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Resumen

El Problema del Isomorfismo para anillos de grupo consiste en la siguiente pregunta: Da-

dos un anillo conmutativo R y dos grupos G y H, si los anillos de grupo RG y RH son

isomorfos entonces, ¿son G y H necesariamente isomorfos también? Es decir, ¿es toda la

información del grupo ineqúıvocamente recuperable del anillo de grupo? Vemos esto escrito

simbólicamente como sigue:

RG ∼= RH
?⇒ G ∼= H

De aqúı en adelante, cuando decimos que para un anillo dado o para una clase de grupos dada

el Problema del Isomorfismo tiene una respuesta positiva (o negativa), nos referimos a que

la implicación anterior es lógicamente cierta (respectivamente, falsa) para ese anillo o para

esa clase de grupos, es decir, un isomorfismo de álgebras de grupo implica (respectivamente,

no implica) un isomorfismo de grupos en ese caso.

Este problema, y su especialización a un caso particular, se ha convertido en la pregunta

principal estudiada en esta tesis. Decimos especialización porque afrontar el problema en su

forma más general no tiene sentido, pues tomando grupos abelianos pequeños y el cuerpo

de los números complejos (ver Example 1.13) podemos encontrar contraejemplos al caso

general.

El Problema del Isomorfismo para álgebras de grupo fue propuesto por primera vez como

problema durante la Conferencia de Álgebra de Michigan de 1947, por T.M. Thrall, que

formuló el problema como sigue (traducido al español):

“Dados un grupo finito G y un cuerpo K, encontrar todos los grupos distintos H

para los que KG ∼= KH.”

Este problema ha sido estudiado extensivamente, con énfasis especial en grupos finitos y

vii



viii RESUMEN

los casos donde el anillo de coeficientes es o bien un cuerpo o el anillo de enteros. Uno

de los primeros resultados viene dado por G. Higman antes incluso de que se planteara el

Problema del Isomorfismo para álgebras de grupo como tal. Higman demostró que si G y

H son grupos abelianos finitos y ZG ∼= ZH entonces G ∼= H [Hig40a, Hig40b]. El mismo

resultado para el cuerpo de números racionales en lugar de el anillo de números enteros fue

probado por S. Perlis y G. L. Walker [PW50] (Theorem 1.12). Sin embargo, si G y H son

grupos abelianos finitos con el mismo orden, entonces CG ∼= CH (este resultado se demostró

también en el art́ıculo anterior). Con este resultado se obtienen los contraejemplos sencillos

que mencionamos anteriormente.

Se tiene un principio general para el Problema del Isomorfismo: “cuanto más pequeño

sea el anillo de coeficientes, mayor la probabilidad de una respuesta positiva”. Esto es una

consecuencia de que si K es una R-álgebra, entonces KG ∼= K ⊗R RG. Aśı, si RG ∼= RH,

entonces

KG ∼= K ⊗R RG ∼= K ⊗R RH ∼= KH.

De esta forma, no solo Z es el anillo con mayor probabilidad de conseguir respuestas positivas

al Problema del Isomorfismo, si no que si uno encontrara una respuesta negativa al Prob-

lema del Isomorfismo para Z, este contraejemplo lo seŕıa para cualquier otra reformulación

del problema con distinto anillo R. Esto significó que la mayor parte de la investigación

se centrara en este caso y se obtuvieron muchos resultados parciales. A continuación enu-

meramos una recoleccion no exhaustiva de clases de grupos para los que el Problema del

Isomorfismo con coeficientes enteros tiene respuesta positiva:

• Grupos abelianos, por G. Higman en [Hig40a] y [Hig40b],

• Grupos metabelian, por A. Whitcomb en [Whi68],

• p-grupos, por K. W. Roggenkamp y L. Scott en [RS87],

• Grupos nilpotentes, por K. W. Roggenkamp y L. Scott en [RS87],

• Grupos abeliano-por-nilpotente, por K. W. Roggenkamp y L. Scott en [RS87] y unos

meses después independientemente por A. Weiss en [Wei88],
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• Grupos simples, por W. Kimmerle en [KLST90],

• Grupos superresolubles, por W. Kimmerle en [Kim91], Teorema 5.20

• Grupos de Frobenius y 2-Frobenius, en [Kim91], Teorema 5.17,

• Grupos nilpotente-por-abeliano, un resultado de W. Kimmerle que puede consultarse

en [RT92], Caṕıtulo XII.

A finales del siglo XX se pensaba que el resultado positivo definitivo para Z estaba en

camino. Sin embargo, M. Hertweck encontró 2 grupos finitos resolubles no isomorfos con

anillos de grupo enteros isomorfos [Her01]. Estos grupos teńıan longitud de su serie derivada

igual a cuatro y tamaño par, luego el problema sigue vivo para grupos impares y para grupos

con longitud de su serie derivada igual a tres (longitud dos, o lo que es lo mismo, grupos

metabelianos, tiene respuesta positiva, como hemos mencionado antes).

En un famoso art́ıculo recopilatorio sobre representación de grupos finitos [Bra63], Brauer

planteó las siguientes preguntas que pueden verse como variantes del Problema del Isomor-

fismo para álgebras de grupo sobre cuerpos (traducidas al español):

“¿Si dos grupos G1 y G2 tienen álgebras de grupo isomorfas sobre todo cuerpo

Ω, son G1 y G2 isomorfos?”.

“¿Cuándo tienen dos grupos no isomorfos álgebras de grupo isomorfas?”,

Desviémonos un minuto en una tangente sobre la primera de las preguntas anteriores. Un

teorema de Passman [Pas65] casi da una respuesta negativa a esta pregunta. Este teorema

establece que existen

p
2
27

(n3−23n2)

p-grupos no isomorfos de tamaño pn con álgebras de grupo isomorfas sobre todos los cuerpos

de caracteŕıstica distinta a p. Poco después, Dade encontró un contraejemplo [Dad71] al

problema en cuestión. Encontró dos grupos finitos metabelianos no isomorfos con orden

divisible por dos primos distintos, tales que sus álgebras de grupo son isomorfas sobre todo

cuerpo.
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Como los contraejemplos en el resultado de Dade no eran p-grupos, la pregunta de Brauer

segúıa abierta para p-grupos. Pero por el resultado de Passman sabemos que, para p-grupos,

tener álgebras de grupo isomorfas sobre cuerpos de caracteŕıstica distinta a p no significa

mucho, uno puede encontrar tantos p-grupos como se desee con esta propiedad.

Ahora, fijemos G y H dos p-grupos y consideremos la siguiente pregunta:

FG ∼= FH para todo cuerpo F de caracteŕıstica p
?⇒ G ∼= H (1)

Ahora, como suced́ıa con Z, si denotamos como Fp al cuerpo finito de p elementos y F es

cualquier cuerpo de caracteŕıstica p, tenemos:

FpG ∼= FpH ⇒ FG ∼= F ⊗Fp FpG ∼= F ⊗Fp FpH ∼= FH

Entonces, la pregunta (1) es realmente equivalente a

FpG ∼= FpH
?⇒ G ∼= H (2)

Esta última preunta es la que es conocida comúnmente como el Problema del Isomorfismo

Modular (o MIP). Este problema a d́ıa de hoy ha sido resuelto para cierto número de casos.

El más interesante en relación con la tesis es la demostración de la respuesta positiva al

MIP para grupos metaćıclicos, por Baginski para p > 3 [Bag88] y posteriormente Sandling

completó la demostración [San96].

Recientemente se ha encontrado una respuesta negativa al MIP general, en un art́ıculo

por D. Garćıa-Lucas, L. Margolis y Á. del Ŕıo [GLMdR22]. Para más información sobre

el Problema del Isomorfismo véase [Pas77, Caṕıtulo 14], [Seh78, Caṕıtulo III] y el reciente

art́ıculo recopilatorio [Mar22].

Ahora, el problema al que nos enfrentamos en esta tesis es la variante del Problema del

Isomorfismo para R = Q y considerando grupos metaćıclicos finitos:

QG ∼= QH
?⇒ G ∼= H (3)

Cuando mi tutor del doctorado me propuso la idea de trabajar en el Problema del Isomor-

fismo de álgebras de grupo de grupos metaćıclicos finitos, mi intención inicial fue encontrar

un contraejemplo. Hay un art́ıculo de 2009 [HOdR09] en el que se probó que los isomorfismos
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de anillos entre componentes simples de álgebras de grupo racionales de grupos metaćıclicos

finitos están determinados por su centro, la dimensión sobre Q y la lista de ı́ndices de Schur

locales en primos racionales. Esto significa que para cada grupo G teńıamos una lista de

invariantes para cada componente simple de la descomposición de Wedderburn de QG, de

forma que uno puede tomar la libreŕıa de grupos pequeños de GAP [GAP12], recorriendo

todos los grupos de tamaños entre 2 y 2000, computando los invariantes y comprobando si

hay alguna coincidencia para los invariantes de dos grupos diferentes. En caso de que haya,

tenemos un contraejemplo en nuestras manos. Esta estrategia se implantó durante mi primer

semestre como estudiante de doctorado y los resultados fueron vaćıos. No encontramos un

contraejemplo, pero esto significaba que no pod́ıamos negarnos a considerar la posibilidad

de que la respuesta fuera positiva en este caso. Si consideramos el Problema del Isomorfismo

Modular, en ese caso la respuesta es positiva para metaćıclicos, aśı que esto al menos es un

buen indicador de esperanza para el caso de caracteŕıstica cero.

Esto nos lleva a los contenidos de la tesis, que se centra entorno a probar la respuesta

positiva. El documento está dividido en cuatro partes: En el primer caṕıtulo introducimos

los conceptos principales, la notación y probamos algunos resultados auxiliares básicos. El

siguiente caṕıtulo está dedicado a la clasificación de los grupos metaćıclicos finitos, recogida

en [GBdR23a]. El tercer caṕıtulo consiste en la solución positiva para el Problema del

Isomorfismo para anillos de grupo de grupos metaćıclicos finitos. El resultado puede encon-

trarse en [GBdR23b]. El último caṕıtulo está centrado en generalizar el resultado a grupos

metaćıclicos finitos, apoyándonos en tanto el resultado para grupos nilpotentes como en el

la clasificación de grupos metaćıclicos. Este resultado para el caso general se encuentra en

[GBdR23c].

Como hemos mencionado, la mayor parte del caṕıtulo 1 está dedicado a introducir la

notación y los conceptos de la tesis. En la sección 1.1 introducimos un importante lema,

Lemma 1.1. Es un resultado que se usa para cálculos y es importante porque será usado fre-

cuentemente a lo largo de la tesis. También es importante que en la sección 1.2 introducimos

las definiciones de los parámetros de grupos metaćıclicos que en el caṕıtulo 2 se demostrará

que son invariantes que determinan cada grupo metaćıclico finito. En las secciones 1.3 y 1.4

introducimos formalmente el concepto de anillo de grupo y damos un pequeño resumen de
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su historia. También damos una construcción que será muy importante en el documento.

Vamos a elaborar sobre esta construcción. Al tratar de resolver el Problema del Isomor-

fismo, es de extrema importancia ser capaces de traducir la información estructural de QG

a G. En [OdRS04], A. Olivieri, J. J. Simón y Á. del Ŕıo introdujeron el concepto de par de

Shoda fuerte. Éstos son pares de subgrupos de un grupo que, en otro art́ıculo de los mismos

autores [OdRS06], se demuestra que se encuentran en una correspondencia biyectiva con

las componentes simples de Wedderburn del álgebra de grupo racional del mismo grupo, al

menos en el caso metaćıclico. De esta forma, cuando queramos encontrar información sobre

un grupo metaćıclico, solo tenemos que ver cómo puede reflejarse esta información en pares

de Shoda y qué componentes están asociadas a estos pares de Shoda. Esto puede parecer

más sencillo de lo que es en la práctica, pero en cualquier caso esta estrategia es clave en los

argumentos usados para algunas de las demostraciones en el caṕıtulo 3 y la mayoŕıa de las

demostraciones en el caṕıtulo 4.

En el segundo caṕıtulo de esta tesis nos centramos en clasificar los grupos metaćıclicos

finitos. Esta clasificación se apoya en la clasificación original por C. E. Hempel [Hem00],

pero se diferencia en la mayoŕıa de argumentos y el resultado final. Necesitábamos obtener

una clasificación que se prestara a un enfoque computacional. También necesitábamos ser

capaces de identificar claramente los invariantes del grupo. De esta forma, la sección 2.1

se centra en enunciar los teoremas principales y explicar los detalles de la clasificación. La

sección 2.2 está dedicada a probar lemas auxiliares. En particular, el Lemma 2.4 da una

idea sobre la estructura del grupo y será usado a menudo en el último caṕıtulo de la tesis.

El motivo es que simplifica la obtención de los parametros del grupo que son triviales en

el caso nilpotente (el caso estudiado en el caṕıtulo 3) pero necesitan ser considerados en el

caso general. En la misma sección, el Lemma 2.6 es relevante porque muestra qué invari-

ante va a ser problemático y en qué caso. La Proposition 2.7 y el Algorithm 1 asociado

son el núcleo del enfoque computacional al problema. Con este resultado probamos cómo

obtener, numéricamente, una factorización minimal de un grupo metaćıclico. Esto es abso-

lutamente necesario para después construir el paquete de software que nos permitirá obtener

los invariantes metaćıclicos de cualquier grupo metaćıclico finito. El Lemma 2.8 muestra de

dónde viene el parámetro más intricado (1.4) de los grupos metaćıclicos y por qué es nece-
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sario. Finalmente, el Theorem 2.9 usa el lema anterior para acabar de determinar cuándo es

un invariante el último parámetro. En la sección 2.3 usamos los resultados de las secciones

anteriores para demostrar los teoremas principales. La mayoŕıa de las demostraciones son di-

rectas, pues la mayor parte del trabajo se realiza en la sección 2.2. La última sección es sobre

la implementación computacional. Es una descripción general del paquete de GAP [GAP12],

recorriendo las funciones y algoritmos principales, incluyendo una función que computa los

invariantes metaćıclicos de un grupo metaćıclico dado como argumento y una función que

computa todos los grupos metaćıclicos de un tamaño dado. Esta última función requiere

dar condiciones numéricas para comprobar cuándo se tiene que una lista de parámetros se

corresponde con un grupo metaćıclico existente. La mayoŕıa de estas condiciones numéricas

se demuestran a lo largo de las secciones anteriores y en el Lemma 2.12 se compilan y se

demuestran las que quedan.

Vamos ahora a centrarnos en el tercer caṕıtulo. Como mencionamos, en el tercer caṕıtulo

se demuestra que el Problema del Isomorfismo para anillos de grupo racionales de p-grupos

metaćıclicos finitos tiene una respuesta positiva. La primera estrategia para resolver este

problema se apoyaba en usar 4 invariantes espećıficos del grupo que pueden encontrarse en

el anillo de grupo. Consideremos un grupo G. El primer invariante seŕıa |G|. Éste es la

dimensión de QG. Otro invariante es la clase de isomorf́ıa de G/G′. Esto es porque las com-

ponentes de Wedderburn de Q(G/G′) son exactamente las componentes conmutativas de la

descomposición de Wedderburn de QG y porque por un Teorema de Perlis-Walker (Theo-

rem 1.12), QH determina H para cualquier grupo abeliano H. En resumen, las componentes

conmutativas de QG determinan G/G′. Un tercer invariante seŕıa el número de clases de

conjugación de G. Es bien sabido que este número es igual a la dimensión del centro de la

componente sobre Q. El último invariante es el número de clases de conjugación de subgru-

pos ćıclicos de G. Éste es igual al número de componentes simples de la descomposición de

Wedderburn de QG (véase Theorem 1.11). Nuestra esperanza era ser capaces de identificar

G salvo isomorfismo usando estos 4 invariantes y casi tenemos éxito. Hay casos espećıficos,

en los que el grupo es un 2-grupo, en que estos invariantes no son capaces de determinar el

grupo. Un ejemplo de dos 2-grupos metaćıclicos que tienen estos cuatro invariantes iguales

se da en Example 3.7. Ahora, como estas condiciones están más o menos aisladas, realmente
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podemos lidiar con los casos restantes buscando componentes espećıficas en QG que difer-

encien los pares de grupos que tengan invariantes iguales. Esto se hace en el Lemma 3.8 y

el Lemma 3.9. Finalmente, el resultado para p-grupos se demuestra en el Theorem 3.10.

La generalización a grupos nilpotentes es sorprendentemente directa. Definimos propiedades

para identificar ciertas componentes de la descomposición de Wedderburn del álgebra de

grupo. Después probamos en el Lemma 3.15 que la suma de estas componentes es realmente

isomorfa a un número determinado de copias del álgebra de grupo sobre un p-subgrupo de

Sylow de G, para ciertos primos. En el caso nilpotente los primos para los que sucede esto

son todos aquéllos que dividen al orden de G. Esto nos ofrece una manera de obtener un

isomorfismo de álgebras de grupo de p-grupos a partir de un isomorfismo de álgebras de

grupo de grupos nilpotentes. Llegados a este punto, ya hemos probado que si las álgebras

de grupo de dos p-grupos son isomorfas, los grupos también son isomorfos, y en el caso de

nilpotentes si todos los p-subgrupos de Sylow son isomorfos entonces los grupos en śı son

isomorfos, aśı que obtenemos el resultado deseado.

Finalmente, en el último caṕıtulo estudiamos la demostración del caso general. En la

sección 4.1 simplemente introducimos el teorema principal y fijamos notación para el resto

del caṕıtulo. En adelante, el resto de secciones se centran en probar que el álgebra de grupo

determina cada uno de los invariantes del grupo. De esta forma, al probar en la última sección

que el álgebra de grupo determina el último invariante necesario para describir el grupo,

hemos acabado la demostración del resultado positivo para el Problema del Isomorfismo para

grupos metaćıclicos finitos. En la sección 4.2 comenzamos fijando condiciones sobre cuerpos.

Estas condiciones sirven para identificar componentes de Wedderburn del álgebra de grupo

con ciertas propiedades. En el Lemma 4.2 se demuestra que existen componentes con estas

propiedades. También probamos que si existen entonces tienen que venir de pares de Shoda

fuertes muy espećıficos, de forma que en la estructura de la componente como extensión

de Galois de Q podemos encontrar información sobre el parámetro que estamos buscando.

Limitamos las posibilidades para los pares de Shoda en el Lemma 4.3 y el Lemma 4.4. Estos

dos lemas, en particular, serán usados de nuevo más adelante en argumentos similares. La

estrategia que acabamos de describir se usa varias veces a lo largo del caṕıtulo, con distintas

condiciones para los cuerpos y distintas variaciones para lidiar con cada caso. En el inicio
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de la sección 4.3 usamos argumentos numéricos y resultados del caṕıtulo 2 para probar que

un invariante espećıfico puede encontrarse en el álgebra de grupo. En la segunda parte de

la sección usamos un argumento similar al usado en la sección anterior para acabar con

otro invariante. En la sección 4.4 los argumentos se vuelven más técnicos y necesitamos

usar algunos lemas sobre subgrupos coćıclicos (Lemma 1.7 y Lemma 4.13). La estrategia

seguida en esta sección es similar a la usada en las secciones anteriores, pero en este caso

la parte de determinar qué pares de Shoda pueden corresponderse con las componentes

con las condiciones dadas se complica bastante. Finalmente, en la sección 4.5 acabamos

la demostración mostrando que QG determina el último invariante de G. Esta sección se

divide en tres casos, porque para cada caso necesitamos usar diferentes condiciones sobre

las componentes de Wedderburn del álgebra de grupo. La estrategia es muy similar a la

usada en la sección 4.2: Primero fijamos condiciones sobre las componentes de Wedderburn,

a continuación encontramos pares de Shoda para los que las componentes simples asociadas

satisfacen las condiciones. Después, restringimos qué pares de Shoda pueden estar asociados

a una componente que satisfaga las condiciones. De esta forma, incluso aunque los pares de

Shoda no sean exactamente los mismos, probamos que la mera existencia de componentes

isomorfas cumpliendo las condiciones en ambas álgebras de grupo significa que el invariante

ha de ser igual en los grupos. Para esto usamos la construcción de las componentes de

[OdRS06] (véase Theorem 1.19) y Teoŕıa de Galois.

Una vez hemos probado que cada uno de los invariantes está determinado por el álgebra

de grupo, como hemos probado en el caṕıtulo 2 que estos invariantes son suficientes para

describir el grupo salvo isomorfismo, hemos acabado la demostración del resultado positivo

para el Problema del Isomorfismo de álgebras de grupo de grupos metaćıclicos finitos.
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Abstract

The Isomorphism Problem for group rings asks the following question: Given a commutative

ring R and two groups G and H, if the group rings RG and RH are isomorphic then,

are G and H necessarily isomorphic as well? i.e. Is all of the information of the group

unambiguously recoverable from the group ring? We write this as follows:

RG ∼= RH
?⇒ G ∼= H

From now on, when we say that for a given ring or for a given class of groups the Isomor-

phism Problem has a positive (or negative) answer, we mean that the previous implication

is logically true (respectively, false) for that ring or that class of groups, i.e. an isomorphism

of group algebras gives (respectively, does not give) an isomorphism for groups in that case.

This problem, and its specialization to a particular case, has become the main question

studied in this thesis. We say specialization because tackling the whole problem at once

does not make sense, as the most general statement can be proven wrong with small abelian

groups and the complex field (see Example 1.13).

The Isomorphism Problem was first proposed as a problem during the Michigan Algebra

Conference of 1947, by T.M. Thrall, who formulated the problem as follows:

“Given a finite group G and a field K, find all other groups H for which KG ∼=

KH.”

This problem has been studied extensively, with special emphasis on finite groups and the

cases where the coefficient ring is either a field or the ring of integers. One of the first results

is due to G. Higman from before the problem was even stated. He proved that if G and H

are finite abelian groups and ZG ∼= ZH, then G ∼= H [Hig40a, Hig40b]. The same result for

xvii
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the field of rationals instead of the ring of integers was proved by S. Perlis and G. L. Walker

[PW50] (Theorem 1.12). However, if G and H are finite abelian groups of the same order,

then CG ∼= CH (this result was also proved in the previous article). This leads to the easy

counterexamples to the general case that we mentioned before.

This also illustrates a general principle for the Isomorphism Problem: “the smaller the

coefficient ring the greater the chances for a positive answer”. This is a consequence of the

fact that if K is an R-algebra, then KG ∼= K ⊗R RG. Hence, if RG ∼= RH, then

KG ∼= K ⊗R RG ∼= K ⊗R RH ∼= KH.

So, not only Z is the ring with greatest chances to get positive answers to the Isomorphism

Problem, but a negative answer to the Isomorphism Problem for Z is also a negative answer

for every other possible variant of the problem with a different ring. This meant that a lot

of the research was focused on this case and many partial results were obtained. Let us list

some of the types of groups for which the Isomorphism Problem for integral coefficients was

proved to be true:

• Abelian groups, by G. Higman in [Hig40a] and [Hig40b],

• Metabelian groups, by A. Whitcomb in [Whi68],

• p-groups, by K. W. Roggenkamp and L. Scott in [RS87],

• Nilpotent groups, by K. W. Roggenkamp and L. Scott in [RS87],

• Abelian-by-nilpotent groups, by K. W. Roggenkamp and L. Scott in [RS87] and few

months later independently by A. Weiss in [Wei88],

• Simple groups, by W. Kimmerle in [KLST90],

• Supersolvable groups, by W. Kimmerle in [Kim91], Theorem 5.20

• Frobenius and 2-Frobenius groups, by [Kim91], Theorem 5.17,

• Nilpotent-by-abelian groups, a result by W. Kimmerle that can be consulted in [RT92],

Chapter XII.
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For a while it seemed like a definitive positive result for Z was coming. However, M.

Hertweck found two non-isomorphic finite solvable groups with isomorphic integral group

rings [Her01]. These groups have derived length 4 and even size, so the problem still continues

alive for groups of odd order or derived length 3 (for derived length 2, i.e. metabelian, as we

said before the answer to the Isomorphism Problem is positive).

In an influential survey paper on representations of finite groups [Bra63], Brauer posed

the following questions that can be seen as variants of the Isomorphism Problem for group

algebras over fields:

“If two groups G1 and G2 have isomorphic group algebras over every ground field

Ω, are G1 and G2 isomorphic?”.

“When two non-isomorphic groups have isomorphic group algebras?”,

Let us go in a tangent about the former question. A theorem by Passman [Pas65] almost

gives a negative answer to this one. This theorem proves that there exist

p
2
27

(n3−23n2)

non-isomorphic p-groups of order pn that have isomorphic group algebras over all fields of

characteristic not equal to p. This result will be relevant in a minute.

A couple years later, Dade found a counterexample [Dad71] to the problem in question.

He found two non-isomorphic metabelian finite groups, with order divisible by two different

primes, such that their group algebras were isomorphic over every field.

As the counterexamples in Dade’s result were not p-groups, Brauer’s question was still

open for p-groups. However, by Passman result, we know that for p-groups having isomorphic

group algebras over fields of characteristic not equal to p does not mean much, as one can

find as many non-isomorphic p-groups as one wants with this property.

Now, fix two p-groups G and H and let us consider the following question:

FG ∼= FH for every field F of characteristic p
?⇒ G ∼= H (4)

Now, as it happened with Z, if we denote Fp the finite field of p elements and F is any field

of characteristic p, we have:

FpG ∼= FpH ⇒ FG ∼= F ⊗Fp FpG ∼= F ⊗Fp FpH ∼= FH
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So, the question (4) is actually equivalent to

FpG ∼= FpH
?⇒ G ∼= H (5)

This last question is what is commonly known as the Modular Isomorphism Problem (or

MIP). This problem has been solved for a number of cases. The one that is of most interest

for us is that it was proved to be true for metacyclic groups, by Baginski for p > 3 [Bag88]

and Sandling completed the proof [San96].

Recently, the MIP has been given a negative answer, in an article by D. Garćıa-Lucas,

L. Margolis and Á. del Rı́o [GLMdR22]. For more information on the Isomorphism Problem

see [Pas77, Chapter 14], [Seh78, Chapter III] and the recent survey [Mar22].

Now, the problem that we face in this thesis is the variant of the Isomorphism Problem

for R = Q and considering metacyclic finite groups:

QG ∼= QH
?⇒ G ∼= H (6)

When I was proposed by my thesis advisor the idea of going after the Isomorphism Problem

for rational group algebras of finite metacyclic groups, my initial intention was to prove it

wrong. There is a 2009 article [HOdR09] where it was proved that ring isomorphisms between

simple components of the rational group algebras of finite metacyclic groups are determined

by the center, the dimension over Q and the list of local Schur indices at rational primes.

This means that for each group G we had a list of invariants for each simple Wedderburn

component of QG to work with, such that one could go ahead and use the library of small

groups of GAP [GAP12], going over all of the groups of sizes between 2 and 2000, and

compute these invariants, then check if there were any coincidences for the invariants for two

different groups and if so, we had a counterexample in our hands. This strategy was put

into place during my first semester as a PhD student and the results were void. We did not

find a counterexample, but this meant that we should not easily disregard the possibility of

a positive answer existing. When looking at the Modular Isomorphism Problem, the answer

is positive for metacyclic, so that is at least an indicator of hope for characteristic zero.

This leads us to the contents of the thesis, which is centered around proving the positive

answer. The document is divided in four parts: In the first chapter, we introduce the main
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concepts, notation and prove some basic auxiliary results. The next chapter is dedicated to

a classification of finite metacyclic groups, which is the recollected in [GBdR23a]. The third

chapter consists of the positive solution for the Isomorphism Problem for rational group rings

of metacyclic nilpotent groups. The result can be found in [GBdR23b]. The last chapter is

focused on generalizing the result to general finite metacyclic groups, relying heavily in both

the result for nilpotent groups and the classification of finite metacyclic groups. This result

is collected in [GBdR23c].

As we said, most of Chapter 1 is dedicated to introducing the notation and the concepts of

the thesis. One important lemma, Lemma 1.1 is introduced in Section 1.1. It is a result that

is used for computations and it is important because it will be used commonly throughout

the thesis. Another remarkable thing from this chapter is that in Section 1.2 we introduce

the definitions of the parameters that in Chapter 2 will be proved to be the invariants

determining each finite metacyclic group up to isomorphism. In Section 1.3 and Section 1.4

we introduce formally the concept of group ring and we give some history about it, as well

as giving a construction that will be very important in the thesis. Let us elaborate for a

minute. When trying to solve the Isomorphism Problem, it is of utmost importance to be

able to translate structural information from QG to G. In [OdRS04], A. Olivieri, J. J. Simón

and Á. del Ŕıo introduced the concept of strong shoda pair. These are pairs of subgroups

of a group which, in another article by the same authors [OdRS06], are shown to be in a

bijective correspondence with the Wedderburn components of the rational group algebra of

the same group, in the metacyclic case. This way, whenever we want to get information

about a metacyclic group G, we just need to see how this information can be reflected in

Shoda pairs and what are the components associated to these Shoda pairs. This sound easier

than it is in practice but it is the keystone of the arguments used for some of the proofs in

Chapter 3 and most of the proofs in Chapter 4.

In the second chapter of this thesis we focus on classifying the finite metacyclic groups.

This classification relies on the original classification by C. E. Hempel [Hem00], but differs

from it in most of the arguments and the ending result. We needed to obtain a classification

that lent itself to a computational approach. We also needed to be able to clearly identify

the invariants of the group. This way, Section 2.1 is focused on giving the statements of the
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main theorems and explaining the details of the classification. Section 2.2 is dedicated to

proving auxiliary lemmas. In particular, Lemma 2.4 gives a lot of insight into the structure

of the group and will be used a great deal in the last chapter of the thesis. The reason

is that it simplifies obtaining the parameters of the group that are trivial in the nilpotent

case (the case in Chapter 3) but which need to be considered in the general case. In the

same section, Lemma 2.6 is relevant because shows which of the invariants is going to be

problematic and in which cases. Proposition 2.7 and its associated Algorithm 1 are the core

of the computational approach to the problem. With this result we prove how to obtain,

numerically, a minimal factorization of a metacyclic group. This is absolutely necessary to

later make the software package that will allow us to obtain the metacyclic invariants of

any finite metacyclic groups. Lemma 2.8 shows where the most intricate parameters for the

metacyclic group (1.4) come from and why they are necessary. Finally, Theorem 2.9 uses the

previous lemma to finish determining when the last parameter is an invariant. Section 2.3

uses the results of the previous sections to prove the main theorems. Most of the proofs

in this section are straightforward, as most of the work has been done in Section 2.2. The

last section of Chapter 2 is all about the computer implementation. It is an overview of the

GAP [GAP12] package, going over the main functions and algorithms, including a function

that computes the metacyclic invariants of a given metacyclic group and a function that

computes all metacyclic groups of a given size. The latter function requires giving numerical

conditions to check when the list of parameters corresponds to an existing metacyclic group.

Most of the conditions have already been explained as their significance affected other results

along the chapter. In Lemma 2.12 we compile them and we prove the remaining ones.

Let us focus on the third chapter now. As we said, in the third chapter we prove that the

Isomorphism Problem for rational group rings of finite metacyclic p-groups has a positive

answer. The first strategy to prove this problem relied heavily on using four specific invariants

from the group that can be found in the Wedderburn decomposition of the group ring. Let us

consider a group G. The first invariant would be |G|, which is the dimension of QG. Another

invariant is the isomorphism class of G/G′. This is because the Wedderburn components

of Q(G/G′) are exactly the commutative components of the Wedderburn decomposition of

QG and because, by a Perlis-Walker Theorem (Theorem 1.12), QH determines H for any
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abelian group H. In short, the commutative components of the Wedderburn decomposition

of QG determine G/G′. A third invariant would be the number of conjugacy classes of G.

This number is known to be the dimension of the center of QG over Q. The final invariant

is the number of conjugacy classes of cyclic subgroups of G. This is equal to the number

of simple components of QG (see Theorem 1.11). Our hope was being able to identify G

up to isomorphism using these 4 invariants and we almost succeeded. There are specific

cases, when the group is a 2-group and other circumstances arise, in which these invariants

are not able to determine the group. An example of two metacyclic 2-groups which have

these 4 invariants equal is Example 3.7. Now, as these conditions are fairly isolated, we can

actually deal with the few remaining cases by looking for specific components in QG that

differentiate the pairs of groups which have equal invariants. This is done in Lemma 3.8 and

Lemma 3.9. Finally, the result for p-groups is proved in Theorem 3.10.

The generalization to nilpotent groups is surprisingly straightforward. We define proper-

ties to identify certain components of the Wedderburn decomposition of the group algebra.

Then we prove in Lemma 3.15 that the sum of these components is actually isomorphic to

a known number of copies of the group algebra over a Sylow p-subgroup of the group, for

certain primes. In the nilpotent case this is true for all primes dividing the order of the

group. This gives us a way to obtain an isomorphism of group algebras of p-groups from an

isomorphism of groups algebras of nilpotent groups. By this point we have already proved

that if the group algebras of p-groups are isomorphic, the groups themselves are isomor-

phic, and in nilpotent groups if all Sylow p-subgroups are isomorphic, then the groups are

isomorphic, so we have our result.

Finally, in the last chapter we go over the prove of the general case. In Section 4.1 we

simply introduce the main theorem and fix some notation for the rest of the chapter. From

this point on, the rest of the sections focus on proving that the group algebra determines

one of the invariants of the group. This way, when we prove in the last section that the

group algebra determines the last invariant to describe the group, we have finished the proof

of the positive result of the Isomorphism Problem for metacyclic groups. In Section 4.2 we

start by fixing some conditions on fields. This conditions are meant to identify Wedderburn

components of the group algebra with certain properties. We prove that these components
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necessarily exist in Lemma 4.2. We also prove that they have to come from very specific

strong Shoda pairs, such that in the structure of the component as a Galois extension of

Q we can find the information about the parameter that we are looking for. We limit the

possibilities for the Shoda pairs in Lemma 4.3 and Lemma 4.4. These particular two lemmas

will be used again later for similar arguments. The strategy that we have just covered

is imitated several times during the chapter, with different conditions for the fields and

different variations to deal with each case. At the beginning of Section 4.3 we use numerical

arguments and results from Chapter 2 to prove that we can obtain one of the invariants

from the group algebra. On the second half of the section we use a similar argument to the

one used in the previous section to fix another invariant. In Section 4.4 the arguments get

more technical and we need to use a couple of lemmas about cocyclic subgroups (Lemma 1.7

and Lemma 4.13). The strategy followed in this section is similar to the one used in the

previous ones, but in this case the part of determining which Shoda pairs can correspond to

the components with the given conditions gets pretty convoluted. Finally, in Section 4.5, we

finish the proof by showing that QG determines the last invariant. This section is divided in

three cases, because for each case we need to use different conditions over the Wedderburn

components of the group algebra. The strategy is very similar to the one used in Section 4.2:

We fix conditions over the Wedderburn components, then we find Shoda pairs for which the

associated simple components satisfy the conditions. Next, we restrict which Shoda pairs

can be associated to any component that satisfies the conditions. Now, even if the Shoda

pairs are not exactly the same, we prove that the mere existence of isomorphic components

satisfying the conditions in both group algebras means that the invariant has to be equal in

the groups. For this we use the construction of the components taken from [OdRS06] (see

Theorem 1.19) and Galois Theory.

Once we have the proof that each of the invariants are determined by the group algebra,

as we have proved in Chapter 2 that these invariants are enough to describe the group up to

isomorphism, we have finished the proof of the positive result for the Isomorphism Problem

of group algebras of finite metacyclic groups.



CHAPTER1
Preliminaries

In this chapter we are going to present the general concepts and results that will be used

throughout the thesis. Along the document we will explain each symbol explicitly but,

regardless, at the end of the document (page 112) there will be an exhaustive recollection of

the notation.

1.1 Number Theory

In this section we will fixed most of the notation regarding number theory concepts and

other concepts related to those. We also prove a lemma that will be used constantly over

the course of the document. We adopt the convention that 0 ̸∈ N and prime means prime

1
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in N. Let n ∈ N and p a prime. Then, we denote

np = Greatest power of p dividing n.

nπ = Πp∈πnp, where π is any set of primes.

vp(n) = Highest positive integer m such that pm divides n (np = pvp(n)).

π(n) = Set of primes dividing n.

ζn = A complex primitive n-th root of the unity.

Qn = The cyclotomic field Q(ζn).

Cn = Cyclic group of order n.

Un = Group of units of Z/nZ.

[t]n = The element of Un represented by t ∈ Z with gcd(t, n) = 1.

⟨t⟩n = Subgroup of Un generated by [t]n.

on(t) = Order of [t]n in Un, this is, the minimal integer m such that tm ≡ 1 mod n.

Resq = Natural map Resq : Un → Uq, with Resq([t]n) = [t]q where q divides n.

We will see more about Resq later. Now, given a ∈ N, we also denote

S (a | n) =
n−1∑
i=0

ai =

n, if a = 1;

an−1
a−1

, otherwise.

This notation occurs in the following statement where g and h are elements of a group:

If gh = ga then (hg)n = hngS(a|n). (1.1)

The following lemma collects some useful properties of the operator S (− | −) which will

be used throughout the thesis. Some of these properties will be referenced very frequently,

so we remark the importance of this auxiliary result.

Lemma 1.1. Let p,R,m ∈ N with p prime and suppose that R ≡ 1 mod p. We also

denote a = vp(R− 1) > 0.

(1) Suppose that either p ̸= 2 or p = 2 and R ≡ 1 mod 4. Then

(a) vp(R
m − 1) = a+ vp(m) and vp(S (R | m)) = vp(m).
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(b) opm(R) = pmax(0,m−a).

(c) If a ≤ m then ⟨R⟩pm = {[1 + ypa]pm : 0 ≤ y < pm−a}.

(d) Suppose that a ≤ m. If n ∈ N and n ≡ kpm−a mod pm for some k ∈ N

with p ∤ k then

S (R | n) ≡

n+ k2m−1 mod 2m, if p = 2 and m > a;

n mod pm, otherwise.

(2) Suppose that R ≡ −1 mod 4. Then

(a) v2(R
m − 1) =

v2(R + 1) + v2(m), if 2 | m;

1, otherwise;

and v2(S (R | m)) =

v2(R + 1) + v2(m)− 1, if 2 | m;

0, otherwise;

.

(b) o2m(R) =

1, if m ≤ 1;

2max(1,m−v2(R+1)), otherwise

.

(c) v2(R
m + 1) =

v2(R + 1), if 2 ∤ m;

1, otherwise.

.

Proof. (1a) To prove the first equality let us start by proving a simpler case: vp(R
p − 1) =

a+ vp(1). We can write R = 1 + bpa for an integer b such that p ∤ b. Then:

Rp = 1 + bpa+1 +

p∑
i=2

(
p

i

)
bipai. (1.2)

Now, if a ≥ 2, then ai ≥ i + 2 for every i in the range of the sum. On the one hand, pa+2

divides all of the terms of the sum but it does not divide bap+1. On the other hand, pa+1

divides everyone, so clearing the 1 we obtain from the previous equation the result in this

case: vp(R
p − 1) = a + 1. Let us finish the case where a = 1. In this case, p is odd, as the

hypothesis says that when p = 2, a ≥ 2. Then:

Rp = 1 + bp2 +

(
p

2

)
b2p2 +

p∑
i=3

(
p

i

)
bipi.
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In this case, p3 divides the terms in the sum, and also divides
(
p
2

)
b2p2, because as p is odd, p

divides
(
p
2

)
. But it does not divide bp

2
. On the contrary, p2 divides all of them, so vp(R

p−1) =

2 = a+1 in this case as well. We have proved the formula 1+vp(R−1) = vp(R
p−1), but now

we can use it to prove the following formula for powers of p: vp(m)+vp(R−1) = vp(R
pm−1).

Operating by induction, we have proved the result for m = 1, so let us assume the result

true for m− 1 and let us prove it for m:

vp(R
pm−1) = vp((R

pm−1

)p−1) = 1+vp(R
pm−1−1) = 1+vp(m−1)+vp(R−1) = vp(m)+vp(R−1).

In the second equality we used the formula already proved and in the third equality we used

the induction hypothesis. Now we only have left to prove it for an integer m that is not

necessarily a power of m, but this is easy:

vp(R
m − 1) = vp((R

mp′ )mp − 1) = vp(mp) + vp(R
mp′ − 1) = vp(m) + vp(R− 1).

This is because vp(R
mp′ − 1) = vp(R − 1). This can be seen using the same argument as in

equation (1.2), taking m′
p instead of p. Now, the second equality follows using the first one

and the equality Rm − 1 = (R− 1)S (R | m).

(1b) is a direct consequence of (1a).

(1c) By (1a) we have ⟨R⟩pm ⊆ {[1 + ypa]pm : 0 ≤ y < pm−a} and by (1b) the first set has

pm−a elements. As the second one has the same cardinality, equality holds.

(1d) We first assume that n = pm−a. By (1c) we have

S (R | n) ≡
pm−a−1∑

y=0

(1 + ypa) = pm−a + pa
pm−a−1∑

y=0

y

= pm−a +
pm(pm−a − 1)

2
≡

2m−a + 2m−1 mod 2m, if p = 2 and m > a;

pm−a mod pm, otherwise.

.

Now suppose that n = kpm−a. Then Rpm−a ≡ 1 mod pm, by (1b) and hence

S (R | n) =
k−1∑
j=0

pm−a−1∑
i=0

Ri+jpm−a ≡
k−1∑
j=0

S
(
R | pm−a

)

≡

k(2m−a + 2m−1) mod 2m; if p = 2 and m > a;

kpm−a = n mod pm otherwise.
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Suppose now that n ≡ kpm−a mod pm with n > 0. Then n = (k0+pal)2m−a with 0 < k0 ≡ k

mod pa and l ≥ 0. Then

S (R | n) ≡

(k0 + l2a)(2m−a) + 2m−1) ≡ k(2m−a + 2m−1) ≡ n+ k2m−1 mod 2m, if p = 2;

(k0 + lpa)pm−a ≡ kpm−a ≡ n mod pm, otherwise.

So we have the result.

(2a) Suppose that R ≡ −1 mod 4. If 2 ∤ m then Rm ≡ −1 mod 4 and hence v2(R
m −

1) = 1. As R2 ≡ 1 mod 4, if 2 | m then, by (1a) we have v2(R
m − 1) = v2((R

2)
m
2 − 1) =

v2(R
2−1)+ v2

(
m
2

)
= v2(R+1)+ v2(m). This proves the first part of (2a). Then the second

part follows from Rm − 1 = (R− 1)S (R | m).

(2b) follows easily from (2a).

(2c) Since R is odd, both Rm−1 and Rm+1 and are even and exactly one of v2(R
m−1) and

v2(R
m +1) equals 1. Thus, from (2a) we deduce that if 2 | m then v2(R

m +1) = 1. Suppose

otherwise that m is odd and greater than 2. Then v2(R
m−1 − 1) = v2(R+ 1) + v2(m− 1) >

v2(R+1), so that v2(R
m+1) = v2(R(Rm−1−1+1)+1) = v2(R+1+R(Rm−1−1)) = v2(R+1).

□

1.2 Group theory

In this section we will continue establishing the notation of the document. By default all the

groups in this paper are finite. We use standard notation for a group G, g, h, g1, . . . , gn ∈ G
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and subsets A,B of G:

⟨g1, . . . , gn⟩ = Subgroup of G generated by g1, . . . , gn.

gh = h−1gh, i. e. conjugator of g by h.

[g, h] = g−1gh, i. e. conmutator of g and h.

gG = {gh, for every h ∈ H}, i. e. conjugacy class of g in G.

⟨A⟩ = Subgroup of G generated by the elements in A.

Ag = {ag for every a ∈ A}.

[A,B] = {[a, b], for every a ∈ A, b ∈ B}, commutator of A and B.

G′ = Commutator subgroup of G, this is: [G,G].

Z(G) = Center of G, this is: {g ∈ G | gh = hg for every h ∈ G}.

exp(G) = Exponent of G, this is, the smallest integer n such that gn = 1 for every g ∈ G.

Aut(G) = Automorphism group of G.

|g| = Order of g.

H ≤ G = H is a subgroup of G.

N ⊴G = N is a normal subgroup of G.

G×H = Direct product of the groups G and H

G⋊m H = Semidirect product of the groups G and H with kernel of order m

|A| = The cardinal of a set.

π(A) = π(|A|).

Now, given H ≤ G, we also fix the following notation regarding subgroups of a group:

[G : H] = The index of H in G.

NG(H) = The largest subgroup of G in which H is normal.

CG(H) = The largest subgroup of G in which H is central.

CoreG(H) = The largest subgroup of H that is normal in G.

Fix a prime p and g an element of a finite group G. Then, g can be uniquely written

as g = gpgp′ , where gp, gp′ ∈ ⟨g⟩, |gp| is a power of p and |gp′ | is a number coprime with p.
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We call gp the p-part of g and gp′ the p′-part of g. When instead of a prime p we have a

set of primes π, the definition is analogous and in this case we call gπ the π-part of g and

gπ′ the π′-part of g. An important concept that requires its own definition is that of Hall

subgroups.

Definition 1.2 (Hall Subgroup). Let G be a group and π a set of primes. A subgroup

of G is a Hall subgroup if its order is coprime to its index. Additionally, a subgroup

of G is a Hall π-subgroup if it is a Hall subgroup and its order is divisible only by the

primes in π.

In case G is a finite group having a unique Sylow p-subgroup, this will be denoted by

Gp. In particular, this applies to each nilpotent group, because if G is a finite nilpotent

group then the Sylow p-subgroups of G are unique [Rob82, 5.2.4]. If G has a unique Hall

p′-subgroup then it will be denoted by Gp′ . An important theorem about Hall subgroups is

the following:

Theorem 1.3 (P. Hall, [Rob82, 9.1.7]). Let π be a non-empty set of primes and G a

finite solvable group. Then every π-subgroup of G is contained in a Hall π-subgroup of

G. Moreover, all Hall π-subgroups of G are conjugate in G.

The previous theorem will be used a lot in Chapter 2, mostly without mention.

The majority of the groups studied in this thesis are metacyclic. Let us proceed with the

definition of metacyclic groups.

Definition 1.4 (Metacyclic). A group G is metacyclic if there exists N ⊴G such that

N and G/N are both cyclic.

The second chapter will be dedicated to the classification of these groups. They will also

be the main actors of the third and fourth chapters, as these will be dedicated to solving a

research problem for finite metacyclic groups.

The following is a very important notation that will occur frequently in the following

chapters:

πG = {p ∈ π(G) : G has a normal Hall p′-subgroup} and π′
G = π(G) \ πG. (1.3)
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Observe that if p ∈ πG, then G has a unique Hall p′-subgroup Gp′ , and hence Gπ′
G
= ∩p∈πG

Gp′

is the unique Hall π′-subgroup of G.

Let m be a positive integer. Then we have isomorphisms Aut(Cm) ← Um → Aut(Qm)

which associate [t]m ∈ Um with the automorphism of Cm given by a 7→ at and the automor-

phism of Qm given by ζm 7→ ζtm. Sometimes we abuse the notation and identify elements

of Aut(Cm), Um and Aut(Qm) via these isomorphisms. For example, if X is a subset of

Aut(Cm) or Um, then (Qm)
X denotes the subfield of Qm formed by the elements fixed by the

images of the elements X in Aut(Qm).

Fix m a positive integer and let T be a subgroup of Um. Then we define [T ] = (r, ϵ, k)

with

r = greatest divisor of m such that Resr2′ (T ) = 1 and Resr2(T ) ⊆ ⟨−1⟩r2 ;

ϵ =

−1, if Resr2(T ) ̸= 1;

1, otherwise.

k = |Resmν (T )|, with ν = π(m) \ π(r).

If moreover, n, s ∈ N then we denote

[T, n, s] = mν

∏
p∈π(r)

m′
p

with m′
p defined for each p ∈ π(r) as follows:

if ϵp−1 = 1 then m′
p = min

(
mp, kprp,max

(
rp, sp, rp

spkp
np

))
;

if ϵ = −1 then m′
2 =


r2, if either k2 ≤ 2 or m2 ≤ 2r2;

m2

2
, if 4 ≤ k2 < n2, 4r2 ≤ m, and if s2 ≤ n2r2 then s2 = m2 < n2r2;

m2, otherwise.

(1.4)

Let A be a cyclic group of order m. Then the map σA : Um → Aut(A) associating [r]m

with the map a 7→ ar, is a group isomorphism. If moreover A is a normal subgroup of a

group G then we define

TG(A) = σ−1
A (InnG(A)),
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where InnG(A) is formed by the restriction to A of the inner automorphisms of G. We

introduce notation for the entries of TG(A) by setting

(rG(A), ϵG(A), kG(A)) = [TG(A)].

Definition 1.5 (Metacyclic kernel, factorization, minimal). Let G be a group. A

metacyclic kernel of G is a normal subgroup A of G such that A and G/A are cyclic.

A metacyclic factorization of a group G is an expression G = AB where A is a normal

cyclic subgroup of G and B is a cyclic subgroup of G.

A minimal kernel of G is a kernel of G of minimal order.

A metacyclic factorization G = AB is said to be minimal in G if (|A|, rG(A), [G :

B]) is minimal in the lexicographical order. In that case we denote mG = |A|, nG =

[G : A], sG = [G : B] and rG = rG(A).

Clearly a group is metacyclic if and only if it has a metacyclic kernel if and only if it has

a metacyclic factorization. Sometimes we abbreviate metacyclic kernel of G or metacyclic

factorization of G and we simply say kernel of G or factorization of G.

If G = AB is a metacyclic factorization of G then we denote

∆(AB) = Res[T,n,s](T ), with T = TG(A), n = [G : A] and s = [G : B].

We will prove that ∆(AB) is constant for all the minimal metacyclic factorizations (Corol-

lary 2.10). This allows us to define the desired invariant:

MCINV(G) = (|A|, [G : A], [G : B],∆(AB)), with G = AB minimal factorization of G.

Our main result of Chapter 2 states that MCINV(G) determines G up to isomorphisms,

A.

Another kind of groups that will appear in the document, albeit with less relevance, are

metabelian groups.

Definition 1.6 (Metabelian). A group G is metabelian if there exists N⊴G such that
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N and G/N are both abelian.

Every metacyclic group is clearly metabelian, but the implication does not hold the other

way around.

If G is a group, then a normal subgroup H of G is said to be cocyclic in G if G/H

is cyclic. We close this section computing the cocyclic subgroups of a 2-generated abelian

p-group. This will be used in Section 4.4.

Lemma 1.7. Let L = ⟨g⟩ × ⟨h⟩ be a an abelian p-group with |g| ≥ |h| and let

CL =

(i, y, x) : i ∈ {1, 2}, 1 ≤ x ≤ y and

y | |h|, if i = 1;

y | |g|, p | x and p | y | |h|x, if i = 2


Then

(i, y, x) 7→ Ki,y,x =

⟨gh
x, hy⟩ , if i = 1;

⟨gxh, gy⟩ , if i = 2;

defines a bijection from CL to the set of cocyclic subgroups of L. Moreover, for every

(i, y, x) ∈ CL we have

[L : Ki,y,x] = y, ⟨g⟩∩Ki,y,x =


〈
g

y
xp

〉
, if i = 1;

⟨gy⟩ ; if i = 2;

and ⟨h⟩∩Ki,y,x =

⟨h
y⟩ , if i = 1;〈
h

y
xp

〉
; if i = 2.

Proof. Clearly, if (i, y, x) ∈ CL, then Ki,y,x is a cocyclic subgroup of L.

Let K be a cocyclic subgroup of L. Suppose that K ̸⊆ ⟨gp, h⟩. Then K contains ⟨ghz⟩ for

some integer z. Moreover, L = ⟨ghz⟩ × ⟨h⟩. Therefore K = ⟨ghz, hy⟩ = ⟨ghx, hy⟩ = K1,y,x,

with y = [L : K] | |h| and x the unique integer in the interval [1, y] such that x ≡ z mod y.

Moreover, K1,y,x = ⟨ghx⟩ × ⟨hy⟩ and K1,y,x ∩ ⟨h⟩ = ⟨hy⟩. Let u be a positive integer. Then

gu ∈ K1,y,x if and only if there are integers a and b such that gu = gahax+by. In that case,

u ≡ a mod |g|. As y | |h| and |h| | |g|, it follows that gu ∈ K1,y,x if and only if there is an

integer b such that |h| | xu + by if and only if y | xu if and only if y
gcd(x,y)

| u if and only if

y
xp
| u. This shows that ⟨g⟩ ∩K1,y,x =

〈
g

y
xp

〉
.

Suppose otherwise that K ⊆ ⟨gp, h⟩. Then K ∩ ⟨g⟩ = ⟨gy⟩ for some y with p | y

and y | |g|, and K contains ⟨gxh⟩ for some integer x with p ≤ x ≤ y and p | x. Then



1.3. GROUP RINGS AND THE ISOMORPHISM PROBLEM 11

L = ⟨gxh, g⟩ and |g ⟨gxh, gy⟩ | = y and hence K =
〈
gxh, gy, gδ

〉
for some δ | y. However,

as K ∩ ⟨g⟩ = ⟨gy⟩ it follows that K = ⟨gxh, gy⟩. As gx|h| ∈ ⟨g⟩ ∩K = ⟨gy⟩, y | x|h|. Thus

(2, y, x) ∈ CL and K = K2,y,x. Furthermore, [L : K] = [⟨g⟩ : K ∩ ⟨g⟩] = [⟨g⟩ , ⟨gy⟩] = y,

since L = ⟨K, g⟩. Conversely, suppose that (2, y, x) ∈ CL Let u be a positive integer. Then

gu ∈ K2,y,x if and only if gu = gax+byha for some integers a and b. In that case |h| | a and

hence y | ax because y | x|h|. Moreover u ≡ ax + by mod |g| and as y | |g| we have that

y | u. Therefore ⟨g⟩ ∩K2,y,x = ⟨gy⟩. Finally, hu ∈ K2,y,x if and only if there are integers a

and b with hu = gax+byha. Then a = u + c|h| for some integer c and ux + xc|h| + by ≡ 0

mod |g|. As y | |g| and y | x|h| we deduce that y | ux. Thus ⟨h⟩ ∩K2,y,x ⊆
〈
h

y
xp

〉
and as

h
y
xp = (gxh)

y
xp (gy)

− x
xp ∈ K2,y,x, we conclude that ⟨h⟩ ∩K2,y,x =

〈
h

y
xp

〉
.

Let (i1, y1, x1), (i2, y2, x2) ∈ CL with Ki1,y1,x1 = Ki2,y2,x2 . It remains to prove that

(i1, y1, x1) = (i2, y2, x2). First of all i1 = i2, as K1,y1,x1 ̸⊆ ⟨gp, h⟩ and K2,y2,x2 ⊆ ⟨gp, h⟩.

Suppose that i1 = i2 = 1. Then ⟨hy1⟩ = K1,y1,x1 ∩ ⟨h⟩ = K1,y2,x2 ∩ ⟨h⟩ = ⟨hy2⟩ and therefore

y1 = y2. Moreover, ghx1 = (ghx2)a(hy2)b = gahax2+by for some integers a and b. Then a ≡ 1

mod |g| and, as |h| | |g| and y | |h|, we have that x1 ≡ x2 mod y1. Then x1 = x2, as

1 ≤ x1, x2 ≤ y1 = y2. Suppose that i2 = 2. Since y1, y2 | |g| and ⟨gy1⟩ = K2,y1,x1 ∩ ⟨g⟩ =

K2,y2,x2 ∩⟨g⟩ = ⟨gy2⟩, we have y1 = y2. Moreover, gx1h = (gx2h)a(gy2)b = gax2+by2ha for some

integers a and b. Then a = 1+ c|h| for some integer c and as y2 | x2|h| and y | |g|, it follows

that x1 ≡ ax2 = x2 + cx2|h| ≡ x2 mod y2. Thus x1 = x2. □

1.3 Group Rings and the Isomorphism Problem

The concept of group ring appeared implicitly in an article by A. Cayley [Cay54] in 1854,

which is considered the first work in abstract Group Theory. In its article, Cayley exposed

a formal construction of the group ring CS3 which is essentially the same that is studied

nowadays. In 1892, group rings appeared again in an article by T. Molien [Mol92] about

complex algebras, in which he introduced the notions of simple and semisimple algebras. In

a later article [Mol97], Molien obtained important results in the Theory of Complex Repre-

sentations of Finite Groups, including the orthogonality relations for group characters. The

link between Representation Theory of Groups and Theory of Algebras (which is obtained
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through group algebras) was vastly recognised after an important article by E. Noether

[Noe29], some works with R. Brauer [BN27] and an article by Brauer [Bra29]. The study of

group rings by themselves followed soon, after the inclusion of questions about group rings

in a famous list of problems in Ring Theory of I. Kaplansky ([Kap57], [Kap70]). The first

book dedicated exclusively to group rings was written by D. Passman and published in 1977

[Pas77].

After giving a small historic introduction to group rings, it is time to give a proper

definition:

Definition 1.8 (Group Ring). Given G a group and R a ring, the group ring of G

over R is the ring RG of all linear combinations of the form∑
g∈G

agg,

where aG ∈ R and for almost all g ∈ G, ag = 0. The sum in this ring is defined

component-wise ∑
g∈G

agg =
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g,

and the product is given by(∑
g∈G

agg

)
·

(∑
g∈G

bgg

)
=
∑
g∈G

( ∑
h1h2=g

ah1bh2

)
g.

The identity of this ring is the element 1R1G, where 1R is the identity of R and 1G the

identity of G. When we work with RG, we will denote 1R1G as 1, as usual. If R is a

field, we will sometimes call RG the group algebra of G over R.

The following theorem provides the necessary and sufficient conditions on R and G for

the group ring RG to be semisimple (see [PMS02, Theorem 3.4.7]).

Theorem 1.9 (Maschke). Given a ring R and a group G, the group ring RG is

semisimple if and only if R is a semisimple ring, G is finite and |G| is a unit in R.

In particular, if G is a finite group and F is a field, then FG is semisimple if and only if

the characteristic of F does not divide |G|. In particular, QG is semisimple for every finite
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group G.

Theorem 1.10 (Artin-Wedderburn). Let R be a semisimple ring. Then

R ∼=
r
⊕
i=1

Mni
(Di), with each Di a division rings.

In this formula, r is the number of simple R-modules and ni and Di are determined

by R up to isomorphism.

As QG is semisimple for every finite group G, that means that we can apply the previous

theorem to obtain a decomposition ofQG into a sum of matrices of division rings. We will call

this decomposition the Wedderburn decomposition of QG, and we will use it frequently along

the thesis. In the next section we will see what is the structure of each simple component

for our case.

The problem that we are trying to solve is the Isomorphism Problem for group algebras.

This problem asks whether we can obtain an isomorphism of groups from an isomorphism

from group algebras over the same groups. We can write this as follows.

RG ∼= RH
?⇒ G ∼= H (1.5)

We look for answers when R = Q and G metacyclic. The third and fourth chapters are

all about solving this problem for metacyclic groups. Now we recall two results relevant for

the Isomorphism Problem for rational group algebras. The first one is a well known result

of Artin which tell us what is the number of Wedderburn components of a rational group

algebra. See [CR62, Corollary 39.5] or [JdR16, Corollary 7.1.12]

Theorem 1.11 (Artin). If G is a finite group then the number of Wedderburn com-

ponents of QG is the number of conjugacy classes of cyclic subgroups of G.

The second one is a consequence of the Perlis-Walker Theorem. Let us first state this

Theorem:

Theorem 1.12 (Perlis-Walker[PW50]). Let G be a finite abelian group. Then the

group ring QG determines G up to isomorphism.

In the same article [PW50], Perlis and Walker proved that given an abelian group G, the
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group algebra CG is isomorphic to |G| copies of C. The result is more general than that,

but this statement is enough to give easy counterexamples to the Equation (1.5) for R = C:

Example 1.13. Consider the groups C4 and C2 × C2. This groups are obviously not

isomorphic, but using Perlis-Walker’s Theorem we find:

CC4 ∼= C⊕ C⊕ C⊕ C ∼= C (C2 × C2)

The following result is a consequence of Theorem 1.12 that will be used to get information

of the group from the rational group algebra.

Theorem 1.14. If G and H are finite groups with QG ∼= QH then G/G′ ∼= H/H ′.

Proof. Let A(G) denote the kernel of the natural homomorphism QG → Q(G/G′). Then

A(G) is a the smallest ideal I of QG such that (QG)/I is commutative. In particular,

if f : QG → QH is an isomorphism then f(A(G)) = A(H) and therefore f induces an

isomorphism Q(G/G′) ∼= Q(H/H ′). Then G/G′ ∼= H/H ′ by the Perlis-Walker Theorem

[PW50]. □

1.4 Wedderburn decomposition of rational group

algebras

In this section we are going to explain the structure of QG in the case where G is metacyclic.

To do this we need to introduce some more notation and concepts of Theory of Algebras.

Most of the contents of this section are taken from the books [Pie82] and [JdR16] and the

article [OdRS04].

Definition 1.15 (Degree). If F is a field and A is a finite dimensional central simple

F -algebra, then Deg(A) denotes the degree of A, i.e. dimF A = Deg(A)2 (cf. [Pie82]).

Let F/K be a finite Galois field extension and let G = Gal(F/K). Let U(F ) denote the

multiplicative group of F . If f : G × G → U(F ) is a 2-cocycle, then (F/K, f) denotes the
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crossed product

(F/K, f) =
∑
σ∈G

tσF, xtσ = tσσ(x), tσtτ = tuvf(u, v), (x ∈ F, σ, τ ∈ G).

Suppose that G is cyclic of order n and generated by σ and let a ∈ U(K). Then there is

a cocycle f : G×G→ U(K) given by

f(σi, σj) =

1, if 0 ≤ i, j, i+ j < n;

a, if 0 ≤ i, j < n ≤ i+ j;

and the crossed product algebra (F/K, f) is said to be a cyclic algebra. This algebra is

usually denoted (F/K, σ, a), and it can be described as follows:

(F/K, σ, a) =
n−1∑
i=0

uiF = F [u | xu = uσ(x), un = a]

If A is a semisimple ring, then A is a direct sum of central simple algebras, such expression

of A is called the Wedderburn decomposition of A and its simple factors are called the

Wedderburn components of A. The Wedderburn components of A are the direct summands

of the form Ae with e a primitive central idempotent of A.

Let G be a finite group. By Maschke’s Theorem (1.9), QG is semisimple and the center

of each Wedderburn component A of QG is isomorphic to the field of character values

Q(χ) = Q (χ(g) : g ∈ G) of any irreducible character χ of G satisfying χ(A) ̸= 0. It is well

known that Q(χ) is a finite abelian extension of Q inside C and henceforth it is the unique

subfield of C isomorphic to Q(χ). Sometimes we will abuse the notation and consider Z(A)

as equal to Q(χ).

An important tool for us is a technique introduced in [OdRS04] to describe the Wedder-

burn decomposition of QG for G a metabelian group. See also [JdR16, Section 3.5]. Let us

go over the main ingredients.

If H is a subgroup of G, then denote Ĥ = |H|−1
∑

h∈H h, as an element in QG. It is clear

that Ĥ is an idempotent of QG and it is central in QG if and only if H is normal in G.

If N ⊴G then we denote

ε(G,N) =

Ĝ, if G = N ;∏
D/N∈M(G/N)(N̂ − D̂), otherwise.
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where M(G/N) denotes the set of minimal normal subgroups of G/N . Clearly ε(G,N) is a

central idempotent of QG.

If (L,K) is a pair of subgroups of G with K ⊴ L, then we denote

e(G,L,K) =
∑

gCG(ε(L,K))∈G/CG(ε(L,K))

ε(L,K)g.

Then e(G,L,K) belongs to the center of QG. If moreover, ε(L,K)gε(L,K) = 0 for every

g ∈ G \ CG(ε(L,K)), then e(G,L,K) is an idempotent of QG.

An important concept that will be used a lot in this thesis is the following:

Definition 1.16 (SSP). A strong Shoda pair of G is a pair (L,K) of subgroups of G

satisfying the following conditions:

(SS1) K ⊆ L⊴NG(K),

(SS2) L/K is cyclic and maximal abelian in NG(K)/K,

(SS3) ε(L,K)gε(L,K) for every g ∈ G \ CG(ε(L,K)).

We can now give the following construction, which illustrate the correspondence between

strong Shoda pairs and Wedderburn components.

Remark 1.17. Suppose that (H,K) is a strong Shoda pair of G and let m = [H : K]

and N = NG(K). Then H/K ∼= Cm and the action of N by conjugation on H induces

a faithful action of N/H on Q(ζm). More precisely, if n ∈ N then hnK = αr(hK)

for some integer r, with gcd(r,m) = 1. The map nH → σr defines an injective

homomorphism α : N/H → Aut(Q(ζm)). Let FG,H,K = Q(ζm)
Im α. Then we have a

short exact sequence [JdR16, Theorem 3.5.5]:

1→ H/K ∼= ⟨ζm⟩ → N/K → N/H ∼= Gal(Q(ζm)/FG,H,K)→ 1

which induces an element f ∈ H2(N/H,Q(ζm)). More precisely from an election of

a set of representatives {cu : u ∈ N/H} of H cosets in N , we define f(u, v) = ζkm if

cucv = cuvh
k. This defines an element of H2(N/H,Q(ζm)) because another election

yields to another 2-cocycle differing in a 2-coboundary. Associated to f one has the
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crossed product algebra

A(G,H,K) = (Q(ζm)/FG,H,K , f) = ⊕u∈N/HtuQ(ζm),

xtu = tuσu(x), tutv = tuvf(u, v), (x ∈ Q(ζm), u, v ∈ N/K).

Proposition 1.18. [OdRS04, Proposition 3.4] [JdR16, Theorem 3.5.5] Let (L,K)

be a strong Shoda pair of G and let N = NG(K), m = [L : K], n = [G : N ]

and e = e(G,L,K). Then e is a primitive central idempotent of QG and QGe ∼=

Mn(A(N,L,K)). Moreover, Deg(QGe) = [G : L], Z(QGe(G,L,K)) ∼= FN,L,K and

{g ∈ G : ge = e} = CoreG(K).

In the particular case where G is metabelian all the Wedderburn components of QG are

of the form A(N,L,K) for some special kind of strong Shoda pairs of G. More precisely:

Theorem 1.19. [OdRS04, Theorem 4.7] [JdR16, Theorem 3.5.12] Let G be a finite

metabelian group and let A be a maximal abelian subgroup of G containing G′. Then

every Wedderburn component of QG is of the form QGe(G,L,K) for subgroups L and

K satisfying the following conditions:

(1) L is a maximal element in the set {B ≤ G : A ≤ B and B′ ≤ K ≤ B}.

(2) L/K is cyclic.

Moreover every pair (L,K) satisfying (1) and (2) is a strong Shoda pair of G and

hence QGe(G,L,K) ∼= Mn(A(N,L,K)) with N = NG(K) and n = [G : N ] .

Suppose that G is a finite metacyclic group and G = AB is a metacyclic factorization

of G. Then every Wedderburn component of QG is of the form QGe(G,L,K) for L and K

subgroups of G with A ⊆ L and satisfying the conditions of Theorem 1.19. Then L =
〈
a, bd

〉
,

N = NG(K) = ⟨a, bn⟩ where [G : N ] = n | d | [G : A]. Moreover, L/K is cyclic, say generated

by uK, and normal in N/K so that (uK)b
nK = uxK and (uK)

d
n = ay for some integers x

and y. By Proposition 1.18,

A(N,L,K) ∼= (Qm/F, σx, ζ
y
m) = Qm[u | ζmu = uζxm, u

k = ζym], (1.6)
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where m = [L : K] and σx is the automorphism of Qm given σx(ζm) = ζxm.



CHAPTER2
Finite Metacyclic Groups

Over the course of this chapter we will explore metacyclic groups and their classification.

The main results are collected in Theorem A, Theorem B and Theorem C. The contents of

this chapter are compiled in [GBdR23a].

In Section 2.1 we introduce the main theorems to prove and their consequences. In

Section 2.2 we prove several lemmas on metacyclic factorizations aiming to an intrinsic de-

scription of when a metacyclic factorization is minimal. It includes an algorithm to obtain a

minimal metacyclic factorization from an arbitrary one. This section concludes with Theo-

rem 2.9 which is the keystone to prove Theorem A, Theorem B and Theorem C in Section 2.3.

In Section 2.4 we introduce an algorithm to compute the metacyclic invariants of a given

metacyclic group and use this to decide if two metacyclic groups are isomorphic, and an-

other algorithm to construct all the metacyclic groups of a given order. We present also

implementations in GAP [GAP12] of these algorithms.

2.1 Introduction

It is well known that every finite metacyclic group has a presentation of the following form

Gm,n,s,t =
〈
a, b | am = 1, bn = as, ab = at

〉
form,n, s, t ∈ N satisfying s(t−1) ≡ tn−1 ≡ 0 mod m. However, the parametersm,n, s and

t are not invariants of the group. Traditionally, the authors that deal with the classification of

19
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finite metacyclic group select distinguished values of m,n, s and t so that each isomorphism

class is described by a unique election of the parameters (see [Zas99, Hal59, Bey72, Kin73,

Lie96, Lie94, NX88, Réd89, Lin71, Sim94]). This approach was culminated by C.E. Hempel

who presented a classification of all the finite metacyclic groups in [Hem00]. However it is

not clear how to use this classification to describe the distinguished parameters identifying

a given metacyclic group and how those distinguished parameters are connected with group

invariants.

In [GBdR23a], we presented an alternative classification of the finite metacyclic using a

slightly different approach in terms of group invariants which allows an easy implementation.

We associate to every finite metacyclic group G a 4-tuple MCINV(G) = (mG, nG, sG,∆G)

where mG, nG and sG play the role of m,n and s in the presentation above and ∆G is a cyclic

subgroup of units modulo a divisor of mG, such that any generator of this subgroup can play

the role of t. Our main result consists in proving that MCINV(G) is an invariant of the group

G which determines G up to isomorphism, i.e. if G and H are two finite metacyclic groups

then they are isomorphic if and only if MCINV(G) = MCINV(H) (Theorem A). Moreover,

we describe in Theorem B the possible values (m,n, s,∆) of MCINV(G) and for such value

we show how to find an integer t such that MCINV(Gm,n,s,t) = (m,n, s,∆) (Theorem C). This

allows a computer implementation of the following function: one which computes MCINV(G)

for any given finite metacyclic group, and hence of another function which decide whether

two metacyclic groups are isomorphic, and another one which computes all the metacyclic

subgroups of a given order. This classification will be important in Chapter 4, where we will

need it to prove Theorem F.

Theorem A. Two finite metacyclic groups G and H are isomorphic if and only if

MCINV(G) = MCINV(H).

Our next result describes the values realized as MCINV(G) with G a finite metacyclic

group. In the remainder of the section we use the notation in Theorem B.

Theorem B. Let m,n, s ∈ N and let ∆ be a cyclic subgroup of Um′ with m′ | m. Let

[∆] = (r, ϵ, k) and ν = π(m) \ π(r). Then the following conditions are equivalent:
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(1) (m,n, s,∆) = MCINV(G) for some finite metacyclic group G.

(2) (a) s divides m, |∆| divides n and mν = sν = m′
ν.

(b) (1.4) holds for every p ∈ π(r).

(c) If ϵ = −1 then m2

r2
≤ n2, m2 ≤ 2s2 and s2 ̸= n2r2. If moreover 4 | n, 8 | m

and k2 < n2 then r2 ≤ s2.

(d) For every p ∈ π(r) with ϵp−1 = 1, we have mp

rp
≤ sp ≤ np and if rp > sp then

np < spkp;

Our last result shows how to construct a metacyclic group G with given MCINV(G): If

m,n, s ∈ N with s | m then we define the following subgroup of Um:

Un,s
m = {[t]m : m | s(t− 1) and tn ≡ 1 mod m}.

If T is a cyclic subgroup of Un,s
m generated by [t]m then we denote

Gm,n,s,T = Gm,n,s,t = {a, b : am = 1, bn = as, ab = at}.

It is easy to see that the isomorphism type of this group is independent of the election of the

generator [t]m of T (Lemma 2.2.(5)). Moreover, the assumption T ⊆ Un,s
m warranties that

|a| = m, |Gm,n,s,T | = mn and |b| = mn
s
.

Remark 2.1. Suppose that m,n, s and ∆ ≤ Um′ satisfy the conditions of statement (2)

in Theorem B and [∆] = (r, ϵ, k). Then Resm′
p
(∆) = ⟨ϵp−1 + rp⟩m′

p
for every p ∈ π(r)

and hence there is an integer t′ such that ∆ = ⟨t′⟩m′ and t′ ≡ ϵp−1 + rp mod m′
p for

every p ∈ π(r). Using the Chinese Remainder Theorem we can select an integer t such

that t ≡ t′ mod m′ and t ≡ ϵp−1 + rp mod mp for every p ∈ π(r) and let T = ⟨t⟩m.

Then T ⊆ Un,s
n , Resm′(T ) = ∆ and [T ] = [∆]. Then the following theorem ensures that

MCINV(Gm,n,s,T ) = (m,n, s,∆).
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Theorem C. Let m,n, s ∈ N and let ∆ be a cyclic subgroup of Um′ with m′ | m. Sup-

pose that they satisfy the conditions of (2) in Theorem B and let T be a cyclic subgroup

of Un,s
m such that [T ] = [∆] and Resm′(T ) = ∆. Then (m,n, s,∆) = MCINV(Gm,n,s,T ).

For implementation it is convenient to replace the fourth entry of MCINV(G) by a dis-

tinguished integer tG so that G ∼= GmG,nG,sG,tG and G ∼= H if and only if (mG, nG, sG, tG) =

(mH , nH , sH , tH). We select tG satisfying the conditions of Remark 2.1. In particular, [tG]mπ

is uniquely determined by the condition t ≡ ϵp−1 + rp mod mp for every p ∈ π(r). How-

ever there is not any natural election of [tG]mπ′ so when it comes to the implementation we

will simply take the minimum possible value. More precisely, if (m,n, s,∆) = MCINV(G),

(r, ϵ, k) = [∆] and m′ is given by (1.4) then define

tG = min{t ≥ 0 : Resm′(⟨t⟩m) = ∆ and t ≡ ϵp−1 + rp mod mp for every p ∈ π(r)}.

We call (mG, nG, sG, tG) the list of metacyclic invariants of G. Clearly if H is another

metacyclic group then G ∼= H if and only if G and H have the same metacyclic invariants.

Moreover, by Theorem C, if (m,n, s, t) is the list of metacyclic invariants of G then G ∼=

Gm,n,s,t.

Let G be a metacyclic group. Observe that A is a kernel of G if and only if G has a

metacyclic factorization of the form G = AB. In that case, if

m = |A|, n = [G : A], s = [G : B] and T = TG(A) = ⟨t⟩m ,

then s | m, |B| = nm
s
, T ⊆ Un,s

m and A and B have generators a and b, respectively, such

that bn = as and ab = at. Thus G ∼= Gm,n,s,T .

The following lemma follows by straightforward arguments.

Lemma 2.2. Let m,n, s ∈ N, let T be a cyclic subgroup of Um, and denote (r, ϵ, k) =

[T ], m′ = [T, n, s] and ∆ = Resm′(T ).

(1) If T = ⟨t⟩m then |T | = om(t), r2′ = gcd(m2′ , t − 1), r2 = max(gcd(m2, t −

1), gcd(m2, t+ 1)) = gcd(m2, t− ϵ) and k = omν (t) with ν = π(m) \ π(r).

(2) r | m′ | m and π(m) = π(m′).
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(3) [T ] = [∆].

(4) For every p ∈ π(r) we have Resmp(Tp) = ⟨ϵp−1 + rp⟩mp
and

|Resmp(Tp)| =

2, if p = 2, ϵ = −1 and r2 = m2;

mp

rp
, otherwise.

(5) If s | m and T ⊆ Un,s
m then mπ(r) | rn, mπ(r) | rs, k | nπ(m)\π(r) and if ϵ = −1

then m2 ∈ {s2, 2s2}. If moreover T = ⟨t⟩m = ⟨u⟩m then there is a k ∈ N with

gcd(k, |T |) = 1 and a 7→ ak, b 7→ bk defines an isomorphism Gm,n,s,t → Gm,n,s,u.

The following property is related to that of being a minimal metacyclic factorization. We

will see this in detail in Proposition 2.7.

Definition 2.3. Given m,n, s ∈ N with s | m and a cyclic subgroup of Um, we say

that T is (n, s)-canonical if T ⊆ Un,s
m and if (r, ϵ, k) = [T ] then the following conditions

are satisfied:

(Can–) If ϵ = −1 then s2 ̸= r2n2. If moreover, m2 ≥ 8, n2 ≥ 4, k2 < n2 then r2 ≤ s2.

(Can+) For every p ∈ π with ϵp−1 = 1 we have sp | n and rp | s or spkp ∤ n.

2.2 Metacyclic factorizations

In this section G is a finite metacyclic group. Moreover we fix the following notation:

π = πG

π′ = π′
G

kG = |InnG(G
′
π′)|.

In our first lemma we show that π, π′ and kG are determined by any kernel of G.

Lemma 2.4. Let G = AB be a metacyclic factorization and let m = |A|, s = [G : A],

r = rG(A) and k = kG(A) (see Chapter 1, Section 1.2). Then
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(1) For every set of primes µ, AµBµ is a Hall µ-subgroup of G.

(2) p ∈ π′ if and only if G′ \Z(G) has an element of order p if and only if A \Z(G)

has an element of order p.

(3) G′
π′ = Aπ′ and Aπ′ ∩Bπ′ = 1.

(4) π′ = π(m) \ π(r), sπ′ = mπ′ and k = kG.

(5) G = Aπ′ ⋊
(
Bπ′ ×

∏
p∈π ApBp

)
. In particular [Bp′ , Ap] = 1 for every p ∈ π.

Proof. (1) As A is normal in G, AµBµ is a µ-subgroup of G and Aµ′Bµ′ is a µ′-subgroup of

G. Moreover G = AB = AµBµAµ′Bµ′ and hence [G : AµBµ] = |Aµ′Bµ′|. Thus AµBµ is a

Hall µ-subgroup of G.

(2) As G/A is abelian, G′ ⊆ A. Let p ∈ π(|G|). If p ∤ m then ABp′ is a normal Hall

p′-subgroup of G and hence p ∈ π. Suppose otherwise that p | m and let C be the unique

subgroup of order p in A. Since C is normal in G, it follows that G′ \ Z(G) has an element

of order p if and only if A \ Z(G) has an element of order p if and only if C ̸⊆ Z(G). Since

Aut(C) is cyclic of order p − 1, if p ∈ π and N is a normal Hall p′-subgroup of G then

G = N ⋊ P with P a Sylow p-subgroup of G containing C and as [P,C] = 1 it follows

that [G,C] ⊆ [N,C] ⊆ N ∩ C = 1 and hence C ⊆ Z(G). Conversely, if C ⊆ Z(G) then

[Ap, Ap′Bp′ ] = 1 because the kernel of the restriction homomorphism Aut(Ap) → Aut(C) is

a p-group. As Ap′B normalizes Ap′Bp′ it follows that the latter is a normal Hall p′-subgroup

of G and hence p ∈ π.

(3) Let p ∈ π′, c an element of order p in A and a a generator of A. Since |Aut(⟨c⟩)| = p−1

and c ̸∈ Z(G), we have that abp = aop for some integer o such that gcd(o, p) = 1. Moreover,

o−1 is coprime with p because 1 ̸= [c, b] = co−1. Then Ap =
〈
ao−1
p

〉
⊆ G′ and hence Ap = G′

p.

Moreover, if g ∈ Ap ∩ Bp \ {1} then [g,B] = 1 and c ∈ ⟨g⟩, yielding a contradiction. Thus

Ap ∩Bp = 1. Since this is true for each p ∈ π′, we have Aπ′ = G′
π′ and Aπ′ ∩Bπ′ = 1.

(4) is a direct consequence of (2) and (3).

(5) By (1) and (3), Aπ′Bπ′ = Aπ′ ⋊ Bπ′ is the unique Hall π′-subgroup of G and hence

G = (Aπ′ ⋊ B′
π′) ⋊ (AπBπ). Moreover, if p ∈ π and c is an element of order p in Ap then
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c ∈ Z(G) by (2). This implies that [Bp′ , Ap] = 1 because the kernel of Resp : Aut(Ap) →

Aut(⟨c⟩) is a p-group. Then [Bπ′ , AπBπ] = 1 and AπBπ =
∏

p∈π ApBp. □

Next lemma shows that ϵG is determined by any minimal kernel of G.

Lemma 2.5. If A is a minimal kernel of G then ϵG = ϵG(A).

Proof. Let m = mG = |A|, ϵ = ϵG(A) and r = rG(A). If m2 ≤ 2 then ϵ = 1 = ϵG. Otherwise

4 | r2 and

G′
2 =

⟨a
r2⟩ , if ϵ = 1;

⟨a2⟩ , if ϵ = −1.

Then

|G′
2| =


m2

r2
, if ϵ = 1;

m2

2
, if ϵ = −1;

and hence ϵ = −1 if and only if m2 = 2|G′
2| > 2 if and only if ϵG = −1. □

Let

RG = {rG(A) : A is a minimal kernel of G}.

In the next lemma we see that |RG| ≤ 2 and in most cases |RG| = 1. This is, we see that

rG is not always unique, so we cannot take it as an invariant, and we also study in exactly

which circumstances this case takes place.

Lemma 2.6. Let m = mG, n = nG and k = kG. Then the following statements are

equivalent:

(1) |RG| > 1.

(2) n2 ≥ 4, m2 ≥ 8, ϵG = −1, k2 < n2 and RG = { r
2
, r} for some r with r2 = m2.

(3) n2 ≥ 4, m2 ≥ 8, ϵG = −1, k2 < n2, r2 ∈ {m2

2
,m2} for some r ∈ RG and

[G : B]2 =
m2

2
for some metacyclic factorization G = AB with m = |A|.

(4) n2 ≥ 4, m2 ≥ 8, ϵG = −1, k2 < n2, r2 ∈ {m2

2
,m2} for some r ∈ RG and

[G : B]2 =
m2

2
for every metacyclic factorization G = AB with m = |A|.
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Furthermore, suppose that G = AB is a metacyclic factorization satisfying the

conditions of (3) and let a be a generator of A and b be a generator of B and s =

[G : B]. Let C =

〈
b

nm2′
2s2′ a

〉
. Then G = CB is another metacyclic factorization with

|C| = m and rG(C) ̸= rG(A).

Proof. Let ϵ = ϵG, k = kG, R = RG and for every p ∈ π let Rp = {rp : r ∈ R}. Fix a

minimal kernel A of G and let r = rG(A).

Let p ∈ π. If ϵp−1 = 1 then |G′
p| = mp

rp
. Thus in this case |Rp| = 1. Therefore r2′ is

constant for every r ∈ R and hence |R| = |R2|. Moreover, if ϵ = 1 then G′
2 =

m2

r2
and hence

R2 = { m2

|G′
2|}. In this case none of the conditions (1)-(4) hold. Otherwise, 4 | rG(A)2 | m2.

Thus, ifm2 < 8 then rG(A)2 = 4 for every minimal kernel A ofG and hence |R| = |R2| = 1, so

that again none of the conditions (1)-(4) hold. Thus in the remainder of the proof we assume

that ϵ = −1 and 8 ≤ m2. Then G′
2 = A2 and hence

〈
−1 + rG(A)2

〉
m2
2

= Resm2
2
(TG(A)) =

σ−1
G′

2
(InnG(G

′
2)), which is independent of A. This shows that if R2 contains an element

smaller than m2

2
then it only has one element and hence again none of the conditions (1)-(4)

hold. So in the remainder of the proof we assume that R2 ⊆ {m2

2
,m2}.

Suppose that k2 = n2. Then, by Lemma 2.4.(4), CG(G
′
π′)2 = A2, and hence

〈
−1 + rG(A)2

〉
m2

= Resm2(TG(CG(G
′
π′)2))

is independent of A. Therefore, in this case |R2| = 1, so that |R| = 1. So again in this case

none of the conditions (1)-(4) hold and in the remainder of the proof we also assume that

k2 < n2.

Suppose that n2 < 4. Then none of the condition (2)-(4) holds and as ϵ = −1, we have

n2 = 2. By means of contradiction suppose that (1) holds. By the previous paragraph

R2 = {m2

2
,m2} and hence G has two minimal kernels A and C with rG(A)2 = m2 and

rG(C)2 =
m2

2
. IfG = AB andG = CD are metacyclic factorization ofG then A2B2 and C2D2

are Sylow 2-subgroups of G and hence they are isomorphic. However, by Lemma 2.2.(5),

[A2B2 : B2] is either m2 or m2

2
. In the first case A2B2 is dihedral and in the second case

A2B2 is quaternionic. This yields a contradiction because from rG(C)2 =
m2

2
it follows that

C2D2 is neither dihedral nor quaternionic.
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Thus in the remainder we assume that m2 ≥ 8, n2 ≥ 4, k2 < n2, ϵ = −1 and R2 ⊆

{m2

2
,m2}. Moreover, by the above arguments we have that R ⊆ { r

2
, r} for some r with

r2 = m2. Thus (1) and (2) are equivalent.

(4) implies (3) is clear.

(3) implies (2). Let G = AB be a metacyclic factorization of G satisfying the conditions

of (3). Let s = [G : B] and r = rG(A). Select generators a of A and b of B and let z = b
nm2′
2s2′ ,

c = za and C = ⟨c⟩. We will prove that if G = CB is another metacyclic factorization

with |C| = m and rG(C) ̸= r, so that (2) holds. Indeed, since k2 < n2, we have [z, aπ′ ] = 1.

Moreover, [zp′ , ap] = 1 for every p ∈ π. If moreover, p ̸= 2 then [zp, ap] = 1 because [bn, a] = 1.

Finally, r2 ∈ {m2

2
,m2} and hence om2(−1+ r2) = 2. As 4 | n and ab22 = a−1+r2

2 it follows that

[z2, a2] = 1. This shows that z ∈ Z(G). As s = [G : B] and [G : A] = n we have bn = asx

for some integer x coprime with m. Then c2 = a
2+sx

m2′
s2′ = a2+xs2m2′ = a2+xm

2 = a2+
m
2 . As

8 | m it follows that |C| = m. Suppose that ab = at. Then t + 1 ≡ r2 mod m2. Let r
′ ∈ N

with r′2′ = r2′ and {r2, r′2} = {m2

2
,m2} and let t′ be an integer such that t′ ≡ t mod m2′

and t′ ≡ −1 + r′2 mod m2. As 8 | m we have t′ ≡ t ≡ −1 mod 4 and hence t′ = 1 + 2y for

some odd integer y. Then ct
′
= zzt

′−1at
′
= zz2yat

′
= zat

′+ym
2 . Moreover, t′ + ym

2
≡ t′ ≡ t

mod m2′ and t′ + ym
2
≡ −1 + r′2 +

m2

2
≡ −1 + r2 ≡ t mod m2. Therefore ct

′
= zat = cb.

This shows that C is a cyclic normal subgroup of G and clearly G = CB is a metacyclic

factorization satisfying the desired condition.

Before proving (1) implies (4) we prove that if G = AB = CD are metacyclic factoriza-

tions with |A| = |B| = m then [G : B]2 = [G : D]2. The assumption ϵ = −1 implies that

G′
2 = A2 = C2. As A2B2 and C2D2 are Sylow 2-groups of G we may assume that they

are equal and hence if A2 = ⟨a⟩ and B = ⟨b⟩ we may write c = biaj and d = boal. Since

c2 ∈ C2 = A2 we have n2

2
| i and as 4 | n, necessarily 2 | i and hence 2 ∤ o. Then, using

that rG(A), rG(C) ∈ {m2

2
,m2} we have that d2 = b2o or d2 = b2oal

m2
2 . In both cases d4 = b4

and hence D4 = B4. As 4 | n it follows that A2 ∩ B2 = Bn2
2 = Dn2

2 = C2 ∩D2. Therefore,

[G : B]2 = [A2B2 : B2] = [A2, A2 ∩B2] = [C2 : C2 ∩D2] = [G,D]2, as desired.

(1) implies (4). Suppose that |R| > 1. By the assumptions and the previous arguments we

know that the only condition from (4) which is not clear is that if G = AB is a metacyclic

factorization with m = |A| and s = [G : B] then s2 = m2

2
. So suppose that s2 = m2.
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Since |R| > 1, there is a second metacyclic factorization G = CD with |C| = m and

{rG(A)2, rG(C)2} = {m2

2
,m2}. By the previous paragraph [G : D]2 = [G : B]2 = 1. By

symmetry we may assume that rG(A)2 = m2 and rG(C) = m2

2
. As above we may assume

that A2B2 = C2D2 and if A2 = ⟨a⟩, B2 = ⟨b⟩, C2 = ⟨c⟩ and D2 = ⟨d⟩ then ab = a−1,

cd = c−1+
m2
2 , G′

2 = A2
2 = C2

2 , A2 ̸= C2 and A2 ∩ B2 = C2 ∩ D2 = 1. Write c = biaj

and d = boal with i, j, o, l ∈ N. Since c2 ∈ A we have that n2

2
| i and as 4 | n2, we

have that o is odd and [bi, a] = 1. Thus b2i = c2a−2j ∈ A2 ∩ B2 = 1. Then c2 = a2j

and as C2 = A2, necessarily j is odd. However, from b2i = 1, [bi, a] = 1 and 8 | m

we have bi2a
(−1+

m2
2

)j

2 = b
(−1+

m2
2

)i

2 a
(−1+

m2
2

)j

2 = c
−1+

m2
2

2 = cd2 = bi2a
−j
2 and hence 2 | j, a

contradiction. □

In our next result we show a way to decide if a factorization of G is minimal and we prove

that the following algorithm transforms a metacyclic factorization of G into a minimal one.

Algorithm 1. Input: A metacyclic factorization G = AB of a finite group G.

Output: a, b ∈ G with G = ⟨a⟩ ⟨b⟩ a minimal metacyclic factorization of G.

(1) m := |A|, n := [G : A], s := [G : B],

(2) a := some generator of A, b := some generator of B, and y ∈ N with bn = ay.

(3) r := rG(A), ϵ := ϵG(A) and k = kG(A).

(4) for p ∈ π(r) with ϵp−1 = 1

(a) if sp ∤ n then b := bap and s := sp′np.

(b) if rp ∤ s, spkp | n and t ∈ N satisfy a
bp
p = atp, compute x ∈ N satisfying

xS
(
t

n
sp | sp

)
≡ r − y mod mp and set a := b

n
sp
p ap′a

x
p, m := sp

m
rp
, n := n rp

sp
,

and

(r, ϵ) :=

(4r2′ ,−1), if 8 | m, sp = 2, and r2 =
m2

2
;

(rp′sp, 1), otherwise.

(5) If ϵ = −1, 4 | n, 8 | m, k2 < n2 and r2 ∤ s then a := b
m2′n
2s2′ a and r := r2′s2
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(6) If ϵ = −1 and s2 = r2n2 then b := ba2 and s := s
2
.

(7) Return (a, b).

Proposition 2.7. Let G = AB be a metacyclic factorization and let m = |A|, n = [G :

A], s = [G : B] and T = TG(A). Then G = AB is minimal as metacyclic factorization

of G if and only if T is (n, s)-canonical.

Furthermore, if the input of Algorithm 1 is a metacyclic factorization of G and its

output is (a, b) then G = ⟨a⟩ ⟨b⟩ is a minimal metacyclic factorization of G.

Proof. Let (r, ϵ, k) = [TG(A)]. By Lemma 2.4, π′ = π(m) \ π(r). Fix y, t ∈ N with bn = ay

and ab = at. Then s = gcd(t,m), gcd(t,m) = 1, r2′ = gcd(m2′ , t−1) and r2 = gcd(m2, t− ϵ).

For every prime p let Gp = ApBp.

Claim 1. If condition (Can+) holds then A is a minimal kernel of G.

Suppose that condition (Can+) holds and let C be kernel of G. We want to prove that

|C| ≥ m and for that it is enough to show that |Cp| ≥ mp for every prime p. This is obvious

if mp = 1, and it is a consequence of Lemma 2.4.(3), if p ∈ π′. So we suppose that p ∈ π

and mp ̸= 1. Hence p | r.

Suppose first that ϵp−1 = −1. Then p = 2 and A2
2 = G′

2 ⊆ C2. However C2 ̸⊆ A2
2 because

G2/A
2
2 is not cyclic. Therefore |C2| ≥ 2|A2

2| = m2.

Suppose otherwise that ϵp−1 = 1. Then G′
p = A

rp
p and |G′

p| = mp

rp
. Assume that rp | sp.

Then Gp/G
′
p = (Ap/G

′
p) × (BpG

′
p/G

′
p) and rp = |Ap/G

′
p| ≤ np = [BpG

′
p : G′

p]. As

(Gp/G
′
p)/(Cp/G

′
p) ∼= Gp/Cp is cyclic, necessarily rp | [Cp : G′

p] and hence mp | |Cp|, as

desired. Assume otherwise that rp ∤ sp. By condition (Can+) we have sp | np and spkp ∤ np.

In particular p | kp. By Lemma 2.4.(3), Cπ′ = Aπ′ and thence Cp ⊆ CGp(Aπ′)p = ApB
kp
p .

Using again that Gp/Cp is cyclic and p | kp, we must have Cp =
〈
bxpap

〉
for x ∈ N with kp | x

and x ≤ n. Let R ∈ N such that a
bxp
p = aRp . Then R satisfies the hypothesis of Lemma 1.1.(2c)

and hence vp

(
S
(
R | n

xp

))
= vp(n)− vp(x) ≤ vp(n)− vp(o) < vp(s) = vp(yxp′) and therefore

vp

(
yxp′ + S

(
R | n

xp

))
= vp(n)−vp(x). Then |Cp| = np

xp
|(bxpap)

np
xp | = np

xp

∣∣∣∣ayxp′+S
(
R|np

xp

)
p

∣∣∣∣ = mp.

This finishes the proof of Claim 1.
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Claim 2. If TG(A) is (n, s)-canonical then for every metacyclic factorization G = CD with

|C| = m one has rG(C) ≥ r and |D| ≤ |B|.

If rG(C) < r then, by Lemma 2.6, m2 ≥ 8, n2 ≥ 4, ϵ = −1, k2 < n2, r
G(C)2 =

m2

2
= s2

and r2 = m2, in contradiction with the second part of condition (Can–). Thus rG(C) ≥ r.

To prove that |D| ≤ |B| we show that |Dp| ≤ |Bp| for each prime p. This is clear if p ∤ m

and a consequence of Lemma 2.4.(4) if p ∈ π′. Otherwise p | r. Since both Gp and CpBp are

Sylow p-subgroups of G we may assume that Gp = CpDp.

Assume first that ϵp−1 = 1. Then by assumption sp | np. Let d = bxpa
y
p be a generator

of Dp and let R ∈ N such that a
bxp
p = aRp . The assumption ϵp−1 = 1 implies that R satisfies

the hypothesis of Lemma 1.1.(1a) and hence mp | S
(
R | mp

np

sp

)
and from (1.1) we deduce

that d
mpnp

sp = a
yS

(
(1+rp)x|mp

np
sp

)
p = 1 and hence |Dp| ≤ mpnp

sp
= |bp|. Suppose otherwise that

ϵp−1 = −1, i.e. p = 2 and ϵ = −1. Then C2
2 = G′

2 = A2 and C2 ∩ D2 ⊆ Z(G2) ∩ C2 =

Z(G2)∩C2
2 = Z(G2)A = A

m2
2 and hence |C2∩D2| ≤ 2. Thus |D2| = [D2 : C2∩D2] |C2∩D2| =

[G2 : C2] |C2 ∩D2| ∈ {n2, 2n2}. Similarly, |B2| ∈ {n2, 2n2}. If |B2| = 2n2 then |D2| divides

|B2| as desired. Suppose otherwise that |B2| = n2. Then m2 = s2 and hence m2 divides

r2n2

2
, by the hypothesis (Can–) and Lemma 2.2.(5). If D2 ⊆ ⟨a, b22⟩ then C2 = ⟨b2ax2⟩ for

some integer x and hence n2 = 2 because C2
2 = ⟨a22⟩. Then D2 ⊆ ⟨a2⟩ so that D2 is normal

in G2 and hence ⟨a22⟩ = C2
2 = [D2, C2] ⊆ C2 ∩ D2 ⊆

〈
a

m2
2

2

〉
⊆ ⟨a22⟩. Then m2 = 4 and

G2 is dihedral of order 8. Then every metacyclic factorization of G2 is of the form ⟨a2⟩ ⟨c⟩

with |c| = 2. Thus |D2| = 2 = |b2|, as wanted. Assume otherwise that D2 ̸⊆ ⟨a2, b22⟩. Then

D2 = ⟨b2ax2⟩ for some integer x and let R ∈ N such that ab22 = aR2 . The hypothesis ϵ = −1

implies that R satisfies the hypothesis of Lemma 1.1.(2a). Since m2 divides r2n2

2
, we get

v2(S (R | n2)) = v2(r2) + v2(n2) − 1 ≥ v2(m2) and hence (b2a
x
2)

n2 = a
xS(−1+r2|n2)
2 = 1. Then

|D2| = n2, as desired. This finishes the proof of Claim 2.

The necessary part in the first statement of the proposition follows from claims 1 and 2.

Claim 3. If p | r, ϵp−1 = 1 and sp ∤ np then [G : bap] = sp′np < s.

First of all n = |bapA| and hence n divides |bap|. Using (1.1) we have (bap)
n = ayp′a

y+S(t|n)
p

and vp([G : ⟨bap⟩]) = vp(S (t | n)) = vp(n) < vp(s) = vp(y), by Lemma 1.1.(1a) and the

assumption. Thus |bap| = n m
sp′np

and hence [G : bap] = sp′np. This finishes the proof of
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Claim 3.

By Claim 3, if the first part of (Can+) fails then G = AB is not minimal because G =

A ⟨bap⟩ is a factorization with [G : b] > [G : ⟨bap⟩]. Moreover, the factorization G = A ⟨bap⟩

satisfies the first part of condition (Can+) and hence after step (4a) of Algorithm 1, the

factorization G = ⟨a⟩ ⟨b⟩ satisfies the first part of (Can+) for the prime p.

Claim 4. Suppose that p | r, ϵp−1 = 1, sp | n, rp ∤ s and spkp | n. Let R ∈ N with a
b

n
sp
p
p = aR.

Then there is an integer x such that r−y ≡ xS (R | sp) mod mp. This justify the existence

of x in step (4) of Algorithm 1. Let c = b
n
sp
p ap′a

x
p and C = ⟨c⟩. Then G = CB is a metacyclic

factorization of G with |C| = m sp
rp

< |A|. Moreover,

(rG(C), ϵG(C)) :=

(4r2′ ,−1), if 8 | m, sp = 2, and r2 =
m2

2
;

(rp′sp, 1), otherwise.

The assumption spkp | np implies that kp | n
sp

and hence [b
n
sp
p , aπ′ ] = 1. As also [bp, aπ\{p}] =

1 we deduce that [b
n
sp
p , ap′ ] = 1. On the other hand, since rp ∤ sp, vp(y) = vp(s) < vp(r) and

therefore vp(r − y) = vp(s) = vp(S (t | sp)), by Lemma 1.1.(1a). Therefore there is an

integer x coprime with p such that r − y ≡ xS (R | sp) mod mp. Using (1.1) we have

csp = bnpa
sp
p′ a

xS(R|sp)
p = a

sp
p′ a

y+xS(R|sp)
p = a

sp
p′ a

r
p. Then G′

p′ ⊆ ⟨ap′⟩ ⊆ C and G′
p =

〈
arp
〉
⊆ C.

Thus G′ ⊆ C and hence G = CB is a metacyclic factorization of G with |C| = sp|ap′||arp| =

m sp
rp

< m = |A|. As Cp′ = Ap′ , we have rG(C)p′ = rG(A)p′ = rπ′ . If ϵG(C)p−1 = 1 then

mp

rp
= |G′

p| =
|Cp|

rG(C)p
= mpsp

rprG(C)p
and hence in this case rG(C) = rp′sp. Otherwise, i.e. if p = 2

and ϵG(C) = −1 then 2|C2| ≤ s2 ≤ |C2| and 4 ≤ rG(C)2 ≤ |C2| = m2s2
r2

= 2|G′
2| = 2m2

r2

and hence s2 = 2, |C2| = 4 = rG(C)2 and r2 = m2

2
. Conversely, if s2 = 2 and r2 = m2

2
then

|C2| = 4 and hence rG(C)2 = 4. Moreover, as G2 is not commutative then ϵG(C) = −1.

This finishes the proof of Claim 4.

Claim 4 shows that if the first part of (Can+) holds but the second one fails then G = AB

is not minimal. It furthermore the parameters associated to the factorization G = CB, i.e.

|C|, [G : C], [G : B], rG(C), ϵG(C), kG(C), satisfy condition (Can+) for the prime p and

hence, after step (4b) of Algorithm 1, the current factorization G = ⟨a⟩ ⟨b⟩ satisfies this

condition. Moreover, if ϵG(C) = 1 then rp(C) = sp ≤ np and condition (C+) holds for the
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prime p. Thus when the algorithm finishes the loop in step (4), the metacyclic factorization

satisfies condition (Can+) and hence the current value of ⟨a⟩ is a minimal kernel of G by

Claim 1.

Observe that the modification of a and b in steps (4a) and (4b) for some prime p does

not affect the subsequent calculations inside the loop. Indeed, suppose that p and q are two

different divisors of r with ϵp−1 = ϵq−1 = 1, and the prime p has been considered before

the prime q in step (4). This has affected a and b which have been transformed by first

transforming b into d = bap and then transforming a into c = dpap′a
x
p = bpap′a

1+x
p . In

principal we should recalculate the natural number y computed in step (2) to a new y′.

However, as p ∈ π, [bp′ , ap] = [bq′ , ap] = 1 and hence ap′ = cp′ and bp′ = dp′ . Therefore

dq = cyq and hence y′ ≡ y mod mq. Therefore when in step (4b) for the prime q we compute

x satisfying if r − y ≡ xS (R | sq) ≡ mod mq we also have r − y′ ≡ xS (R | sq) mod mq.

By Lemma 2.6, if the second part of condition (Can–) is satisfied then rG(A) = rG.

Otherwise, rG(A) > rG, and hence the factorization G = AB is not minimal, However,

after step (5) the factorization G = ⟨a⟩ ⟨b⟩ satisfy both |a| = mG and rG(⟨a⟩) = rG. In the

remainder of the algorithm the kernel ⟨a⟩ is not modified and hence this is going to be valid

in the remainder of the algorithm.

Finally suppose that the first part of (Can–) fails, so that p = 2, ϵ = −1 and s2 =

r2n2. Then 4 | r and ⟨t⟩m2
= ⟨−1 + r2⟩m2

. Moreover, by Lemma 2.2.(5), we have that

s2 ∈ {m2

2
,m2} and m2 | r2n2. Therefore s2 = m2 = r2n2. Then v2(S (t | n2)) = v2(r) +

v2(n)−1 = v2(m)−1, by Lemma 1.1.(2a). As in the proof of Claim 3, we use the metacyclic

factorization of G = A ⟨ba2⟩. If G = AB is minimal then we have n|(ba2)n| = |ba2| ≤

|b| = n|as| = nm
s
. Therefore |(ba2)n| ≤ m

s
. Using (1.1) once more and [b2′ , a2] = 1, we

obtain (ba2)
n = aya

S(t|n2)
2 = ay2′a

m2
2

2 . Thus |(ba2)n| = 2m
s
and hence |ba2| = 2ms

s
= 2|B|,

contradicting the minimality. Thus G = AB is not minimal. Moreover, the new metacyclic

factorization satisfies (Can–) because, |ba2|2 = 2|b|2 and hence if s′ = [G : ⟨ba2⟩] then

s′2 =
m2

2
̸= m2 = r2n2. □

In order to prove that the last entry of MCINV(G) is well defined and prove Theorem A

we need one more lemma which is inspired in Lemmas 5.5 and 5.7 of [Hem00].
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Lemma 2.8. Let p be a prime and consider the group P = Gm,n,s,ϵ+r with m and n

powers of p, r and s divisors of m and ϵ ∈ {1,−1} satisfying the following conditions:

p | r, m | rn, if 4 | m then 4 | r, if ϵ = 1 then m | rs and if ϵ = −1 then 2 | n, 4 | m

and m | 2s. Let o be a divisor of n and N = ⟨a, bo⟩. Denote

w =



min(o, m
r
,max(1, s

r
, so
n
)), if ϵ = 1;

1, if ϵ = −1 and , o | 2 or m | 2r;

m
2r
, if ϵ = −1, 4 | o < n, 4r | m, and if s ̸= nr then 2s = m < nr;

m
r
, otherwise.

If y is an integer coprime with p then the following conditions are equivalent:

(1) There are c ∈ N and d ∈ byN such that P = ⟨c, d⟩, |c| = m, dn = cs and

cd = cϵ+r.

(2) y ≡ 1 mod w.

Proof. Observe that N is the unique subgroup of G of index o containing a. We will make

a wide use of (1.1) and Lemma 1.1, sometimes without specific mention. We consider

separately the cases ϵ = 1 and ϵ = −1.

Case 1. Suppose ϵ = 1.

(1) implies (2). Suppose that c and d satisfy the conditions of (1). If w = 1 then obviously

(2) holds. So we may assume that w ̸= 1 and in particular p | o and pr | m. The first implies

that N ⊆ ⟨a, bp⟩ and the second that P/ ⟨ap, bp⟩ is not cyclic. Therefore c ̸∈ ⟨ap, bp⟩ and

hence ⟨c⟩ = ⟨bxva⟩ with o | v | n and p ∤ x. Write d = by1az with y1, z ∈ Z. From the

assumption d ∈ byN we have that y1 ≡ y mod o and hence y ≡ y1 mod w. Therefore, it

suffices to prove that y1 ≡ 1 mod w. From cd = c1+r we have

bxvaz(1−(1+r)xv)+(1+r)y1 = (bxva)b
y1az = (bxva)1+r = bxvabxvraS((1+r)xv |r).

Then n | vr and bxvr = axs
vr
n . Thus

z(1− (1 + r)xv) + (1 + r)y1 − 1 ≡ xs
vr

n
+ S ((1 + r)xv | r) mod m.
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This implies that that r divides xsvr
n
, since r divides m. As r is coprime with x, it fol-

lows that n divides sv. Moreover, (1 + r)xv ≡ 1 mod rv, by Lemma 1.1.(1a), and hence

S ((1 + r)xv | r) ≡ r mod rv. As r, v,m and s are powers of p we deduce that

(1 + r)y1 ≡ 1 + r mod min(m, rv,
svr

n
).

Using Lemma 1.1.(1b) it follows that y1 ≡ 1 mod min(m
r
, v, sv

n
).

Suppose that y1 ̸≡ 1 mod w. Then

min
(m
r
, o,

so

n

)
≤ min

(m
r
, v,

sv

n

)
< w = min

(m
r
, o,max

(
1,

s

r
,
so

n

))
and hence s

r
>
(
1, so

n

)
and m

r
≥ w = min

(
o, s

r

)
> min

(
m
r
, v, sv

n

)
. Thus

s

r
≥ w = min

(
o,

s

r

)
> min

(
v,

sv

n

)
≥ min

(
o,

so

n

)
.

Since n | vr it follows that min(v, sv
n
) < s

r
≤ sv

n
and hence o ≤ v = min(v, vs

n
) < min(o, s

r
), a

contradiction.

(2) implies (1). We now suppose that y ≡ 1 mod w and we have to show that there

is c ∈ N and d ∈ byN satisfying the conditions in (1). If y ≡ 1 mod o then bN = byN

and hence c = a and d = b satisfy the desired condition. If (1 + r)y ≡ 1 + r mod m then

ab
y
= a1+r and hence c = ay and by satisfy the desired conditions. So we suppose that

y ̸≡ 1 mod o and (1 + r)y ̸≡ 1 + r mod m. The first implies that w < o and the second

that y − 1 is not multiple of om(1 + r) = m
r
, by Lemma 1.1.(1b) and hence w < m

r
. Thus

w = max(1, s
r
, os
n
) < min(o, m

r
).

By Lemma 1.1.(1b) we have (1 + r)y = 1 + r(1 + xu) with p ∤ x, u a power of p and

vp(w) ≤ vp(u) = vp(y−1) < vp(
m
r
) ≤ vp(s). Moreover, if u = 1 then p ∤ 1+x. Let c1 = bx

nu
s a.

We now prove that |c1| = m. Observe that nu
s
≥ nw

s
≥ o. Therefore c1 ∈ N . Moreover,

as vp(u) < vp(s) it follows that |c1 ⟨a⟩ | = s
u
and c

s
u
1 = axs+S((1+r)x

nu
s | s

u). If u ̸= 1 then

vp(r) ≥ vp(
s
w
) ≥ vp(

s
u
) = vp(S

(
(1 + r)x

nu
s | s

u

)
) = vp(xs + S

(
(1 + r)x

nu
s | s

u

)
) and therefore

G′ = ⟨ar⟩ ⊆ ⟨c1⟩ and |c1| = m, as desired. Otherwise, i.e. if u = 1 then w = 1 and hence

s ≤ r and p | o | n
s
. Then xs+ S

(
(1 + r)x

nu
s | s

)
≡ s(x+ 1) ̸≡ 0 mod pr because s ≤ r and

p ∤ x+ 1. Therefore also in this case vp(r) ≤ vp(xs+ S
(
(1 + r)x

nu
s | s

)
) and hence G′ ⊆ ⟨c1⟩

and |c1| = m, as desired.
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Since (1 + r)x
nu
s ≡ 1 mod rnu

s
we have S

(
(1 + r)x

nu
s | r

)
≡ r mod rnu

s
. Therefore

(1+ r)y−1−xru−S
(
(1 + r)x

nu
s | r

)
≡ 0 mod rnu

s
. Moreover, vp(1− (1+ r)x

nu
s ) = vp(r

nu
s
),

and hence there is an integer z satisfying

z(1− (1 + r)x
nu
s ) + (1 + r)y ≡ 1 + xru+ S ((1 + r)xu | r) mod m.

Let d = byaz ∈ byN . Using that u ≥ w ≥ s
r
we have

cd1 = (bx
nu
s a)b

yaz = bx
nu
s az(1−(1+r)x

nu
s )+(1+r)y = bx

nu
s a1+xru+S((1+r)x

nu
s |r) = c1+r

1 ,

On the other hand

dn = (byaz)n = asy+zS((1+r)y |n)

and

cs1 = (bx
nu
s a)s = axus+S((1+r)x

nu
s |s).

if s ≥ n then o > w = max( so
n
, s
r
) ≥ so

n
≥ o, a contradiction. Therefore, s is a proper divisor

of n and hence vp(sy+zS ((1 + r)y | n)) = s. Then dn and cs1 are elements of ⟨a⟩ of the same

order. Therefore bn = cos for some integer o coprime with p. Then c = co1 and d satisfy the

conditions of (1).

Case 2. Suppose that ϵ = −1.

(1) implies (2). Suppose that c and d = byaz satisfy the conditions of (1). Then 4 | r

and G′ = ⟨a2⟩ = ⟨c2⟩. As in Case 1 we may assume that w ̸= 1. Then both o and m
r
are

multiple of 4 and we must prove, on the one hand that y ≡ 1 mod m
2r

and, on the other

hand that y ≡ 1 mod m
r
, if one of the following conditions hold: k = n or, s = m ̸= nr,

or 2s = m = nr. From 4 | o and G/ ⟨c⟩ being cyclic we deduce ⟨c⟩ = ⟨bxva⟩ with o | v | n

and 2 ∤ x. From G′ = ⟨a2⟩ = ⟨c2⟩ it follows that n
2
| v so that v is either n or n

2
. If v = n

then ⟨c⟩ = ⟨a⟩. Therefore a−1+r = ad = a(−1+r)y and hence (−1 + r)y−1 ≡ 1 mod 2m. Then

y ≡ 1 mod m
r
by Lemma 1.1.(2b). This proves the result if k = n because in that case v is

necessarily n.

Suppose otherwise that v = n
2
. Then we distinguish the cases m < nr and m = nr.

Assume that m < nr. Then, as 4 | o | v we have om(−1 + r) = max
(
2, m

r

)
≤ n

2
= v and

hence bv is central in G. Then, having in mind that 4 | r and m | 2s, we have

bxva(−1+r)y = (bxva)b
yaz = (bxva)−1+r = bxva(bxva)r−2 = bxvar−1+xs( r

2
−1) = bxva−1+s+r.
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Therefore (−1 + r)y ≡ −1 + r + s mod m and in particular (−1 + r)y ≡ −1 + r mod s,

since s | m. Using Lemma 1.1 once more we deduce that y ≡ 1 mod m
2r

and if s = m then

y ≡ 1 mod m
r
.

Suppose otherwise that m = nr. Then, from Lemma 1.1.(2a) we have v2((−1+r)v−1) =

v2(r)+v2(v) = v2(r)+v2(n)−1 = v2(
m
2
) so that ab

v
= a1+

m
2 and (bxva)2 = a2+s+m

2 and hence

(bxva)4 = a4. As 4 | o it follows that (bxva)n = an. On the other hand, as y is odd, it follows

that v2((−1 + r)y + 1) = v2(r) ≥ 2, by Lemma 1.1.(2c). Therefore, v2(S ((−1 + r)y | n)) =

v2(rn) − 1 = v2(m) − 1, by Lemma 1.1.(2a). Then S ((−1 + r)y | n) ≡ m
2

mod m an

hence, having in mind that 8 | m
2
| s we deduce that as = cs = dn = ays+zS((−1+r)y |n) =

as+zm
2 . Therefore z is even. On the other hand from cd = c−1+r and having in mind that

(−1 + r)v − 1 ≡ m
2

mod m and z is even, we obtain

bxva(−1+r)y = (bxva)b
yaz = (bxva)−1+r = bxva(bxva)r−2 = bxva(axs+2+m

2 )
r
2
−1 = bxva−1+s+r+m

2 .

Therefore (−1 + r)y ≡ −1 + r+ s+ m
2

mod m. Again, from m | 2s and Lemma 1.1.(2b) we

deduce that y ≡ 1 mod m
2r

and if s = m
2
then y ≡ 1 mod m

r
.

(2) implies (1). Suppose that y ≡ 1 mod w. As y is odd, if o | 2 then b ∈ byN and hence

a and b satisfy condition (1). So we assume from now on that 4 | o. In particular 4 | n.

Suppose that m | 2r, i.e. r is either m or m
2
and let c = ay and d = bya2. In this case b2 is

central in P and hence cd = cb = c−1+r and applying statements (2a) and (2c) of Lemma 1.1

we obtain dn = ays+S((−1+r)y |n) = ays = cs. Hence c and d satisfy the conditions of (1).

Thus from now on we assume that 4 divides both o and m
r
. Suppose that y ≡ 1 mod m

r
.

Then ab
y
= ab = a−1+r because b

m
r is central in P . Moreover, as m | 2s and y is odd we

have (by)n = asy = as. Therefore c = a and d = by satisfy condition (1) and this finishes the

proof of the lemma if w = m
r
and it also proves that for w = m

2r
we may assume that y ̸≡ 1

mod m
r
. So suppose that w = m

2r
and y ̸≡ 1 mod m

r
. Then y ≡ 1 + m

2r
mod m

r
, o < n and

either m = s = nr or 2s = m < nr. Let c = b
n
2 a and d = by. Then, in both cases, c2 = a2+

m
2

and, as m
2
is multiple of 4 we have that G′ = ⟨a2⟩ = ⟨c2⟩, |c| = m and cs = as. Moreover,

c−1+r = (b
n
2 a)−1+r = b

n
2 a(b

n
2 a)r−2 = b

n
2 aa(2+

m
2
)( r

2
−1) = b

n
2 a−1+r+m

2 = b
n
2 a(−1+r)(1+m

2
) = (b

n
2 a)b

1+ m
2r = cd

and

dn = as(1+
m
2r

) = as = cs.



2.2. METACYCLIC FACTORIZATIONS 37

Then c and d satisfy the conditions of (1). □

Theorem 2.9. Let m,n, s ∈ N with s | m and let T and T̄ be (n, s)-canonical cyclic

subgroups of Um. Set (r, ϵ, k) = [T ], [r̄, ϵ̄, ō] = [T̄ ], π = π(r) ∪ (π(n) \ π(m)), π̄ =

π(r̄) ∪ (π(n) \ π(m)), m′ = [T, n, s] and m̄′ = [T̄ , n, s].

Then the following statements are equivalent.

(1) Gm,n,s,T and Gm,n,s,T̄ are isomorphic.

(2) Resm′(T ) = Resm̄′(T̄ ).

(3) π = π̄, Resmπ′ (Tπ′) = Resmπ′ (T̄π′) and Resmπ′m′
p
(Tp) = Resmπ′m′

p
(T̄p) for every

p ∈ π.

Proof. Let G = Gm,n,s,T and Ḡ = Gm,n,s,T̄ . To distinguish the generators a and b in the

presentation of G and Ḡ we denote the latter by ā and b̄. We also denote A = ⟨a⟩, B = ⟨b⟩,

Ā = ⟨ā⟩ and B̄ =
〈
b̄
〉
. The hypothesis warrants that G = AB and Ḡ = ĀB̄ are minimal

metacyclic factorizations by Proposition 2.7. In particular, |A| = |Ā| = m = mG = mḠ,

[G : A] = [Ḡ : Ā] = n = nG = nḠ, [G : B] = [Ḡ : B̄] = s = sG = sḠ, T = TG(A) and

T̄ = TḠ(Ā).

(2) implies (3) Suppose that statement (2) holds. Then, using that π(m) = π(m′) =

π(m̄′), we have Resp(T ) = Resp(Resm′(T )) = Resp(Resm′(T̄ )) = Resp(T̄ ) for every prime

p dividing m. Thus, π′ = π̄′ and, as mπ′ = m′
π, we have Resmπ′ (Tπ′) = Resm′

π′ (T )π =

Resm′
π′ (T̄ )π = Resmπ′ (T̄π′) and Resmπ′m′

p
(Tp) = Resm′

π′∪{p}
(T )p = Resm′

π′∪{p}
(T̄ )p = Resmπ′m′

p
(T̄p)

for every p ∈ π(m) \ π′.

(1) implies (2). Suppose that G ∼= Ḡ. Then, as T and T̄ are (n, s)-canonical they yield

the same parameters, i.e. π′ = π̄′, k = k̄, etc.

Let f : Ḡ → G be an isomorphism and let c = f(ā), d = f(b̄), C = ⟨c⟩ and D = ⟨d⟩.

Then Cπ′ = f(Ḡ′
π′) = G′

π′ = Aπ′ , by Lemma 2.4.(3). Furthermore, Cπ′Dπ′ = Aπ′Bπ′

because AB and ĀB̄ are the unique Hall π′-subgroup of G and Ḡ, respectively. Then

Resmπ′ (T ) = TG(Aπ′) = TG(Cπ′) = Resmπ′ (T̄ ). As Resmπ(Tπ′) = Resmπ(T̄π′) = 1 it follows

that Resm′(Tπ′) = Resm′(T̄π′). Since T and T̄ are cyclic, it remains to prove that Resm′(Tp) =
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Resm′(T̄p) for every p ∈ π. Moreover, as G and Ḡ have the same parameters ϵ and r we have

Resmp(Tp) = Resmp(T̄p) = ⟨ϵp−1 + rp⟩mp
. Denote R = ϵp−1 + rp and select generators t of

Resmπ′m′
p
(Tp) and t̄ of Resmπ′m′

p
(Tp) such that Resmp(t) = Resmp(t̄)[R]mp . We already know

that Resm′
π′ (T ) = Resm′

π′ (T̄ ) and in particular, there is an integer x coprime with p such that

t̄ = tx mod mπ′ . If kp ≤ 2 then Resm′
π′ (t) = Resm′

π′ (t̄) and if om′
p
(R) ≤ 2 then Resm′

p
(tx) =

[Rx]m′
p
= [R]mp = Resm′

p
(t̄). In both cases Resmπ′m′

p
(T ) = ⟨t⟩ = ⟨tx⟩ = Resmπ′m′

p
(T̄ ), as

desired. Therefore, in the remainder we may assume that both kp and om′
p
(R) are greater

than 2 and, in particular, om′
p
(R) =

m′
p

rp
= Resm′

p
(T ) and this number coincides with the w

in Lemma 2.8.

On the other hand ApBp and f(ĀpB̄p) = CpDp are Sylow p-subgroup of G and hence

they are conjugate in G. Composing f with an inner automorphism of G we may assume

that CpDp = ApBp. Then
〈
c, dkp

〉
= f(

〈
ā, b̄kp

〉
) = f(CḠp

(Ḡ′
π′)) = CGp(G

′
π′) =

〈
a, bkp

〉
. By

Lemma 2.8 we have d = byg for some g ∈ CGp(G
′
π′) and y ≡ 1 mod w. Thus Resmπ′ (t̄) =

Resmπ′ (t
y) and Resm′

p
(t̄) = Resm′

p
(t) = Resm′

p
(R) = Resm′

p
(Ry) = Resm′

p
(ty), because y ≡ 1

mod om′
p
(R). Thus Resm′

π′m
′
p
(T̄p) = Resm′

π′m
′
p
(t̄) = Resm′

π′m
′
p
(ty) = Resm′

π′m
′
p
(Tp), as desired.

(3) implies (1) Suppose that the conditions of (3) holds. We may assume that a = ā and

take generators t of T and t̄ of T̄ so that G = ⟨a, b⟩, Ḡ =
〈
a, b̄
〉
, with |a| = m, [G : ⟨a⟩] = n,

bn = as, ab = at, ab̄ = at̄. Moreover, from the assumption we may assume abπ′ = ab̄π′ and for

every p ∈ π we have Resmπ′m′
p
(Tp) = Resmπ′m′

p
(T̄p). In particular, for every p ∈ π, we have

⟨ϵp−1 + rp⟩m′
p
= Resm′

p
(Tp) = Resm′

p
(T̄p) = ⟨ϵ̄p−1 + r̄p⟩. Since rp | m′

p | mp it follows that

ϵ = ϵ̄ and rp = r̄p. Thus r = r̄.

We claim that for every p ∈ π we can rewrite Gp = ⟨ap, bp⟩ as Gp = ⟨cp, dp⟩ with

cp ∈
〈
ap, b

kp
p

〉
= CGp(aπ′) and dp ∈ byCGp(aπ′) such that |cp| = mp, c

dp
p = c

Rp
p , a

dp
π′ = a

b̄p
π′ and

d
np
p = c

sp
p .

Indeed, let p ∈ π. The assumption
〈
Resmπ′m′

p
(tp)
〉
=
〈
Resmπ′m′

p
(t̄p)
〉
implies that there is

an integer y coprime with |Resmπ′m′
p
(tp)| such that Resmπ′m′

p
(t̄p) = Resmπ′m′

p
(tp)

y. If kp ≤ 2

or omp(R) ≤ 2 then, as in the proof of (1) implies (2) we have that Resmπ′mp(t) = Resmπ′mp(t̄)

so that cp = ap and dp = bp satisfies the desired conditions. So assume that kp > 2 and

omp(R) > 2. From the equality a
bp
p = a

b̄p
p we deduce that Ry ≡ R mod m′

p and this implies

that y ≡ 1 mod w where w = om′
p
(R) =

m′
p

rp
and again this w coincides with the one in
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Lemma 2.8. Applying Lemma 2.8 we deduce that ⟨ap, bp⟩ contain elements cp ∈
〈
ap, b

o
p

〉
=

CGp(aπ′) and dp ∈ byCGp(aπ′) such that ⟨ap, bp⟩ = ⟨cp, dp⟩, |cp| = mp, a
dp
π′ = a

byp
π′ = a

b̄p
π′ ,

c
dp
p = c

Rp
p and d

np
p = c

sp
p , as desired. This finishes the proof of the claim.

For every p ∈ π let cp and dp as in the claim and set c = aπ′
∏

p∈π cp and d = bπ′
∏

p∈π dp

we deduce that G = ⟨c, d⟩ with |c| = m, dn = cs and cd = at̄. Therefore G ∼= Ḡ. □

The following corollary is a direct consequence (1) implies (2) of Theorem 2.9. It shows

that ∆G is well defined.

Corollary 2.10. If G = AB = CD are two minimal factorizations of G then ∆(AB) =

∆(CD).

2.3 Proofs of Theorems A, B and C

Proof of Theorem A. Let G and Ḡ be finite metacyclic groups and let G = AB and Ḡ = ĀB̄

be minimal metacyclic factorizations of G and Ḡ respectively. Denote m = |A|, m̄ = |Ā|,

n = [G : A], n̄ = [Ḡ : Ā], s = [G : B], s̄ = [Ḡ : B̄], T = TG(A) and T̄ = TḠ(Ā). We also

denote m′ = [T, n, s], m̄′ = [T̄ , n̄, s̄], ∆ = Resm′(T ) and ∆̄ = Resm̄′(T̄ ). Then G ∼= Gm,n,s,T ,

Ḡ ∼= Gm̄,n̄,s̄,T̄ , m = mG, n = nG, s = sG, n̄ = nḠ, m̄ = mḠ, s = sḠ, T is (n, s)-canonical and

T̄ is (n̄, s̄)-canonical. Moreover, ∆ = ∆G and ∆̄ = ∆Ḡ.

If G ∼= G′ then m = m̄, n = n̄, s = s̄ and, by Theorem 2.9 we have ∆ = ∆̄. Thus

MCINV(G) = MCINV(Ḡ).

Conversely, if MCINV(G) = MCINV(Ḡ) then m = |A| = mG = mḠ = |Ā| = m̄ and

similarly n = n̄ and s = s̄. Moreover, Resm′ [T ] = ∆G = ∆Ḡ = Resm̄′(T̄ ). Then G ∼= Ḡ by

Theorem 2.9. □

Proof of (1) implies (2) in Theorem B. Suppose that (m,n, s,∆) = MCINV(G) for some

metacyclic group G and let G = AB be a minimal factorization of G. Then m = mG = |A|,

n = nG = [G : A], s = sG = [G : B] and if T = TG(A) then ∆ = ∆(AB) = Resm′(T ).

In particular, s | m, T is a cyclic subgroup of Un,s
m , [T ] = [∆] and m′

ν = mν . Moreover,

ν = π(m′)\π(r) and sν = mν , by Lemma 2.4. Moreover, |∆| divides n, because it divides |T |,

which in turn divides n. Then conditions (2a) and (2b) of Theorem B hold. By Lemma 2.2,
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Lemma 2.4 and Lemma 2.5 we have π = πG, π
′
G = ν, k = kG, ϵ = ϵG and r = rG. Let

p ∈ π(r). If ϵp−1 = 1 then mp

rp
= |Resmp(Tp)| ≤ np and if ϵ = −1 then max(2, m2

r2
) =

|Resm2(T2)| ≤ |T2| ≤ n2 and m2 ≤ 2s2. As the metacyclic factorization G = AB is minimal,

T is (n, s)-canonical by Proposition 2.7. Then the remaining conditions in (2c) and (2d)

follow. □

Proofs of Theorem C and (2) implies (1) in Theorem B. Suppose that m,n, s and ∆ satisfy

the conditions of (2) in Theorem B. By Remark 2.1 there is a cyclic subgroup T of Un,s
m with

Resm′(T ) = ∆ and [T ] = [∆]. Let t ∈ N with T = ⟨t⟩m. Let G = Gm,n,s,t and denote A = ⟨a⟩

and B = ⟨b⟩. We will prove that G = AB is a minimal factorization of G that m = |A|,

n = [G : A], s = [G : B] and ∆ = ∆(AB). This will complete the proofs of Theorem B and

Theorem C.

Of course G = AB is a metacyclic factorization of G and T = TG(A). Since mν = sν , n

is multiple of |∆| and |Resmν (T )| = |Resmν (∆)|, it follows that |Resmν (T )| divides n and

s(t− 1). On the other hand if p | r then t ≡ ϵp−1 + rp mod mp. Therefore, if ϵ
p−1 = 1 then

omp(t) = mp

rp
| n and s(t − 1) ≡ srp ≡ 0 mod mp. Otherwise, i.e. if ϵ = −1 and p = 2,

then 2 | |∆| | n and m2

r2
≤ n2 and m2 | 2s. Thus om2(t) = om2(−1 + r2) = max(2, m2

r2
) ≤ n2

and m2 | t(s − 1). This shows that m divides both tn − 1 and s(t − 1), i.e. T ⊆ Un,s
m .

Then |A| = m and [G : A] = n, and hence [G : B] = s. From condition (2b) we have that

∆ = Resm′(TG(A)) = ∆(AB) and from conditions (2d) and (2c) it follows that T is (n, s)-

canonical. Then the metacyclic factorization G = AB is minimal by Proposition 2.7. □

Having in mind that a metacyclic group is nilpotent if and only if kG = 1 one can

easily obtain from Theorem B a description of the finite nilpotent metacyclic groups or

equivalently the values of the lists of metacyclic invariants of the finite nilpotent metacyclic

groups. Observe that (1) corresponds to cyclic groups, (2) to 2-generated abelian groups, (3)

to non-abelian nilpotent metacyclic groups G with ϵG = 1 and (4) to metacyclic nilpotent

groups with ϵG = −1.

Corollary 2.11. Let m,n, s ∈ N and t ∈ N ∪ {0}. Then (m,n, s, t) is the list of

metacyclic invariants of a finite metacyclic nilpotent group if and only if s | m, t < m
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and one of the following conditions hold:

(1) m = 1.

(2) t = 1 and s = m ≤ n.

(3) π(t− 1) = π(m), lcm
(
t− 1, m

t−1

)
| s | n and if 4 | m then 4 | t− 1.

(4) There is a divisor r of s2′m2 such that π(r) = π(m), 4 | r, t ≡ 1 + r2′ mod m2′,

t ≡ −1+ r2 mod m2,
m2′
r2′
| s2′ | n2′, max

(
2, m2

r2

)
≤ n2, m2 ≤ 2s2 and s2 ̸= n2r2.

If moreover 4 | n and 8 | m then r2 ≤ s2.

In that case Gm,n,s,t is nilpotent with metacyclic invariants (m,n, s, t).

2.4 A GAP implementation

In this section we show how we can use the result in previous sections to construct some

GAP functions for calculations with finite metacyclic groups.

The code of these functions and a brief manual are available in Ángel del Ŕıo’s webpage

and Github.

We start with two auxiliar functions. We call metacyclic parameters to any list (m,n, s, t)

with m,n, s ∈ N and [t]m ∈ Un,s
m , i.e. s(t− 1) ≡ tn − 1 mod m. In that case,

MetacyclicGroupPC([m,n,s,t]) outputs the group Gm,n,s,t with a power-conjugation pre-

sentation. The boolean function IsMetacyclic returns true if the input is a finite metacyclic

and false otherwise.

gap> G:=MetacyclicGroupPC([10,20,5,3]);

<pc group of size 200 with 5 generators>

gap> IsMetacyclic(G);

true

gap> Filtered([1..16],x->IsMetacyclic(SmallGroup(100,x)));

[ 1, 2, 3, 4, 5, 6, 8, 9, 14, 16 ]

To introduce the next function we start presenting an algorithm that uses Algorithm 1

https://www.um.es/adelrio/MetaCyc.php
https://github.com/angeldelriomateos/Metacyclics
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to compute MCINV(G) for a given metacyclic group G. Observe that in Algorithm 1 the

values of m = |a|, n = [G : ⟨a⟩], s = [G : ⟨a⟩] and (r, ϵ, k) = [TG(⟨a⟩)] are updated along the

calculations. We use this in step (2) of the following algorithm.

Algorithm 2. Input: A finite metacyclic group G.

Output: MCINV(G).

(1) Compute a metacyclic factorization G = AB of G.

(2) Perform Algorithm 1 with input (A,B) saving not only the output (⟨a⟩ , ⟨b⟩) but

also m,n, s, r, ϵ and o computed along.

(3) Compute m′ using (1.4) and t ∈ N such that ab = at.

(4) Return (m,n, s,Resm′(⟨t⟩m)).

A slight modification of Algorithm 2 allows the computation of the list of metacyclic

invariants of a finite metacyclic group:

Algorithm 3. Input: A finite metacyclic group G.

Output: The list of metacyclic invariants of G.

(1) Compute a metacyclic factorization G = AB of G.

(2) Perform Algorithm 1 with input (A,B) saving not only the output (⟨a⟩ , ⟨b⟩) but

also m,n, s, r and ϵ computed along.

(3) Compute m′ using (1.4) and t ∈ N such that ab = at and set ∆ := Resm′(⟨t⟩m).

(4) Use the Chinese Remainder Theorem to compute the unique 1 ≤ t ≤ mπ(r) such

that t ≡ ϵp−1 + rp mod mp for every p ∈ π(r).

(5) While gcd(t,m′) ̸= 1 or ⟨t⟩m′ ̸= ∆, t := t+mπ(r).

(6) Return (m,n, s, t).

Observe that G = ⟨a⟩ ⟨b⟩ is a minimal metacyclic factorization at step (2) of Algorithm 3,

andm = mG, n = nG and s = sG. At step (3), we have TG(⟨a⟩) = ⟨t⟩m and hence G ∼= Gm,n,s,t
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and ∆ = ∆G = Resm′(⟨t⟩m). However, this t is not tG yet. The t at step Item 4 is the

smallest one with t ≡ ϵp−1 + rp mod mp for every p ∈ π(r) and the next steps search for

the first integer t satisfying this condition as well as representing an element of Um with

Resm′(⟨t⟩m) = ∆.

The GAP function MetacyclicInvariants implements Algorithm 3. For example in the

following calculations one computes the metacyclic invariants of all the metacyclic groups of

order 200.

gap> mc200:=Filtered([1..52],i->IsMetacyclic(SmallGroup(200,i)));;

gap> List(mc200,i->MetacyclicInvariants(SmallGroup(200,i)));

[[25,8,25,24],[1,200,1,0],[25,8,25,7],[100,2,50,99],[100,2,50,49],[100,2,100,99],

[50,4,50,49],[2,100,2,1],[4,50,4,3],[4,50,2,3],[50,4,50,7],[5,40,5,4],[5,40,5,1],

[5,40,5,2],[20,10,10,19],[20,10,10,9],[20,10,20,19],[10,20,10,9],[10,20,10,1],

[20,10,20,11],[20,10,10,11],[10,20,10,3]]

The GAP functions MCINV and MCINVData implement Algorithm 2 representing MCINV(G)

in two different ways. While MCINV(G) outputs MCINV(G) if G is a metacyclic group,

MCINVData(G) ouputs a 5-tuple [m,n,s,m’,t] such that MCINV(G) = (m,n, s, ⟨t⟩m′). The

input data G can be replaced by metacyclic parameters [m,n, s, t] representing the group

Gm,n,s,t:

gap> G:=SmallGroup(384,533);

<pc group of size 384 with 8 generators>

gap> MetacyclicInvariants(G);

[ 8, 48, 4, 5 ]

gap> x:=MCINV(G);

[ 8, 48, 4, <group of size 1 with 1 generator> ]

gap> y:=MCINVData(G);

[ 8, 48, 4, 4, 1 ]

gap> x[4]=Group(ZmodnZObj(y[5],y[4]));

true



44 CHAPTER 2. FINITE METACYCLIC GROUPS

gap> H:=MetacyclicGroupPC([8,48,4,5]);

<pc group of size 384 with 8 generators>

gap> IdSmallGroup(H);

[ 384, 533 ]

gap> MetacyclicInvariants([20,4,8,11]);

[ 4, 20, 4, 3 ]

gap> MCINVData([20,4,8,11]);

[ 4, 20, 4, 4, 3 ]

Observe that two finite metacyclic groups G and H are isomorphic if and only if they

have the same metacyclic invariants if and only if MCINV(G) = MCINV(H). The function

AreIsomorphicMetacyclicGroups uses this to decide if two metacyclic groups G and H are

isomorphic. It outputs true if G and H are isomorphic finite metacyclic groups and false

if they are finite metacyclic groups but they are not isomorphic. If one of the inputs is not

a finite metacyclic group then the function fails. The input data G and H can be replaced by

metacyclic parameters of them.

gap> H:=MetacyclicGroupPC([100,30,10,31]);

<pc group of size 3000 with 7 generators>

gap> K:=MetacyclicGroupPC([300,30,10,181]);

<pc group of size 9000 with 8 generators>

gap> AreIsomorphicMetacyclicGroups(H,K);

false

gap> AreIsomorphicMetacyclicGroups([300,10,10,31],K);

false

gap> G:=MetacyclicGroupPC([300,10,10,31]);

<pc group of size 3000 with 7 generators>

gap> MetacyclicInvariants(G);

[ 100, 30, 10, 31 ]

gap> MetacyclicInvariants(H);

[ 100, 30, 10, 31 ]



2.4. A GAP IMPLEMENTATION 45

gap> MetacyclicInvariants(K);

[ 50, 180, 10, 31 ]

We now explain a method to compute all the metacyclic group of a given order N .

We start producing all the tuples (m,n, s, r, ϵ, k) such that MCINV(G) = (m,n, s,∆) and

[∆] = (r, ϵ, k) for some finite metacyclic group G and some cyclic subgroup ∆ of Um′ with

m′ as in (1.4). For such group G we denote IN(G) = (m,n, s, r, ϵ, k). The following lemma

characterizes when a given tuple (m,n, r, s, r, ϵ, k) equals IN(G) for some finite metacyclic

group:

Lemma 2.12. Let m,n, s, r, k ∈ N and ϵ ∈ {1,−1} and let π′ = π(m) \ π(r) and

π = π(mn) \ π′. Then IN(G) = (m,n, s, r, ϵ, k) for some finite metacyclic group G if

and only if the following conditions hold:

(A) s | m, r | m, k | nπ, mπ | rn, mπ | rs, sπ′ = mπ′ and if 4 | m then 4 | r.

(B) If p ∈ π(r) and ϵp−1 = 1 then sp | n and either rp | s or spkp ∤ n.

(C) If ϵ = −1 then 2 | n, 4 | m, m2 | 2s, s2 ̸= n2r2. If moreover 4 | n, 8 | m and

k2 < n2 then r2 | s.

(D) k | lcm{q − 1 : q ∈ π′} and for every q ∈ π′ with gcd(k, q − 1) = 1 there is

p ∈ π′ ∩ π(n) with p | q − 1.

Proof. Suppose first that (m,n, s, r, ϵ, k) = IN(G) for some finite metacyclic group G. Then

MCINV(G) = (m,n, s,∆) for some cyclic subgroup ∆ of Um′ with [∆] = (r, ϵ, k). Then

the conditions in statement (2) of Theorem B hold and this implies that conditions (A)–

(C) hold. To prove (D) we fix a metacyclic factorization G = AB and observe that k =

kG(A) = |Resmπ′ (TG(A))| and Resmπ′ (TG(A))π is a cyclic subgroup of (Umπ′ )π. Then k

divides exp((Umπ′ )π) which is lcm{(q − 1)π : q ∈ π′}. This proves the first part of (D). To

prove the second one we take q ∈ π′ such that gcd(k, q− 1) = 1. By Lemma 2.4.(4), we have

Resq(TG(A)) ̸= 1. However Resq(TG(A))π | gcd(k, q − 1) = 1 and hence, if p is a divisor of

Resq(TG(A)) then p | |Uq| = q − 1, p | [G : A] = n and p ̸∈ π, so that p ∈ π′. This finishes

the proof of (D).
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Conversely, suppose that conditions (A)-(D) hold. By condition (D), 2 ̸∈ π′ and hence

if q ∈ π′ then Umq is cyclic of order φ(mq). Therefore for every q ∈ π′, the group Uq
contains a cyclic subgroup of order q − 1. Therefore Um contains a cyclic subgroup of order

o = lcm{q − 1 : q ∈ π′}. Furthermore, by (D), for every p ∈ π we have that kp | o and hence

kp | q−1 for some q ∈ π′. Then Umq contains an element of order kp and, as Umπ′
∼=
∏

q∈π′ Umq ,

it follows that Umπ′ contains an element of order k. Let τ = {q ∈ π′ : gcd(k, q − 1) = 1}.

By (D), for every q ∈ τ there is pq ∈ π′ ∩ π(n) such that pq | q − 1. Let h =
∏

q∈τ pq. For

every q ∈ τ , there is an element in Umq of order pq. Then Umτ has an element of order h.

As k | nπ and h | nπ′ , Umπ′ has a cyclic subgroup S of order kh. Then Aut(Cm) has a cyclic

subgroup T such that Resmπ′ (T ) = S and Resmp(T ) = Resmp(T ) = ⟨ϵp−1 + rp⟩mp
for every

p ∈ π. By condition (B), if p ∈ π(r) and ϵp−1 = 1 then |Resmp(T )| =
mp

rp
| np. By condition

(C), if ϵ = −1 then 2 ∈ π, 2 | n and m2

r2
| n by (A). Thus |Resmp(T )| = max(2, m2

r2
) | n. Then

|Resmp(T )| divides n for every p ∈ π. This implies that |T | = lcm(|S|, |Resmp(T )|, p ∈ π)

and this number divides n. On the one hand we have sp′ = mπ′ and if p ∈ π then either

mp | rs or p = 2, ϵ = −1 and 2m2 | s. Using this it is easy to see that Resm
s
(T ) = 1. This

proves that T ⊆ Un,s
m and by the election of T it follows that [T ] = (r, ϵ, k). Moreover, from

conditions (B) and (C), it follows that T is (n, s)-canonical and hence Gm,n,s,T = ⟨a⟩ ⟨b⟩ is a

minimal factorization. Thus IN(Gm,n,s,T ) = (m,n, s, r, ϵ, k), as desired. □

Our last algorithm is based in Lemma 2.12 and compute a list containing exactly one

representative of each isomorphism class of the metacyclic groups of a given order.

Algorithm 4. Input: A positive integer N .

Output: A list containing exactly one representative of each isomorphism class of

the metacyclic groups of order N .

(1) M := [ ], an empty list, π′ := π(m) \ π(r), π′ := π(N) \ π′.

(2) P := {(m,n, s, r, ϵ, k) : n,m, s, r, k ∈ N, ϵ ∈ {1,−1}, N = mn and conditions (A)-(D) hold}.

(3) For each (m,n, s, r, ϵ, k) ∈ P :

(a) m′ := mπ′
∏

p∈π(r) m
′
p with m′

p as in (1.4) and s′ := sm′

m
.
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(b) For every cyclic subgroup ∆ of Un,s′

m′ with [∆] = (r, ϵ, k):

• Select a cyclic subgroup T of Um such that Resm′(T ) = ∆.

• Add Gm,n,s,T to the list M .

(4) Return the list M .

Observe that if (m,n, s, r, ϵ, k) satisfy conditions (A)-(D) then m divides sm′. Indeed, if

p ∤ r then mp = m′
p. If ϵ = −1 then m2

2
divides s and 2 | m′, hence in this case m2

s2
| m′.

Finally, if p ∈ π(r) and ϵp−1 = 1. Then p ∈ π and hence mp ≤ rpsp by condition (A).

Therefore mp

sp
≤ min(mp, rpkp). If rp | sp then also mp

sp
≤ sp. Otherwise spkp ∤ n and hence

rp
spkp
np

> rp ≥ mp

sp
. This proves that mp

sp
| m′ for every prime p, so that m | sm′, as desired.

This justify that s′ ∈ N is step (3a).

On the other hand if T is as in (3b) then T ⊆ Un,s
m . Indeed, m

s
= m′

s′
and hence Resm

s
(T ) =

Resm′
s′
(∆) = 1. Moreover Resmπ′ (T ) = Resm′

π′ (∆) and hence |Resmπ′ (T )| divides n. On the

other hand [T ] = (r, ϵ, k) = [T ] and hence if ϵp−1 = 1 then |Resmp(T )| =
mp

rp
| n, by (A).

Otherwise |Resm2 T2| = max(2, m2

r2
) which divides n by (A) and (C).

The function MetacyclicGroupsByOrder(N) implements a combination of Algorithm 3

and Algorithm 4 and returns the complete list of metacyclic invariants of metacyclic groups

of order N .

gap> MetacyclicGroupsByOrder(200);

[[1,200,1,0],[2,100,2,1],[4,50,2,3],[4,50,4,3],[5,40,5,1],[5,40,5,2],[5,40,5,4],

[10,20,10,1],[10,20,10,3],[10,20,10,9],[20,10,10,9],[20,10,10,11],[20,10,10,19],

[20,10,20,11],[20,10,20,19],[25,8,25,7],[25,8,25,24],[50,4,50,7],[50,4,50,49],

[100,2,50,49],[100,2,50,99],[100,2,100,99]]

gap> MetacyclicGroupsByOrder(8*3*5*7);

[[1,840,1,0],[2,420,2,1],[3,280,3,2],[4,210,2,3],[4,210,4,3],[5,168,5,2],[5,168,5,4],

[6,140,6,5],[7,120,7,2],[7,120,7,6],[7,120,7,3],[10,84,10,3],[10,84,10,9],[12,70,6,5],

[12,70,6,11],[12,70,12,11],[14,60,14,3],[14,60,14,9],[14,60,14,13],[15,56,15,2],

[15,56,15,14],[20,42,10,9],[20,42,10,19],[20,42,20,19],[21,40,21,20],[28,30,14,3],

[28,30,14,5],[28,30,14,11],[28,30,14,13],[28,30,14,27],[28,30,28,3],[28,30,28,11],
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[28,30,28,27],[30,28,30,17],[30,28,30,29],[35,24,35,2],[35,24,35,3],[35,24,35,4],

[35,24,35,13],[35,24,35,19],[35,24,35,34],[42,20,42,41],[60,14,30,29],[60,14,30,59],

[60,14,60,59],[70,12,70,3],[70,12,70,9],[70,12,70,13],[70,12,70,19],[70,12,70,23],

[70,12,70,69],[84,10,42,41],[84,10,42,83],[84,10,84,83],[105,8,105,62],[105,8,105,104],

[140,6,70,9],[140,6,70,19],[140,6,70,39],[140,6,70,69],[140,6,70,89],[140,6,70,139],

[140,6,140,19],[140,6,140,39],[140,6,140,139],[210,4,210,83],[210,4,210,209],

[420,2,210,209],[420,2,210,419],[420,2,420,419]]



CHAPTER3
The Nilpotent Case

In this chapter we are going to prove that the Isomorphism Problem (1.5) has a positive

answer when the groups are nilpotent and R = Q. In fact we prove the stronger result:

Theorem D. Let G and H be a metacyclic finite groups such that QG ∼= QH. Then

πG = πH and the Hall πG-subgroups of G and H are isomorphic.

As a direct consequence of Theorem D we obtain the following:

Corollary E. If G and H are finite metacylic groups with QG ∼= QH and G is

nilpotent then G ∼= H.

In Section 3.1 we introduce some chapter-specific notation and review some known results.

Suppose that G and H are finite metacyclic groups such that QG and QH are isomorphic. In

Section 3.2 we prove that if G and H are p-groups then they are isomorphic. In Section 3.3

we prove Theorem D. The results of this chapter are contained in [GBdR23b].

3.1 Introduction

Observe that in Theorem D and Corollary E it is not sufficient to assume that only one of

the two groups G or H is metacyclic:

49
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Example 3.1. The following groups:〈
a, b|ap2 = bp = 1, ab = a1+p

〉
, ⟨a, b|ap = bp = [b, a]p = [a, [b, a]] = [b, [b, a]] = 1⟩

have isomorphic rational group algebras while the first is metacyclic and the second is

not.

We will need the following formula:

n∑
d=0

d2d =
n∑

d=0

d−1∑
i=0

2d =
n−1∑
i=0

2i+1

n∑
d=i+1

2d−i−1 =
n−1∑
i=0

2i+1

n−i−1∑
j=0

2j =
n−1∑
i=0

2i+1(2n−i − 1)

= n2n+1 − 2
n−1∑
i=0

2i = n2n+1 − 2(2n − 1) = (n− 1)2n+1 + 2

(3.1)

Recall that if R, n ∈ N with gcd(R, n) = 1 and i ∈ Z then the R-cyclotomic class modulo

n containing i is the subset of Z formed by the integers j such that j ≡ iRk mod n for some

k ≥ 0. The R-cyclotomic classes module n form a partition of Z and each R-cyclotomic

class modulo n is a union of cosets modulo n. More precisely, if i and j belong to the same

R-cyclotomic class then gcd(n, i) = gcd(n, j) and if d = n
gcd(n,i)

then the R-cyclotomic class

module n containing i is the disjoint union of i+nZ, iR+nZ, . . . , iRod(R)−1+nZ. Therefore

the number of R-cyclotomic classes module n is

CR,n =
∑
d|n

φ(d)

od(R)
. (3.2)

We will need a precise expression of this number for the case where n is a power of p and

R ≡ 1 mod p.
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Lemma 3.2. Let p be a prime and R,m ∈ N with R ≡ 1 mod p. Then the number

of R-cyclotomic classes modulo pm is

CR,pm =



pm, if m ≤ vp(R− 1);

1 + 2m−1, if p = 2 and 2 ≤ m < v2(R + 1);

1 + 2v2(R+1)−1(1 +m− v2(R + 1)), if p = 2 and 2 ≤ v2(R + 1) ≤ m;

pvp(R−1)−1(p+ (p− 1)(m− vp(R− 1))), otherwise.

Proof. Ifm ≤ vp(R−1) then od(R) = 1 for every divisor d ofm and hence every R-cyclotomic

class module pm is formed by one coset modulo pm. Therefore, in that case CR,pm = pm.

Suppose otherwise that m > vp(R− 1).

Suppose that either p is odd or p = 2 and R ≡ 1 mod 4. Using Lemma 1.1.(1b) and

(3.2) we have

CR,pm =
m∑
k=0

φ(pk)

pmax(0,k−vp(R−1))
= 1 + (p− 1)

vp(R−1)∑
k=1

pk−1 +
m∑

k=vp(R−1)+1

pvp(R−1)−1


= pvp(R−1) + (p− 1)(m− vp(R− 1))pvp(R−1)−1 = pvp(R−1)−1(p+ (p− 1)(m− vp(R− 1)))

Otherwise, p = 2 and R ≡ −1 mod 4. Then 2 ≤ v2(R + 1) and 1 = v2(R − 1) < m.

Using now Lemma 1.1.(2b) and (3.2) we have CR,2m = 2 +
∑m

k=2
φ(2k)

2max(1,k−v2(R+1)) Thus, if

m < v2(R+1) the CR,2m = 2+
∑m

k=2 2
k−2 = 1+2m−1. Otherwise, i.e. if m ≥ v2(R+1) then

CR,2m = 2 +

v2(R+1)∑
k=2

2k−2 +
m∑

k=v2(R+1)+1

2v2(R+1)−1 = 1 + 2v2(R+1)−1 + (m− v2(R + 1))2v2(R+1)−1

= 1 + 2v2(R+1)−1(1 +m− v2(R + 1)).

□

Another tool that we want to introduce in this section is the classification of finite meta-

cyclic p-groups. The finite metacyclic groups were classified by Hempel [Hem00]. Previously

the finite metacyclic p-groups were classified by several means [Zas99, Lin71, Hal59, Bey72,

Kin73, Lie96, Lie94, NX88, Réd89, Sim94]. For our purpose we need the description of the

finite metacyclic groups in terms of group invariants given in [GBdR23a] for the special case
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of p-groups. More precisely when Theorem B is specialized to finite metacyclic p-groups one

obtains the following:

Theorem 3.3. Let p be a prime integer. Then every finite metacyclic p-group is

isomorphic to a group given by the following presentation

Pp,µ,ν,σ,ρ,ϵ =
〈
a, b | apµ = 1, bp

ν

= ap
σ

, ab = aϵ+pρ
〉
.

for unique non-negative integers µ, ν, σ and ρ and a unique ϵ ∈ {1,−1} satisfying the

following conditions:

(A) ρ ≤ µ, if µ ≥ 1 then ρ ≥ 1 and if p = 2 and µ ≥ 2 then ρ ≥ 2.

(B) If ϵ = 1 then ρ ≤ σ ≤ µ ≤ ρ+ σ and σ ≤ ν.

(C) If ϵ = −1 then

(a) p = 2 ≤ ρ ≤ µ, ν ≥ 1, µ− 1 ≤ σ ≤ µ ≤ ρ+ ν ̸= σ and

(b) if 2 ≥ ν and 3 ≥ µ then ρ ≤ σ,

Proof. Let G be a finite metacyclic p-group for a prime p. By Theorem B: G = AB,

where G = AB is a minimal metacyclic factorization, and MCINV(G) = (m,n, s,∆), where

m = |A|, n = [G : A], s = [G : B] and ∆ = ∆(AB). As G is a p-group, this means that m, n

and s are powers of p, so we write m = pµ, n = pν and s = pσ. In addition, [TG(A)] = (r, ϵ, k)

(we write T = TG(A) from this point on). In particular r is the greatest divisor of m such

that Resr′2(T ) = 1 and Resr2(T ) ⊆ ⟨−1⟩r2 , so we can write r = pρ and we have proven (A).

We also know that k = |Resmν (T )|, with ν = π(m) \ π(n), but using (A) we see that ν = 1

and k = 1. Using this on (1.4) leads to m′
p = rp. In any case, we see that the group can be

given the presentation G =
〈
a, b | apµ = 1, bp

ν
= ap

σ
, ab = aϵ+pρ

〉
. From Theorem B.(2a) and

Theorem B.(2d), we obtain s ≤ m, mp/rp ≤ sp ≤ np and if rp > sp then np < kpsp. The

statement (B) comes directly from this, using o = 1. If ϵ = −1 then, by the definition of ϵ,

p = 2. Using Theorem B.(2a) we get σ ≤ µ. Finally, the rest of the statement of (C) comes

directly from Theorem B.(2c). □
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3.2 ISO for finite metacyclic p-groups

In this section p is a prime and we prove that the Isomorphism Problem for rational group

algebras has positive solution for finite metacyclic p-groups.

All throughout G is a finite metacyclic p-group. By Theorem 3.3, G ∼= Pp,µ,ν,σ,ρ,ϵ for

unique non-negative integers µ, ν, σ and ρ and unique ϵ ∈ {1,−1} satisfying conditions (A)-

(C) of Theorem 3.3. For the rest of the section, when we refer to (A)-(C) we mean that of

Theorem 3.3.

The strategy for the proof of the main result of this sections relies in 4 invariants from

the group that can be found in the group ring. One of them is the size of the group, which

can be seen as the dimension of the group ring. Another one is the isomorphism class of

the commutator of the group: Q(G/G′) is isomorphic to the direct sum of the commutative

Wedderburn components of QG; and by Theorem 1.12 two non-isomorphic abelian finite

groups have non-isomorphic rational group algebras. The third invariant is the number of

conjugacy classes, which it is well-known that it is the dimension of the center over Q. Lastly,

by Theorem 1.11, the number of Q-characters of QG equals the number of conjugacy classes

of cyclic subgroups of G. Originally we tried to determine each metacyclic p-group which

these 4 invariants, but examples like Example 3.7 prove it wrong.

The proof of the main result of this section relies in five technical lemmas, three of them

consist in computing the mentioned invariants and the last two deal with the isolated remain-

ing cases. As we said, one of the main tools in the proof consists on using Theorem 1.11. If

two groups have isomorphic rational group algebras we know that the number of conjugacy

classes of cyclic subgroups are the same. In this train of thought, in the first lemma we find

some conditions to establish when two subgroups of G are conjugate.

Lemma 3.4. Suppose that ϵ = 1 and µ > 0. Let 0 ≤ d < ν and for every 1 ≤ i ≤ pµ

set

li =

2σ + i(2ν−d + 2µ−1), if p = 2 ∤ i and µ = ν + ρ;

pσ + ipν−d, otherwise,

ki = min(µ, vp(li)) and hi = min(ki, ρ+ d, ρ+ vp(i)).
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Then
〈
bp

d
ai
〉

and
〈
bp

d
aj
〉

are conjugate in G if and only if i ≡ j mod phi. In that

case, ki = kj and hi = hj.

Proof. As µ > 0, by condition (A), we also have ρ > 0. Let R = 1+ pρ. By Lemma 1.1.(1a)

we have vp(R
pd − 1) = d + ρ and by condition (B) we have µ − (d + ρ) ≤ ν − d. Hence,

applying Lemma 1.1.(1d) with a = d + ρ and m = ν + ρ > a we obtain the following for

every k ∈ N:

S
(
Rpd | kpν−d

)
=

k2ν+d + k2ν+ρ−1 mod 2ν+ρ, if p = 2;

kpν+ρ, ifp ̸= 2

Then

S
(
Rpd | kpν−d

)
≡

k2ν−d + k2µ−1 mod 2µ, if p = 2, and µ = ν + ρ;

kpν−d mod pµ, otherwise.

(3.3)

Moreover ab
pd

= aR
pd

and hence, by Equation (1.1) we have

(bp
d

ai)p
ν−d

= bp
ν

a
iS

(
Rpd |pν−d

)
= a

pσ+iS
(
Rpd |pν−d

)
= ali . (3.4)

Suppose that
〈
bp

d
ai
〉

and
〈
bp

d
aj
〉

are conjugate in G. Then there are integers x, y, u

with p ∤ u such that bp
d
aj = ((bp

d
ai)u)b

yax . In particular bp
d ⟨a⟩ = bup

d ⟨a⟩ and therefore u ≡ 1

mod pν−d. Write u = 1 + vpν−d. Then

(bp
d

ai)u = bp
d

ai(bp
d

ai)vp
ν−d

= bp
d

ai+vli

Hence

bp
d

aj = (bp
d

ai+vli)b
yax = bp

d

a(i+vli)R
y+x(1−Rpd ).

On the other hand, Ry = 1 + Y pρ for some integer Y . Then

j ≡ i+ iY pρ + vliR
y + x(1−Rpd) ≡ i mod phi

because hi = min(ki, ρ+ d, r + vp(i)) = min(µ, vp(li), vp(1−Rpd), ρ+ vp(i)).

Conversely suppose that j ≡ i mod phi and consider the four possibilities for hi sepa-

rately. Of course if hi = µ then bp
d
ai = bp

d
aj. Suppose that hi = ρ+d. Then hi = vp(1−Rpd),
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by Lemma 1.1.(1a). Therefore there is an integer x such that j ≡ i + x(1 − Rpd) mod pµ

and hence (bp
d
ai)a

x
= bp

d
ai+x(1−Rpd ) = bp

d
aj. Assume that hi = ki = vp(li). Then j ≡ i+ vli

mod pµ for some v ∈ N. Hence using (3.4) we have (bp
d
ai)1+vpν−d

= bp
d
ai+vli = bp

d
aj. Finally,

suppose that hi = ρ + vp(i). Then there is an integer z such that j ≡ i + zipρ mod pµ.

Moreover, by Lemma 1.1.(1c), there is a non-negative integer y such that Ry ≡ 1 + zpρ.

Then (bp
d
ai)b

y
= bp

d
aiR

y
= bp

d
ai(1+zpρ) = bp

d
aj.

For the last part, suppose that
〈
bp

d
ai
〉
and

〈
bp

d
aj
〉
are conjugate in G. Then, from (3.4)

we have pν−d+µ−ki = |bpdai| = |bpdaj| = pν−d+µ−kj , so that ki = kj. Suppose that hi ̸= hj.

Then necessarily vp(i) ̸= vp(j) and, as j ≡ i mod phi , we have hi ≤ vp(i) < ρ + vp(i).

Interchanging the roles of i and j we also obtain hj ≤ vp(j) < ρ + vp(j). So that hi =

min(ki, ρ+ d) = min(kj, ρ+ d) = hj, a contradiction. □

In the following lemma we compute the number of conjugacy classes of cyclic subgroups

of a finite metacyclic p-group when ϵ = 1.

Lemma 3.5. If ϵ = 1 then the number of conjugacy classes of cyclic subgroups of G

is N = Aσ + A where

Aσ = pρ−1σ

(
1 + (p− 1)

1 + 2ν − σ

2

)
− pρ+σ−µ

p− 1
and

A =
3pρ−1 − 2

p− 1
+ pρ−16− ρ+ 2νρ− ρ2 + p(ρ2 + 2ν − 3ρ− 2νρ+ 2)

2

Proof. For every 0 ≤ d ≤ ν we let Cd denote the set of cyclic subgroups C of G satisfying

[C ⟨a⟩ : ⟨a⟩] = pν−d. Clearly Cd is closed by conjugation in G. We let Nd denote the number

of conjugacy classes of cyclic subgroups of G belonging to Cd. Then the number of conjugacy

classes of subgroups of G is
∑ν

d=0 Nd. For every 1 ≤ i ≤ pµ we will use the notation li, ki

and hi introduced in Lemma 3.4.

As G/ ⟨a⟩ is cyclic of order pν , every element of Cd is formed by the groups of the form〈
bp

d
ai
〉
with 1 ≤ i ≤ pµ. In particular Nν = µ+ 1, the number of subgroups of ⟨a⟩.

From now on we assume that 0 ≤ d < ν.

Claim 1. If vp(i) ≥ min(σ, ρ+ d) then
〈
bp

d
ai
〉
is conjugate to

〈
bp

d
〉
in G.

Indeed, suppose that vp(i) ≥ min(σ, ρ + d). By Lemma 3.4 we have to prove that
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i ≡ 0 mod phi , i.e. hi ≤ vp(i). First of all observe that vp(i) ≥ min(σ, ρ + d) ≥ 1,

because 1 ≤ ρ ≤ σ. Hence li = pσ + ipν−d. If vp(ip
ν−d) > σ then vp(li) = s and hence

hi = min(σ, ρ + d, ρ + vp(i)) = min(σ, ρ + d) ≤ vp(i), as desired. Suppose otherwise that

vp(ip
ν−d) ≤ σ. Then vp(i) < vp(ip

ν−d) ≤ σ and hence, by hypothesis ρ + d ≤ vp(i). Then,

by condition (B) of Theorem 3.3 we have vp(ip
ν−d) ≥ ρ+ ν ≥ µ ≥ σ ≥ vp(ip

ν−d). Therefore

vp(ip
ν−d) = ρ+ ν = µ = σ and vp(i) = ρ+ d < σ. Then hi = min(σ, ρ+ d) = ρ+ d ≤ vp(i),

again as desired.

Claim 2. If 1 ≤ i, j ≤ pµ, vp(i) < min(σ, ρ + d) and
〈
bp

d
ai
〉
and

〈
bp

d
aj
〉
are conjugate

in G then vp(i) = vp(j).

Indeed, by Lemma 3.4 we have hi = hj, which we denote h, and i ≡ j mod ph. By

means of contradiction suppose that vp(i) ̸= vp(j). Then h ≤ min(vp(i), vp(j)) ≤ vp(i) <

min(σ, ρ + d) and therefore min(µ, vp(lj), ρ + d) = min(µ, vp(li), ρ + d) = h < min(σ, ρ + d).

Thus vp(li) = vp(lj) = h ≤ min(vp(i), vp(j)). However vp(ip
ν−d) > vp(i) and if p = 2 ̸= i then

v2(i(2
ν−d + 2µ−1)) > v2(i). Therefore vp(li − pσ) > vp(i) ≥ h = vp(li). Then h = vp(lj) =

vp(li) = σ ≥ min(σ, ρ+ d), a contradiction.

We use Claims 1 and 2 and Lemma 3.4 as follows: For every 0 ≤ h < min(σ, ρ+ d) let

Xh = {i ∈ Z : 1 ≤ i ≤ pµ and vp(i) = h}

and consider the equivalence relation in Xh given by

i ∼d j if and only if ki = kj(= k) and i ≡ j mod pmin(k,ρ+d,ρ+h).

Let Nd,h be the number of ∼d-equivalence classes in Xh. By Lemma 3.4 and Claim 2, if

i ∈ Xh, 1 ≤ j ≤ pµ, vp(i) < min(σ, ρ + d) and
〈
bp

d
ai

〉
and

〈
bp

d
j
〉
are conjugate in G then

j ∈ Xh and i and j belong to the same ∼d-class. Therefore, using also Claim 1 we have

Nd = 1 +

min(σ,ρ+d)−1∑
h=0

Nd,h. (3.5)

Our next goal is obtaining a formula for Nd,h and for that we consider three cases:

Case 1: Suppose that d ≤ ν − ρ.

Let h ∈ Xh. We claim that ki = min(σ, ρ+ d, ρ+ h). This is clear if vp(li) = σ. Suppose

that vp(li) > σ. Then vp(li − pσ) = σ. If h = 0 then, as ρ ≤ σ we have ki = ρ = min(σ, ρ +
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d, ρ+ h) as desired. Otherwise li− pσ = ipν−d, so that h+ ν − d = σ and, by assumption we

have ρ+ h = ρ+ d− ν + σ ≤ σ. Then again ki = min(σ, ρ+ d, ρ+ h). Finally, suppose that

vp(li) < σ. Then vp(li−pσ) = vp(li). If li−pσ = ipν−d then h+ρ ≤ h+ν−d = vp(li) < σ ≤ µ

and hence ki = min(ρ+ d, ρ+ h) = min(σ, ρ+ d, ρ+ h). Otherwise p = 2, h = 0, µ = ν + ρ

and li − 2σ = i(2ν−d + 2µ−1). Then µ ≥ σ > v2(li) = v2(2
ν−d + 2µ−1) ≥ ν − d ≥ ρ = ρ + h,

because ν − d = µ− ρ− d ≤ µ− ρ ≤ µ− 1. Then ki = ρ = min(σ, ρ+ d, ρ+ h). So all the

cases ki = min(σ, ρ+ d, ρ+ h), as desired.

Combining Lemma 3.4 with the claim in the previous paragraph we deduce that for

d ≤ ν − ρ and h < min(σ, ρ + d), the ∼d-equivalence classes of Xh have pµ−min(σ,ρ+d,ρ+h)

elements. Thus for each d ≤ ν − ρ and 0 ≤ h < min(σ, ρ+ d) we have

Nd,h =
φ(pµ−h)

pµ−min(σ,ρ+d,ρ+h)
= (p− 1)pmin(σ,ρ+d,ρ+h)−h−1

As, by Claim 1, for a fixed d | µ, all the cyclic groups
〈
bp

d
ai
〉
with vp(i) ≥ min(σ, ρ+ d) are

conjugate we have

ν−ρ∑
d=0

Nd =

ν−ρ∑
d=0

1 +

min(σ,ρ+d)−1∑
h=0

Nd,h

 =

σ−ρ∑
d=0

(
1 +

d−1∑
h=0

(p− 1)pρ−1 +

d+ρ−1∑
h=d

(p− 1)pρ+d−h−1

)

+

ν−ρ∑
d=σ−ρ+1

(
1 +

σ−ρ−1∑
h=0

(p− 1)pρ−1 +
σ−1∑

h=σ−ρ

(p− 1)pσ−h−1

)
= (ν − ρ+ 1)+

σ−ρ∑
d=0

(
d(p− 1)pρ−1 + (p− 1)

ρ−1∑
x=0

px

)
+

ν−ρ∑
d=σ−ρ+1

(
(σ − ρ)(p− 1)pρ−1 + (p− 1)

ρ−1∑
x=0

px

)

= (ν − ρ+ 1) +
(σ − ρ)(σ − ρ+ 1)

2
(p− 1)pρ−1 + (ν − σ)(σ − ρ)(p− 1)pρ−1 + (ν − ρ+ 1)(pρ − 1)

= pρ−1

(
(σ − ρ)(p− 1)

1 + 2ν − ρ− σ

2
+ (ν − ρ+ 1)p

)
(3.6)

Case 2: Suppose that ν − ρ < d ≤ ν − 1 and h ̸= σ + d− ν.

Let i ∈ Xh. Then vp(p
σ + ipν−d) = min(σ, h + ν − d). If vp(li) ̸= min(σ, h + ν − d) then

p = 2 ̸= i, µ = ν + ρ and li = 2σ + i(2ν−d + 2µ−1). Then, from ρ ≥ 1 and d > ν − ρ ≥ 0 we

deduce µ − 1 = v2(li − (2σ + i2ν−d)) = min(v2(li), v2(2
σ + i2ν−d)) = min(v2(li), σ, ν − d) ≤

ν−d = µ−ρ−d < µ−1, a contradiction. This proves that vp(li) = min(σ, h+ν−d). Therefore

hi = min(µ, vp(li), ρ+ d, ρ+ h) = min(σ, h+ ν − d, ρ+ d, ρ+ h) = min(σ, h+ ν − d, ρ+ h) =
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min(σ, h + ν − d) ≤ µ because σ ≤ ν < ρ + d and h + ν − d < h + ρ, by condition

(B) in Theorem 3.3 and the assumption. Hence, by Lemma 3.4, each class inside Xh with

σ > h ̸= σ + d− ν contains pµ−min(σ,h+ν−d) elements. This proves the following

if σ > h ̸= σ + d− ν then Nd,h =
φ(pµ−h)

pµ−min(σ,h+ν−d)
= (p− 1)pmin(σ−h,ν−d)−1.

Then
ν−1∑

d=ν−ρ+1

(
1 +

σ−1∑
h=0,h̸=σ+d−ν

Nd,h

)

=
ν−1∑

d=ν−ρ+1

(
1 + (p− 1)

(
σ+d−ν−1∑

h=0

pν−d−1 +
σ−1∑

h=σ+d−ν+1

pσ−h−1

))

=

ρ−1∑
x=1

(
1 + (p− 1)

σ−x−1∑
h=0

px−1 + (p− 1)
σ−1∑

h=σ−x+1

pσ−h−1

)

=

ρ−1∑
x=1

(
1 + (σ − x)(p− 1)px−1 + (p− 1)

x−2∑
y=0

py

)
=

ρ−1∑
x=1

(
(σ − x)px − (σ − x)px−1 + px−1

)
=

ρ−1∑
x=1

(σ − x)px −
ρ−2∑
x=0

(σ − x− 1)px +

ρ−2∑
x=0

px = (σ − ρ+ 1)pρ−1 + 2

ρ−2∑
x=1

px − (σ − 1) + 1

= (1− ρ)pρ−1 + σ(pρ−1 − 1) + 2
pρ−1 − 1

p− 1

(3.7)

Case 3: Finally, suppose that ν − ρ < d ≤ ν − 1 and h = σ + d− ν.

Then, h < σ and by condition (B) if i ∈ Xh then vp(i) = h ≥ ρ + d − ν > 0 and hence

li = pσ+ ipν−d = pσ(1+ ip−h). Therefore vp(li) = σ+vp(1+ ip−h). Also, by condition (B) we

have ρ ≤ σ ≤ ν, and therefore h ≤ d. Thus hi = min(ki, ρ+h). Observe that, as 1 ≤ i ≤ pµ,

we have that 0 ≤ vp(1 + ip−h) ≤ µ− h. For 0 ≤ l ≤ µ− h we set

Yl = {i ∈ Xh : vp(1 + ip−h) = l} and Zl =

µ−h⋃
t=l

Yt.

The sets Yl with l = 0, 1, . . . , µ−h form a partition of Xh. A straightforward argument show

that

|Yl| =


(p− 2)pµ−h−1, if l = 0;

φ(pµ−h−l), if 1 ≤ l < µ− h;

1, if l = µ− h;

and |Zl| =

φ(pµ−h), if l = 0;

pµ−h−l, if 1 ≤ l ≤ µ− h.
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For each i ∈ Yl we have ki = min(µ, σ + l). Therefore, if i ∈ Yl then

hi =

min(µ, ρ+ h), if i ∈ Zµ−σ;

min(σ + l, ρ+ h), otherwise.

By Lemma 3.4, each ∼d-class inside Xh is contained either in some Yl with l < µ − σ

or in Zµ−σ. Moreover two elements i and j in Yl with l < µ − σ belong to the same

class if and only if i ≡ j mod pmin(σ+l,ρ+h) while two elements in Zµ−σ are in the same

class if and only if i ≡ j mod pmin(µ,ρ+h). Recalling that h = σ + d − ν we deduce that

if l < min(µ − σ, ρ + d − ν) then each class inside Yl has cardinality pµ−(σ+l), while ev-

ery class contained in Zmin(µ−σ,ρ+d−ν) has cardinality pµ−min(µ,ρ+h). Having in mind that
|Zmin(µ−σ,ρ+d−ν)|
pµ−min(µ,ρ+σ+d−ν) =

|Zmin(µ−σ,ρ+d−ν)+1|
pµ−min(µ,ρ+σ+d−ν) +

|Ymin(µ−σ,ρ+d−ν)|
pµ−(σ+min(µ−σ,ρ+d−ν)) we have

Nd,σ+d−ν =
|Zmin(µ−σ,ρ+d−ν)+1|
pµ−min(µ,ρ+σ+d−ν)

+

min(µ−σ,ρ+d−ν)∑
l=0

|Yl|
pµ−(σ+l)

= pν−d−1 + (p− 2)pν−d−1 +

min(µ−σ,ρ+d−ν)∑
l=1

φ(pµ−σ+ν−d−l)

pµ−σ−l

= (p− 1)pν−d−1 +min(µ− σ, ρ+ d− ν)(p− 1)pν−d−1 = (1 + min(µ− σ, ρ+ d− ν))(p− 1)pν−d−1
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Thus

ν−1∑
d=ν−ρ+1

Nd,σ+d−ν = (p− 1)
ν−1∑

d=ν−ρ+1

(1 + min(µ− σ, ρ+ d− ν))pν−d−1

= (p− 1)

ρ−2∑
x=0

(1 + min(µ− σ, ρ− x− 1))px

= (p− 1)

(
ρ+σ−µ−2∑

x=0

(1 + µ− σ)px +

ρ−2∑
x=ρ+σ−µ−1

(ρ− x)px

)

= (1 + µ− σ)(pρ+σ−µ−1 − 1) +

ρ−2∑
x=ρ+σ−µ−1

(ρ− x)px+1 −
ρ−2∑

x=ρ+σ−µ−1

(ρ− x)px

= (1 + µ− σ)(pρ+σ−µ−1 − 1) +

ρ−1∑
x=ρ+σ−µ

(ρ− x+ 1)px −
ρ−2∑

x=ρ+σ−µ−1

(ρ− x)px

= (1 + µ− σ)(pρ+σ−µ−1 − 1) + 2pρ−1 +

ρ−2∑
x=ρ+σ−µ

px − (µ+ 1− σ)pρ+σ−µ−1

= (σ − 1− µ) + 2pρ−1 + pρ+σ−µ

µ−σ−2∑
x=0

px = (σ − 1− µ) + 2pρ−1 + pρ+σ−µp
µ−σ−1 − 1

p− 1

= (σ − 1− µ) + 2pρ−1 +
pρ−1 − pρ+σ−µ

p− 1
.

(3.8)

Combining (3.5), (3.6), (3.7). and (3.8), and recalling that Nν = µ+1, we finally obtain
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that the number of conjugacy classes of cyclic subgroups of G

ν∑
d=0

Nd =µ+ 1 +

ν−ρ∑
d=0

Nd +
ν−1∑

d=ν−ρ+1

1 +

min(σ,ρ+d)∑
h=0,h̸=σ+d−ν

Nd,h +Nd,σ+d−ν


=µ+ 1 + pρ−1

(
(σ − ρ)(p− 1)

1 + 2ν − ρ− σ

2
+ (ν − ρ+ 1)p

)
+ (1− ρ)pρ−1 + σ(pρ−1 − 1) + 2

pρ−1 − 1

p− 1
+ (σ − 1− µ) + 2pρ−1 +

pρ−1 − pρ+σ−µ

p− 1

=pρ−1σ

[
1 + (p− 1)

1 + 2ν − ρ− σ

2

]
+ pρ−1

(
−ρ(p− 1)

1 + 2ν − ρ− σ

2
+ (ν − ρ+ 1)p

)
+ (1− ρ)pρ−1 + 2

pρ−1 − 1

p− 1
+ 2pρ−1 +

pρ−1 − pρ+σ−µ

p− 1

=pρ−1σ

[
1 + (p− 1)

1 + 2ν − σ

2

]
− pρ+σ−µ

p− 1

+
3pρ−1 − 2

p− 1
+ pρ−16− 2ρ− ρ(p− 1)(1 + 2ν − ρ) + 2(ν − ρ+ 1)p

2

=pρ−1σ

[
1 + (p− 1)

1 + 2ν − σ

2

]
− pρ+σ−µ

p− 1

+
3pρ−1 − 2

p− 1
+ pρ−16− ρ+ 2νρ− ρ2 + p(ρ2 + 2ν − 3ρ− 2νρ+ 2)

2
= Aσ + A.

(3.9)

□

In the following lemma with compute the number of conjugacy classes of a finite meta-

cyclic group when ϵ = −1. This is not as in the previous case where we computed the number

of conjugacy classes of cyclic subgroups. We present two original proofs for this result. The

first of them uses the same tools as in Lemma 3.5 and is the one that we thought of originally.

The second proof uses a theorem of Berman [Ber55] on the number of conjugacy classes and

was suggested to us by an anonymous referee, to which we offer our thanks.

Lemma 3.6. If ϵ = −1 then the number of conjugacy classes of G is 3 · 2ν−1+2ρ−1(3 ·

2ν−1 − 2ν+ρ−µ).

Proof. Every element of G is of the form bjai with 0 ≤ j < 2ν and 0 ≤ i < 2µ. As G/ ⟨a⟩

is cyclic of order 2ν , if bjai and bj
′
ai

′
are conjugate then j = j′. Let R = −1 + 2ρ and

dj = gcd(2µ, Rj − 1). Then

(bjai)b
yax = bjax(1−Rj)+iRy
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This shows that bjai and bjai
′
belong to the same conjugacy class if and only if the congruence

equation X(1−Rj) + iRy ≡ i′ mod 2µ has a solution if and only if i′ ≡ iRy mod dj if and

only if i and i′ belong to the same R-cyclotomic class modulo dj. Therefore the number of

conjugacy classes of elements of the form bjai is CR,dj , the number of R-conjugacy classes

modulo dj. By Lemma 1.1.(2a) we have

dj =

2, if 2 ∤ j;

2min(µ,ρ+v2(j)), otherwise.

Using Lemma 3.2 and having in mind that R + 1 = 2ρ with 2 ≤ ρ ≤ µ, we have

CR,dj =

2, if j ∤ 2;

1 + 2ρ−1(1 + min(µ− ρ, v2(j))), otherwise.

Therefore, as the number of integers 1 ≤ j ≤ 2ν with v2(j) = k is φ(2n−k), we deduce that

that the number of conjugacy classes of G is

2ν∑
j=1

CR,dj = 2ν +
ν∑

k=1

φ(2ν−k)(1 + 2ρ−1(1 + min(µ− ρ, k)))

= 2ν + (1 + 2ρ−1)
ν∑

k=1

φ(2ν−k) + 2ρ−1

ν∑
k=1

φ(2ν−k)min(µ− ρ, k)

= 2ν + (1 + 2ρ−1)2ν−1 + 2ρ−1

µ−ρ−1∑
k=1

2ν−k−1k + 2ρ−1

ν∑
k=µ−ρ

φ(2ν−k)(µ− ρ)

= 3 · 2ν−1 + 2ρ+ν−2 + 2ρ−1

µ−ρ−1∑
k=1

2ν−k−1k + (µ− ρ)2ν+2ρ−µ−1

We calculate separately the sum in the third summand. If µ = ρ or µ = ρ+1 the summand

is zero, so we assume µ ≥ ρ+ 2. Then, using (3.1) we obtain

2ρ−1

µ−ρ−1∑
k=1

2ν−k−1k = 2ν+2ρ−µ−1

µ−ρ−1∑
k=1

2µ−ρ−k−1k

= 2ν+2ρ−µ−1

µ−ρ−2∑
i=0

2i(µ− ρ− i− 1)

= 2ν+2ρ−µ−1

(
(µ− ρ− 1)

µ−ρ−2∑
i=0

2i −
µ−ρ−2∑
i=0

2ii

)
= 2ν+2ρ−µ−1

(
(µ− ρ− 1)(2µ−ρ−1 − 1)− ((µ− ρ− 3)2µ−ρ−1 + 2)

)
= 2ν+2ρ−µ−1(2µ−ρ − µ+ ρ− 1).
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Observe that replacing µ by ρ or ρ+ 1 in the previous expression the result is zero So there

is not need to distinguish cases and we finally obtain the desired formula for the number of

conjugacy classes of G:

2ν∑
j=1

CR,dj = 3 · 2ν−1 + 2ρ+ν−2 + (µ− ρ)2ν+2ρ−µ−1 + 2ν+2ρ−µ−1(2µ−ρ − µ+ ρ− 1)

= 3 · 2ν−1 + 3 · 2ρ+ν−2 − 2ν+2ρ−µ−1

= 3 · 2ν−1 + 2ρ−1(3 · 2ν−1 − 2ν+ρ−µ)

□

Now let us see an alternative, shorter proof of the result.

Proof. By a Theorem of Berman [Ber55], the number of conjugacy classes of G is 2ν
∑k

i=1
1
hi

where h1, . . . , hk are the cardinalities of the conjugacy classes of G contained in ⟨a⟩. To

compute this cardinalities we first classify the elements of ⟨a⟩ by its order. More precisely

we set Cδ = {x ∈ ⟨a⟩ : |x| = 2δ}, for 0 ≤ δ ≤ µ. Each conjugacy class of G contained in

⟨a⟩ is contained in some Cδ. Moreover, ai ∈ Cδ if and only if 2µ

gcd(i,2µ)
= 2δ. In that case, if

d is the cardinality of the conjugacy class of G containing ai then CG(a
i) =

〈
a, bd

〉
and d is

the minimum positive integer with i(−1 + 2ρ)d ≡ i mod 2µ or equivalently (−1 + 2ρ) ≡ 1

mod 2δ. Thus d = o2δ(−1 + 2ρ). This shows that each conjugacy class of G contained in

Cδ has o2δ(−1 + 2ρ) elements. As |Cδ| = φ(2δ), the list h1, . . . , hk is formed by the integers

o2δ(−1 + 2ρ) with this integer repeated φ(2δ)
o
2δ

(−1+2ρ)
times. Hence Berman result provides the

following formula for the number of conjugacy classes of G:

2ν
µ∑

δ=0

φ(2δ)

o2δ(−1 + 2ρ)2
.

By Lemma 1.1.(2b),

o2δ(−1 + 2ρ) =

1, if δ ≤ 1;

2max(1,δ−ρ), otherwise.

Then
∑ρ

δ=0
φ(2δ)

o
2δ

(−1+2ρ)2
= 2 +

∑ρ
δ=2 2

δ−3 = 2 + 1
2

∑ρ−2
α=0 2

α = 2 + 2ρ−1−1
2

and, if ρ < µ then

µ∑
δ=ρ+1

φ(2δ)

o2δ(−1 + 2ρ)2
=

µ∑
δ=ρ+1

22ρ−δ−1 =

ρ−2∑
β=2ρ−µ−1

2β = 22ρ−µ−1

µ−ρ−1∑
β=0

2β = 22ρ−µ−1(2µ−ρ − 1)
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Observe that if ρ = µ then the latter is 0. Thus the number of conjugacy classes of G is

2ν+1 + 2ν−1(2ρ−1 − 1) + 2ν+2ρ−µ−1(2µ−ρ − 1) = 3 · 2ν−1 + 2ρ−1(3 · 2ν−1 − 2ν+ρ−µ).

□

The last two of the technical lemmas have to do with a special case. Let us see the

example in detail:

Example 3.7. Let G and H be the following finite metacyclic 2-groups:

G =
〈
a, b | a8 = 1, b16 = a8, ab = a7

〉
H =

〈
a, b | a8 = 1, b16 = a8, ab = a3

〉
One can use the package wedderga [BCHK+13] from GAP [GAP12] (one way to do

it would be using the function WedderburnDecompositionWithDivAlgebras, passing

as a parameter the result of the function GroupRing(Rationals, G), where G is the

group) or do the calculations by hand to obtain the following:

QG = 4Q⊕ 2Q(i)⊕ 2Q(ζ8)⊕ 2Q(ζ16)

⊕H(Q)⊕M2(Q)⊕H(Q(
√
2))⊕M2(Q(i))⊕M2(Q(

√
2))⊕ 4M2(Q(ζ8))

QH = 4Q⊕ 2Q(i)⊕ 2Q(ζ8)⊕ 2Q(ζ16)

⊕H(Q)⊕M2(Q)⊕ 2M2(Q(
√
−2))⊕M2(Q(i))⊕ 4M2(Q(ζ8)),

As one can check fairly quick, the commutative parts are isomorphic (for convenience

of the reader, the commutative components are the ones in the first row), the number of

simple components is 19 in both cases, the dimensions are the same, and the dimensions

of the center are the same as well. In an equivalent way, one can check that |G| =

|H|, that G/G′ and H/H ′ are isomorphic, that the number of conjugacy classes of

both groups is the same and that the number of conjugacy classes of cyclic subgroups

coincides as well.

The original plan for the proof was to use this four invariants to determine the

group, but this example proves that these invariants are not enough. The good thing is
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that, as we will see in the proof of Theorem 3.10, these cases are fairly isolated, and

we can deal with them in the two following technical lemmas.

Lemma 3.8. Suppose that ϵ = −1, ρ ≥ µ−1 and µ ≥ 3. Then the following statements

hold:

(1) QG has a simple component with center Q(ζ2µ + ζ−1
2µ ) if and only if ρ = σ = µ.

(2) QG has a simple component with center Q(ζ2µ − ζ−1
2µ ) if and only if ρ = µ − 1

and σ = µ.

Proof. Let H = CG(a) and K0 = ⟨b2⟩. The assumption ρ ≥ µ− 1 implies that H = ⟨a, b2⟩ is

a maximal abelian subgroup of G. Then (H,K0) satisfy the conditions in Theorem 1.19 and

hence QGe(G,H,K0) is a simple component of QG. Moreover, by Proposition 1.18 we have

Z(QGe(G,H,K0)) ∼=


Q(ζ2µ + ζ−1

2µ ), if ρ = σ = µ;

Q(ζ2µ − ζ−1
2µ ), if ρ = µ− 1 and σ = µ;

Q(ζ2µ−1 + ζ−1
2µ−1), if ρ = σ = µ− 1.

This proves the reverse implication of (1) and (2).

Conversely suppose that A is a simple component of QG with center Q(ζ2µ + ζ−1
2µ ) or

Q(ζ2µ − ζ−1
2µ ). Since µ ≥ 3, this fields are not cyclotomic extensions of Q and therefore A

is not commutative, for otherwise A will be a Wedderburn component of Q(G/G′) and the

Wedderburn components of a commutative rational group algebra are cyclotomic extensions

of Q. As H is maximal abelian in G and G/H ∼= C2 there is a pair (H1, K) of subgroups of

G satisfying the conditions of Theorem 1.19 and H1 ∈ {H,G}. However, H1 ̸= G because

A is not commutative. Therefore H = H1. If K is not normal in G then NG(K) = H and

hence A ∼= M2(Q(ζ[H:K])) contradicting the fact that the center of A is not cyclotomic. Thus

K is normal in G and the center of A has index 2 in Q(ζ[H:K]). By Proposition 1.18, φ([H :

K]) = 2 dimZ(A) = 2µ−1 and hence [H : K] = 2µ. Another consequence of Proposition 1.18

and the fact that A is not commutative is that H ̸= ⟨K, b2⟩ and as H/K = ⟨aK, b2K⟩ is a

cyclic 2-group it follows that H = ⟨K, a⟩. As [H : K] = 2µ = |a| we have a2
µ−1 ̸∈ K. Thus

G′ ∩ K = 1. As K is normal in G, it follows that K ⊆ Z(G) =
〈
a2

µ−1
, b2
〉
. If σ = µ − 1



66 CHAPTER 3. THE NILPOTENT CASE

then Z(G) = ⟨b2⟩ and its order is 2ν . Then K = ⟨b4⟩ which is not possible because H/ ⟨b4⟩

is not cyclic. Thus σ = µ and Z(G) =
〈
a2

µ−1
〉
× ⟨b2⟩. Then K = ⟨b2⟩ or K =

〈
a2

µ−1
b2
〉
.

Arguing as in the first paragraph we deduce that Z(QGe(G,H,K)) = Q(ζ2µ + ζ−1
2µ ) if ρ = µ

and Z(QGe(G,H,K)) = Q(ζ2µ − ζ−1
2µ ) if ρ = µ− 1. □

Lemma 3.9. Suppose that ϵ = −1 and ρ < µ < ν + ρ. Let F = {α ∈ Q(ζ2µ) :

σ−1+2ρ(α) = α}. Then QG has a simple component of degree 2µ−ρ and center F if and

only if σ = µ.

Proof. Let H =
〈
a, b2

µ−ρ
〉
. Suppose that σ = µ and let K =

〈
b2

µ−ρ
〉
. Then (H,K) satisfies

the conditions of Theorem 1.19, and by Proposition 1.18, we have that QGe(G,H,K) has

degree [G : H] = 2µ−ρ and center F .

Otherwise, by condition (C) in Theorem 3.3 we have σ = µ−1. By means of contradiction

suppose that QG has a simple component A of degree 2µ−ρ and center F . Then H =〈
a, b2

µ−ρ
〉
. As H is maximal abelian subgroup of G with G/H abelian, by Theorem 1.19, we

have A = QGe(G,H1, K) for subgroups H1 and K satisfying the conditions of Theorem 1.19

and H1 ⊇ H. However, by Proposition 1.18, [G : H] = 2µ−ρ = Deg(A) = [G : H1] and

hence H1 = H. As H/K is cyclic, either H = ⟨a,K⟩ or H =
〈
b2

µ−ρ
, K
〉
. In the second case

NG(K)/K is abelian and by Proposition 1.18, the center F of A is a cyclotomic extension

of Q, which is not the case. Therefore H = ⟨a,K⟩. In particular [H : K] ≤ |a| = 2µ. If

a2
µ−1 ∈ K then

〈
a2

µ−1
〉
=
〈
a, b2

µ−ρ−1
〉′
⊆ K⊴

〈
a, b2

µ−ρ−1
〉
and

〈
a, b2

µ−ρ−1
〉
contains properly

H, in contradiction with the assumption that (H,K) satisfy condition (1) of Theorem 1.19.

Therefore K ∩ ⟨a⟩ = 1 and hence [H : K] ≥ |a| = 2µ. So [H : K] = 2µ. As NG(K)/H ∼=

Gal(Q(ζ[H:K])/F ), we have [NG(K) : H] = [Q(ζ[H:K]) : F ] = 2µ−ρ = [G : H] and hence

G = NG(K), i.e. K⊴G. AsK∩G′ = 1 it follows thatK ⊆ Z(G) =
〈
a2

µ−1
, b2

µ−ρ
〉
=
〈
b2

µ−ρ
〉
.

Finally, the assumption µ < ν + ρ implies that H contains ⟨a⟩ properly. Therefore |H| > 2µ

and hence K is a non-trivial subgroup of the cyclic subgroup
〈
b2

µ−ρ
〉
. Thus K contains the

unique element of order 2 of Z(G), namely a2
µ−1

, a contradiction. □

We are ready to prove the main result of this section.
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Theorem 3.10. Let p be prime integer. If G1 and G2 are finite metacyclic p-groups

and QG1
∼= QG2 then G1

∼= G2.

Proof. Suppose that QG1
∼= QG2. By Theorem 3.3, we have Gi

∼= Pp,µi,ν,σi,ρi,ϵi with

each list µi, νi, σi, ρi, ϵi satisfying conditions (A)-(C). We will prove that (µ1, ν1, σ1, ρ1, ϵ1) =

(µ2, ν2, σ2, ρ2, ϵ2).

First of all pµ1+ν1 = |G1| = |G2| = pµ2+ν2 and hence µ1 + ν1 = µ2 + ν2. Moreover, by

Theorem 1.14 we have G1/G
′
1
∼= G2/G

′
2 and from conditions (B) and (C) it follows that

Gi/G
′
i
∼=

Cpρi × Cpνi , if ϵi = 1,

C2 × C2νi , if ϵi = −1

Suppose that ϵ1 = 1 and ϵ2 = −1. Then C2ρ1 × C2νi
∼= C2 × C2ν2 , by Theorem 1.14, and

by conditions (B) and (C) we have p = 2, ρ1 ≤ ν1, 2 ≤ ρ2 and 1 ≤ ν2. Therefore ρ1 = 1

and hence µ1 = 1 by condition (A). This implies that G1 is abelian but G2 is not abelian, in

contradiction with QG1
∼= QG2. This proves that ϵ1 = ϵ2, which we denote ϵ from now on.

Moreover, if ϵ = 1 then Cpρ1 × Cpν1
∼= Cpρ2 × Cpν2 with ρi ≤ νi, and if ϵ = −1 then

C2 × C2ν1
∼= C2 × C2ν2 and 1 ≤ ν1, ν2. Thus, in both cases ν1 = ν2, and hence µ1 = µ2.

From now on we set µ = µi and ν = νi. Suppose that ϵ = 1 then Cpρ1 × Cpν1
∼= Cpρ2 × Cpν2

and hence ρ1 = ρ2, which we denote ρ. Moreover, by Artin’s Theorem (Theorem 1.11), the

number of Wedderburn components of QGi is the number of conjugacy classes of subgroups

of Gi. Therefore if Aσ1 and Aσ2 are as defined in Lemma 3.5 then we have Aσ1 = Aσ2 . Let

Bσi
= 2pµ−ρ(p− 1)Ai = −2pσi + σip

µ−1(p− 1)(2 + (p− 1)(1 + 2ν − σi)).

Then Bσ1 = Bσ2 . By means of contradiction, assume without loss of generality that σ1 < σ2.

By condition (B) we have σ1 < σ2 ≤ µ ≤ ν + ρ. If σ1 < µ − 1 then min(σ2, µ − 1) ≤

vp(Bσ2) = vp(Bσ1) = σ1 < µ − 1, which contradicts the assumption σ2 > σ1. Therefore,
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µ− 1 ≤ σ1 < σ2 ≤ min(µ, ν), i.e. σ1 = µ− 1 and σ2 = µ ≤ ν. Then

0 = Bµ −Bµ−1

= −2pµ + µpµ−1(p− 1)(2 + (p− 1)(2ν + 1− µ))

+2pµ−1 − (µ− 1)pµ−1(p− 1)(2 + (p− 1)(2ν + 1− (µ− 1)))

= pµ−1(p− 1)[−2 + µ(2 + (p− 1)(2ν + 1− µ))− (µ− 1)(2 + (p− 1)(2ν + 2− µ))]

= pµ−1(p− 1)[−2 + 2µ− 2(µ− 1) + µ(p− 1)(2ν + 1− µ)− (µ− 1)(p− 1)(2ν + 2− µ)]

= pµ−1(p− 1)[µ(p− 1)(2ν + 1− µ)− µ(p− 1)(2ν + 2− µ) + (p− 1)(2ν + 2− µ)]

= 2pµ−1(p− 1)2(ν + 1− µ) > 0,

which is the desired contradiction.

Suppose now that ϵ = −1. We first prove that ρ1 = ρ2. By means of contradiction

suppose that ρ1 < ρ2. It is well known that the dimension over Q of the center of QGi is the

number of conjugacy classes of Gi. Then, by Lemma 3.6 we have

2ρ1(3 · 2ν−1 − 2ν+ρ1−µ) = 2ρ2(3 · 2ν−1 − 2ν+ρ2−µ)

If ρ2 < µ− 1 then

2ρ2 + ν − µ = v2(2
ρ2(3 · 2ν−1 − 2ν+ρ2−µ) = v2(2

ρ1(3 · 2ν−1 − 2ν+ρ1−µ)) = 2ρ1 + ν − µ,

which contradicts the assumption ρ1 < ρ2. Therefore ρ2 ≥ µ − 1. If ρ1 < µ − 1 then using

that µ ≥ 2, by condition (C), we have

ρ2+ν−1 ≤ v2(2
ρ2(3 ·2ν−1−2ν+ρ2−µ) = v2(2

ρ1(3 ·2ν−1−2ν+ρ1−µ)) = 2ρ1+ν−µ < ρ1+ν−1,

again in contradiction with the assumption ρ1 < ρ2. Therefore ρ1 = µ − 1 and ρ2 = µ and

hence µ ≥ 3, by condition (A). If σ2 = µ then, by Lemma 3.8, QG2 has a simple component

with center isomorphic to Q(ζ2µ + ζ2µ) while QG1 does not. Therefore σ2 = µ − 1. This

implies that ν = 1, by condition (C). Therefore G2 is the quaternion group of order 2µ+1. If

σ1 = µ then G1 is the dihedral group of order 2µ+1. Otherwise σ1 = µ−1 and if b1 = ba then

b21 = 1 so that G1 is the semidihedral group
〈
a, b1 | a2

µ−1
= b21 = 1, ab1 = a−1+2µ−1

〉
. Looking

at the Wedderburn decomposition of the rational group algebras of dihedral, semidihedral
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groups and quaternion group in [JdR16, 19.4.1] we deduce that QG2 has a simple component

isomorphic to the quaternion algebra H(Q(ζ2µ + ζ2µ)), which is a non-commutative division

algebra, while QG1 does not have any Wedderburn component which is a non-commutative

division algebra. This yields the desired contradiction in this case.

So we can set ρ = ρ1 = ρ2 and it remains to prove that σ1 = σ2. Otherwise, we may

assume that σ1 = µ − 1 and σ2 = µ < ν + ρ, by condition (C). If ρ < µ then we obtain a

contradiction with Lemma 3.9. Thus ρ = µ. If µ ≥ 3 then the contradiction follows from

Lemma 3.8. Thus µ = 2 but then G1 is the quaternion group of order 8 and G2 is the dihedral

group of order 8 and again QG1 has Wedderburn component which is a non-commutative

division algebra but QG2 does not, yielding to the final contradiction. □

3.3 ISO for finite metacyclic nilpotent groups

In this section we will solve the Isomorphism Problem for rational group algebras for finite

metacyclic nilpotent groups. The solution will heavily rely on the result for p-groups. First

of all we need to introduce the concept of p-component.

Definition 3.11 (p-component). Let G be a finite group. We say that a Wedderburn

component of QG is a p-component if its degree is a power of p and its center embeds

in Q(ζpn) for some non-negative integer n.

The concept of p-component arises naturally when one analyzes the rational group algebra

QG and tries to see which Wedderburn components are also in QGp. The result which

encompasses this is Lemma 3.15. This is important to reduce the problem from nilpotent to

p-groups but, to achieve it, we need to present some auxiliary lemmas first.

Lemma 3.12. Let G be a finite group and (L,K) a strong Shoda pair of G. Then

QGe(G,L,K) is a p-component if and only if [G : L] is a power of p and [L : K]p′ ∈

{1, 2}.

Proof. The reverse implication is a direct consequence of Proposition 1.18. Conversely, set

A = QGe(G,L,K) and suppose that A is a p-component. Let d = [G : L] and c = [L : K].

As d is the degree of A, then it is a power of p. Moreover the center of A is isomorphic to
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the Galois correspondent FG,L,K = Q(ζc)
Im (α) of a subgroup of Gal(Q(ζc)/Q) isomorphic

to NG(K)/L (Remark 1.17). The assumption implies that F ⊆ Q(ζcp). As [NG(K) : L] is

a power of p, then so is [Q(ζc) : FG,L,K ] and hence φ(cp′) = [Q(ζc) : Q(ζcp)] is a power of p.

Then cp′ is either 1 or 2. □

Remark 3.13. If G is metacyclic and p is the smallest prime dividing |G| then p ∈ πG.

In particular, 2 ̸∈ π′
G.

Proof. Let π = πG and π′ = π′
G. If p ∈ π′ then by Lemma 2.4.(2), G′

p has a non-central

element h of order p. Therefore G contains an element g such that [g, h] ̸= 1 and we may

assume that |g| is a power of a prime q. Then Aut(⟨h⟩) has an element of order q. As

Aut(⟨h⟩) has order p− 1 it follows that q | p− 1 and in particular q > p. Thus p is not the

smallest prime dividing |G|. □

Lemma 3.14. If G and H are metacyclic groups with QG ∼= QH then π′
G = π′

H and

πG = πH .

Proof. Let π = πG and π′ = π′
G. We claim that π′ = {p ∈ π(G′) : (G/G′)p is cyclic}. Let

A = ⟨a⟩ ⊴ G and B = ⟨b⟩ ≤ G with G = AB. By Lemma 2.4.(5), ⟨ap, bp⟩ is a Sylow

p-subgroup of G, Aπ′ = G′
π′ and G = Aπ′ ⋊

(
Bπ′ ×

∏
q∈π AqBq

)
. Therefore, if p ∈ π′ then

(G/G′)p is cyclic. If p ∈ π′ \ π(G′) then Aπ′ ⋊
(
Bπ′\{p} ×

∏
q∈π AqBq

)
is a normal Hall

p′-subgroup of G and hence p ∈ π, a contradiction. This proves that π′ ⊆ {p ∈ π(G′) :

(G/G′)p is cyclic}. Conversely, if p ∈ π then [bp′ , ap] = 1 and therefore G′
p = ⟨ap, bp⟩

′. Then

(G/G′)p ∼= ⟨ap, bp⟩ / ⟨ap, bp⟩′. Therefore, if (G/G′)p is cyclic then so is ⟨ap, bp⟩ by the Burnside

Basis Theorem. In that case 1 = ⟨ap, bp⟩ = G′
p, i.e. p ̸∈ π(G′). This finishes the proof of the

claim.

By Theorem 1.14, the assumption implies that G/G′ ∼= H/H ′ and hence |G′| = |H ′|.

Then G′ ∼= H ′ as both G′ and H ′ are cyclic. Then, using the claim for G and H we deduce

that π′
G = {p ∈ π(G′) : (G/G′)p is cyclic} = {p ∈ π(H ′) : (H/H ′)p is cyclic} = π′

H and

πG = π(|G|) \ π′
G = π(|H|) \ π′

H = πH . □
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Lemma 3.15. If G is metacyclic and p ∈ πG then the sum of the p-components of QG

is isomorphic to a direct product of k copies of QGp, where

k =

1, if p = 2;

[G2 : G
′
2G

2
2], otherwise.

Proof. Let π = πG and π′ = π′
G and suppose that p ∈ π. By Remark 3.13, 2 ̸∈ π′ and hence

G has a normal Hall {2, p}′-subgroup N . Let e be a primitive central idempotent such that

QGe is a p-component of G. Then e = e(G,L,K) for some strong Shoda pair (L,K) of G

and, by Lemma 3.12 [G : K] is either a power of p or 2 times a power of p. In particular

N ⊆ K. Then N̂M̂ = M̂ for every subgroup M containing K and as N is normal in G we

also have N̂M̂ g = 0 for every g ∈ G. This implies that N̂e = e. This proves that every

p-component of QG is contained in QGN̂ . Therefore QGN̂ = A⊕B where A is the sum of

the p-components of QG, and B is the sum of the Wedderburn components of QGN̂ which

are not p-components. We want to prove that Q(Gp)
k ∼= A.

Suppose first that p = 2. Therefore N = G2′ and hence G/N ∼= G2. Thus G/N is a

2-group and hence every Wedderburn component of Q(G/N), and QGN̂ , is a p-component.

Therefore Q(G2) ∼= QGN̂ = A, as desired.

Suppose that p ̸= 2. ThenG/N = U2×U ′
p with U2 = Gp′/N ∼= G2, and Up = G2′/N ∼= Gp.

Let F2 = U ′
2U

2
2 , the Frattini subgroup of U2. Then F2 = L/N for some subgroup L of Gp′

and by Lemma 3.12 it follows that L ⊆ K and the argument in the first paragraph shows

that every p-component of QG is contained in QGL̂. Thus QGL̂ = A ⊕ C where C is

the sum of the Wedderburn components of QGL̂ which are not p-components. Moreover,

G/L ∼= Up × E for E an elementary abelian 2-group of order k. Then QE ∼= Qk and hence

QGL̂ ∼= Q(G/L) ∼= (QUp)
k. Moreover, as Up is a p-group, every Wedderburn component

of QUp is a p-component. In other words, C = 0 and hence A ∼= (QUp)
k = (QGp)

k, as

desired. □

Lemma 3.16. Let G and H be finite metacyclic groups with QG ∼= QH, let p ∈ πG

and let Gp and Hp be Sylow subgroups of G and H respectively. Then QGp
∼= QHp.
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Proof. Let π = πG and π′ = π′
G and let k be as in Lemma 3.15. As 2 ̸∈ π′, by Remark 3.13,

and G/Gπ′ is nilpotent, it follows that G2/G
′
2G

2
2 is isomorphic to the Sylow 2-subgroup of

the quotient G/G′ by its Frattini subgroup. Since G/G′ ∼= H/H ′, the value of k is the

same whether it is computed for G or H. Let AG and AH be the sum of the Wedderburn

p-components of QG and QH. Since QG ∼= QH then AG
∼= AH . By Lemma 3.15, (QGp)

k ∼=

AG
∼= AH

∼= (QHp)
k an therefore QGp

∼= QHp. □

We are ready to proof our main result:

Proof of Theorem D. By Lemma 3.14 we have πG = πH and from now on we denote the

latter by π. Then the Hall π-subgroups of G and H are nilpotent and hence it is enough

to prove that if p ∈ π then the Sylow p-subgroups Gp of G and Hp of H are isomorphic.

However, QGp
∼= QHp, by Lemma 3.16, and hence Gp

∼= Hp, by Theorem 3.10. □

If G is nilpotent then π′
G = ∅ and hence Corollary E follows directly from Theorem D.



CHAPTER4
The General Case

In this chapter we will prove the general case of the positive answer to the Isomorphism

Problem of group algebras of finite metacyclic groups. Formally,

Theorem F. Let G and H be finite metacyclic groups. If QG ∼= QH, then G ∼= H.

In the first section we present the sketch of the proof and the rest of the sections will

be dedicated to showing that the invariants of the group can be obtained from the group

algebra. The results of this chapter are contained in [GBdR23c].

4.1 Introduction and sketch of the proof

A first step to the proof was obtained in Corollary E, where it was proved for nilpotent. This

will be an important tool in our proof of Theorem F.

It was said for the nilpotent case in Section 3.1, but it bears repeating that in Theorem F

it is not sufficient to assume that only one of the two groups G or H is metacyclic because the

groups from Example 3.1 have isomorphic rational group algebras while the first is metacyclic

and the second is not.

For the proof of Theorem F we fix two finite metacyclic groups G and H such that the

rational group algebras QG and QH are isomorphic. By Theorem A, proving that G and H

are isomorphic is equivalent to show that MCINV(G) = MCINV(H). This can be expressed

73
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by saying that MCINV(G) is determined by the isomorphism type of QG. We will work

most of the time with the group G and we will show how the different entries of MCINV(G)

are determined by the isomorphism type of QG. This way, we need to prove that all of

the invariants of G are determined by the isomorphism type of QG, which we abbreviate as

“determined by QG”. For example, |G| is determined by QG, because |G| = dimQQG. So,

as mGnG = |G|, to prove that mG and nG are determined by QG it suffices to prove it for

one of them. By Theorem D, πG, π
′
G and the isomorphism type of the Hall πG-subgroups of

G are determined by QG. Thus we can simplify the notation by setting π = πG = πH and

π′ = π′
G = π′

H , and for every p ∈ π, the isomorphism type of the Sylow p-subgroup of G is

determined by QG.

It is easy to see that the kernel of the natural homomorphism QG → Q(G/G′) is the

minimal ideal I of QG with QG/I commutative. Therefore any isomorphism QG → QH

maps that ideal of QG to the corresponding ideal of QH, and hence Q(G/G′) ∼= Q(H/H ′).

Then, G/G′ ∼= H/H ′, by the Perlis-Walker Theorem (1.12). This shows that the isomorphism

type ofG/G′ is determined byQG, and in particular so is [G : G′] and |G′| = |G|
[G:G′]

. Moreover,

mπ′ = |G′|π′ , by Lemma 2.4.(3), so that mπ′ is determined by QG. Therefore nπ′ =
|G|π′
mπ′

is

determined by QG. We collect this information for future use:

Proposition 4.1. If G and H are finite metacyclic groups with QG ∼= QH, then

G/G′ ∼= H/H ′, πG = πH , π
′
G = π′

H , (m
G)π′ = (mH)π′, (nG)π′ = (nH)π′ and for every

p ∈ π(G), the p-Sylow subgroups of G and H are isomorphic.

We denote RG = TG(G
′
π′). In Section 4.2, we prove that RG is determined by QG and

then kG is determined by QG, since kG = |RG|. In Section 4.3, we prove that sG and

ϵG are determined by QG. In Section 4.4, we prove that mG, nG and rG are determined

by QG. Finally we prove that ∆G is determined by QG in Section 4.5. Summarizing,

MCINV(G) = (mG, nG, sG,∆G) = (mH , nH , sH ,∆H) = MCINV(H) and hence G ∼= H by

Theorem A.

Along the chapter we fix a minimal metacyclic factorization G = ⟨a⟩ ⟨b⟩ of G. We also

fix the notation m = mG, n = nG, s = sG, ∆ = ∆G, r = rG, ϵ = ϵG, k = kG, R = RG, and

m′ is as defined in (1.4). Then InnG(⟨a⟩) is cyclic, say generated by γ, and G is given by the
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following presentation:

G =
〈
a, b | am = 1, bn = as, ab = γ(a)

〉
. (4.1)

Now, by Lemma 2.4.(5),

G′
π′ = ⟨aπ′⟩ and G = ⟨aπ′⟩⋊

(
⟨bπ′⟩ ×

∏
p∈π

⟨ap, bp⟩

)
. (4.2)

4.2 QG determines RG

In this section we use the following notation:

L0 = CG(G
′
π′), L1 =

〈
a, b2k

〉
and F0 = (Qmπ′ )

R.

As a ∈ L0, L0 = CG(aπ′) =
〈
a, bk

〉
. Moreover, L1 ⊆ L0, [L0 : L1] ≤ 2 and L0 = L1 if and

only if [L0 : ⟨a⟩] is odd.

We consider the following conditions for a field F :

(A1) F can be embedded in a subfield of Qmπ′ .

(A2) The only roots of unity of F are 1 and −1.

Lemma 4.2. (1) F0 satisfies (A1) and (A2).

(2) Let K =
〈
aπ, b

k
〉
. Then (L0, K) is a strong Shoda pair of G and if A =

QGe(G,L0, K), then Deg(A) = k and Z(A) ∼= F0.

(3) Suppose that k is odd, ϵ = −1 and a22 ̸∈ ⟨b4⟩, and let

K =


〈
a4π, b

2k
〉
, if a22 ̸∈ ⟨b2⟩ ;〈

a4π, b
4k
〉
, otherwise.

Then (L1, K) is a strong Shoda pair of G and if Ā = QGe(G,L1, K), then

Deg(Ā) = 2k and Z(Ā) ∼= F0.
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Proof. (1) Clearly, F0 satisfies (A1). If F0 does not satisfy condition (A2), then it contains

a root of unity of order p with p an odd prime. Then p divides mπ′ , so that p ∈ π′ and

G′
π′ ∩ Z(G) = ⟨aπ′⟩ ∩ Z(G) has an element of order p, in contradiction with Lemma 2.4.(2).

(2) Clearly L0/K is cyclic generated by aπ′K, ⟨aπ′⟩∩K = 1, by (4.2), and [g, aπ′ ] ∈ ⟨aπ′⟩

for every g ∈ G. Then [g, aπ′ ] ̸∈ K for every g ∈ G \ L0. Moreover, K ⊴ G, because

abπ ∈ ⟨aπ⟩ and [bk, a] = [bk, aπ] ∈ ⟨aπ⟩. This proves that (L0, K) satisfies the hypothesis

of Theorem 1.19 and hence (L0, K) is a strong Shoda pair of G. By Proposition 1.18,

Deg(A) = [G : L0] = k and as [L0 : K] = mπ′ and K is normal in G, A is isomorphic to the

cyclic algebra (Qmπ′/F0, R, 1) whose center is F0.

(3) Suppose now that the conditions of (3) hold. The assumption ϵ = −1 implies that

4 | m and ab = at with t ≡ −1 mod 4, or equivalently ⟨a⟩ has a non-central element of

order 4. In particular, |b ⟨a⟩ | is even. Since k is odd, we have that [G : L1] = 2k. Using that

[b, a2] ∈ ⟨a22⟩ and [bk, aπ′ ] = 1, it follows that [b2k, a] ∈ ⟨a4π⟩, i.e. ⟨a22⟩ =
〈
b2k2
〉
and therefore

K ⊴G and L′
1 ⊆ K.

We claim that L1/K is cyclic generated by aK. This is clear from the definition of K, if

a22 ̸∈
〈
b2k
〉
. Otherwise, as a22 ̸∈

〈
b4k
〉
by hypothesis, a22 ∈

〈
b2k
〉
\
〈
b4k
〉
and hence a22 = b2ki2

for some odd integer i. Therefore b2k2 ∈ ⟨a⟩. As bk2′ ∈ K it follows that b2k ∈
〈
a,K

〉
. Then

L1/K =
〈
aK
〉
, as desired.

In order to prove that (L1, K) satisfies the conditions of Theorem 1.19 it remains to prove

that if B is a subgroup of G containing L1 properly, then B′ ̸⊆ K. Assume otherwise. Then

there is g ∈ G \ L1 with [L1, g] ⊆ K. If g ̸∈
〈
a, bk

〉
, then 1 ̸= [aπ′ , g] ∈ K ∩ ⟨aπ′⟩ = 1,

a contradiction. Thus g ∈
〈
a, bk

〉
and ⟨L1, g⟩ =

〈
a, bk

〉
, so that [bk, a] ∈ K and therefore

[bk, a2] ∈ K. On the other hand, [bk, a2] = at
k−1
2 and v2(t

k − 1) = 1, because k is odd (cf.

Lemma 1.1.(1a)). Then a22 ∈ K. Moreover, ⟨aπ, b⟩ = ⟨bπ′⟩×
∏

p∈π ⟨ap, bp⟩, a nilpotent group.

Thus K is nilpotent and hence a22 ∈ K2. Suppose first that a
2
2 ̸∈

〈
b2k
〉
. Then K2 =

〈
a42, b

2k
2

〉
and hence a22 = a4i2 b

2kj
2 for some integers i, j. Hence ⟨a22⟩ =

〈
a2−4i
2

〉
=
〈
b2kj2

〉
⊆
〈
b2k2
〉
,

yielding a contradiction. Thus a22 ∈
〈
b2k
〉
, and as k is odd we have that a22 ∈ ⟨b22⟩ \ ⟨b42⟩, by

assumption. Then ⟨a22⟩ = ⟨b22⟩ and, in particular, a22 commutes with b. This implies that a2

has order 4, because ϵ = −1. Thus a22 = b22, so that the two generators a4kπ and b4k of K have

odd order. As K is nilpotent, we deduce that K a 2′-group. This yields a contradiction with
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the fact that a22 is an element of order 2 in K.

Then (L1, K) satisfies the conditions of Theorem 1.19 and hence it is a strong Shoda pair

of G. By Proposition 1.18, Deg(Ā) = [G : L1] = 2k and as [L1 : K] = 4mπ′ and L1/K is

generated by aK, the center of Ā is F = (Q4mπ′ )
Res4mπ′ (TG(⟨a⟩). Moreover, F0 = F ∩Qmπ′ ⊆

F ⊆ Q4mπ′ and [Q4mπ′ : F0] = [Q4mπ′ : Qmπ′ ] [Qmπ′ : F0] = 2k = [G : L̄0] = [Q4mπ′ : F ] and

therefore F = F0. □

In Lemma 4.2 we have encountered some Wedderburn components of QG with center

satisfying conditions (A1) and (A2). In order to analyze which other Wedderburn com-

ponents of QG satisfy the same properties we need the following two lemmas. In their

proofs we often use that if (L,K) is a strong Shoda pair of G and e = e(G,L,K), then

{g ∈ G : ge = e} = CoreG(K) (cf. Proposition 1.18).

Lemma 4.3. Let (L,K) be a strong Shoda pair of G with a ∈ L. Let C = CoreG(K)

and A = QGe(G,L,K). Let p be an odd prime such that the center of A does not have

elements of order p. Then bkp ∈ C. If, moreover, p ∈ π, then ap ∈ C.

Proof. Let e = e(G,L,K) and F = Z(QGe). Since A is generated by Ge as Q-algebra, the

assumption implies that Ge does not have central elements of order p and hence if g is a

p-element of G with ge ∈ Z(Ge), then g ∈ C. If p ∈ π′, then bkp ∈ Z(G) and hence bkp ∈ C.

Suppose that p ∈ π. If ap ̸∈ C, then p ∈ πGe and hence ⟨a⟩ e has an element of order p

which is central in Ge, which is not possible. Thus ap ∈ C. Then bkpe ∈ Z(Ge) and hence

bkp ∈ C. □

Of course every field of characteristic 0 has a root of unity of order 2 and therefore a

similar lemma for p = 2 makes no sense. However we have the following:

Lemma 4.4. Let (L,K) be a strong Shoda pair of G with a ∈ L. Let C = CoreG(K)

and A = QGe(G,L,K). Suppose that Z(A) can be embedded in Qt for some odd integer

t. Then

(1) a42, b
4k
2 ∈ C and b2k2 ∈ L.
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(2) If ϵ = 1, then a22 ∈ C.

(3) If a22 ∈ C or k is even, then b2k2 ∈ C and bk2 ∈ L.

(4) If 2 ∤ k, ϵ = −1 and a22 ∈
〈
b2k
〉
\C, then ⟨a2, b2⟩ is the quaternion group of order

8.

Proof. We use the same notation as in the proof of Lemma 4.3. Now F ∼= (Qh)
T with

h = [L : K] and T a cyclic subgroup of Uh, and by assumption F can be embedded in Qt

with t an odd integer. Then (Qh)
T ⊆ Qt. The latter implies that F does not have elements

of order 4 and hence neither does Z(Ge). As in the previous proof, this implies that if g ∈ G

with ge ∈ Z(Ge), then g4 ∈ C.

(1) Suppose that a42 ̸∈ C. As ⟨a42⟩ is normal in G, this implies that a42 ̸∈ K and hence h

is multiple of 8. Therefore Qh contains a primitive 8-th root of unity. As Gal(Q8/Q) is not

cyclic, it follows that (Qh)
T contains a subfield of Q8 other than Q and this is not compatible

with (Qh)
T ⊆ Qt, because t is odd. Therefore a42 ∈ C. Then b2k2 e ∈ Z(Ge) and therefore

b4k2 ∈ C. Moreover, as b2k2 e ∈ Z(Ge), [b2k2 , a] ∈ C ⊆ K and hence
〈
L, b2k2

〉
/K is an abelian

subgroup of NG(K)/K. Thus b2k ∈ L, since L/K is maximal abelian in NG(K)/K.

(2) Suppose that a22 ̸∈ C. By (1) the order of a2e is 4 and the hypotheses imply that

a2e ̸∈ Z(Ge) so that ab2e = a−1
2 e. Hence 4 | |a| and ⟨a⟩ has an element of order 4 which is

not central in G. Thus ϵ = −1.

(3) Suppose that a22 ∈ C or k is even. Then bk2e is central Ge, so that b2k2 ∈ C and

[bk2, a] ∈ C ⊆ K. Therefore bk2 ∈ L, because L/K is maximal abelian in NG(K).

(4) Suppose that 2 ∤ k, ϵ = −1 and a22 ∈
〈
b2k
〉
\ C. Then a22 commutes with b and as

ϵ = −1 the order of a22 is 2, i.e. a2 has order 4 and ab2 = a−1
2 . Furthermore, as a22 ∈

〈
b2k2
〉
\C

but b4k2 ∈ C, it follows that a22 ∈
〈
b2k2
〉
\
〈
b4k2
〉
and hence a22 = b2k2 = b22. This shows that

⟨a2, b2⟩ is the quaternion group of order 8. □

Lemma 4.5. Let A be a Wedderburn component of QG with center F . Suppose that F

satisfies conditions (A1) and (A2) and the degree of A is maximum among the degrees

of the Wedderburn components of QG with center satisfying (A1) and (A2). Then F
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can be embedded in F0 and

Deg(A) =

2k, if ϵ = −1, 2 ∤ k and a22 ̸∈ ⟨b4⟩ ;

k, otherwise.

Proof. By Theorem 1.19, A = QGe(G,L,K) for a strong Shoda pair (L,K) of G with a ∈ L

and Deg(A) = [G : L]. Let C = CoreG(K). Observe that (L,K) satisfies the hypothesis of

Lemma 4.3 for every p ∈ π \ {2} and the hypothesis of Lemma 4.4, because 2 ̸∈ π′, since the

minimal prime dividing |G| is always in π, and hence mπ′ is odd. Therefore a4π, b
4k ∈ C and

b2k ∈ L. The latter implies that L1 ⊆ L. Therefore [G : L] divides [G : L1] and

[G : L1] =

2k, if 2 | [L0 : ⟨a⟩];

k, otherwise.

In view of Lemma 4.2, the maximality of Deg(A) implies that L is either L0 or L1. Therefore

Deg(A) = [G : L] = {k, 2k}. By Lemma 4.2(3), if 2 ∤ k, ϵ = −1 and a22 ̸∈
〈
b4k
〉
, then

Deg(A) = 2k. Conversely, suppose that Deg(A) = 2k. Then bk2 ̸∈ L and hence a22 ̸∈ C

and 2 ∤ k, by Lemma 4.4(3). Therefore ϵ = −1 by Lemma 4.4(2) and a22 ̸∈
〈
b4k
〉
, by

Lemma 4.4(1). This proof the statement about Deg(A).

The following observations will be relevant for the remainder of the proof. Firstly, a22 ∈ K

if and only if a22 ∈ C because ⟨a2⟩ is normal in G. Secondly, by (4.2), L0 = ⟨aπ′⟩ ×
〈
bkπ′

〉
×∏

p∈π
〈
ap, b

k
p

〉
and in particular L0 is nilpotent. Finally, [b, a] ∈ ⟨a2⟩, because if |a| is even,

then ab = ax with x odd.

We consider the following subgroup of G:

M =



〈
a2π, b

2k
〉
, if a22 ∈ K;〈

a4π, b
2k
〉
, if a22 ̸∈ K and 2 | k;〈

a4π, b
4k
〉
, otherwise.

By Lemma 4.3 and Lemma 4.4, we have that M ⊆ C. Moreover, M is normal in G because

⟨aπ⟩ is normal in G and, using Lemma 1.1.(1a) and Lemma 1.1.(2a) it is easy to see that

given an integer c, [bck, a] ⊆ ⟨acπ⟩ and, if k is even, then [bck, a] ⊆ ⟨a2cπ ⟩. On the other hand,

as
〈
aπ\{2}, b

k
2′

〉
⊆M ⊆ C ⊆ K ⊆ L ⊆ L0, the Hall 2

′-subgroup of L/M is cyclic generated by
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aπ′M and therefore the Hall 2′-subgroup of L/K is generated by aπ′K. On the other hand

(L/K)2 is a cyclic quotient of L/M .

We consider separately four cases:

Case 1. Suppose that a22 ∈ K.

Then the Sylow 2-subgroup of L/M is elementary abelian of order at most 4 and hence

the Sylow 2-subgroup of L/K has order at most 2. Thus [L : K] ∈ {l, 2l} with l | mπ′

and the 2′-part of L/K is generated by aπ′K. If g = aibkj with i and j integers, then

[a, g] ∈ ⟨a2π⟩ ⊆ M and [b, g] = [b, ai] = a2ix ≡ a2ixb2jkx ≡ g2x mod M for some integer

x. This shows that every subgroup of L containing M is normal in G. In particular, K is

normal in G. By Proposition 1.18, F ∼= QResl(γ)
l ⊆ (Qmπ′ )

R = F0, as desired.

Case 2. Suppose that a22 ̸∈ K and 2 | k.

Then L/M has a cyclic normal Hall 2′-subgroup (generated by a2′M), and its Sylow

2-subgroups have order dividing 8 and exponent 4. If the Sylow 2-subgroup of L/M is not

abelian, then a22 ∈ L′M ⊆ K, in contradiction with the hypothesis a22 ̸∈ K. Thus the Sylow

2-subgroup of L/M is isomorphic to C4 or C4×C2. As k is even, [bk, a] ∈ ⟨a4π⟩ ⊆M . Hence,

arguing as in the previous case it follows that every subgroup of L containing M is normal

in G. In particular K is normal in G and as a22 ̸∈ K it follows that a{2}∪π′K is a generator

of L/K and F ∼= QResl(γ)
l with l | 4mπ′ . As, by assumption, F can be embedded in Qmπ′ ,

so does QResl(γ)
l and as both Qmπ′ and QResl(γ)

l are Galois extensions of Ql it follows that

QResl(γ)
l ⊆ (Qmπ′ )

R = F0. Thus F can be embedded in F0, as desired.

Case 3. Suppose that a22 ∈
〈
b2k
〉
\K and 2 ∤ k.

Then ϵ = −1, by Lemma 4.4.(2) and ⟨a2, b2⟩ = Q8, by Lemma 4.4.(4). The latter

also implies that a22 ̸∈ ⟨b4⟩ and hence the conditions of Lemma 4.2.(3) hold. Therefore,

L =
〈
a, b2k

〉
= ⟨a,M⟩, so that L/M is cyclic generated by aM . Moreover, the π-parts of M

and K coincide because a22 ̸∈ K. Therefore [L : K] = 4l with l a divisor of mπ′ . Now it is

easy to see that K is normal in G and arguing as in the previous case we deduce that F is

isomorphic to a subfield of (Qmπ′ )
R = F0.

Case 4. In the remaining cases a22 ̸∈ (
〈
b2k
〉
∪K) and 2 ∤ k.

As in the previous case ϵ = −1 and L =
〈
a, b2k

〉
. On the other hand by the definition of

M and the assumption a22 ̸∈
〈
b2k
〉
we have that the Sylow 2-subgroup of L/M is ⟨a2M⟩ ×
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⟨b22M⟩ ∼= C4×C2. We claim thatK ⊆
〈
a2, b2k

〉
andK is normal in G. If the former fails, then

K contains an element of the form g = a2b
2kl. Then, g2 ≡ a22b

4kl ≡ a22 mod M , so a22 ∈ K, in

contradiction with the hypothesis. Then, K ⊆
〈
a2, b2k

〉
. In order to prove that K is normal

in G take g = a2ib2kj with i, j integers. Then, [a, g] = [aπ, b
2kj] ∈ ⟨a4π⟩ ⊆ M ⊆ K and there

is an integer x such that [b, g] = [b, a2i] = a4ix ≡ a4ixb4kjx ≡ (a2ib2kj)2x ≡ g2x mod M . So

[a, g], [b, g] ∈ ⟨g,M⟩ ⊆ K and then K is a normal subgroup of G. As L =
〈
a, b2k

〉
, L/K

is cyclic, the 2′-Hall subgroup of L/K is generated by a2′K, the 2-Sylow subgroup of L/M

is isomorphic to C4 × C2 with a2M of order 4, and K ⊆
〈
a2, b2k

〉
. It follows that L/K is

generated by ⟨aK⟩ and [L : K] divides 4mπ′ . Then we can argue as in the previous cases. □

We are ready to prove the main result of this section:

Proposition 4.6. If G and H are finite metacyclic groups with QG ∼= QH, then

RG = RH .

Proof. Suppose that QG ∼= QH and let LG = (Qmπ′ )
RG

and LH = (Qmπ′ )
RH

. By Lemma 4.2

and Lemma 4.5, among the Wedderburn components of QG (respectively, QH) whose cen-

ter satisfy conditions (A1) and (A2) there is one with maximum degree and center LG

(respectively, LH). Denote those Wedderburn components AG and AH . As QG ∼= QH,

Deg(AG) = Deg(AH). Then, by Lemma 4.5, Z(AG) ∼= LG ⊆ LH and Z(AH) ∼= LH ⊆ LG. As

LG and LH are Galois extensions of Q it follows that LG = LH . Then RG = Gal(Qmπ′/LG) =

Gal(Qmπ′/LH) = RH , by Galois Theory. □

4.3 QG determines sG and ϵG

In this section we first prove that sG is determined by QG and latter that so is ϵG. Recall

that we have fixed notation s = sG, ϵ = ϵG,m = mG, . . . In the proof that s is determined

by QG we work prime by prime, so we fix a prime p and we will prove that sp is determined

by QG. As sπ′ = mπ′ = |G′
π′ | and G′ and π′ are determined by QG, if p ∈ π′, then sp is

determined by QG. Thus, we may assume that p ∈ π. Recall that Gp = ⟨ap, bp⟩ is a Sylow

p-subgroup of G. Let MCINV(Gp) = (pµ, pν , pσ, ⟨e+ pρ⟩pµ). Then µ, ν, σ, ρ, e satisfy the
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conditions of Theorem 3.3 and Gp is given by the following presentation

Gp =
〈
c, d | cpµ = 1, cd = ce+pρ , dp

ν

= cp
σ〉

,

and Gp = ⟨c⟩ ⟨d⟩ is a minimal metacyclic factorization of Gp. As p ∈ π, by Proposition 4.1,

the isomorphism type of Gp is determined by QG and hence so are µ, ν, σ, ρ and e. Observe

that TG(⟨c⟩) = TGp(⟨c⟩) = ⟨e+ pρ⟩pµ , since p ∈ π.

Lemma 4.7. (1) mpnp = pµ+ν, pµ | mp and sp = pσ

(2) pµ = mp if and only if pν = np. In that case pρ = rp.

(3) Suppose that ep−1 = 1. Then

(a) If p = 2, then ϵ = 1.

(b) mp

rp
= pµ−ρ and exp(Gp) =

mpnp

sp
= pµ+ν−σ.

(c) If mp ̸= pµ, then kp > 1, µ ̸= 0, ρ = σ and kpsp > np.

(4) Suppose that e = −1 and p = 2. Then

(a) ϵ = −1 if and only if m2 = 2µ.

(b) If ϵ = 1, then 2 = n2 = k2 < 2ν, σ = 1, µ = 2, m2 = 2ν+1 and r2 = 2ν.

Proof. Recall that G = ⟨a⟩ ⟨b⟩ and Gp = ⟨c⟩ ⟨d⟩ are minimal metacyclic factorizations.

Moreover, Gp = ⟨ap⟩ ⟨bp⟩ is a metacyclic factorization, |a| = m, [G : ⟨b⟩] = s, |c| = pµ and

[Gp : ⟨d⟩] = pσ. In particular, pµ+ν = |Gp| = mpnp and pµ | mp. Therefore mp = pµ if and

only if np = pν . This proves the first two statements of (1) and the first one of (2). For the

remainder of the proof we distinguish cases.

Case 1. Suppose that ep−1 = 1.

Then µ, ν, σ and ρ satisfy the conditions (A) and (B) of Theorem 3.3.

We first prove that if p = 2, then ϵ = 1. This is clear, if µ ≤ 1. Otherwise 4 | 2ρ = [⟨c⟩ :

G′
2]. As |c| = 2µ | m2, [⟨a2⟩ : G′

2] is also multiple of 4 and hence ϵ = 1, as desired. This

proves (3a).
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On the other hand, we have mp

rp
= |G′

p| = |(Gp)
′| = pµ−ρ. In particular, if mp = pµ, then

rp = pρ. This, together with the first paragraph, completes the proof of (2) in this case.

Let g ∈ Gp. Then g = bxpa
y
p for some positive integers x and y. If a

bxp
p = azp, then

using Lemma 1.1.(1a) and (1.1) we deduce that g
mpnp

sp = a
yS

(
z|mpnp

sp

)
= 1, as sp | np by

Theorem B.(2d). This proves that the exponent of Gp is mpnp

sp
and a similar argument with

c and d shows that the exponent of Gp is p
µ+ν−σ. As we already know that mpnp = pµ+ν we

deduce that sp = pσ. This proves (3b) and, together with the first paragraph, completes the

proof of (1), in this case.

To prove (3c) we first suppose that kp = 1 or µ = 0. Then [c, aπ′ ] = 1 and hence

G = ⟨ap′c⟩ ⟨bp′d⟩ is a metacyclic factorization of G. As G = ⟨a⟩ ⟨b⟩ is a minimal metacyclic

factorization, we have mp = |ap| ≤ |c| = pµ ≤ mp and hence mp = pµ. Now suppose that

ρ < σ. Then 1 ≤ ρ < σ ≤ µ. Moreover, pρ | mp

pµ
pρ = rp. As Gp/ ⟨ap⟩ is cyclic, we have

that ap = dycz with either p ∤ y or p ∤ z and
〈
cp

ρ〉
= G′

p ⊆ ⟨ap⟩. If p | z, then p ∤ y and

hence cp
ρ ∈ ⟨ap⟩ = ⟨dcx⟩ for some x. However ⟨dcx⟩ ∩ ⟨c⟩ =

〈
cp

σ+xS(1+pρ|pν)〉 and σ ≤ ν.

Thus pσ + xS (1 + pρ | µ) is multiple of pσ, by Lemma 1.1.(1a), so that it does not divides

pρ. Hence cp
ρ ̸∈ ⟨ap⟩, a contradiction. Therefore p ∤ z and this implies that ⟨ap⟩ = ⟨dxc⟩

for some integer 0 ≤ x < pν . If x = 0, then ⟨c⟩ = ⟨ap⟩ and hence mp = pµ. Suppose

otherwise that x > 0 and let u = vp(x) and cd
x
= c(1+pρ)x . Then |ap ⟨c⟩ | = |dxc ⟨c⟩ | = pν−u

and cp
ρ ∈ (Gp)

′ ⊆ ⟨ap⟩ ∩ ⟨c⟩ =
〈
(dxc)p

ν−u
〉
=
〈
cxp

σ−u+S((1+pρ)x|pν−u)
〉
. Therefore vp(xp

σ−u +

S ((1 + pρ)x | pν−u)) ≤ ρ < σ = vp(xp
σ−u) and hence vp(xp

σ−u + S ((1 + pρ)x | pν−u)) =

vp(S ((1 + pρ)x | pν−u)) = ν − u. Thus again mp = |ap| = pµ, as desired. Suppose that

mp ̸= pµ. Then σ ≤ ρ. Moreover, mp > pµ, by the second statement of (1), and rp > pρ by

(3b). Therefore, sp = pσ ≤ pρ < rp. Then np < spkp, by Theorem B.(2d). This completes

the proof of (3).

Case 2. Suppose that e = −1 and p = 2.

Then µ, ν, σ and ρ satisfy the conditions (A) and (C) of Theorem 3.3.

We claim that s2 ≤ 2σ. By means of contradiction suppose that s2 > 2σ. As G2/ ⟨a2⟩

is cyclic, either ⟨a2⟩ = ⟨dic⟩ or ⟨a2⟩ = ⟨dc2i⟩ for some integer i. If G2 contains a cyclic

normal subgroup contained in CG2(a2′) and of the form ⟨dic⟩ for some integer i, then G =

⟨a2′dic⟩ ⟨b2′d⟩ is a metacyclic factorization of G and therefore s2 = [G2 : ⟨b2⟩] ≤ [G2 :
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⟨d⟩] = 2s, against the assumption. Thus, ⟨a2⟩ = ⟨dc2i⟩ for some integer i. Moreover,

⟨c2⟩ = G′
2 ⊆ ⟨dc2i⟩. Thus, ⟨c2⟩ = ⟨dc2i⟩ ∩ ⟨c⟩ =

〈
(dc2i)2

ν〉
=
〈
c2

σ+2iS(−1+2ρ|2ν)〉. As ρ ≥ 2

and µ ≥ 1, by Lemma 1.1.(2a), v2(2iS (−1 + 2ρ | 2ν)) = v2(i) + ρ + ν ≥ 3 and hence

σ = v2(2
σ + 2iS (−1 + 2ρ | 2ν)) = 1. As 1 ≤ µ− 1 ≤ σ = 1, it follows that µ = 2 and hence

(dc)2 = d2. Thus |dc| = |d| and ⟨a2′dc2i⟩ ⟨b2′dc⟩ is a metacyclic factorization of G. Then

s2 = [G2 : ⟨a2⟩] ≤ [G2 : ⟨dc⟩] = [G2 : ⟨d⟩] = 2σ. This finishes the proof of the claim.

If ϵ = −1, then G′
2 has index 2 both in ⟨c⟩ and in ⟨a2⟩ and therefore m2 = 2µ. Conversely,

if m2 = 2µ, then ϵ = −1 by Lemma 2.5. This proves (4a).

Suppose that m2 = 2µ. Since G2 = ⟨a2⟩ ⟨b2⟩ is a metacyclic factorization and G2 = ⟨c⟩ ⟨d⟩

is a minimal metacyclic factorization with |a2| = m2 = 2µ = |c|, we have 2σ = [G2 : ⟨d⟩] ≤

[G2 : ⟨b2⟩] = s2. Then s2 = 2σ, by the claim above. This completes the proof of (1) in the

case where ϵ = −1.

Suppose that m2 = 2µ and r2 ̸= 2ρ. Then Resm2(⟨γ⟩)2 = ⟨−1 + r2⟩m2
and TG2(⟨c⟩) =

⟨−1 + 2ρ⟩m2
. By Theorem B.(2c), s2 ̸= r2n2 and, by condition (C) of Theorem 3.3, σ ̸= ρ+ν.

By Lemma 2.6, the hypothesis r2 ̸= 2ρ implies that 4 divides n2, 8 divides m2, k2 < n2,

s2 = 2σ = 2µ−1 and m2 divides both 2r2 and 2ρ+1. Since both r2 and 2ρ divides m2 and they

are different it follows that either m2 = r2 or ρ = µ. This contradicts either Theorem B.(2c)

or condition Theorem 3.3.(C)(b). This completes the proof of (2).

Suppose ϵ = 1. We still need to prove that s2 = 2σ = 2, k2 = 2 = n2, µ = 2, m2 = 2ν+1

and r2 = 2ν . By (4a) we have 2µ < m2. Then [aπ′ , c] ̸= 1 for otherwise ⟨a2′c⟩ ⟨b⟩ is a

metacyclic factorization of G and, as G = ⟨a⟩ ⟨b⟩ is a minimal metacyclic factorization,

we have that |a| = m ≤ |a2′c| = m2′2
µ, so that m2 ≤ 2µ, a contradiction. Therefore,

k2 ̸= 1. On the other hand, ⟨c2⟩ = G′
2 ⊆ ⟨a2⟩ ∩ ⟨c⟩ =

〈
a
|a2⟨c⟩|
2

〉
and therefore [aπ′ , c2] = 1.

Suppose that ⟨a2⟩ = ⟨dic⟩ for some integer i and let u = v2(i). Then u < ν for otherwise

a2 ∈ ⟨c⟩ and hence m2 = |a2| ≤ |c| = 2µ, a contradiction. Moreover, |a2 ⟨c⟩ | = 2ν−u

and ⟨c2⟩ = G′
2 ⊆ ⟨c⟩ ∩ ⟨a2⟩ =

〈
a2

ν−u

2

〉
=
〈
c2

σ i
2u

+S((−1+2ρ)i|2ν−u)
〉
⊆ ⟨c2⟩, since 1 ≤ σ

and 2 | S ((−1 + 2ρ)i | 2ν−u), by Lemma 1.1.(2a). Thus 2µ−1 = |c2| = |a2ν−u

2 | = m22
u−ν .

Therefore m2 < 2µ = m22
1+u−ν ≤ m2, a contradiction. Therefore ⟨a2⟩ = ⟨dc2i⟩, for an

integer i. Then [d, aπ′ ] = [c−2i, aπ′ ] = 1. Moreover, |a2 ⟨c⟩ | = 2ν and a2
ν

2 = c2
σ+2iS(−1+2ρ|2ν).

Since 2 ≤ v2(2iS (−1 + 2ρ | 2ν)), σ ≥ µ − 1 ≥ 1 and c2 ∈
〈
a2

ν

2

〉
, necessarily σ = 1 and
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µ = 2. Then m2 = |a2| = 2ν+1, n2 = 2 and r2 = 2ν . As 2 ≤ k2 ≤ n2, k2 = 2. Moreover,

|d| = |dc| = 2ν+1 and |G2| = 2ν+2. Therefore exp(G2) = |d|. Then G = ⟨a⟩ ⟨b2′d⟩ is a

minimal metacyclic factorization, so that s2 = 2 = 2σ. □

The first statement of the next Proposition shows that sG is determined by QG. The

remaining statements will be used in the proof of Proposition 4.9, which shows that ϵG is

determined by QG.

Proposition 4.8. Let G and H be a metacyclic finite groups such that QG ∼= QH and

let p ∈ π. Then

(1) sG = sH .

(2) If (kG)p = 1, then (mG)p = (mH)p = mGp and (rG)p = (rH)p = rGp.

(3) If ϵGπ = 1, then ϵG = ϵH = 1.

(4) If ϵGp = 1 and either mGp = 1 or rGp < sGp, then (mG)p = (mH)p = mGp and

(rG)p = (rH)p = rGp.

(5) If ϵG2 = −1 and, sG2 ̸= 2, nG2 = (kG)2 or mG2 ̸= 4, then ϵG = ϵH = −1,

(mG)2 = (mH)2 and (rG)2 = (rH)2.

Proof. Suppose that QG ∼= QH. Then π = πG = πH , π
′ = π′

G = π′
H and Gπ

∼= Hπ, by

Proposition 4.1. Let p ∈ π and sGp = pσ.

(1) By Lemma 4.7, (sG)p = (sH)p = pσ. Since this holds for every p ∈ π and (sG)π′ =

(mG)π′ = (G′)π′ = (H ′)π′ = (mH)π′ = (sH)π′ , we conclude that sG = sH .

Statements (2) to (5) are direct consequences of Lemma 4.7. □

Proposition 4.9. Let G and H be finite metacyclic groups. If QG ∼= QH, then

ϵG = ϵH .

Proof. By means of contradiction, assume that QG ∼= QH and, without loss of generality

suppose that ϵG = 1 and ϵH = −1. By Proposition 4.8, sG = sH , which we denote s

and by Proposition 4.6, kG = kH , which we denote k. By Lemma 4.7, ϵG2 = ϵH2 = −1,
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MCINV(G2) = MCINV(H2) = (4, 2ν , 2, ⟨−1⟩4), with ν ≥ 2, (mG)2 = 2ν+1, (nG)2 = k2 =

(sG)2 = 2, (rG)2 = 2ν , (mH)2 = (rH)2 = 4 and (nH)2 = 2ν .

In the remainder of the proof, E is either G or H and E = ⟨a⟩ ⟨b⟩ is a minimal metacyclic

factorization of E. Moreover, we adopt the notation m = mE, n = nE, etc. Since m2 ∈

{r2, 2r2} and k2 = 2, it follows that bk2 ∈ Z(G) and [bk, a2] = 1.

We are going to compute the number of simple components A of QE satisfying the

following conditions:

(B1) Deg(A) = k

(B2) The center of A does not contain roots of unity of order p for every p ∈ π \ {2}.

Set L =
〈
a, bk

〉
= CE(aπ′) = CE(aπ′∪{2}). Observe that L is nilpotent and Lp =

〈
ap, b

k
p

〉
for

every prime p.

By Theorem 1.19, the Wedderburn components of QE satisfying condition (B1) are those

of the form QEe(E,L,K) with K a subgroup of E such that

L is maximal in {B ≤ E : CE(a) ≤ B,B′ ≤ K ≤ B} and L/K is cyclic (4.3)

Observe that the maximality condition on L is equivalent to [bk, a] ∈ K but [b
k
p , a] ̸∈ K for

any p ∈ π(k).

For every subgroup K of L satisfying (4.3) let AK = QEe(E,L,K).

Claim 1. The subgroups K of L satisfying (4.3) and such that AK satisfies condition (B2)

are precisely those of the form Lπ\{2} ×Kπ′ ×K2 with

(KB1) Kπ′ is a cocyclic subgroup of Lπ′ ;

(KB2) K2 a cocyclic subgroup of L2; and

(KB3) [b
k
p , a] ̸∈ K for every prime p | k.

Indeed, suppose that K satisfies (4.3) and AK satisfies condition (B2). By Lemma 4.3, we

have that Lπ\{2} ⊆ CoreG(K) and therefore K = Lπ\{2} × Kπ′ × K2 satisfies conditions

(KB1)-(KB3). Conversely, let K = Lπ\{2}×Kπ′×K2 satisfy conditions (KB1)-(KB3). Then

(L,K) satisfy (4.3) and hence AK = QGe(G,L,K) is a simple component of QG. On the
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other hand by Proposition 1.18, the center of AK is isomorphic to a field contained in Q[L:K]

and π([L : K]) ⊆ π′ ∪ {2}. Therefore AK satisfies condition (B2). This finishes the proof of

the claim.

As s2 = 2, k2 = 2 and ν ≥ 2,

L2 =
〈
a2, b

2
2

〉
=

⟨a2⟩
∼= C2ν+1 , if E = G;〈

a−1
2 b2

ν−1

2

〉
× ⟨b22⟩ ∼= C2 × C2ν , if E = H.

Therefore, if E = G, then every subgroup of L2 is normal in G. Otherwise, i.e. if E = H,

then E ′
2 is the socle of ⟨b22⟩ and hence the only subgroups of L2 which are not normal in H

are
〈
a−1
2 b2

ν−1

2

〉
and

〈
a2b

2ν−1

2

〉
. Moreover, these two subgroups are conjugate in G.

Claim 2: Let K = Lπ\{2} × Kπ′ × K2 satisfy conditions (KB1) and (KB2). Then K

satisfies condition (KB3) if and only if one of the following conditions hold:

(1) [b
k
p : aπ′ ] ̸∈ Kπ′ for every p ∈ π(k).

(2) [b
k
p : aπ′ ] ̸∈ Kπ′ for every p ∈ π(k) \ {2} and [b

k
2 : aπ′ ] ∈ Kπ′ and either E = G and

K2 = 1 or E = H and K2 is either
〈
a−1
2 b2

ν−1

2

〉
or
〈
a2b

2ν−1

2

〉
.

Indeed, clearly, ifK satisfies condition (1), then it also satisfies condition (KB3). Suppose

that K satisfies condition (2). Then condition (KB3) holds for every prime p ̸= 2. Moreover,

as v2(k) = 1, if E = G, then [b
k
2 , a2] = a2

ν

2 ̸∈ K2 and if E = H, then [b
k
2 , a2] = a22 ̸∈ K2.

Therefore [b
k
2 , a] ̸∈ K. Therefore K satisfies condition (KB3), as desired. Finally suppose

K satisfy neither (1) nor (2). Then [b
k
p , aπ′ ] ∈ Kp for some p ∈ π(k). Suppose that p ̸= 2.

Then [b
k
p , L2] = 1 and [b

k
p , Lπ\{2}] ⊆

〈
aπ\{2}

〉
⊆ K. Then [b

k
p , L] ⊆ K and, in particular,

[b
k
p , a] ∈ K. Therefore (KB3) does not hold. Suppose p = 2 and [b

k
p , aπ′ ] ̸∈ Kπ′ for every

p ∈ π(k)\{2}. As condition (2) does not hold, either E = G and K2 ̸= 1 or E = H and K2 is

neither
〈
a−1
2 b2

ν−1

2

〉
nor

〈
a2b

2ν−1

2

〉
. In both cases K2 contains G′

2 and therefore [b
k
2 , a2] ∈ K]

As also [b
k
2 , aπ′ ] ∈ Kπ′ and [b

k
2 , aπ\{2}] ∈

〈
aπ\{2}

〉
⊆ K], it follows that [b

k
2 , a] ∈ K. Therefore

condition (KB3) fails. This finishes the proof of Claim 2.

As L is normal in G, by [JdR16, Problem 3.4.3], if K = Lπ\{2} × Kπ′ × K2 and M =

Lπ\{2}×Mπ′×M2 are two subgroups of L satisfying conditions (KB1)-(KB3), then AK = AM
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if and only if K and M are conjugate in G if and only if Kπ′ and Mπ′ are conjugate in G

and K2 and M2 are conjugate in G.

Let d denote the number of conjugacy classes of cocyclic subgroups Kπ′ of Lπ′ which

satisfy condition (1), and let d1 denote the number of conjugacy classes of cocyclic subgroups

of Lπ′ which satisfy the first part of condition (2). As RG = RH , d and d1 is independent of

E. Let h denote the number of cocyclic subgroups of K2. Then

h =

ν + 2, if E = G;

2(ν + 1); if E = H.

By Claim 2, combined with the discussion about the conjugacy classes in G of subgroups of

L2, the number of simple components of QG satisfying conditions (B1) and (B2) is

NE =

dh+ d1 = d(ν + 2) + d1, if E = G

d(h− 1) + d1 = d(2ν + 1) + d1, if E = H.

As ⟨aπ′⟩ ∩ ⟨bπ′⟩ = 1, Kπ =
〈
bkπ′

〉
satisfies condition (1) and hence d ≥ 1. Moreover, ν ≥ 2,

and therefore NG < NH and hence QG ̸∼= QH, a contradiction. □

4.4 QG determines mG, nG and rG

In this section we prove that mG, nG and sG are determined by QG, i.e. we prove the

following proposition.

Proposition 4.10. Let G and H be finite metacyclic groups such that QG ∼= QH.

Then mG = mH , nG = nH and rG = rH .

Proof. We will be working all the time with the group G and a minimal metacyclic factor-

ization G = ⟨a⟩ ⟨b⟩. Recall that we have fixed notation m = mG, n = nG, s = sG, r = rG, ϵ =

ϵG, . . . and the goal is proving that m,n and r are determined by QG. We work prime by

prime, i.e. we fix a prime p and we have to prove that mp, np and rp are determined by QG.

We keep the notation for MCINV(Gp) as in the previous section, i.e.

mGp = pµ, nGp = pν , rGp = pρ e = ϵGp .
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We first obtain some reductions: As (rG)π′ = 1 and (mG)π′ and (nG)π′ are determined by

QG (Proposition 4.1), we may assume that p ∈ π. If e = −1, then p = 2 and, by Lemma 4.7,

(m2, n2, r2) =

(2ν+1, 2, 2ν) if ϵ = 1;

(2µ, 2ν , 2ρ), if ϵ = −1

Thus we may assume that e = 1 and hence ϵ = 1. Hence mpnp = pµ+ν and mp

rp
= pµ−ρ.

Therefore, it is enough to prove that one of the three mp, np or rp is determined by QG. For

future use we express mp and rp in terms of np:

mp =
pµ+ν

np

and rp =
pν+ρ

np

. (4.4)

Observe that pµ−ρ = mp

rp
≤ np, by Theorem B.(2d). If µ = 0, thenmp = 1, by Proposition 4.8.

Thus we may assume that µ > 0 and hence ρ > 0. Therefore mp ≥ rp > 1. Let

l = lcm(k, pµ−ρ) and L = CG(aπ′∪{p}).

Then

L =
〈
a, bl

〉
= ⟨aπ′⟩ ×

〈
bkπ′

〉
×

∏
q∈π\{p}

〈
aq, b

k
q

〉
×
〈
ap, b

max(kp,pµ−ρ)
p

〉
.

Moreover, lp ≤ np ≤ pν and lp ≤ (nH)p ≤ pν . Therefore, if lp = pν , then (nH)p = np, as

desired. Hence, we may assume that lp < pν . If kp = 1, µ = 0 or ρ < σ, then (mH)p = mp,

by Proposition 4.8. Thus we may also assume that kp > 1, µ > 0 and ρ = σ. Therefore

mp

sp
= pµ−σ ≤ pρ = pσ = sp, by (B). Moreover, sp ≤ np ≤ pν and sp ≤ (nH)p ≤ pν , by

Theorem B.(2d). Therefore, if ρ = ν, then (nH)p = np, as desired. Hence, we also may

assume that ρ < ν. If np ̸= pν , then np < pν , hence mp > pµ, so that rp > pρ = sp and thus

np < kpsp = kpp
ρ, by Theorem B.(2d). This proves that np = pν or np < min(pν , pρkp).

Summarizing, in the remainder of the proof we assume the following:

(U1) e = ϵ = 1.

(U2) kp > 1, 0 < µ ≤ 2ρ, 1 ≤ ρ = σ < ν, lp < pν , (sH)p = sp = pρ and max(lp, p
ρ) ≤ np.

(U3) Either np = pν or np < min(pν , pρkp). In particular, if np ≥ lpp
ρ, then np = pν .
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The strategy is similar to the one in the previous section, namely we analyze how are

the Wedderburn components of QG of a certain kind. In this case, we consider Wedderburn

components A of QG satisfying the following conditions:

(C1) Deg(A) = l.

(C2) The center F of A does not contain roots of unity of order q ∈ π \ {p, 2}.

(C3) If p ̸= 2, then F does not contain a root of unity of order 4.

We denote by NG the number of Wedderburn components of QG satisfying conditions (C1)-

(C3). We will obtain a formula for NG and use it to prove that NG determines (nG)p. As

NG is determined by QG, this will show that so is (nG)p as desired.

We start characterizing the Wedderburn components of QG satisfying conditions (C1)-

(C3) in terms of some subgroups of L.

Lemma 4.11. The Wedderburn components of QG satisfying conditions (C1)-(C3)

are the algebras of the form AK = QGe(G,L,K) for a subgroup K of L satisfying the

following conditions:

(KC1) Kπ\{p,2} = Lπ\{p,2}.

(KC2) Kπ′ and Kp are cocyclic subgroups of Lπ′ and Lp, respectively.

(KC3) [b
l
q , aπ′ ] ̸∈ Kπ′, for every q ∈ π(k) \ {p}.

(KC4) If [b
l
p , aπ′ ] ∈ Kπ′, then [b

l
p , ap] ̸∈ Kp.

(KC5) If p ̸= 2, then K2 is a subgroup of L2 of index at most 2.

If K1 and K2 are subgroups of L satisfying (KC1)-(KC4), then AK1 = AK2 if and

only if K1 and K2 are conjugate in G.

Proof. By Proposition 1.18 and Theorem 1.19 the Wedderburn components of QG satisfying

condition (C1) are those of the form AK = QGe(G,L,K) with K a cocyclic subgroup K

of L such that L is maximal in {B ≤ G : CG(a) ⊆ B,B′ ≤ K ≤ B}. As L is nilpotent,

a subgroup K of L is cocyclic in L if and only if Kπ′ , Kπ\{p,2}, Kp and K2 are cocyclic in



4.4. QG DETERMINES mG, nG AND rG 91

Lπ′ , Lπ\{p,2}, Lp and L2 respectively. Moreover, by Lemma 4.3, if AK satisfies (C2), then

K satisfies (KC1). Conversely, if condition (KC1) holds, then π([L : K]) ⊆ π′ ∪ {p, 2}

and as the center of AK is isomorphic to a subfield of Q[L:K], A satisfies condition (C2). A

similar argument, using Lemma 4.4, shows that AK satisfies condition (C3) if and only if

[L2 : K2] ≤ 2, because if p ̸= 2, then L2 =
〈
a2, b

k
2

〉
and hence L2/

〈
a22, b

2k
2

〉
is an elementary

abelian 2-group. Observe that if conditions (KC1) and (KC5) hold, then [b
l
q , aπ\{p}] ∈ K.

Then L is maximal in {B ≤ G : CG(a) ⊆ B,B′ ≤ K ≤ B} if and only if for every q | l,

[b
l
q , aπ′∪{p}] ̸∈ K, and using that ⟨a⟩ is normal in G, it is easy to see that this is equivalent

to the combination of conditions (KC3) and (KC4). This finishes the proof of the first

statement of the lemma. The last one is a direct consequence of [JdR16, Problem 3.4.3] (see

also [OdRS06, Proposition 1.4]). □

Our next goal is describing the cocyclic subgroups of Lp and their normalizers in G. To

that end we introduce the following positive integers:

v = min

(
np

lp
, pρ
)
, u =

|Lp|
v

=
pµ+ν

vlp
, t =

pν+2ρ

v2lp
.

Remarks 4.12. (1) u ≤ up2ρ−µ = vt.

(2) If v = pρ, then np = pν, rp = pρ and v = rp ≤ t ≤ u.

(3) If v ̸= pρ, then v < u and v ≤ rp
p
≤ t

p2
.

(4) If kp ≤ pµ−ρ, then v < u and u ≥ t.

Proof. (1) By (U2), µ ≤ 2ρ. Thus vt = pν+2ρ

vlp
= pµ+ν

vlp
p2ρ−µ = up2ρ−µ ≥ u.

(2) Suppose that v = pρ. Then np ≥ lpp
ρ and hence np = pν , by (U3). Then, by (4.4),

rp = pρ = v ≤ np

lp
= pν

lp
= t ≤ pµ+ν−ρ

lp
= u.

(3) Suppose that v ̸= pρ. Then, as np ≤ pν , we have v = np

lp
< pρ ≤ pµ ≤ pµ+ν

np
= u, and

using (4.4) and that lp ≤ np and µ ≤ 2ρ, it follows that v = np

lp
≤ pρ−1 ≤ rp

p
≤ lppρ

np

rp
p2

=

lppν+2ρ

n2
pp

2 = t
p2
.

(4) Assume that kp ≤ pµ−ρ. Then lp = pµ−ρ. By means of contradiction suppose that

v ≥ u. Then v = pρ, by (3), so np = pν , by (2). As ρ < ν, by (U2), we get p2ρ = v2 ≥
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vu = pµ+ν

lp
= pν+ρ > p2ρ, a contradiction. Again by means of contradiction, suppose that

t > u. Then, by (2), v = np

lp
< pρ, by (U2), np ≥ pρ, and, as lp = pµ−ρ, it follows that

t = pρ+µ+ν

n2
p
≤ pµ+ν

np
= u, a contradiction. □

Lemma 4.13. Set

g =

ap, if np ≤ lpp
ρ;

b
lp
p , otherwise;

and h =

b
lp
p a

− lpp
ρ

np
p , if np ≤ lpp

ρ;

bp
ν−ρ

p a−1
p , otherwise.

Then

(1) Lp = ⟨g⟩ × ⟨h⟩, G′
p =

〈
a
rp
p

〉
⊆ ⟨g⟩, |g| = u and |h| = v.

(2) Let

CLp =

(i, y, x) : i ∈ {1, 2}, 1 ≤ x ≤ y and

y | v, if i = 1;

y | u, p | x and p | y | vx, if i = 2

 .

Then

(i, y, x) 7→ Ki,y,x =

⟨gh
x, hy⟩ , if i = 1;

⟨gxh, gy⟩ , if i = 2;

defines a bijection from CLp to the set of cocyclic subgroups of Lp.

(3) If (i, y, x) ∈ CLp, then NG(Ki,y,x) =


〈
a, b

y
t

〉
; if i = 2 and y ≥ t;

G; otherwise.

.

Proof. (1) Lp is an abelian group generated by ap and b
lp
p , lp = max(kp, p

µ−ρ) = max(kp,
mp

rp
) ≤

np and sp = pρ ≤ rp by (U2). Then ⟨bp⟩ ∩ ⟨ap⟩ =
〈
b
lp
p

〉
∩ ⟨ap⟩ =

〈
b
np
p

〉
=
〈
ap

ρ

p

〉
⊇
〈
a
rp
p

〉
=

(Gp)
′ = G′

p.

Suppose first that np ≤ lpp
ρ. Then |blpp | = np

lp

mp

pρ
≤ mp = |ap|,

(
b
lp
p a

− lpp
ρ

np
p

)np
lp

= 1 and

⟨ap⟩ ∩

〈
b
lp
p a

− lpp
ρ

np
p

〉
= 1. Therefore Lp = ⟨ap⟩ ×

〈
b
lp
p a

− lpp
ρ

np
p

〉
= ⟨g⟩ × ⟨h⟩, |h| = |blpp a

− lpp
ρ

np
p | =

np

lp
= v and mp = |g| = |Lp|

v
= u.
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Otherwise, np > lpp
ρ ≥ kpp

ρ and hence np = pν , by (U3). Then (bp
ν−ρ

p a−1
p )p

ρ
= 1,

|g| = |blpp | = pµ+ν−ρ

lp
> pµ ≥ pρ and, as |bpν−ρ

p a−1
p ⟨bp⟩ | = sp = pσ ≥ pρ, it follows that

⟨g⟩∩⟨h⟩ =
〈
b
lp
p

〉
∩
〈
bp

ν−ρ

p a−1
p

〉
= 1. Therefore Lp = ⟨g⟩×⟨h⟩, |h| = pρ = v and |g| = |Lp|

v
= u.

(2) follows at once from Lemma 1.7.

(3) Here we use Lemma 1.7 and Remarks 4.12 without specific mention. Fix an integer

such that 2 ≤ w ≤ mp + 1 a
bp
p = awp . As Resmp(γ) = ⟨1 + rp⟩mp

, we have vp(w − 1) =

vp(r) ≥ ρ. Let (i, y, x) ∈ CLp . As [a, Lp] = 1 and [bp′ , Gp] = 1, a, bp′ ∈ NG(Ki,y,x). Therefore

NG(Ki,y,x) =
〈
a, bp

δ
〉
for some positive integer δ.

Suppose first that np ≤ lpp
ρ. Then v = np

lp
, gb = gw and hb = g

−(w−1)
lpp

ρ

np h. Suppose

that i = 1. Then y | v, 1 ≤ x ≤ y, [hy, b] = h−y(hb)y = g
−(w−1)y

lpp
ρ

np ∈
〈
g

y
xp

〉
⊆ K1,y,x and

[ghx, b] = g
(w−1)(1−x

lpp
ρ

np
) ∈ ⟨gw−1⟩ ⊆ ⟨gy⟩ ⊆ K1,y,x because vp(w − 1) = vp(r) ≥ ρ ≥ vp(n) −

vp(l) = vp(v) ≥ vp(y). Thus K1,y,x is normal in G, as desired. Suppose that i = 2. Thus

y | u and max(p, y
v
) | x. Then [gy, b] ⊆ ⟨gy⟩ ⊆ K2,y,x. Therefore δ is the minimum integer

satisfying [gxh, bp
δ
] ∈ ⟨gy⟩. Using (1.1), we have [gxh, bp

δ
] = g

x(wpδ−1)−(w−1)
lpp

ρ

np
S(w|pδ) =

g
(w−1)S(w|pδ)(x− lpp

ρ

np
)
. On the other hand, y | y lppρ

np
= ypρ

v
| rx and hence y | (w−1)x. Therefore

g(w−1)S(w|pδ)x ∈ ⟨gy⟩ = ⟨g⟩ ∩ K2,y,x, and thus, using (4.4), we deduce that [gxh, bp
δ
] ∈ ⟨gy⟩

if and only if g
(w−1)S(w|pδ) lpp

ρ

np ∈ ⟨gy⟩ if and only if y | pδrp lpp
ρ

np
= pδ+ν+2ρlp

n2
p

= tpδ if and only

if y | t or y
t
| pδ. Therefore NG(K2,y,x) =

〈
a, bmax(1, y

t
)
〉
, and (3) follows at once from this

equality.

Suppose otherwise that np > lpp
ρ. Then v = pρ = rp and np = pν so that ν − ρ > vp(lp).

Hence
〈
aw−1
p

〉
=
〈
a
rp
p

〉
=
〈
bp

ν

p

〉
=

〈
g

pν

lp

〉
= ⟨gt⟩ ⊆

〈
gp

ρ〉
. Moreover, gb = g and hb = a1−w

p h.

Suppose that i = 1. Then y | v, [hy, b] = a
(1−w)y
p ∈

〈
g
y pν

lp

〉
and [ghx, b] = a

x(1−w)
p ∈〈

gp
ρ〉 ⊆ ⟨gy⟩ ⊆ K1,y,x. Therefore K1,y,x is normal in G, as desired. Suppose now that i = 2.

Therefore y | u. Since [gy, b] = 1, NG(K2,y,x) =
〈
a, bp

δ
〉
with δ be the minimum integer with

[gxh, bp
δ
] ∈ ⟨gy⟩. As

〈
[gxh, bp

δ
]
〉
=

〈
a
(1−w)p

δ

p

〉
=
〈
gtp

δ
〉
it follows that pδ = max(1, y

t
). Thus

NG(K2,y,x) =
〈
a, bmax(1, y

t
)
〉
. □

If p ̸= 2 and K is a subgroup of L, then K satisfies conditions (KC1)-(KC5) if and only

K2′ satisfies (KC1)-(KC4) and [L2 : K2] ≤ 2. In that case K2 is normal in G. On the other
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hand, if P be a subgroup of Lπ′ , then P ⊆ Lπ′ ⊆ Z(L) and therefore NG(P ) =
〈
a, bd

〉
for some d | l. We use this and Lemma 4.13 to classify the subgroups K of L satisfying

conditions (KC1)-(KC4) as follows: For each d | l denote

Kd = {P ≤ Lπ′ with P cocyclic, NG(P ) =
〈
a, bd

〉
and [b

l
q , aπ′ ] ̸∈ P for every q ∈ π(l)\{p}},

Kd,1 = {P ∈ Kd : [b
l
p , aπ′ ] ̸∈ P} and Kd,2 = {P ∈ Kd : [b

l
p , aπ′ ] ∈ P}.

Remark 4.14. Observe that
〈
blπ′

〉
∈ K1,1 because bkπ′ ∈ Z(G), ⟨aπ′⟩ ∩ ⟨bπ′⟩ = 1 and if

q ∈ π(l), then [b
l
q

π′ , aπ′ ] ∈ ⟨aπ′⟩ \ {1}.

A subgroup K of L satisfies (KC1)-(KC4) if and only if Kπ\{p,2} = Lπ\{p,2}, Kπ′ ∈ Kd for

some d | l, Kp = K(i,y,x) for some (i, y, x) ∈ CLp and if Kπ′ ∈ Kd,2, then [b
l
p , a] ̸∈ K. In that

case, by Lemma 4.13, we have

NG(K) =


〈
a, blcm(d, y

t
)
〉
, if i = 2 and y > t;〈

a, bd
〉
, otherwise.

(4.5)

Combining this information with Lemma 4.11 and having in mind that the number of con-

jugates of K in G is [G : NG(K)], we obtain the following formula for NG.

NG = O
∑
d|l

(|Kd,1|M(d) + |Kd,2|N(d). (4.6)

where

O =

number of subgroups of L2 of index at most 2, if p ̸= 2;

1, if p = 2.

and M(d) and N(d) are defined as follows: first let

M1 = number of elements (1, y, x) in CLp and

N1 = number of elements (1, y, x) in CLp with [b
l
p
p , ap] ̸∈ K2,y,x.
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Then for each y | v let

M ′
y = number of elements (2, y, x) in CLp and

N ′
y = number of elements (2, y, x) in CLp with [b

l
p
p , ap] ̸∈ K2,y,x,

Finally set

M2 =
∑
y|t

M ′
y, N2 =

∑
y|t

N ′
y

and

M(d) =
M1 +M2

d
+
∑

y,pt|y|u

M ′
y

lcm
(
d, y

t

) and N(d) =
N1 +N2

d
+
∑

y,pt|y|u

N ′
y

lcm
(
d, y

t

) .
The next goal consists in expressing M(d) and N(d) in terms of d and v. Clearly,

M1 =
pv − 1

p− 1
; M ′

y =


y
p
, if p | y | v;

v, otherwise;

and M2 =
∑
p|y|v

y

p
+
∑
pv|y|t

v =
v − 1

p− 1
+ v logp

(
t

v

)
.

Moreover, by Remarks 4.12, v | t and therefore if pt | y, then M ′
y = v. Thus

∑
pt|y|u

M ′
y

lcm
(
d, y

t

) =
v

dp′

 ∑
pdpt|y|u

t

y
+

∑
pt|y|min(tdp,u)

1

dp


=


vt

dp′u

∑
z| u

ptdp

z + v
d

∑
pt|y|tdp 1, if tdp < u;

v
d

∑
pt|y|u 1, otherwise;

=


vt

dp′u

u
tdp

−1

p−1
+ v

d
(1 + logp(dp)), if tdp < u;

v
d
log u

t
, if t < u ≤ tdp;

0, if u ≤ t;

=


v
du

(
u−dpt

p−1
+ (1 + logp(dp))

)
, if tdp < u;

v
d
log u

t
, if t ≤ u ≤ tdp;

0, if u < t.

.
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Therefore, if tdp < u, then

dM(d) =
pv − 1

p− 1
+

v − 1

p− 1
+ v logp

(
t

v

)
+

v

u

(
u− dpt

p− 1
+ (1 + logp(dp))

)
= 1 + (p+ 1)

v − 1

p− 1
+ v logp

(
pν+2ρ

v3lp

)
+

lpv
2

pµ+ν

(
pµ+ν

vlp
− dp

pν+2ρ

v2lp

p− 1
+ (1 + logp(dp))

)

= 1 + (p+ 1)
v − 1

p− 1
+ v(ν + 2ρ− vp(v

3l)) +
v − dpp

2ρ−µ

p− 1
+

lpv
2

pµ+ν
(1 + logp(dp)),

if t ≤ u ≤ tdp, then

dM(d) =
pv − 1

p− 1
+

v − 1

p− 1
+ v logp

(
t

v

)
+ v logp

(u
t

)
= 1+ (p+1)

v − 1

p− 1
+ v(µ+ ν − vp(v

2l)),

and, if u < t, then

dMd =
pv − 1

p− 1
+

v − 1

p− 1
+ v logp

(
t

v

)
= 1 + v(p+ 1) + v log

Summarizing, we obtain the following formula for M(d)

M(d) =
1

d
(fd(v) + hd(v)) (4.7)

where

(fd(v), hd(v)) =



(
v
(

p+2
p−1

+ ν + 2ρ− vp(v
3l)
)
, lpv2

pµ+ν (1 + logp(dp))−
2+dpp2ρ−µ

p−1

)
, if tdp < u;(

v
(

p+1
p−1

+ µ+ ν − vp(v
2l)
)
,−2

)
, if t ≤ u ≤ tdp;

(v
(

p+1
p−1

+ ν + 2ρ− vp(v
3l)
)
, 0), if u < t.

With the aim to obtain a formula for N(d) we first prove the following claim:

N1 = 0, and Ny =

v, if kp ≤ pµ−ρ and y = u;

0, otherwise.

This is clear if kp > pµ−ρ, because in that case [b
l
p
p , ap] = 1. So, suppose that kp ≤ pµ−ρ.

Then 1 < lp = pµ−ρ = mp

rp
. Moreover, v < u ≥ t, by Remarks 4.12.(4). The first implies that

|[b
l
p
p , ap]| = |a

rp
mp
prp

p | = p and from v < u we get Nu = |{x ≥ 1 : u
v
| x ≤ u}| = v. Let (i, y, x) ∈

CLp . Using [G, ap] =
〈
a
rp
p

〉
⊆ ⟨g⟩ and Lemma 1.7, it follows that [b

l
p
p , ap] ̸∈ Ki,y,x if and only

if
〈
a
rp
p

〉
∩ Ki,y,x = 1 if and only if ⟨g⟩ ∩ Ki,y,x = 1, if and only if either (i, y, xp) = (1, u, 1)
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or (i, y) = (2, u). However, if i = 1 and y = u, then u = y | v < u, a contradiction. Thus,

N1 = 0 and if y ̸= u, then Ny = 0. This finishes the proof of the claim.

Having in mind that u
t
= pµ−2ρv, the previous claim yields the following formula for N(d):

N(d) = gd(v) =


v
d
, if kp ≤ pν−ρ and dp ≥ u

t
;

1
dp′

p2ρ−µ, if kp ≤ pν−ρ and dp >
u
t
;

0, otherwise.

(4.8)

Combining (4.6), (4.7) and (4.8) we obtain

NG = O
∑
d|l

(
|Kd,1|
d

(fd(v) + hd(v)) + |Kd,2|gd(v)
)
. (4.9)

Now observe that hd and gd are increasing functions for v > 0. Moreover, a straightforward

computation shows that

fd(pv)− fd(v) =

v(p− 1)(ν − vp(vl) + 2(ρ− vp(v))), if t ≤ u;

v(p− 1)(ν − vp(vl) + 2(ρ− vp(v))− 1), otherwise.

If v is a proper divisor of min
(

pν

lp
, pρ
)
, then ν − vp(vl) + 2(ρ − vp(v)) − 1 > 0 and hence

the previous calculation shows that fd(pv) > fd(v). These shows that fd(v) is a increasing

function on the set of divisors of v of min
(

pν

lp
, pρ
)
. This, together with formula (4.9) and

the facts that O > 0, K1,1 > 0 (see Remark 4.14), K1,2 ≥ 0 and hd(v) and gd(v) are non-

decreasing functions for v > 0 shows that v is determined by NG and, hence it is determined

by QG.

To complete the proof of Proposition 4.10, it only remains to show that v determines

np, and for that it is enough to show that np is the unique positive integer satisfying the

following conditions: q | pν , v = min
(

q
lp
, pρ
)
and, if v = pρ, then q = pν . Indeed, observe

that np satisfies this conditions by Remarks 4.12. By means of contradiction let q satisfy the

conditions with np ̸= q. Then min(q, np) ̸= pν and hence v < pρ. Thus min
(

max(q,np)

lp
, pρ
)
=

v = min(q,np)

lp
< max(q,np)

lp
and hence v = min

(
max(q,np)

lp
, pρ
)
= pρ, a contradiction. This finishes

the proof of Proposition 4.10. □
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4.5 QG determines ∆G

In this section we complete the proof of Theorem F by proving the following proposition.

Proposition 4.15. Let G and H be finite metacyclic groups such that QG ∼= QH.

Then ∆G = ∆H .

Proof. Suppose that G and H satisfy the hypothesis of the proposition. By the results of

the previous sections we can use a common notation for most of the invariants of G and H:

m = mG = mH , n = nG = nH , s = sG = sH , r = rG = rH , R = RG = RH , k = kG = kH ,

ϵ = ϵG = ϵH and m′ is defined as explained in Equation (1.4). We abuse the notation by

denoting with the same symbols the generators a and b of minimal metacyclic factorizations

G = ⟨a⟩ ⟨b⟩ and H = ⟨a⟩ ⟨b⟩.

As ∆G and ∆H are cyclic subgroups of Um′ to prove that they are equal we can we work

prime by prime, i.e. we will prove that (∆G)p = (∆H)p for every prime p. If p ∈ π′ or

m′
p = 1, then, by Proposition 4.6, (∆G)p = RG

p = RH
p = (∆H)p. Also, if rp ≤ m′

p, then

(∆G)p = (∆H)p and hence we also may assume that m′
p > rp. The latter implies that rp > 1.

So in the remainder of the proof p ∈ π and m′
p > rp, which implies that rp > 1 and sp > 1,

and we have to prove that (∆G)p = (∆H)p. We will consider three cases and in each one the

proof is going to proceed in the following way: We consider distinguished simple components

of QG (and QH) depending on the case. Each component of that kind is going to be of the

form QGe(G,L,K) for a fixed subgroup L of G and various subgroups K of L so that (L,K)

satisfies the conditions of Theorem 1.19. We prove that there is at least one component of that

kind, parametrized by some particular K0, and then we analyze some properties of the other

possible K’s yielding such components. The arguments for G are valid for H and as QG and

QH are isomorphic, QH has another component QHe(H,L,K) ∼= QGe(G,L,K0). Using

the description of these algebras in Proposition 1.18 we will obtain the desired conclusion

with the help of the Main Theorem of Galois Theory, because (∆G)p will be identified with

the p-th part of the Galois group of a certain field extension Qd/F where d is common for

G and H and F is the center of A. As some of the arguments are similar in the different

cases, we will only explain all the details in Case 1, and in Cases 2 and 3, we only elaborate
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arguments which are significantly different than in previous cases.

We work most of the time with G, which is given by the presentation in (4.1) and simplify

the notation for this group by setting ∆ = ∆G.

Case 1: Suppose that ϵp−1 = 1 and sp ≥ m′
p.

Claim 1. In this case m′
p = min(mp, kprp,max(rp, sp, rp

kpsp
np

)), rp ≤ sp and one of the

following hold kprp ≤ np or sp = mp.

Proof. The first equality follows from the definition of m′ (1.4). Assume rp > sp. By

Theorem B.(2d), sp ≤ np < kpsp. Then, max(rp, sp, rp
kpsp
np

) = kpsp
np

rp ≤ kprp, so m′
p =

min(mp,
kpsp
np

rp). If m
′
p = mp, then sp ≥ m′

p = mp so sp = mp, which yields the contradiction

mp ≥ rp > sp = mp. Otherwise, m′
p = kpsp

np
rp that also yields a contradiction because sp ≥

kpsp
np

rp > rp > sp. So we have proved that sp ≥ rp. Now let us assume kprp > np and sp < mp.

Then, m′
p ̸= mp, as sp ≥ m′

p. In addition, sp <
kpsp
np

rp ≤ kprp, so max(rp, sp,
kpsp
np

rp) =
kpsp
np

rp

and m′
p =

kpsp
np

rp > sp ≥ m′
p, again a contradiction. □

In this case we fix the following notation

c = lcm

(
k,

sp
rp

)
and L = ⟨a, bc⟩ ,

and the distinguished Wedderburn components A of QG are those with a center isomorphic

to a subfield F of C satisfying the following conditions:

(D1) F is contained in Qmπ′sp and Deg(A) = [Qmπ′sp : F ] = c.

(D2) F ∩Qmπ′ = (Qmπ′ )
R and F ∩Qsp = Qrp .

We first show that such Wedderburn component occurs.

Claim 2. If K0 =
〈
aπ\{p}, b

c
〉
, then (L,K0) is a strong Shoda pair of G and A =

QGe(G,L,K0) satisfies (D1) and (D2).

Proof. Indeed, first of all [bc, a] = [bcπ, aπ] ∈
〈
aπ\{p}, a

max(kprp,sp)
p

〉
⊆ K0, because a

sp
p =

(bcp)
np/max(kp,sp/rp) ∈ K0. This proves that K0 is normal in G. Moreover, L = ⟨a,K0⟩, and

hence L/K0 is cyclic. In addition, K0∩⟨a⟩ =
〈
aπ\{p}, a

sp
p

〉
. Finally, if x ∈ G\L, then x = aibt

for t a proper divisor of c. If k ∤ t , then 1 ̸= [x, aπ′ ] ∈ ⟨aπ′⟩ and hence [x, aπ′ ] ̸∈ K0. Otherwise
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sp
rp

∤ t and hence ⟨[x, ap]⟩ =
〈
a
tprp
p

〉
̸⊆ K0. This proves that (L,K0) is a strong Shoda pair

of G, by Theorem 1.19. Now we take e = e(G,L,K0) and A = QGe. As K0 is normal in G

and L/K0 is cyclic of order mπ′sp and generated by aK0, it follows that A is isomorphic to

a cyclic algebra (Qmπ′sp/Q
Resmπ′sp (γ)
mπ′sp ,

〈
Resmπ′sp(γ)

〉
, a). Therefore Deg(A) = [G : L] = c and

its center is isomorphic to F = Q
Resmπ′sp (γ)
mπ′sp , which clearly satisfies (D1) and (D2). □

The next goal is to describe the Wedderburn components of QG satisfying conditions

(D1) and (D2). Let A be such a component. By Theorem 1.19 and condition (D1), A =

QGe(G,L,K) for a subgroupK of L the conditions of Theorem 1.19 hold. Then the following

statements hold where C = CoreG(K):

(V1) a4π\{p}, b
4c
p′ ∈ CoreG(K).

(V2) If either v2(|a|) ≤ 1 or ⟨a⟩ has an element of order 4 which is central in G, then

a2π\{p} ∈ C.

(V3) If a2π\{p} ∈ C or k is even, then b2cp′ ∈ C.

(V4) a
max(kprp,sp)
p ∈ K.

Indeed, suppose that F has a root of unity of order q with q prime. The hypothesis F ⊆

Qmπ′sp implies that q ∈ π′ ∪{2, p}. However, the hypothesis F ∩Qmπ′ = (Qπ′)R implies that

q ̸∈ π′ because ⟨a⟩ does not have central elements of order q. Therefore q ∈ {2, p} and hence

(V1)-(V3) follow directly from Lemma 4.3 and Lemma 4.4. Statement (V4) is easy because

ap, b
max(kp,sp/rp)
p ∈ L and hence a

max(kprp,sp)
p = [bmax(kp,sp/rp), ap] ∈ K.

Let M =
〈
a4π\{p}, a

max(kprp,sp)
p , b4cp′

〉
. Observe that M is normal in G because [b4cp′ , a] =

[b4cp′ , aπ\{p}] ∈
〈
a4π\{p}

〉
⊆M .

Claim 3. Lp/Kp is generated by either apK or bcpK, K is normal in G and φ([L : K]) =

φ(mπ′sp).

Proof. As L/K is cyclic, so is Lp/Kp
∼= (L/K)p = LpK/K. Moreover, Lp =

〈
ap, b

c
p

〉
, and

hence (L/K)p = LpK/K is generated by either apK or bcpK.

We now prove that K is normal in G. Observe that L is nilpotent because aπ′ ∈ Z(L)

and [bπ′ , aπ] = 1. As M is normal in G and M ⊆ K we may assume without loss of generality
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that M = 1. Then Lπ′ = ⟨aπ′⟩ and π ⊆ {2, p}. Using that L is nilpotent, K ⊴ L and a ∈ L,

it is enough to prove that bq normalizes Kl for every pair of primes q and l. This is clear

if l ∈ π′ because Lπ′ = ⟨aπ′⟩. It is also clear if q ∈ π′ because [bπ′ , aπ] = 1. Moreover as

Gπ is nilpotent the result is also clear if q ̸= l and q, l ∈ π. It remains to consider the case

q = l ∈ π.

Let us first consider the case q = l ̸= p, i.e. q = l = 2. Then L2 is either abelian

of exponent at most 4 or L2 is either D8, Q8 or C4 ⋊ C4 with L′
2 = ⟨a22⟩ ⊆ K2. In the

second case, b2 normalizes K2 so we assume that L2 is abelian. Now, by assumption a42 = 1

so it follows that G2 is either abelian or |a2| = 4 and ab22 = a−1
2 . In the first case clearly

b2 normalizes every subgroup of L2. In the second case either a22 ∈ K or c is even and

K2 ⊆ ⟨a22, bc2⟩ ⊆ CG(b2). In both cases K2 is normalized by b2.

It remains to show that bp normalizes Kp. Otherwise p | d, where d = [G : N ] and N =

NG(K) =
〈
a, bd

〉
. As L/K is cyclic, L = ⟨u,K⟩ for some u and A ∼= M[G:N ](Qh ∗ ⟨ρ⟩) with

h = [L : K] and ρ(ζh) = ζxh , if u
bdK = uxK. Moreover, as Lp =

〈
ap, b

c
p

〉
, (L/K)p = LpK/K

is generated by either apK or bcpK. So we may assume that up is either ap or bcp. In the

second case, (L/K)p is central in (NG(K)/K)p and hence hp ≤ sp by condition (D1) and

hp = rp by condition (D2). In the first case, ⟨x⟩hp
=
〈
(1 + rp)

d
〉
hp

and if rp < hp, then

vp((1+ rp)
d) > vp(rp) as p | d. Hence if prp divides hp, then F has a central element of order

prp in contradiction with (D2). This proves that hp divides rp. Therefore a
rp
p ∈ K so that

[bp, ap] ∈ Kp. This implies that [bp, Gp] ⊆ Kp and hence bp normalizes Kp, as desired. This

finishes the proof of the normality of K in G.

As K is normal in G, A ∼= Q[L:K] ∗ G/L and G/L = ⟨bL⟩ where the action ρ of the

crossed product is given by ρ(ζ[L:K]) = ζx[L:K], if L = ⟨u,K⟩ and ub ∈ uxK. Moreover,

[G : L] = Deg(A) = c = [Qmπ′sp : F ] =
φ(mπ′sp)
dimQ(F )

. Thus

cφ([L : K]) = [G : L]φ([L : K]) = dimQ(A) = c2 dimQ F = cφ(mπ′sp)

and therefore φ([L : K]) = φ(mπ′sp), as desired. □

Claim 4. One of the following conditions holds:

(i) [L : K] = mπ′sp or p ̸= 2 and [L : K] = 2mπ′sp,
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(ii) p ̸= 2 and [L : K] = 4
mπ′
q
pt, with pt ≥ sp, q = 1 + 2 pt

sp
∈ π′ and vq(mπ′) = 1.

(iii) p = 2 and [L : K] =
mπ′
q1···ql

2t, with l ≥ 1, 2t > s2, q1, ..., ql ∈ π′, φ(q1 · · · ql) = 2t

s2
and

vqi(mπ′) = 1 for every i.

Proof. By (V1), [L : K]π′ divides mπ′ . Let [L : K]p = pt, [L : K]π′ = pα1
1 · · · pαw

w and

mπ′ = pβ1

1 · · · pβw
w qγ11 · · · q

γl
l with p1, . . . , pw, q1, . . . , ql the different elements of π′.

Let us first assume that p ̸= 2. By (V1), [L : K]2 divides 4. By condition (D2), rp | pt

and hence t ≥ 1. By Claim 3, φ([L : K]) = φ(mπ′sp) and therefore

φ([L : K]2)p
tpα1−1

1 · · · pαw−1
w = spp

β1−1
1 · · · pβw

w qγ1−1
1 · · · qγl−1

l (q1 − 1) · · · (ql − 1).

Then αi = βi for every i = 1, . . . , w and as [L : K]2 | 4 and qi is odd for every i it follows

that sp ≤ pt and either l = 0, sp = pt and [L : K]2 | 2 or [L : K]2 = 4, l = 1, q1 = 1 + 2 pt

sp

and γ1 = 1. This proves that either (i) or (ii) holds.

Now, let us consider the case when p = 2. Then the equality φ([L : K]) = φ(mπ′s2)

yields

2tpα1−1
1 · · · pαw−1

w = s2p
β1−1
1 · · · pβw−1

w qγ1−1
1 · · · qγl−1

l (q1 − 1) · · · (ql − 1).

Again αi = βi for every i = 1, ..., w and, as each qi is odd, γi = 1 for every i = 1, ..., l. So

the equation gets reduced to:

2t = s2(q1 − 1) · · · (ql − 1).

If l = 0, then condition (i) holds, and otherwise condition (iii) holds. □

Now we have enough information to prove that (∆G)p ∼= (∆H)p in this case. Recall that

both G and H are given by a presentation as in (4.1) with the same parameters m,n, s but

now the automorphism γ differs for G and H. We denote them γG and γH respectively. We

know that RG = RH , i.e.
〈
Resmπ′ (γ

G)
〉
=
〈
Resmπ′ (γ

H)
〉
and hence we may assume without

loss of generality that Resmπ′ (γ
G) = Resmπ′ (γ

H).

In the remainder of the proof we will consider restrictions of γG and γH to several cyclo-

tomic fields Qd with d | m. For shortness we will abuse the notation and simplify QResd(γ
G)

d by

writing QγG

d , and similarly for H. We fix the Wedderburn component A = QGe(G,L,K0)
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of KG with K0 as in Claim 2. Then the center of A is isomorphic to Q(mπ′sp)
γG
. As

QG ∼= QH, QH has a Wedderburn component QHe(H,L,K) isomorphic to A with (L,K)

a strong Shoda pair of H. By Claim 3, K is normal in H. Moreover, [L : K] satisfies one of

the conditions of Claim 4 and (L/K)p is generated by either apK or bcpK. Let pt = [L : K]p.

If (L/K)p is generated by bcpKp, then Qrp = QγG

sp = Qpt and hence m′
p > rp = pt ≥ sp ≥ m′

p,

a contradiction. Therefore, (L/K)p is generated by apK. Thus (L/K)π′∪{p} is generated by

aπ′∪{p}K. Therefore the center of QGe(H,L,K) is isomorphic to a subfield F of Q[L:K] such

that F ∩Q[L:K]π′∪{p}
= QγH

[L:K]π′∪{p}
. Then QγG

mπ′sp = QγH

[L:K]π′∪{p}
.

We deal separately with the three cases of Claim 4.

Case (i). Suppose first that either [L : K] = mπ′sp or p ̸= 2 and [L : K] = 2mπ′sp.

Then, Qmπ′sp = Q[L:K]π′∪{p}
and hence QγG

mπ′sp = QγH
mπ′sp . Thus, Galois Theory yields〈

Resmπ′sp(γ
G)
〉
=
〈
Resmπ′sp(γ

H)
〉
. Sincem′

p | sp, we have Resm′
π′∪{p}

((∆G)p) = Resm′
π′∪{p}

(
〈
γG
〉
p
) =

Resm′
π′∪{p}

(
〈
γH
〉
p
) = Resm′

π′∪{p}
((∆H)p). As Resm′

π\{p}
((∆G)p) = Resm′

π\{p}
((∆H)p) = 1. We

conclude that (∆G)p = (∆H)p, as desired.

Case (ii). Suppose now that p ̸= 2 and [L : K] = 4
mπ′
q
pt, with pt ≥ sp, q = 1 + 2 pt

sp
∈ π′

and vq(mπ′) = 1. Then F = Qα

4
mπ′
q

sp
= QγG

mπ′sp , where Resmπ′
q

pt(α) = Resmπ′
q

pt(γ
H) and

ζα4 = ζ i4, if ub = ui with L/K = ⟨uK⟩. Thus, F = QγH

mπ′
q

sp
= QγG

mπ′
q

sp
, and by Galois

Theory,
〈
Resmπ′

q
sp
(γG)

〉
=
〈
Resmπ′

q
sp
(γH)

〉
. Moreover, γH(ζ4) = ζ−1

4 and, as Resmπ′ (γ
G) =

Resmπ′ (γ
H), we have QγH

q = QγG

q = Q. The first implies that (L/K)2 is not generated by

bc2K2 and hence it is generated by a2K2, so we may assume that α = γH .

Assume first that sp = pt. Then q = 3 and F = QγH

mπ′
3

sp
= QγG

mπ′
3

sp
, and by Galois Theory,〈

Resmπ′
3

sp
(γG)

〉
=
〈
Resmπ′

3
sp
(γH)

〉
. Moreover, QγG

3 = QγH

3 = Q, so that γH(ζ3) = γG(ζ3) =

γG(ζ3) = ζ−1
3 . Then Resmπ′sp(

〈
γG
〉
)p = Resmπ′sp(

〈
γH
〉
)p, as p is odd, and, as in the previous

case, we deduce that (∆G)p = (∆H)p.

Now we assume pt > sp. Since also rp < m′
p ≤ sp, we have pt

rp
> max( p

t

sp
, sp
rp
). If mπ′ = q,

then (Q4pt)
γH

= (Qqsp)
γG

= Qrp and hence kp = q − 1 = 2 pt

sp
. Then max

(
pt

sp
, sp
rp

)
= cp =

Deg(A)p = [Q4pt : Qrp ]p =
pt

rp
, a contradiction. Thus mπ′ = xq with x > 1. By (D1) and the

description of A (see Proposition 1.18), we have [Q4xpt : F ] = [Qqxsp : F ] = Deg(A) = c. By
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looking at the p-part of these degrees we obtain:

cp = max

(
k̄p,

pt

rp

)
= max

(
k̄p,

pt

sp
,
sp
rp

)
, (4.10)

where k̄ = |Resx(γG))| = |Resx(γH))|. As pt

rp
> max

(
pt

sp
, sp
rp

)
, necessarily k̄p ≥ pt

rp
. So cp =

k̄p ≥ pt

rp
> max

(
pt

sp
, sp
rp

)
. As

〈
Resxsp(γ

H)
〉
=
〈
Resxsp)γ

G)
〉
, Resxsp(γ

G)p = (Resxsp(γ
H)p)

u for

certain u coprime with p. As p ̸= 2 we can even choose u to be odd. Then,

Resx((γ
H)p) = Resx((γ

G)p) = (Resx((γ
H)p))

u

so u ≡ 1 mod |Resx(γH)p|. Moreover, |Resx(γH)p)| = k̄p ≥ pt

rp
> pt

sp
, so u ≡ 1 mod pt

sp
and

as u is odd we have u ≡ 1 mod 2. Thus u ≡ 1 mod q−1, and as Resmπ′ (γ
G) = Resmπ′ (γ

H)

we have Resq(γ
G) = Resq(γ

H) = Resq(γ
H)u. Then, (γG)p = ((γH)p)

u, because the equality

happens both restricting to q and to xsp. So the p-th parts of γG and γH generate the same

subgroup and as sp ≥ m′
p we obtain the desired conclusion:

(∆G)p = Resmπ′m′
p
(
〈
(γG)p

〉
) = Resmπ′m′

p
(
〈
(γH)p

〉
) = (∆H)p.

Case (iii). Finally suppose that p = 2 and [L : K] =
mπ′
q1···ql

2t, with l ≥ 1, 2t > s2,

q1, ..., ql ∈ π′, φ(q1 · · · ql) = 2t

s2
and vqi(mπ′) = 1 for every i. Let x =

mπ′
q1···ql

. Arguing as in the

previous case we obtain

c2 = k̄2 ≥
2t

r2
> max

(
2t

s2
,
s2
r2

)
≥ (q1 − 1) · · · (ql − 1),

and, from 2t > s2 we get that blK does not generates L/K and then that F = (Qx2t)
γH

=

(Qxs2)
γG

Having in mind the previous inequalities the same argument as in the previous case

yields the desired conclusion, i.e. (∆G)2 = (∆H)2.

Case 2. Suppose that ϵp−1 = 1 and sp < m′
p.

Claim 5. In this case sp < mp, np < kprp and kpsp
np

rp ≥ m′
p.

Proof. As sp < m′
p = min(mp, kprp,max(rp, sp, rp

kpsp
np

)), clearly sp < mp and sp < max(sp, rp,
kpsp
np

rp).

If sp < rp, then, by Theorem B.(2d), we have np < kpsp, so sp < rp < rp
kpsp
np

, and from this

equation we easily get np < kprp. Otherwise, sp < rp
kpsp
np

and again we get np < kprp.
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To prove the last inequation, firstly observe that max(sp, rp, rp
kpsp
np

) ̸= sp, for otherwise

sp < m′
p = min(mp, rpkp, sp) ≤ sp, a contradiction. So max(sp, rp, rp

kpsp
np

) is either rp or rp
kpsp
np

.

In the later case m′
p = min(mp, kprp, rp

kpsp
np

) ≤ rp
kpsp
np

, as desired. Otherwise, rp > rp
kpsp
np

.

Then, kpsp < np < kprp, so sp < rp, in contradiction with Theorem B.(2d). □

In this case the distinguished Wedderburn components A of QG are those with center

isomorphic to a subfield F of C satisfying the following conditions:

(E1) F is contained in Qmπ′m′
p
and Deg(A) = [Qmπ′m′

p
: F ] = k.

(E2) F ∩Qmπ′ = (Qmπ′ )
R and F ∩Qm′

p
= Qrp .

We first show that suchWedderburn component exists. By Lemma 1.1.(1a), vp

(
S
(
1 + rp | np

kp

))
=

np

kp
. Write S

(
1 + rp | np

kp

)
= z np

kp
. Fix an integer y such that

z ≡ y
k

kp
mod

mp

sp
.

As p ∤ z and sp < mp, we have p ∤ y.

Claim 6. If L =
〈
a, bk

〉
and K0 =

〈
aπ\{p}, a

rpspkp
np

p , b−yka
spkp
np

p , bkp′

〉
, then (L,K0) is a strong

Shoda pair of G and A = QGe(G,L,K0) satisfies (E1) and (E2).

Proof. As p ∈ π, [bp, aπ\{p}] = 1. Thus

〈
[b−yk

p a
spkp
np

p , a]

〉
=
〈
[b−yk

p , ap]
〉
=
〈
[b

kp
p , ap]

〉
=〈

[a
rpkp
p

〉
⊆
〈
a

rpspkp
np

p

〉
∈ K0, since sp | np. Also, [bkp′ , a] = [bkπ\{p}, aπ] ∈

〈
aπ\{p}

〉
∈ K0. This

proves that K0 is normal in G. Moreover, L = ⟨a,K0⟩, and hence L/K0 is cyclic. In order

to prove that L/K0 is maximal abelian in G/K0 observe that |b−yk
p a

spkp
np

p ⟨a⟩ | = |bykp ⟨a⟩ | =
np

kp
and (b−yk

p a
spkp
np

p )
np
kp = b

−yk
np
kp

p a
spkp
np

S
(
1+rp|

np
kp

)
p = a

−ysp
k
kp

+zsp
p = 1. Then |b−yk

p a
spkp
np

p ⟨a⟩ | =

|b−yk
p a

spkp
np

p | = np

kp
, and therefore K0 ∩ ⟨a⟩ =

〈
aπ\{p}, a

rpspkp
np

p

〉
⊆ ⟨aπ⟩. If x ∈ G \ L, then

x = aibt for t a proper divisor of k, and hence 1 ̸= [x, aπ′ ] ∈ ⟨aπ′⟩. Thus [x, aπ′ ] ̸∈ K0. This

shows that (L,K0) is a strong Shoda pair of G.

Now we take e = e(G,L,K0) and A = QGe. As K0 is normal in G and L/K0 is cyclic

of order mπ′m′
p and generated by aK0, it follows that A is isomorphic to a cyclic algebra

Qmπ′m′
p
∗
〈
Resmπ′m′

p
(γG)

〉
. Therefore A satisfies (E1) and (E2). □
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The remaining arguments in this case follow exactly as the previous one, except changing

sp by m′
p where it corresponds.

Case 3: Suppose now that ϵp−1 = −1, i.e. p = 2 and ϵ = −1. In this case, Theo-

rem B.(2d) gives us the following properties: s divides m, |∆| divides n, m2

r2
≤ n2, m2 ≤ 2s2

and s2 ̸= n2r2. If moreover 4 | n, 8 | m and k2 < n2, then r2 ≤ s2. Having in mind that

m′
2 ̸= r2 we have 4 ≤ k2 and 4r2 ≤ m2. This together with s2 ̸= n2r2 implies that

m′
2 =


m2

2
, if k2 < n2 and 2s2 = m2 < n2r2;

m2, otherwise.

In this case we take

c = lcm

(
k,

m′
2

r2

)
and L = ⟨a, bc⟩

and the distinguished Wedderburn components A of QG are those with a center isomorphic

to a subfield F of C satisfying the following conditions:

(F1) F is contained in Qmπ′m′
2
and Deg(A) = [Qmπ′m′

2
: F ] = c.

(F2) F ∩Qmπ′ = (Qmπ′ )
R and F ∩Qm′

2
= (Qm′

2
)σ, where σ(ζm′

2
) = ζ−1+r2

m′
2

.

Claim 7. Let

K0 =


〈
aπ\{2}, b

c
〉
, if bc2 ̸∈ ⟨a⟩〈

aπ\{2}, b
c
2′

〉
, otherwise.

Then (L,K0) is a strong Shoda pair of G and A = QGe(G,L,K0) satisfies (F1) and (F2).

Proof. We claim that [L : K0] = mπ′m′
2. Indeed, first of all observe that

K0 ∩ ⟨a⟩ =


〈
aπ\{2}, a

m2
2

2

〉
, if bc2 ̸∈ ⟨a⟩ and m2 = 2s2;〈

aπ\{2}
〉
; otherwise.

Therefore

[L : K0] =

mπ′
m2

2
, if bc2 ̸∈ ⟨a⟩ and m2 = 2s2;

mπ′m2; otherwise.
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Thus, if m2 ̸= 2s2 or k2 = n2, then [L : K0] = mπ′m2 = mπ′m′
2. Suppose that m2 = 2s2 and

k2 ̸= n2. Then k2 < n2 and, as m2 ≤ n2r2 we have that m′
2 = m2 if and only if m2 = n2r2.

Then bc2 ∈ ⟨a⟩ if and only if
m′

2

r2
≥ n2 if and only if m2 = m′

2.

We now prove that K0 is normal in G. This is easy if bc2 ∈ ⟨a⟩ because [bc2′ , a] =

[bc2′ , aπ\{2}] ⊆
〈
aπ\{2}

〉
⊆ K0. Suppose otherwise that bc2 ̸∈ ⟨a⟩. If [bc2, a2] = 1, then [bc, a] =

[bcπ, aπ] ∈
〈
aπ\{2}

〉
∈ K0. Otherwise, m2

r2
> c2 and and recalling that we are assuming that

m′
2 ̸= r2 it follows that m′

2 = m2

2r2
= c2 and s2 = m2

2
. Using Lemma 1.1.(2a), it follows that

[bc2, a] = a
m2
2

2 ∈ ⟨bc2⟩ ⊆ K0.

Moreover, L = ⟨a,K0⟩, and hence L/K0 is cyclic. In order to prove that L/K0 is

maximal abelian in G/K0, we argue by contradiction. So we take x ∈ G \ L and assume

that [x, L] ⊆ K0. Then x = aibt for t a proper divisor of c. If k ∤ t, then 1 ̸= [x, aπ′ ] ∈ ⟨aπ′⟩

and hence [x, aπ′ ] ̸∈ K0, a contradiction. Thus k | t and hence
m′

2

r2
∤ t, i.e. t2r2 < m′

2. By

assumption, [x, a2] ∈ K0. Observe that

⟨[x, a2]⟩ =

⟨a
2
2⟩ , if t2 = 1;〈
at2r22

〉
, otherwise.

The assumptionsm′
2 ̸= r2 implies thatm2 > 2r2 ≥ 4 and hence a22 ̸∈ K0. Thus 1 ̸= at2r22 ∈ K0

and hence bc2 ̸∈ ⟨a⟩, m2 = 2s2 and t2r2 =
m2

2
< m′

2. Therefore m′
2 = m2. Since m′

2 ̸= r2 and

bc2 ̸∈ ⟨a⟩, it follows that 4 ≤ k2 = k2 < n2 and 4r2 ≤ m. Thus, by the definition of m′
2, we

have that s2 ̸= n2r2 and m2 ≥ n2r2. By Theorem B.(2c), m2 = n2r2 and hence c2 ≥ n2, so

that bc2 ∈ ⟨a⟩, a contradiction.

Now we take e = e(G,L,K0) and A = QGe. As K0 is normal in G and L/K0 is cyclic

of order mπ′m′
2 and generated by aK0, it follows that A is isomorphic to a cyclic algebra

Qmπ′m′
2
∗
〈
Resmπ′m′

2
(γG)

〉
. Therefore Deg(A) = [G : L] = c and the center of A satisfies (F1)

and (F2). □

As in Case 1 we now consider an arbitrary Wedderburn component A of QH with cen-

ter isomorphic to a field F and satisfying conditions (F1) and (F2). As Deg(A) = c,

we have A = QHe(H,L,K) for a strong Shoda pair (L,K) of H. As L/K is abelian,〈
a
max(k2r2,m′

2)
2

〉
= ⟨[a2, bc2]⟩ ⊆ K and combining this with Lemma 4.3 it follows that K con-
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tains M =
〈
aπ\{2}, a

max(k2r2,m′
2)

2 , bc2′
〉
. Observe that M is normal in H because [bc2′ , a] =

[bc2′ , aπ\{2}] ∈
〈
aπ\{2}

〉
⊆M .

We denote C = {g ∈ H : ge = e} = CoreH(K) and N = NH(K) = ⟨a, bt⟩ with

t = [H : N ]. Observe that L is nilpotent because aπ′ ∈ Z(L) and [bπ′ , aπ] = 1. Moreover,

A ∼= Mt(Q[L:K] ∗N/L) where N/L = ⟨btL⟩ where the action ρ of the crossed product is given

by ρ(ζ[L:K]) = ζx[L:K], if L = ⟨u,K⟩ and ubt ∈ uxK. By Lemma 4.4, aπ\{2} ∈ K and bc2′ ∈ K.

Moreover, as L/K is abelian, ⟨[a2, bc2]⟩ =
〈
a
max(k2r2,m′

2)
2

〉
⊆ K. Thus M ⊆ K.

Claim 8. K is normal in H, L = ⟨a,K⟩ and φ([L : K]) = φ(mπ′m′
2).

Proof. By condition (F2), F ∩Qm′
2
= Qσ

m′
2
where σ(ζm′

2
) = −1 + r2. As r2 < m′

2, it follows

that F ∩Qm′
2
is not a cyclotomic field. On the other hand, F ⊆ Q[L:K] ∩Qmπ′m′

2
, and hence

F ∩Q[L:K]2 = F ∩Qmax([L:K]2,m′
2)
= F ∩Qm′

2
. Thus F ∩Q[L:K]2 is not a cyclotomic field.

Since L2K/K = ⟨a2K, bc2⟩, (L/K)2 is generated by a2K or bc2. In the latter case, F ∩

Q[L:K]2 is a cyclotomic field, contradicting the previous paragraph. Thus L2K/K = ⟨a2, K⟩

and as L = ⟨K, aπ′ , a2, b
c⟩, it follows that L = ⟨a,K⟩

As in the proof of Claim 3, L is nilpotent and to prove that K is normal in H it is enough

to show that [b2, K2] ⊆ K2. Otherwise, the index d of NH(K) in H is even and hence, as

(L/K)2 is generated by a2K it follows that F ∩Q[L:K]2 = Qτ
[L:K]2

, where τ(ζ[L:K]2) = ζ
(−1+r2)d

[L:K]2
.

However, by the discussion on the cyclic p-subgroups of Um withm a p-th power in subsection

and using Lemma 1.1.(2a), it follows that
〈
(−1 + r2)

d
〉
[L:K]2

= ⟨1 + r2d2⟩[L:K]2
. Therefore

F ∩Q[L:K]2 = Qr2d2 , again a contradiction with the first paragraph of the proof.

The last equality follows by the same arguments as in the last paragraph of the proof of

Claim 3. □

As in the previous cases we take A = QGe(G,L,K0) ∼= QHe(H,L,K) for some strong

Shoda pair (L,K) of H. By Claim (8), A ∼= (Q(ζ[L:K]) ∗ ⟨ρ⟩) and if Z(A) ∼= F , then

Q(ζmπ′m′
2
)γ

G
= F = Q(ζ[L:K])

γH
. As L = ⟨a,K⟩ and aπ′ ∈ K we have that [L : K] | mπ′m2.

Combining this with m′
2 ∈

{
m2,

m2

2

}
and φ([L : K]) = φ(mπ′m′

2) it is easy to see that

either [L : K] = mπ′m′
2 or m′

2 = m2

2
and [L : K] =

mπ′
3
m2. In the first case, (∆G)2 =〈

(σG)2
〉
=
〈
(σH)2

〉
= (∆H)2, as desired. In the second case, Resmπ′

3
m′

2
(σG) = Resmπ′

3
m′

2
(σH)
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and σG(ζ3) = ζ−1
3 . This implies again that (∆2)

G = Resmπ′m′
2
(σG) = Resmπ′m′

2
(σH) = (∆2)

H ,

as desired.

This finishes the proof of Proposition 4.15 and completes the proof of Theorem F. □
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List of Symbols

In this list, m represents an integer, p a prime, G a group, π a set of primes, H a subgroup

of G; g, h, g1, . . . , gn are elements of G, and A and B subsets of G. In the column Page we

have included the page number of the location where the term is defined. The list is not

exhaustive, but covers most of the notation used in the document.

Notation Description Page

⟨A⟩ Subgroup generated by A 6

|A| Cardinal of a set A 6

[A,B] Commutator of A and B,

{[a, b], for every a ∈ A, b ∈ B}

6

Ag Set of elements {ag for a ∈ AG} 6

Aut(G) Automorphism group of a group G 6

CG(H) Centralizer of H in G 6

Cn Cyclic group of order n 2

CoreG(H) Largest normal subgroup of G contained in H 6

exp(G) Exponent of G, i. e. the smallest integer n

such that gn = 1 for every g ∈ G

6

|g| Order of a group element g 6

G′ Commutator of a group G 6

⟨g1, . . . , gn⟩ Subgroup generated by g1, . . . , gn 6

gG Conjugacy class of g in G 6

gh h−1gh, the conjugate of g by h 6

[g, h] g−1h−1gh, the commutator of g and h 6

111
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Notation Description Page

G×H Direct product of G and H 6

[G : H] Index of H in G 6

G⋊m H Semidirect product of G and H with kernel

of order m

6

Gm,n,s,t Metacyclic group given by〈
a, b | am = 1, bn = as, ab = at

〉 19

H ≤ G H is a subgroup of G 6

N ⊴G N is a normal subgroup of G 6

NG(H) Normalizer of H in G 6

np Biggest power of a prime p dividing an

integer n

2

nπ If π is a set of primes, nπ = Πp∈πnp 2

on(t) Order of [t]n in Un, this is, the minimal

integer m such that tm ≡ 1 mod n

2

π(A) Set of primes dividing the cardinal of a set A 6

π(n) Set of primes dividing an integer n 2

Qn The cyclotomic field Q(ζn) 2

Resq Natural map

Resq : Un → Uq,Resq([t]n) = [t]q, where q | n

2

S (a | n)
∑n−1

i=0 ai 2

[t]n Element of Un represented by t ∈ Z with

gcd(t, n) = 1

2

⟨t⟩n Subgroup of Un generated by [t]n 2

Un Group of units of the ring Z/nZ 2

vp(n) p-valuation of n: exponent of the biggest

power of a prime p dividing an integer n

2

ζn A complex primitive n-th root of the unity 2

Z(G) Center of a group G 6
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with isomorphic modular group algebras, Journal für die reine und angewandte

Mathematik (Crelles Journal) 2022 (2022), no. 783, 269–274.

[Hal59] M. Hall, Jr., The theory of groups, The Macmillan Company, New York, N.Y.,

1959. MR 0103215

[Hem00] C. E. Hempel, Metacyclic groups, Communications in Algebra 28 (2000), no. 8,

3865–3897.

[Her01] M. Hertweck, A counterexample to the isomorphism problem for integral group

rings, Ann. of Math. 154 (2001), 115–138.

[Hig40a] G. Higman, Units in group rings, Oxford, 1940, Thesis (Ph.D.)–Univ. Oxford.



BIBLIOGRAPHY 115

[Hig40b] , The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–

248. MR 0002137 (2,5b)
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