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Nitric oxide (NO) plays a pivotal role in integrating dopamine transmission in
the basal ganglia and has been implicated in the pathogenesis of Parkinson
disease (PD). The objective of this study was to ascertain whether the
NO synthase inhibitor, 7-nitroindazole (7-NI), is able to reduce L-DOPA-
induced dyskinesias (LIDs) in a non-human primate model of PD chronically
intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Six
Parkinsonian macaques were treated daily with L-DOPA for 3–4 months
until they developed LIDs. Three animals were then co-treated with a single
dose of 7-NI administered 45 min before each L-DOPA treatment. Dyskinetic
MPTP-treated monkeys showed a significant decrease in LIDs compared with
their scores without 7-NI treatment (p< 0.05). The anti-Parkinsonian effect of
L-DOPAwas similar in all three monkeys with and without 7-NI co-treatment.
This improvement was significant with respect to the intensity and duration of
LIDs while the beneficial effect of L-DOPA treatment was maintained and
could represent a promising therapy to improve the quality of life of PDpatients.
1. Introduction
While L-DOPA is the most effective treatment for Parkinson’s disease (PD), its
chronic administration leads to motor complications expressed as fluctuations
in clinical responses and the appearance of abnormal involuntary movements
(AIMs), known as L-DOPA-induced dyskinesias (LIDs) [1]. Effective treat-
ment for LIDs is limited because, although molecular-based research has
suggested a potential role for several neurotransmitters and receptors [2–4],
the mechanisms underlying this phenomenon are still unclear [5–7]. Dopa-
minergic stimulation of the denervated striatum is a key mechanism
underlying LIDs [8]. It can exacerbate the sensitization process [9], induce acti-
vation pathways that provoke post-synaptic plastic changes in basal ganglia
circuits and facilitate AIMs [10], probably due to corticostriatal dendritic
spine alterations [11].

Besides dopaminergic mechanisms, alterations in several non-dopaminergic
systems have been linked to LIDs pathophysiology [12,13]. Significantly
enhanced glutamatergic neurotransmission has been found in the basal gang-
lial-thalamo-cortical circuit [14,15] and excessive amounts of N-methyl-
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Table 1. Experimental details of MPTP intoxication. Number and total dose
of MPTP injections (in mg) and disability score before MPTP intoxication.

monkey

MPTP
injections
(number)

total
dose (mg
of MPTP)

disability
score before

1 15 16.15 0

2 15 18.74 0

3 15 20.29 0

4 15 26.02 0

5 15 28.55 0

6 15 23.37 0
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D-aspartate (NMDA) receptor are present in the striatum of
Parkinsonian patients and animals with LIDs [16]. Thus, aman-
tadine, non-competitive antagonist of NMDA receptor, has
been used to the treatment of LIDs in Parkinson’s disease
patients [17,18]. However, it has been shown that this drug pro-
duces undesirable side effects in experimental and clinical
models [18–20].

A growing body of evidence suggests that nitric oxide
(NO) plays a role in the maintenance of LIDs [21–26], since
it is synthesized in striatal interneurons by NO synthase
(NOS) [27–29]. NO modulates the striatal function, changing
its input–output relationship and producing a functionally
significant impact on target neurons [30–33]. It has been
suggested that (i) NO synthesis increases in the basal ganglia
in experimental parkinsonism and in chronic treatment
with L-DOPA [34–37], and (ii) nitrate concentrations and
nitrite levels are high in the cerebrospinal fluid of patients
with Parkinson’s disease receiving dopamine replacement
[38] and in patients with PD and LIDs [39]. Importantly, a
potent NOS inhibitor, 7-nitroindazole (7-NI), has been suc-
cessfully tested in dyskinetic rodents showing reduced
AIMs [21–25,32,40–46].

Despite the large number of studies carried out in rodents,
as far as we know there are no studies performed in non-
human primates. Although the study in rodents is relevant, it
must be taken into account that dyskinesias in non-human pri-
mates are remarkably similar to those seen in humans and the
genetic and anatomo-physiological similarities with humans
are greater than those of other rodent models such as rats
and mice. Therefore, our aim was to determine whether the
administration of 7-NI could be an efficient and safe treatment
for reducing LIDs in non-human primates without affecting
the therapeutic effect of L-DOPA.
2. Materials and methods
2.1. Non-human primate model of Parkinson disease
Monkeys were supervised by veterinarians and technicians
skilled in the healthcare and maintenance of non-human
primates. The animals were housed in primate cages
under controlled conditions of humidity, light and
temperature, and food (Masuri primate diet; Scientific
Dietary Services, UK), fresh fruit and water were available
ad libitum. Experiments were performed with six adult male
cynomolgus monkeys (Macaca fascicularis, 3.8–4.5 kg)
(purchased from R.C. Hartelust BV, The Netherlands)
that were rendered Parkinsonian with methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-hydrochloride (Sigma,
0.3-0-4 mg kg−1 i.v. for a maximum period of 6 months,
one injection every 2 weeks, n = 6) as previously described
[47] (table 1). After reaching a stable parkinsonism (SP),
monkeys were treated daily with Madopar [48] (Roche,
100 mg kg−1 L-DOPA and 25 mg kg−1 benserazide; ratio
4 : 1, n = 6) (termed L-DOPA hereafter) for 4 months
until they developed stable and moderate–severe LIDs.
25 mg kg−1 of the NOS inhibitor (7-NI; Sigma-Aldrich)
was dissolved in peanut oil solution and was
administered subcutaneously every day 45 min prior to
the injection of L-DOPA for 25 additional days (n = 3,
randomly chosen).
2.2. Behavioural assessments and clinical scales
The level of parkinsonism was assessed with a previously
described [49,50] motor scale which evaluates the following
symptoms: akinesia/bradykinesia, freezing, tremor, self-
feeding, posture and spontaneous activity (maximum disabil-
ity score, 25). Parkinsonian disability was assessed at the end
of each session so as not to interfere with the assessment of
levels of general activity. All monkeys reached similar SP
levels. The intensity of LIDs was rated for each body segment
(face, neck, trunk, arms and legs) every 30 min using a Dys-
kinesia Disability Scale (maximal score of 21 points) [51]. The
dyskinetic score obtained was the sum of the scores for all
body segments. LIDs were mainly choreic but dystonia was
also observed. Stereotypies or licking were not considered
as LIDs. The animals were placed in special observation
cages for filming and the dyskinetic score was evaluated
blindly with and without 7-NI co-administration. Motor
evaluation was performed in the following endpoints:
MPTP group when the six months of intoxication were fin-
ished, MPTP + L-DOPA group when the four months of
treatment were finished and the group MPTP + L-DOPA +
7NI when the 25 days of 7NI treatment was completed.

2.3. Statistical analysis
Comparisons were performed using one-factor ANOVA with
repeated measures followed by Newman–Keuls post hoc
analysis. The area under the curve (AUC) [52], derived
from the time-course experiments, was analysed by unpaired
t-test. All data were expressed as mean group value ± s.e.m.
A probability level of 5% ( p < 0.05) or 1% ( p < 0.01) was
considered significant or very significant, respectively.
3. Results
We assessed the ability of 7-NI to change L-DOPA-induced
diskinesia. Our study demonstrated that MPTP-treated mon-
keys developed moderate–severe LIDs when they are treated
for 4 months with L-DOPA. The anti-Parkinsonian effect of L-
DOPAwas similar in all six monkeys, whose disability motor
scores compared with their stable Parkinsonian state
improved significantly (figure 1a,b,d). Their dyskinetic pro-
files showed a similar maximum (peak dose) at 80–100 min,
finishing at 190–200 min. 7-NI co-administration preserved



20
(a)

(c) (d)

(b)

M1

M2

M3

M4

M5

M6

M1

M2

M3

M4

M5

M6

MPTP

L-DOPA

7NI

M7

M8

15

10

di
sa

bi
lit

y 
m

ot
or

 s
co

re

5

0

M1

M2

M3

di
sa

bi
lit

y 
m

ot
or

 s
co

re

20

15

10

5

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26

20

***

***

15

10

5

n = 6 n = 6 n = 3

0

20

15

10

5

0
0 4 8 12 16

MPTP intoxication (week)

7-NI treatment (days)

20 24 28 32 0 15 30 45 60 75
L-DOPA treatment (days)

90 105 120

Figure 1. Disability motor score values in three different pharmacological states: (a) prior to L-DOPA treatment SP, (b) after L-DOPA treatment and (c) after
L-DOPA + 7-NI co-administration. (d ) Graph shows significant differences in disability motor score between SP data treated with MPTP compared with values
observed after treatment of Parkinsonian mice with DOPA or L-DOPA + 7-NI co-administration; data are represented as mean ± s.e.m. p < 0.001 versus SP.
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the beneficial anti-Parkinsonian effect of L-DOPA treatment
without significant differences in the disability motor score
( p > 0.05) (figure 1c,d). 7-NI dramatically decreased the inten-
sity (figure 2b) and duration (figure 2c) of the LIDs, reducing
the profile by more than 50%. Analyses of the time course
and overall dyskinetic response (AUC) showed that 7-NI
significantly reduced LIDs ( p < 0.001) (figure 2d ).

Monkey 1 received nine injections of MPTP over a period
of four and half months. It developed significant bradykine-
sia, rigidity and freezing after the third MPTP injection.
After the fifth MPTP injection resting tremor in upper limbs
also appeared, and it showed a transient dystonia in the
inferior limbs and in the oromandibular area, which disap-
peared after the eighth MPTP injection. After four months
of L-DOPA treatment, stable body trunk LIDs, stereotypies
in the hands, jerking motions and dystonic postures of
lower limbs and tail developed. Fast choreic movements
appeared 10 min after L-DOPA administration, lasting
200 min and reaching the peak dose at 110–120 min (intensity
of 17/21). From the first co-administration with 7-NI, the
dyskinetic profile changed, becoming significantly shorter
(finishing at 130 min) ( p < 0.001) (figure 2a,c) and reaching
the peak dose at 60 min with a score of 6/21 ( p < 0.001)
(figure 2b,c).

Monkey 2 received nine injections of MPTP over four and
half months. It developed rigidity, severe bradykinesia and
slight tremor in upper limbs, and occasionally in the head.
On several occasions following MPTP injection, abnormal
movements of the mouth (repeated chewing) were observed.
After four months of L-DOPA treatment, stable choreic move-
ments of the whole body, but especially in the lower limbs
appeared 10–15 min after L-DOPA administration lasting
200 min and reaching the highest peak dose at 120 min
(intensity of 14/21) (figure 2a). From the first co-adminis-
tration with 7-NI, the duration of LIDs was significantly
shorter (finishing at 135 min) ( p < 0.001) (figure 2a,c), reach-
ing the peak dose at 60 min with a maximal score of 5/21
( p < 0.001) (figure 2b,c).

Monkey 3 received 15 injections of MPTP during a period
of six months. Some vegetative symptoms were observed
immediately after each dose but the animal returned to a
normal state within 24 h. It showed rotational behaviour
after the fourth MPTP injection. Bradykinesia, rigidity, freez-
ing and tremor in the upper limbs, and oromandibular
dystonia appeared after the seventh dose of MPTP. After
four months of L-DOPA treatment stable choreic movements
of all the body, especially fast in the lower limbs with the
toe twisted, appeared 10–15 min after L-DOPA adminis-
tration, lasting until 200 min and reaching the highest peak
dose at 90 min (intensity of 14/21, figure 2a). From the first
co-administration with 7-NI, the duration of LIDs was
significantly shorter (finishing at 140 min) ( p < 0.001)
(figure 2a,c) reaching the peak dose at 60 min with a maximal
score of 8/21 ( p < 0.001) (figure 2b,c).
4. Discussion
Based on clinical data showing a direct correlation between
the risk of LIDs development and the total amount of
L-DOPA intake, a reduction in the daily doses of L-DOPA
has been proposed by combining low doses of L-DOPA
with non-dopaminergic therapies (for review, see [53]). In
the present study, 7-NI, a NOS inhibitor, potently reversed
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7-NI co-administration. (b) 7-NI significantly reduces the average intensity of LIDs over the time course: M1 without (9/21) and with (4/21) 7-NI co-treatment, M2
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LIDs in monkeys. The antidyskinetic efficacy was not
accompanied by detrimental effects on Parkinsonian motor
symptoms. 7-NI effectively reduced the LIDs score but did
not affect the disability motor score in MPTP-treated mon-
keys and injected with L-DOPA. Previous studies have
demonstrated that the NOS inhibitor, 7-NI attenuated LIDs
in 6-hidroxydopamine (6-OHDA) rats [21–25,32,40–
43,45,46]. However, the present study provides the first evi-
dence that 7-NI is effective against LIDs in MPTP-treated
monkeys, which have been recognized as one of the best
animal models to predict the clinical efficacy of compounds
on LIDs (see [54,55] for a review).

Various measures of striatal NOS activity have indicated
that NO signalling may be disrupted in patients with PD
[56,57] and dopamine-depleted rats [58,59]. Studies by Del
Bel et al. [21] in animals with an intact dopaminergic
system, striatal NO—the enzyme soluble guanilate-cyclase
(sGC)—cyclicGM Phosphate transmission is likely to play a
role in facilitating locomotor activity. Intrastriatal exposure
to NOS and sGC inhibitors has been shown to depress
basal locomotion and induce catalepsy [21,60]. However,
we observed no cataleptic or lethargic effects in a motor
evaluation of the monkeys. In fact, previous studies per-
formed in baboons showed that 7-NI administration causes
hyperactivity [61]. We observed no evidence of this in
the 7-NI-treated-animals. Analysis of the AUC, which encom-
passes both the intensity and duration of the total dyskinetic
response (figure 2d ), demonstrates that the inhibition of
NOS constantly and significantly reduces the LIDs profile
(figure 2b,c). Pre-clinical studies aimed at decreasing NO sig-
nalling (and cGMP levels) have shown that co-administration
of NOS inhibitors with L-DOPA attenuates LIDs [22,62]. NOS
inhibition also improved the motor performance of the same
animals on a rotarod test [22].
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A possible mechanism to explain this phenomenon could
be the role of striatal nitrergic interneurons, which are activated
by both corticostriatal synaptic transmission (bydirect synaptic
contacts) and dopaminergic terminals (by D1/5 receptors)
within striatal neural networks [33,63]. In fact, striatal NO
plays a critical role in (i) activating cGMP in the medium
spiny neurons (MSNs) upregulating cAMP [64] and inhibiting
glutamate release in corticostriatal pathways [65], and/or
(ii) provoking long-term depression in MSNs [33,66]. There-
fore, we think it investigating the role of nitrergic pathways
in LIDs using Parkinsonian monkeys would be of interest in
future research.

Supported by many studies it has been proposed that
abnormal neurotransmission and pathways not only dopa-
mine may be involved in the pathophysiology of LIDs.
Thus, recent paper has shown that a selective inhibitor of
phosphodiesterase 1(PDE1) has potent antidyskinesic efficacy
in non-human primate [67]. Further, several NMDA anta-
gonists have shown efficacy against LIDs in chronically
MPTP-treated monkeys [68], so that amantadine has been
approved as treatment of LIDs [69]. However, amantadine
has several adverse effects including hallucinations,
constipation, dry mouth, peripheral oedema and nausea [70].
5. Opening up
There is interest to find new antidyskinesic candidates with the
better safety profiles than amantadine. In this context, gluta-
mate receptors are described to interact with NO, which may
inhibit NMDA receptor by protein nitrosylation and destabili-
zation of synaptic proteins [71]. Moreover, since 7-NI is able to
reduce LIDs in Parkinsonian monkeys, different approaches
could be evaluated using 7-NI co-administration. Many new
selective neuronal NOS inhibitors are accessible, with reduced
off-target effects related to other isoforms and promising
pharmacokinetics to access brain tissues [72]. Additionally,
Titze-de-Almeida et al. [73] described a siRNAwhich triggered
a knockdown of nNOS mRNA and protein, reducing the cyto-
toxicity caused by 6-OHDAon SH-SY5Y cells. The intra-striatal
injection of the siRNA-protected nigral dopaminergic neurons
in 6-OHDA hemi-lesioned rats. Further on, in rodents 7-NI
decreases dopamine turnover, (DOPAC/dopamine ratio) in
the striatum of dyskinetic rats, which suggests the increase in
the dopamine availability [41]. Ultimately, the combined
treatment of amantadine and the NO inhibitor (7-NI), both in
low doses, may result in fewer side effects and a superior
therapeutic benefit in LIDs [45].
6. Conclusion
Our results demonstrated that 7-NI is able to reduce the
intensity and duration of LIDs without affecting anti-Parkin-
sonian benefits and could represent a promising therapy to
improve the quality of life of PD patients.
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