure [d2–d1] between the 
initial contact [d1] and the maximal peak knee flexion [d2]) [30] the 
knee-to-ankle separation ratio (KASR) (defined as the ratio of distance 
between knees and ankles during peak knee flexion [KASR = knee/ 
ankle]) [28] and the knee separation distance (KSD) (expressed as the 
difference [d2-d1] between knee separation distance at the initial con-
tact [d1] and the peak knee flexion [d2]) [28] were also used to assess 
knee valgus during DVJ tests. All trials were retrospectively analysed by 
the same two experienced testers in 2-D landing kinematics assessments. 

Countermovement jump (CMJ). A double leg countermovement 
jump without arm swing was performed on a contact platform con-
nected to the Ergo tester (Ergo Jump Bosco System, Italia) unit. Jump 
height was recorded for subsequent analyses. 

Single leg countermovement jump (SLCMJ). A single leg (dominant 
and non-dominant) countermovement jump was also performed on a 
force platform (9286AA, Kistler, Switzerland). Height, peak vertical 
ground reaction force (pVGRF) during take-off and landing, and peak 
landing force timing (pLFT) were captured at a sampling rate of 1000 
Hz. A threshold of > 10 N to determine contact and < 10 N to determine 
flight moments was used, and no filter was applied to the data obtained 
for subsequent analyses [38]. The pVGRF at take-off and landing were 
normalised to body weight (BW), and side-to-side differences for each of 
these variables were calculated. Asymmetries in all SLCMJ variables 
were determined when bilateral differences were ≥ 10 %. 

2.3.3.1.2. Horizontal jump tests. Standing long jump (SLJ). Jump 
distance in a SLJ was measured to the nearest centimetre from the 
starting line to the player's heel with a standard tape measure. Free 
movement of the arms was allowed during the test. 

Single hop for distance (SHD). Jump performance in a SHD was also 
measured for dominant and non-dominant legs [39]. The jump distance 
in cm was then normalised and presented as percentage of leg length 
(SHD/leg length*100 = % leg length). Bilateral differences were 
calculated and asymmetry was considered when differences ≥ 10 %. 

2.3.3.2. Sprint. Time during a 10–20 and 30 m sprint in a straight line 

was measured by means of three pairs of Microgate Witty photocells 
(Microgate, Italy) placed 1.0 m above the ground level. Each sprint was 
initiated from an individually chosen standing position, 50 cm behind 
the photocell gate, which started a digital timer. The theoretical 
maximal force (F0), velocity (V0), maximal power output (Pmax) and 
mechanical effectiveness of ground force application (ratio of force [RF] 
and decrease in the RF over acceleration [DRF]) during a 30 m-sprint 
were also analysed. For this purpose, all sprint trials were recorded 
through an iPad Air (Apple Inc., USA) and retrospectively analysed by a 
single tester using the MySprint app [26]. The analysis of sprint force- 
velocity profile in youth athletes has proven to be reliable in previous 
research [40] (for more information on measures obtained from the 
Sprint, please see online supplementary file 5). 

2.3.3.3. ROM-Sport battery. The passive hip extension (PHE), hip 
adduction with hip flexed 90◦ (PHADHF90◦), hip flexion with knee flexed 
(PHFKF) and extended (PHFKE), hip abduction with hip neutral (PHABD) 
and hip flexed 90◦ (PHABDHF90◦), hip external (PHER) and internal 
(PHIR) rotation, knee flexion (PKF), ankle dorsiflexion with knee flexed 
(ADFKF) and extended (ADFKE) ROM measures of the dominant and non- 
dominant legs were evaluated according to the methodology suggested 
by Cejudo et al. [24]. For each joint ROM measure, side-to-side differ-
ences were also calculated. When a side-to-side difference ≥ 8◦ was 
found, players were categorised as showing bilateral asymmetries [41] 
(for more information on data collected with the ROM-Sport battery, 
please see online supplementary file 6). 

2.3.3.4. Y-Balance test. Dynamic postural control was evaluated using 
the Y-Balance test [25]. The distance obtained in each direction (ante-
rior, posteromedial, and posterolateral) was normalised by dividing by 
the previously measured leg length to standardise the reach distance 
([excursion distance/leg length] x 100 = % leg length) [25]. Bilateral 
differences between dominant and non-dominant legs were also calcu-
lated for each distance, and differences ≥ 10 % for anterior, poster-
omedial, and posterolateral directions were considered as asymmetries. 
Finally, to obtain a global measure of the balance test for each leg, data 

Fig. 1. Circuit style approach.  
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from each direction were averaged to calculate a composite score (for 
more information on measures obtained from the Y-Balance test, please 
see online supplementary file 7). 

2.3.3.5. Illinois agility test. Players' agility was assessed using the Illinois 
agility test, which has been commonly used in measuring agility in 
soccer [42]. The length of the zone was 10 m, while the width (distance 
between the start and finish points) was 5 m. Four cones were placed in 
the centre of the testing area at a distance of 3.3 m from one another. 
Four cones were used to mark the start, finish, and two turning points. 
The participants started the test lying face down, with their hands at 
shoulder level. The trial started on the “go” command, and the partici-
pants began to run as fast as possible. The trial was completed when the 
players crossed the finish line without having knocked any cones over. 
Time was measured using a photocell system (Microgate Witty photo-
cells; Microgate, Italy). 

2.3.4. Injury surveillance 
The procedures for data collection and reporting injury occurrences 

described in the International Consensus Statement were followed in the 
current research [43]. For the purpose of this research, an injury was 
defined as any non-contact, soft tissue (muscle, tendon, and/or liga-
ment) injury sustained by a player during a training session or compe-
tition which resulted in a player being unable to take a full part in future 
soccer training or match play (time loss injury definition). Injuries were 
classified as non-contact where no clear contact or collision with another 
player, object or ball occurred. Only lower extremity injuries were 
considered for the analysis as these incidents are the most common at 
youth soccer practice [1]. All injuries were recorded by team doctors 
and physiotherapists of each club, and players were considered injured 
until the medical staff allowed them to fully participate in training and 
competition. Injury severity was defined as slight/minimal (1–3 days), 
minor/mild (4–7 days), moderate (8–28 days), and severe (> 28 days) 
based on lay-off time from soccer. 

The club medical staff documented LE-ST injuries on an injury report 
form described elsewhere [43]. As some inconsistencies in the diagnosis 
of minimal LE-ST injuries by medical staff teams were found at the end 
of the 9-month follow-up period, only LE-ST injuries showing a time loss 
of ≥ 4 days were chosen for the subsequent statistical analysis. Due to 
the confounding effects of previous injuries, only the first occurring 
injury for each player during the season was considered in the analyses 
[14,21]. 

2.4. Statistical analysis 

Data from questionnaires and field-based tests were collected in 
paper format and transferred into a spreadsheet using a double manual 
data entry processing technique [44]. Identified discrepancies were 
corrected upon agreement to reach an error level of 0 %. After having 
performed a rigorous data cleaning process (identified anomalies or 
errors were corrected [32 cases]) we had an imbalanced (displaying an 
imbalance ratio of 0.21) and a high-dimensional data set comprising of 
260 male youth soccer players and 135 potential risk factors. In this 
research, an anomaly or error was defined as a value or score that could 
not be classified as true or real because of the consequence of a human 
error or a machine failure. An example of an error was a jumping height 
value of 256 cm since it is impossible for an adolescent to jump as such 
height. 

To assess the performance of the algorithms selected, the fivefold 
stratified cross-validation technique was applied. The fivefold stratified 
cross validation was repeated a hundred times and results were averaged 
over the runs to obtain a more reliable estimate for the predictive ability. 
A wide variety of classification performance measures may be obtained 
from the stratified cross-validation technique. A well-known approach 
to produce an evaluation criterion is to use the receiver operating 

characteristic (ROC) curve. Thus, the area under the ROC curve (AUC) 
was employed as a measure of a classifier's performance for evaluating 
which models showed high (0.90–1.00), moderate (0.70–0.90), low 
(0.50–0.70) and fail (< 0.50) scores [45]. For the purpose of this study, 
only algorithms with performance scores (AUC) above 0.70 were 
considered acceptable. Also, two extra measures from the confusion 
matrix were selected as evaluation criteria: true positive (TP) rate and 
true negative (TN) rate. In imbalanced domains, when the AUC has 
reached a high score (> 0.70), the classification performance may not be 
as good as the AUC value reflects because plenty of “clear” negative 
samples (instances that can be clearly classified into the negative label of 
the class variable) exist in the dataset. These clear negative samples may 
increase the AUC score, but a few other “border line” negative samples 
remain mixed with the positive samples (i.e., class overlapping and/or 
small disjuncts), which are difficult to distinguish and classify by the 
algorithms. These few remaining border line negative samples may 
decrease performance (when some of them are wrongly classified [i.e., 
false positive]), including precision and recall, while very slightly 
influencing the AUC score. In consequence, Zou et al. [46] recommend 
using the F-score together with the AUC as a classification measurement 
for imbalanced problems. 

Similar to previously published studies aimed at building prediction 
models to identify elite soccer [11,13] and futsal [12] players at high (or 
low) risk of injury based on a supervised learning perspective (i.e., it is 
defined by its use of labeled datasets according to the class variable 
[injury yes vs. injury no] to train algorithms that classify data or predict 
outcomes), the taxonomy for external (resampling techniques), internal 
(ensemble techniques) and cost-sensitive methods for learning with 
imbalanced data sets suggested by López et al. [19] and Elkarami et al. 
[47] was applied. A brief description of each of the techniques employed 
is provided in online supplementary file 8 as well as in previous studies 
[12,13]. According to Robertson [48] four different subsets or categories 
of base learning algorithms can be defined according to their internal 
functioning to help sports practitioners improve their decision-making 
processes on training prescription to optimise sports performance and 
mitigate injury risk: a) regression algorithms (estimating relationships 
between variables on a continuous scale [e.g., linear regression, neural 
networks]), clustering algorithms (grouping sets of items based on their 
levels of similarity to one another [e.g., K-means and hierarchical]), 
rule-based algorithms (extracting rules from data based on frequency 
and predictability [e.g., support vector machines and decision rules]) 
and classification algorithms (identifying which category an instance 
belongs to and base on a training set of data [e.g., decision trees and 
Random Forest]). Therefore, six well-known learning algorithms (C4.5, 
ADTree, SMO, KNN, and Random Forest [RF]) from the categories 
established by Robertson [48] were selected as base classifiers to be used 
in the resampling, ensemble, and cost sensitive methods. With all al-
gorithms applied to all base classifiers, a total of 72 models were 
generated. To allow comparison of the constructed models to a baseline 
model, a ZeroR classifier was also used. 

Some specific pre-processing tasks (missing data imputation and 
feature selection) were exclusively carried out in the training folds so 
that the classification task could be performed appropriately. In 
particular, missing data were substituted by the mean value of the cor-
responding variable according to the age category of the players. 

Due to the high dimensionality of the data set, before running the 
algorithms included in the taxonomy described in online supplementary 
file 8, a feature selection process was conducted with the aim of helping 
base classifiers to reduce the feature space and eliminate irrelevant, 
weakly relevant and/or redundant features. Particularly, the meta-
classifier “attribute selected classifier” available in Weka's repository 
was employed. We used as attribute evaluator the classify subset eval-
uator filter [49] and the GreedyStepwise as search technique. To inter-
pret and visualise the behaviour and relevance of the variables selected, 
the Shapley Additive exPlanations (SHAP) approach (SHAP summary 
plot) was used [50]. This approach visualises every single player or 
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injury case and gives an overview of the variables in the model by order 
of importance (vertically listed features), with the top ones having a 
higher global impact on the model than bottom ones. The SHAP-values 
represent the impact of a variable in the decision-making process. Dots 
representing the SHAP-values for each feature value of a player in the 
dataset are plotted horizontally next to the feature. Negative SHAP- 
values represent a higher probability of a positive prediction (i.e., 
being injured). Each dot is colored by the value (i.e., measured value) of 
the feature for an individual. 

3. Results 

3.1. Lower extremity soft-tissue injuries epidemiology 

There were 61 LE-ST injuries over the 9-month follow-up period. Of 
them, 36 were classified as thigh muscle (18 hamstrings, 8 quadriceps, 
and 10 adductors) injuries, 9 as knee (5 ligament sprains) injuries, and 7 
as ankle (all ligament sprains) injuries. The distribution of injuries be-
tween legs was 43 dominant leg and 18 non-dominant leg. A total of 26 
injuries happened during training sessions and 35 during matches. With 
regard to severity, most injuries were categorised as moderate (n = 40), 
while only 6 incidents were classified as severe injuries and 15 as minor/ 
mild injuries. Thirteen players sustained multiple LE-ST injuries during 
the observation period (10 players were injured twice and three players 
three times) and thus, only their first incident (i.e., the index injury) was 
used for the analyses. Consequently, 45 LE-ST injuries were finally used 
to build the prediction models. 

3.2. Prediction models for lower extremity soft tissue injuries 

As all the algorithms employed in this study can be found in the 
Weka experimenter, only the scheme (and not the full code) of the al-
gorithm finally selected is displayed in online supplementary file 9 and 
the model is publicly available on https://data.mendeley.com/datasets/ 
2mw6w556yg/1 in order to allow practitioners to use it with their male 
youth soccer players. 

The feature selection process conducted in the data set identified a 
subset of six measures as the most relevant (considering the individual 
predictive ability of each feature as well as the degree of redundancy 
among them) (Table 2) on which was subsequently applied the taxon-
omy of learning algorithms explained in the “Materials and methods” 
section. 

The baseline ZeroR classifier achieved an AUC of 0.5 ± 0, specificity 
of 100 % and sensitivity of 0 %. Table 3 shows the average AUC results 
for all resampling, ensemble and cost-sensitive learning methods sepa-
rately for each decision base classifiers, nearly all of which have greater 
accuracy and sensitivity than the baseline model. As a result, a total of 3 
algorithms built (using this subset of features) prediction models with 
AUC scores ≥ 0.7 (Table 4). Among these 3 algorithms, the UBAG with 

SMO as base classifier technique was the one that showed the highest F- 
score (0.380 ± 0.105) and hence, it was considered as the “best fit 
model”. Therefore, the final screening model to prospectively classify 
male youth soccer players as having a high or low risk of suffering a LE- 
ST injury in the following 9 months of competitive season comprised 
100 different SMO (rule-based) classifiers (an example of one of these 
SMO classifiers can be found in Fig. 2, and the rest may be obtained upon 
request to the authors). In terms of practical applications, each classifier 
has a vote (yes [high risk of LE-ST injury] or no [lower risk of LE-ST 
injury]), and the final decision regarding whether or not a player 
might sustain an injury is determined by the combination of the votes of 
each individual classifier to each class (yes or no). 

For the model finally selected (UBAG with SMO as base classifier), an 
analysis of the average influence that each of its six variables has in the 
decision-making process regarding whether or not a player might suffer 
an injury was carried out by the SHAP approach and can be visualised in 
Fig. 3. The variable that demonstrated the biggest impact was knee 
medial displacement (dominant leg) in the DVJ, followed by asymmetry 
in the peak vertical ground reaction force during landing in the SLCMJ, 
body mass index, asymmetry in the frontal plane projection angle 
assessed through the TJA, asymmetry in the passive hip internal rotation 
ROM, and ankle dorsiflexion with the knee extended (dominant leg) 
ROM. In Fig. 4, the SHAP values for each feature value of an individual 
in the dataset are displayed. 

4. Discussion 

The aim of this study was twofold: a) to build models using machine 
learning techniques on data from an extensive screening battery to 
prospectively predict LE-ST injuries in non-elite male youth soccer 
players, and b) to compare their performance scores (i.e., accuracy) to 
select the best fit prediction model. In this sense, the present study has 
built a screening model (AUC = 0.700) based on six pre-season field- 
based measures to predict LE-ST injuries in male youth soccer players. In 
particular, the model developed successfully identifies one out of every 
two (TP rate = 53.7 %) and three out of every four (TN rate = 73.9 %) 
male youth soccer players at high or low risk of suffering a LE-ST injury 
throughout the in-season phase, respectively. 

The ability of the derived model in the current study to predict LE-ST 
injuries is similar to the model developed by Oliver et al. [14] (AUC =
0.663, TP rate = 55.6 %, TN rate = 74.2 %) but lower than the model 
reported by Rommers et al. [21] (AUC = 0.850, TP rate = 85 %), albeit 
both using elite-level male youth soccer players. Three different argu-
ments may explain the higher performance scores reported by Rommers 
et al.'s [21] model compared to those shown in the current prediction 
models and that built by Oliver et al. [14]: 

The first argument that may be used to explain these differences in 
the models' performance is the larger number of players that were 
enrolled in the study conducted by Rommers et al. [21] (n = 734) in 
comparison with Oliver et al.'s [14] study (n = 355) and the current 
research (n = 260). In studies dealing with class imbalance problems, 
such as the LE-ST injury phenomenon, in which the number of injured 
players (minority class) prospectively reported is always much lower 
than the non-injured participants (majority class) [19,51], large sample 
sizes may be required to ensure having enough instances in the minority 
class to avoid them being considered as noise by the learning algorithms 
during the process of building models. In this sense, Japkowicz & Ste-
phen [52] demonstrated that the error rate caused by imbalanced class 
distribution decreases when the number of examples of the minority 
class is representative. While Rommers et al. [21] identified 368 injured 
players throughout the follow up, Oliver et al. [14] and the current study 
used 99 and 45 injuries respectively to develop the prediction models. 
Therefore, in the model built by Rommers et al. [21], patterns that were 
defined by injury players could have been better learned and this may 
have positively impacted on its predictive ability. 

The second argument is linked to the fact that the imbalance ratios 

Table 2 
Features selected after having applied the classify subset evaluator filter to the 
data set.  

Name Labels 

KMD (dominant leg) [DVJ] 0 (varus), 1 (slight valgus), 2 (moderate valgus) or 3 
(severe valgus) 

BMI Numeric 
ROM-ADFKE (dominant leg) Numeric 
Landing BIL-pVGRF [SLCMJ] 0 (Asymmetry) or 1 (No Asymmetry) 
ROM-BIL-PHIR 0 (Asymmetry) or 1 (No Asymmetry) 
BIL-FPPA [TJA] 0 (Asymmetry) or 1 (No Asymmetry) 

DVJ: drop vertical jump; KMD: knee medial displacement; BMI: body mass 
index; ROM: range of motion; ADFKE: ankle dorsiflexion with the knee extended; 
pVGRF: peak vertical ground reaction force; SLCMJ: single-leg countermove-
ment jump; PHIR: passive hip internal rotation; FPPA: frontal plane projection 
angle; TJA: tuck jump assessment; BIL: bilateral ratio. 
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(IR =
∑

injured players / 
∑

non-injured players) of the dichotomic class 
variable (injury yes or no) in Oliver et al.'s [14] study (IR = 0.39) and the 
current study (IR = 0.21) were much higher than the one observed in 
Rommers et al.'s [21] study (IR = 1.00). In fact, the data set used by 
Rommers et al. [21] to build their injury prediction model did not show 
an imbalanced distribution in the class variable as the number of injured 
(n = 368) and non-injured (n = 366) players was almost the same. Class 
distribution (i.e., the proportion of instances [e.g., soccer players] 
belonging to each class [injured vs non-injured] in a data-set) plays a key 
role in classification problems. Highly imbalance data sets usually tend 
to suffer from class overlapping and/or small disjuncts, which difficult 
classifier learning [51]. Thus, although Oliver et al. [14] and the current 
study have used learning algorithms specially designed to deal with class 
imbalance problems and acceptable predictive accuracy results were 
reported, the lower IR in the study of Rommers et al. [21] may have 
allowed lower misclassification rates and hence, better accuracy scores. 
In this sense, the different weekly exposure (in terms of frequency and 
physical demands) to the soccer play that could have occurred between 
our sample of amateur youth soccer players and the elite ones used by 

Rommers et al. [21] and Oliver et al. [14] might be one of the main 
reasons for the lower injury rates and consequently the higher imbal-
ance ratio found in the current research. The participants of our study 
routinely completed a total of two (U11–12 players) and three (U13–14, 
U15–16, and U17–19 players) 90-min training sessions per week on non- 
consecutive days and played one competitive match usually at the 
weekend. In addition, in all age groups, the competitive season was 
divided into three blocks of 9–12 weeks separated by a 2–3-week break 
(coinciding with Christmas and Easter festivities). On the contrary, it is 
plausible that the elite youth soccer players (mainly those belonging to 
the more advanced age groups) who took part in both Oliver et al.'s [14] 
and Rommers et al.'s [21] studies could have shown larger (i.e., number 
of training session per week) and higher physically demanding weekly 
exposures to the game of soccer than our participants. This higher fre-
quency and intensity in the exposure to soccer that usually elite 
adolescent (> 14 years old) players have in comparison with their 
counterpart non-elite players might be attributed to the early sport 
specialisation process that usually is observed in the youth academies of 
professional soccer clubs. Furthermore, it is also possible that the 

Table 3 
AUC results (mean ± standard deviation) for the five base classifiers in isolation and after applying in them the resampling, ensemble (Classic, Boosting-based, 
Bagging-based, and Class-balanced ensembles), and cost-sensitive learning techniques selected.  

Technique Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.600 ± 0.105 0.619 ± 0.100 0.499 ± 0.005 0.613 ± 0.097 0.605 ± 0.101  

Resampling techniques 
SMOTE 0.606 ± 0.098 0.620 ± 0.098 0.631 ± 0.088 0.615 ± 0.099 0.613 ± 0.099 
ROS 0.603 ± 0.100 0.617 ± 0.098 0.625 ± 0.088 0.613 ± 0.100 0.608 ± 0.099 
RUS 0.603 ± 0.100 0.623 ± 0.097 0.619 ± 0.088 0.631 ± 0.096 0.624 ± 0.096 
ENN 0.599 ± 0.097 0.619 ± 0.098 0.499 ± 0.007 0.609 ± 0.097 0.618 ± 0.011  

Classic ensembles 
ADB1 0.636 ± 0.091 0.614 ± 0.098 0.610 ± 0.076 0.575 ± 0.106 – – 
M1 0.636 ± 0.092 0.610 ± 0.100 0.682 ± 0.085 0.598 ± 0.095 – – 
BAG 0.636 ± 0.096 0.628 ± 0.096 0.568 ± 0.094 0.640 ± 0.098 – –  

Boosting-based ensembles 
SBO 0.614 ± 0.097 0.611 ± 0.100 0.671 ± 0.091 0.609 ± 0.095 – – 
RUSB 0.623 ± 0.098 0.610 ± 0.101 0.677 ± 0.088 0.634 ± 0.092 – –  

Bagging-based ensembles 
OBAG 0.685 ± 0.079 0.637 ± 0.095 0.697 ± 0.089 0.649 ± 0.096 – – 
UBAG 0.653 ± 0.089 0.631 ± 0.096 0.700 ± 0.088 0.667 ± 0.091 – – 
SBAG 0.632 ± 0.094 0.638 ± 0.095 0.695 ± 0.089 0.650 ± 0.094 – –  

Cost-sensitive classification 
MetaCost 0.577 ± 0.099 0.623 ± 0.103 0.500 ± 0.011 0.604 ± 0.097 – – 
CS-Classifier 0.597 ± 0.101 0.618 ± 0.098 0.539 ± 0.066 0.621 ± 0.096 – –  

Class-balanced ensembles with a cost-sensitive classifier 
CS-OBAG 0.631 ± 0.096 0.640 ± 0.095 0.704 ± 0.085 0.648 ± 0.097 – – 
CS-UBAG 0.648 ± 0.092 0.637 ± 0.095 0.703 ± 0.084 0.662 ± 0.092 – – 
CS-SBAG 0.639 ± 0.092 0.640 ± 0.095 0.699 ± 0.087 0.658 ± 0.094 – – 

Highlighted in bold are the algorithms that built prediction models with AUC scores ≥0.7. 

Table 4 
Sub-set of algorithms that allowed building predictive models with AUC scores ≥0.7.  

Technique Performance measures 

AUC TP rate (%) TN rate (%) F-score 

UBAG [SMO]  0.700  ± 0.088  53.7  ± 17.0  73.9  ± 7.7  0.380  ± 0.105 
CS-UBAG [SMO]  0.703  ± 0.084  75.2  ± 14.9  51.0  ± 9.4  0.368  ± 0.060 
CS-OBAG [SMO]  0.704  ± 0.085  72.8  ± 15.2  55.1  ± 9.3  0.379  ± 0.066 

Highlighted in bold is the algorithm with the highest F-score. AUC: area under the receiver operating characteristic curve; TP: true positive; TN: true negative. 
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participants in Oliver et al.'s [14] and Rommers et al.'s [21] studies may 
have had shorter Christmas and Easter breaks (in case they had any of 
them) than our amateur youth soccer players. Therefore, the larger and 
higher physically demanding weekly exposure alongside the shorter 
resting periods that may have had the elite youth soccer players that 
took part in these two studies may have led them to a progressive and 
chronic accumulation of fatigue that could have dramatically increased 
their risk of injury. However, as neither Oliver et al. [14] nor Rommers 
et al. [21] reported the weekly exposure to the game of soccer in their 
participants, this hypothesis should be considered with a degree of 
caution. 

Finally, the last aspect that might have also played a key role in the 
higher predictive ability observed in the model published by Rommers 
et al. [21] is the less exigent resampling method applied to determine its 

ability to predict injuries. In particular, Rommers et al. [21] used a hold 
out with 20 % of the same as test data to assess the predictive ability of 
its model whereas Oliver et al. [14] employed a five-fold cross validation 
technique and the present study repeated 100 times this five-fold cross 
validation procedure in an attempt to achieve a more accurate estima-
tion of the models' performance. It has been suggested that the k-fold 
cross validation is a more powerful preventive technique against model 
performance overfitting than the hold out because the validation metrics 
calculated for each fold are combined to give an overall estimate of the 
model's performance, reducing the risk of accidentally obtaining a really 
optimistic test data [53]. Unlike the current study, neither Rommers 
et al. [21] nor Oliver et al. [14] uploaded their respective data sets into a 
public repository. Consequently, we were not able to apply the resam-
pling technique used in the current study to assess the prediction ability 

Fig. 2. Description of the first UBAG [SMO] classifier. BMI: body mass index; ROM: range of motion; ADFKE: ankle dorsiflexion with the knee extended; BIL: bilateral 
ratio; PHIR: passive hip internal rotation; pVGRF: peak vertical ground reaction force; SLCMJ: single-leg countermovement jump; FPPA: frontal plane projection 
angle; TJA: tuck jump assessment; KMD: knee medial displacement; DVJ: drop vertical jump. 

Fig. 3. SHAP values for each feature. KMD: knee medial displacement; DVJ: drop vertical jump; BIL: bilateral ratio; pVGRF: peak vertical ground reaction force; 
SLCMJ: single-leg countermovement jump; BMI: body mass index; FPPA: frontal plane projection angle; TJA: tuck jump assessment; ROM: range of motion; PHIR: 
passive hip internal rotation; ADFKE: ankle dorsiflexion with the knee extended. 
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of their models in order to inform whether (or not) their performance 
scores could have suffered from overfitting (and specify to some extent) 
due to a less exigent validation technique. 

Another main finding of the current study is that of the 135 potential 
risk factors obtained from the several questionnaires and field-based 
tests carried out during the pre-season testing session conducted in 
each soccer team, only six (Table 2) were finally selected as the most 
important features related to LE-ST injuries. This subset comprised of an 
anthropometric parameter (BMI), three neuromuscular measures (KMD 
in the dominant leg [DVJ], landing BIL-pVGRF [SLCMJ] and BIL-FPPA 
[TJA]) and two joint ROMs (ROM-BIL-PHIR and ROM-ADFKE in the 
dominant leg) allowed us to build a model to predict LE-ST injuries in 
male youth soccer players. Therefore, one of the main advantages of the 
model presented in this study is that it only needs five to ten minutes to 
run the screen in a single player, unlike Rommers et al.'s [21] model 
where 20 measures recorded from a questionnaire and five different 
field-based tests are required, which can take longer than 45 min to 
collect all data in a single athlete. The six measures selected have been 
consistently proposed as primary injury risk factors for LE-ST injuries in 
several prospective and biomechanical studies conducted in paediatric 
athlete population [14,54,55]. As it is shown in Fig. 3, a higher knee 
medial displacement (i.e., dynamic knee valgus) of the dominant leg in 
DVJ (SHAP score = 0.32) and the presence of asymmetries in pVGRF at 
landing from SLCMJ (SHAP score = 0.17) were identified as the two 
most important predictors for LE-ST injury. A higher body mass index 
(SHAP score = 0.05), bilateral differences ≥ 10 % in FPPA measured 
through the TJA manoeuvre (SHAP score = 0.03) and ≥ 8◦ in PHIR ROM 
(SHAP score = 0.03), and lower ADFKE ROM of the dominant leg (SHAP 
score = 0.02) had a smaller effect on the prediction model. It is beyond 
the scope of this study to describe into detail the potential mechanisms 
that justify the reasons why each of these six measures themselves might 
increase the vulnerability to LE-ST injury in this cohort of soccer players. 
However, the proposed mechanisms might include altered frontal (i.e., 
the adoption of an excessive dynamic valgus motion at the knee [high 
KMD and FPPA scores]), sagittal (ankle ROM) and transverse (hip in-
ternal rotation ROM) planes during the execution of high intensity 
weight-bearing dynamic tasks (e.g., landing from a jump, side-stepping, 
pressing and tackling) that may produce increased loading of the knee 
and ankle [54,56]. Likewise, it has been suggested that increased BMI 
scores may imply changes in moments of inertia, forces and de-
formations experienced by various soft tissues during high intensity 
movements (e.g., high speed running, change of direction) [4], which 
may be associated with injury risk, particularly muscle strains [55]. 
Asymmetries in pVGRF at landing from SLCMJ have been also identified 
by previous studies as a primary injury risk factor in male youth soccer 

players [14] and it is deemed to place additional stress on the weaker leg 
predisposing it to increased injury risk. Importantly, these six measures 
are considered modifiable risk factors and hence, some strategies can be 
implemented to optimise these factors in each player to lower the 
probability of suffering a LE-ST injury. In this regard, previous studies 
have demonstrated that the regular application of short (not > 20–25 
min) bouts of multi-component exercises during training sessions can 
significantly improve, among other aspects, neuromuscular control and 
performance and help to control body weight in team sport athletes 
(including young soccer players) [42,57]. Therefore, these multi- 
component programs may be powerful tools to be used by practi-
tioners as preventive measures in those soccer players categorised at 
high risk of LE-ST injury. 

Finally, it should be highlighted that simulations ran in our labora-
tory showed that giving the four basic algorithms used in this study 
(C4.5, ADTree, SMO and KNN) the opportunity to select by themselves 
(according to their own criteria) the most relevant variables did not 
improve the predictive performance of the models but increased its 
complexity. Furthermore, simulations were also run with other attribute 
evaluators (such as InfoGain and Correlations) to select relevant features 
and none of them improved the performance scores presented in this 
study. 

4.1. Limitations 

This study has also some limitations that should be acknowledged. 
Even though all the variables collected during the screening session are 
considered as risk factors for LE-ST injuries, there are additional mea-
sures from various questionnaires and field-based tests that were not 
assessed in this research (due to time restrictions) and that may have 
enhanced the ability to predict LE-ST injuries in this cohort of young 
athletes (e.g., trunk stability measures, relative leg stiffness, and change 
of direction kinematics). Likewise, the complex interaction of growth, 
maturity timing and tempo across players of varying age and maturity 
along with the fact that a non-single type of injury (e.g., hamstring 
strains, ACL tears) was analysed may have reduced the ability of the 
feature selection algorithm applied to the data set to reduce its dimen-
sionality (through removing redundant and not relevant measures), and 
thus could have penalised the performance of the model. Future studies 
should assess whether (or not) the use of more homogeneous samples, in 
terms of maturity status, and focusing the attention on single types of 
injury may increase the predictive ability of the screening models. 
Another limitation of the current study is that only the first occurring 
injury of every player was considered in the analysis. Consequently, 
because players can sustain multiple injuries over one season, the 

Fig. 4. SHAP summary plot. The features 
in the model are listed from the most (top) 
to least (bottom) important by their global 
impact on the model. Dots representing 
the SHAP values for each feature value of 
an individual in the dataset are plotted 
horizontally next to the feature. Over-
lapping points are jittered in y-axis direc-
tion, so a sense of the distribution of the 
Shapley values per variable is achieved. 
The higher the absolute value (either pos-
itive or negative), the higher the impor-
tance in the classification decision-making 
process. Positive SHAP values represent a 
higher probability of a negative prediction 
(i.e., No injured). Each dot is colored by 
the value (i.e., measured value) of the 
feature for an individual, where blue rep-
resents the lower values (e.g., lower BMI 
score) and red the higher values (e.g., 

higher BMI scores). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)   
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analysis does not reflect the complete picture. Furthermore, players 
were only tested at the end of the pre-season with subsequent injuries 
monitored over the entire season. Anthropometric, physical fitness, 
neuromuscular capability and biomechanical measures change over the 
course of the season due to training and natural development [21,55], 
which may have negatively impacted on the models ability to predict 
injuries. Therefore, future studies should conduct screening session 
every few months in order to obtain accurate screening data that is 
closer to the time of injury, mitigating the effects of training, growth and 
maturation. 

5. Conclusions 

Due to the application of machine learning techniques, the current 
study has developed a screening model based on six field-based mea-
sures that showed moderate validity (AUC score = 0.700, TPrate = 53.7 
% and TNrate = 73.9 % determined through the exigent repeated cross- 
validation resampling technique) for identifying youth soccer players at 
risk of LE-ST injury. Furthermore, and thanks to the SHAP approach, it is 
possible to determine the influence of each risk factor selected (i.e., KMD 
[dominant leg] in the DVJ, landing BIL-pVGRF [SLCMJ], BMI, BIL-FPPA 
[TJA], ROM-BIL-PHIR and ROM-ADFKE [dominant leg]) in the predic-
tion model (injury yes vs. injury no). Given that these measures require 
little equipment to be obtained and can be employed quickly (approxi-
mately 5–10 min) and easily by trained staff in a single player, the model 
developed in this study might be included as an essential component of 
the injury management strategy in youth soccer. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.chaos.2022.113079. 
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Gómez A, Sainz de Baranda P, et al. Epidemiology of injuries in male and female 
youth football players: a systematic review and meta-analysis. J Sport Health Sci 
2022;11:681–95. 

[2] Bult HJ, Barendrecht M, Tak IJR. Injury risk and injury burden are related to age 
group and peak height velocity among talented male youth soccer players. Orthop 
J Sports Med 2018;6:1–10. https://doi.org/10.1177/2325967118811042. 

[3] van der Sluis A, Elferink-Gemser MT, Coelho-e-Silva MJ, Nijboer JA, Brink MS, 
Visscher C. Sport injuries aligned to peak height velocity in talented pubertal 
soccer players. Int J Sports Med 2014;35:351–5. https://doi.org/10.1055/s-0033- 
1349874. 

[4] Hawkins D, Metheny J. Overuse injuries in youth sports: biomechanical 
considerations. Med Sci Sport Exerc 2001;33:1701–7. 

[5] Philippaerts RM, Vaeyens R, Janssens M, Van Renterghem B, Matthys D, Craen R, 
et al. The relationship between peak height velocity and physical performance in 
youth soccer players. J Sports Sci 2006;24:221–30. https://doi.org/10.1080/ 
02640410500189371. 

[6] Wik EH, Lolli L, Chamari K, Materne O, Di Salvo V, Gregson W, et al. Injury 
patterns differ with age in male youth football: a four-season prospective study of 
1111 time-loss injuries in an elite national academy. Br J Sports Med 2021;55: 
794–800. https://doi.org/10.1136/bjsports-2020-103430. 

[7] Verhagen E, Bolling C, Finch CF. Caution this drug may cause serious harm! Why 
we must report adverse effects of physical activity promotion.  Br J Sports Med 
2015;49:1–2. https://doi.org/10.1136/bjsports-2014-093604. 

[8] Maffulli N, Longo UG, Gougoulias N, Loppini M, Denaro V. Long-term health 
outcomes of youth sports injuries. Br J Sports Med 2010;44:21–5. https://doi.org/ 
10.1136/bjsm.2009.069526. 
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