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Abstract  34 

Cephenemyia stimulator and Oestrus ovis, are two important parasitic bot flies 35 

(Oestridae) species causing myiasis, with a potential negative impact on the welfare of 36 

the host. Using next-generation sequencing approach and bioinformatics tools a large 37 

panel of possible microsatellites loci was obtained in both species. Primer pairs were 38 

designed for 15 selected microsatellite loci in C. stimulator and other 15 loci in O. ovis 39 

for PCR amplification. Loci amplification and analysis were performed in four 40 

populations of each species. The results demonstrated that all selected loci were 41 

polymorphic, with the number of alleles ranging from 2 to 6 per locus in C. stimulator 42 

and 3 to 13 per locus in O. ovis. This is the first time to describe these microsatellite loci 43 

for C. stimulator and O. ovis. These two sets of microsatellite markers could be further 44 

used for biogeographic and population genetics studies. 45 

Keywords: Oestrus ovis, Cephenemyia stimulator, microsatellites, next-generation 46 

sequencing 47 

  48 
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Introduction 49 

The family Oestridae embraces about 170 dipteran species belonging to 29 genera 50 

grouped into four subfamilies: Cuterebrinae, Gasterophilinae, Hypodermatinae and 51 

Oestrinae (Scholl et al. 2019). In their larval phases, oestrids are obligate parasites of a 52 

wide variety of mammals (including man), developing in the nostrils, throat, trachea, 53 

bronchioles, lungs, oesophagus, stomach, subcutaneous tissues, genitalia and central 54 

nervous system of their hosts (Zumpt 1965; Hall and Wall 1995; Colwell 2001; Colwell 55 

et al. 2006). These types of myiasis have a negative impact on the welfare of parasitized 56 

animals and can cause restlessness, sinusitis, sneezing, coughing, nasal discharge, 57 

mucopurulent exudates, dyspnea and difficulty swallowing, among other symptoms 58 

(Shcherban 1973; Ilchmann et al. 1976; Dorchies et al. 1998, 1993; Scholl et al. 2019). 59 

Larviposition by gravid females may lead to stress and a drop in food intake by hosts 60 

(Colwell 2001). Moreover, oestrid infestations can increase the likelihood of occurrence 61 

of opportunistic infections and in severe cases can provoke cranial lesions and even the 62 

death of the host (Allen and Bunch 1982; Mozaffari et al. 2013). Parasitization by oestrid 63 

flies is usually characterized by complex ecological interactions between these dipterans 64 

and their hosts, further complicated by intrinsic and extrinsic factors (e.g., environmental 65 

conditions and host behaviour and density) that influence the distribution and prevalence 66 

of these parasites (Papavero 1977; Colwell 2001; Colwell et al. 2006). 67 

 The sheep bot fly, Oestrus ovis, is a cosmopolitan parasite that affects sheep and 68 

goats (Scala et al. 2001), as well as a variety of wild hosts including European mouflon 69 

(Ovis aries musimom), bighorn sheep (Ovis canadensis), aoudad (Ammotragus lervia), 70 

Alpine ibex (Capra ibex), Asiatic ibex (Capra sibirica), Iberian ibex (Capra pyrenaica), 71 

white-tailed deer (Odocoileus virginianus) and llama (Lama glama) (Zumpt 1965; Allen 72 

and Bunch 1982; Moreno et al. 1999; Colwell et al. 2006; Gómez-Puerta et al. 2013; 73 
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Barroso et al. 2017; Sánchez et al. 2017; our unpublished data for the Iberian Ibex). 74 

Ophthalmomyiasis and rhinomyiasis in humans due to O. ovis infestation are both 75 

relatively frequent (Fries et al. 2018; Brini et al. 2019). By contrast, Cephenemyia 76 

stimulator is more host-specific and in the Palaearctic usually only parasitizes roe deer 77 

Capreolus capreolus (Colwell et al. 2006; Király and Egri 2007; Calero-Bernal and 78 

Habela 2013).  79 

 In some cases, taxonomical doubts can arise when attempting to identify third-80 

instar oestrid larvae using only morphobiometric criteria (Otranto et al. 2005). These 81 

limitations may become even more patent with first- and second-instar larvae (Wetzel and 82 

Bauristhene 1970). The description and use of new molecular markers (e.g., COI, 28S, 83 

ITSs and mitogenomes) has improved the accuracy of the characterizations and 84 

identifications of oestrid species, and of phylogenetic reconstructions (Otranto and 85 

Stevens 2002; Weigl et al. 2010; Marinho et al. 2012; Moreno et al. 2015; Zhang et al. 86 

2016; Yan et al. 2019). 87 

 Within members of the order Diptera, microsatellites have been described and 88 

used in ecological, demographic, biogeographic and genetic studies in a number of 89 

Calliphoridae taxa (Florin and Gyllenstrand 2002; Torres et al. 2004; Torres and Azeredo-90 

Espin 2005, 2008; Diakova et al. 2018; Rodrigues et al. 2009). Microsatellites have 91 

proven to be useful in the family Oestridae for addressing relationships between 92 

specimens from different host populations and for assessing genetic diversity and 93 

structure at population level (Milton et al. 2011; Bitarello et al. 2009; Cheng et al. 2014; 94 

Liu et al. 2018).  95 

In this study, we used next-generation sequencing and bioinformatics to select 96 

novel polymorphic microsatellite loci, 15 for Cephenemyia stimulator and 15 for Oestrus 97 

ovis, which we tested with PCR amplification for specimens from different populations 98 
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of both species. In addition, to test cross-amplification in related dipteran species we 99 

analysed the amplification of the 15 microsatellite loci of C. stimulator in a specimen of 100 

C. auribarbis. The main objective of this work is to describe and analyse for the first time 101 

microsatellite loci in C. stimulator and O. ovis, that in the future could be useful for 102 

biogeographic and populations genetics studies.  103 

 104 

Material and methods  105 

Genome sequencing and microsatellite primers selection 106 

For library construction and genome sequencing DNA was extracted from one larva of 107 

C. stimulator from roe deer (Caprelous capreolus) (Lugo, Spain: 43°00’N, 7°33’W) and 108 

from one larva of O. ovis from domestic goat (Capra aegagrus) (Almería, Spain: 37º03’N, 109 

2º34’W) using the Quick-DNA Tissue/Insect kit (Zymo Research). Genomic DNAs (3 110 

μg) was used to construct two libraries, one for C. stimulator and other for O. ovis, with 111 

350 bp fragments. About 20 Gbp of sequences were obtained from each species (coverage 112 

about ~20x) using Illumina® Hiseq™ 2000 platform in paired-end reads with length 113 

2x150 nt.  114 

To identify the microsatellite primers we used bioinformatics protocol and the 115 

Illumina libraries for each species separately. Firstly, we joined read pairs with ends 116 

overlapping by at least six nucleotides using the fastq-join program of the FASTX Toolkit 117 

(Gordon and Hannon 2010). Then, we searched for dinucleotide microsatellites and 118 

designed primers to amplify them whenever possible with Msatcommander (Faircloth 119 

2008) using the default options. Next, we used the script written by Schoebel et al. (2013) 120 

to select unique primer pairs to avoid microsatellites in repetitive elements, and obtained 121 

1,932 and 4,367 possible microsatellite primer pairs for C. stimulator and O. ovis, 122 
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respectively. Then, we mapped the Illumina paired-end reads for each library against the 123 

joined reads containing the selected microsatellites using SSAHA2 (Ning et al. 2001). 124 

We visualized the mappings with IGV (Thorvaldsdóttir et al. 2013) to perform a manual 125 

selection of microsatellites that present two alleles in the sequenced specimen of each 126 

species. Finally, we selected 30 putative microsatellites primers, 15 for each species 127 

(Tables 1 and 2).  128 

Analysis of microsatellite loci 129 

For microsatellite amplification, we used the DNA of the larvae extracted with the 130 

Quick-DNA Tissue/Insect kit (Zymo Research) eluting in 80 µl of H2O. We performed 131 

one ‘control PCR’ to evaluate the DNA yield by direct amplification of a ~250 bp 132 

fragment of the microsatellite locus C.sti-12 and O.ovis-12 for C. stimulator and O. ovis, 133 

respectively. The control PCR (13 µl of reaction) contained 20-60 ng of template DNA, 134 

6.5 µl of DreamTaq Green PCR Master Mix (2X) (Thermo Scientific) (final 135 

concentration: 0.05 U/µl DreamTaq DNA polymerase, dATP, dCTP, dGTP and dTTP, 136 

0.2 mM each, and 2 mM MgCl2), and 0.2 µM of each primer. The cycling conditions were 137 

conducted as indicated by the supplier’s instructions (see below) (40 amplification 138 

cycles); PCR amplicons were resolved in 2% agarose gels. We tested 37 larval DNAs 139 

from each species. In all, 32 C. stimulator samples (from four populations) and 24 O. ovis 140 

samples (also from four populations) yielded amplifications on control PCRs and were 141 

then used for the 15 microsatellite loci amplifications (Table 3).  142 

For microsatellite analysis, we used the 15 selected primer pairs. All forward 143 

primers were modified on 5’ by the incorporation of the universal M13 primer sequence; 144 

PCR amplifications were performed as described by Schuelke (2000). The forward M13 145 

primer was labelled with four fluorescents dyes (FAM, HEX, ATTO550, ATTO565; 146 

Isogen Life Science). The PCRs were performed on 13 µl of reaction mix containing 1.53-147 
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4.61 ng/μl of template DNA, 6.5 µl of DreamTaq Green PCR Master Mix (2X) (Thermo 148 

Scientific), 0.2 μM of the unlabelled M13-tailed forward primer, 0.2 μM of the 149 

fluorescently labelled M13 primer, and 0.5 μM of the corresponding reverse primer. The 150 

PCR conditions were as follows: initial denaturation at 95 °C for 5 min; 30 cycles for 30 151 

s at 95 °C, 30 s at 55 °C and 30 s at 72 °C; and a final extension of 15 min at 72 °C.  152 

To read the results, microsatellite PCR amplifications for each larva in both 153 

species were combined in four mixes (three mixes with four loci and one with three loci) 154 

to avoid fluorescent dye overlapping (Tables 1 and 2). Mixes contained 3 μl of the 155 

different loci PCRs and 3 μl of H2O to give a final dilution of 1:5 and 1:4 in the mixtures 156 

of the four and three loci, respectively. The mixes were run on a Genetic Analyzer 3500 157 

(Applied Biosystem; available in Jaén University). Alleles were sized using the 158 

GeneMapper Software version 4.1 (Applied Biosystems). We used GIMLET software 159 

(Valiére 2002) to calculate the values of expected heterozygosity (HE), observed 160 

heterozygosity (HO) and allelic frequency. The frequency of null alleles, and the 161 

probabilities of identity (PID) (unbiased and between siblings; Waits et al., 2001) was 162 

also calculated using CERVUS v 3.0.7 software (Marshall et al. 1998). In addition, the 163 

Hardy-Weinberg exact probability tests were performed with Genepop (Raymond and 164 

Rousset 1995). 165 

Results and discussion  166 

With the approach of next-generation sequencing and bioinformatics tools, 1932 and 167 

4367 putative dinucleotide microsatellite loci were found from the library of C. stimulator 168 

and O. ovis, respectively. Selected fifteen loci from each library were tested with each 169 

species. All of those microsatellite loci were successfully amplified and were 170 

polymorphic (Tables 1 and 2). 171 
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In C. stimulator we amplified and analyzed the 15 microsatellites loci for each larva 172 

(N=32) and calculated the allele size range, the allelic frequency, HE, HO and the 173 

percentage of amplification (Table 1). The percentage of amplification for each locus 174 

varied between 84.38% (for C.sti-14 locus) to 100% for (C.sti-8 locus). We detected 54 175 

alleles, and the number of alleles per locus varied from 2 to 6. For each locus, we also 176 

calculated HE, which varied between 0.17 and 0.64; the HO values varied between 0.19 177 

and 0.63 for C.sti-8 and C.sti-13, respectively (Table 1). Mean values of HE and HO were 178 

0.48 and 0.44, respectively, and the statistical analysis of the data indicated that the values 179 

of HE and HO fitted the Hardy-Weinberg (HW) equilibrium.  180 

In addition, the specimen of C. auribabis was tested for the amplification with C. 181 

stimulator microsatellite primer set. Ten of 15 loci were amplified; six loci are 182 

homozygous and other four loci are heterozygous, with alleles of the same size range as 183 

presented in C. stimulator. However, we found new nine alleles in this sample (Table 1).   184 

We amplified 15 microsatellites loci for each O. ovis specimen analysed (N=24) 185 

and performed the same calculations as for C. stimulator (Table 2). The percentage of 186 

amplification varied between 50% (loci O.ovis-8 and O.ovis-14) and 100% (locus O.ovis-187 

10). In O. ovis, 114 alleles were detected and the number of allele for locus varied from 188 

3 to 13. For each locus, the frequency of each allele in each population was very low, due 189 

to the high variability in the number of alleles. Total of the 114 identified alleles, only 14 190 

alleles presented in all populations, while the rest (100 alleles) did not. We also calculated 191 

HE, which varied between 0.16 and 0.88, and HO, which varied between 0.17 and 0.71 192 

from microsatellites O.ovis-13 and O.ovis -5, respectively (Table 2). HE and HO were 193 

more varied than in C. stimulator, although the statistical analysis of all data indicated 194 

that the values of HE and HO generally fitted the Hardy-Weinberg (HW) equilibrium, 195 

except in the loci O.ovis-3 and O.ovis-4, which deviated significantly (p < 0.05).  196 
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Loci C.sti-6, O.ovis-2, O.ovis-6, and O.ovis-7 had two alleles with a large 197 

difference in size (more than 50 nt) (Tables 1 and 2). The smaller alleles could be 198 

amplified and showed the signal more efficiently than the larger ones, leading to allelic 199 

dropout. Therefore, use of these four loci with precaution may be required, for example, 200 

using a multi-tube approach (Taberlet et al., 1996). 201 

Finally, in C. stimulator with this panel of 15 loci, we achieved a probability of 202 

identity, unbiased, P (ID) of 6x10-8 and a probability of identity for sibling P (ID) sib of 203 

3.61x10-4. In O. ovis with this panel of 15 loci, we obtained a probability of identity P (ID) 204 

of 2.43x10-16 and a probability of identity for sibling P (ID) sib of 1.68x10-6. These 205 

probabilities indicated that the described microsatellite loci in both species are suitable to 206 

be used in biogeographic and population genetics studies, as the obtained values are 207 

according to the previously estimated and recommended (P (ID) < 10-4)(Waits et al. 2001, 208 

Latorre-Cardenas et al. 2020). 209 

Microsatellite loci were originally developed by construction and screening of 210 

repetitive sequences enriched genomic libraries, and the sequences of positive clones 211 

were used to design PCR primers (Vieira et al. 2016). According to the results, the next-212 

generation sequencing and the bioinformatics analysis performed to select the 213 

microsatellite loci have proven to be an efficient methodology (Light et al. 2018). This is 214 

the first time to describe two sets of 15 microsatellite loci for C. stimulator and O. ovis, 215 

respectively. These novel and polymorphic loci may be used for further biogeographical 216 

and population genetics studies, for examples, defining management units (Bergamo et 217 

al. 2018), in inbreeding (Abe and Pannebakker 2017), epidemiology, host-specificity, 218 

gene flow and spatial genetic structure studies (Rasero et al. 2010; Harimalala et al. 2017; 219 

Cao and Wu 2019), and monitoring abundance and effective population size (Marí-Mena 220 

et al. 2019), in these two important bot flies. 221 
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