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We analyze a large set of glacier snout fluctuation data in Piedmont and Val d’Aosta (Italy) and 

study the impact of climate variability on valley glaciers in the western Italian Alps. The study 

period includes about 70 y during the 20th Century; we focus on the last 50 y where a large 

number of temperature and precipitation time series are available.  Superposed onto a general 

recession trend, we find strong oscillations on decadal time scales that are well correlated with 

fluctuations in winter precipitation rates and average  summer temperatures. We construct a 

simple lagged-linear  empirical stochastic model that explains up to 66% of the variance of the 

snout fluctuation data when summer temperature and winter precipitation are used as proxies for 

the glacier mass balance. This model produces reliable out-of-sample predictions of the average 

response of alpine glaciers to climate variability and  it can be used to forecast glacier  response 

in different climate change scenarios. 

 



1. Introduction 

 

Climate fluctuations on regional scales generally  include a modification of the hydrologic cycle. 

In mid-latitude mountain areas, alpine-type glaciers are a central component of the local 

hydrologic budget; in addition, they are an important source of drinkable water and provide part 

of the supply to hydroelectric power plants. Episodes of mountain glacier  retreat, as observed in 

many parts of the world, can cause instabilities of the mountain slopes and have the potential of 

generating  flood events associated with the break-up of ice dams or frontal moraines (e.g., 

Clague and Evans, 2000, Kaser and Osmaston, 2001). Understanding and quantitatively 

predicting the response of alpine glaciers to climatic variability is thus both a challenging  

scientific issue and a practical task that needs to be addressed for planning purposes. 

 

Alpine-type glaciers are often pictured as good climatic indicators, as they have only extremely 

weak, if any, feedback on the climate system (e.g., Haeberli, 1995, Oerlemans, 2001). The direct 

action of climate variability on glacier dynamics is effected by modifications in the annual net 

mass balance,  bi = ci - ai, where ci is the accumulation rate in year i  and ai is the ablation rate 

(e.g., Paterson, 1994). When the net mass balance is positive, ci > ai, the mass of the glacier 

increases. When ablation dominates over accumulation, the net mass balance is negative and the 

glacier loses mass. In general, accumulation is maximum in winter, at the highest elevations on 

the glacier above the Equilibrium Line Altitude (ELA, defined as the line that marks the 

elevation where annual accumulation and ablation balance), and ablation is largest in summer, 

below the ELA. Fluctuations in the annual net mass balance generate variations in the glacier 

profile, that modify the ice flow pattern inside the glacier. This leads to modifications in the 

glacier  length  and in the position of the glacier terminus (or snout). Figure 1 shows a picture of 

the Pre de Bar glacier in Val d’Aosta (Italy), one of the glaciers considered here, with a 

schematic indication of the accumulation and ablation areas. 

 

Oerlemans (2001) pictures mountain glaciers as brownian particles that are pushed around by 

irregular fluctuations of the equilibrium line altitude. However, the adjustment of a glacier to 

new climatic conditions is delayed in time, due to the slow glacier response to changes in the 

mass balance (Paterson, 1994). As a consequence, high-frequency climatic oscillation are low-

pass filtered by the glacier, with a cut-off frequency that depends on the glacier's characteristics. 



An abrupt climate switch between two distinct, steady climate regimes would thus result into a 

gradual approach of the glacier to a new steady state, rather than into a brisk step at the time of 

the transition. 

 

Glaciers in the Western Alps show a widespread retreat, that started in the second half of the 

19th century (Greene et al., 1999, Vannuzzo, 2001). This tendency is associated with climate 

change, and it is observed worldwide with just a few exceptions (e.g., Nesje, 1989, Theakstone, 

1990, Yafeng and Jiawen, 1990, Harper, 1993, Holmlund and Fuenzalida, 1995, Chinn, 1996, 

Kaser, 1999, Harrison and Winchester, 2000, Nesje and Dahl, 2000, Vincent, 2002, Kaser et al., 

2004), although climatic control is not the only mechanism of glacier advance and retreat (e.g., 

Sturm et al. 1991). The almost synchronous retreat of the world glaciers is documented by 

different kinds of measurements, ranging from mass balance data to ELA shifts, to glacier snout 

fluctuations. The Intergovernmental Panel for Climate Change, Working Group I, reports a 

“highly significant” correlation between the increase in Northern hemisphere land temperature 

and the decrease in land-ice extent. The shift of the ELA in the Alps has been used to estimate a 

temperature increase of 0.5 to 1.0 °C over the last Century (Pelfini, 1994, Vanuzzo, 2001), in 

agreement with the trend reported by the IPCC (0.6 ± 0.2 °C since the late 19th Century), with 

the results of a direct analysis of temperature variability in the European Alps (Bohm et al., 

2001), and with the trends in the 20th Century in North-Western Italy (Ciccarelli et al., 2006). 

 

The century-scale glacier retreat is modulated by fluctuations on shorter time scales, associated 

with climate variability on decadal time scales (e.g., Nesje and Dahl, 2000, Oerlemans 2001). In 

past studies, many types of empirical and/or dynamical models have been proposed to relate 

glacier mass balance and/or terminus advances and retreats to climatic variability (e.g., 

Posamentier, 1977, Kruss, 1984, Letreguilly, 1988, Laumann and Reeh, 1993, Oerlemans et al., 

1998, Braithwaite and Zhang, 1999, Oerlemans and Reichert, 2000, Oerlemans, 2001, Van de 

Wal and Wild, 2001). In this work we focus on decadal glacier  snout fluctuations and build a 

data-driven, empirical model that links the average variability of the terminus position of a set of 

mountain glaciers in the North-Western Italian Alps to winter precipitation rates and mean 

summer temperatures. The link is sought in the form of a lagged-linear  stochastic model. 

Linearity in glacier fluctuation response is assumed as the simplest working hypothesis, which 

we verify in the course of the analysis. Following standard procedures (e.g., Tong 1990), we 

require the stochastic term in the model to be Gaussian and uncorrelated and we try to maximize 



the variance explained by the deterministic part. We show that this simple model can be used to 

produce out-of-sample predictions of the average glaciers'  response to climatic variability, and it 

could be nested into climate change scenarios produced by regional  climate models (e.g., Giorgi 

and Mearns, 2002). 

 

The rest of this paper is organized as follows: section 2 introduces the snout fluctuation data and 

the climatic data employed in this study. Section 3 is devoted to an empirical assessment of the 

sensitivity of alpine glaciers to climatic variables such as precipitation and temperature. Section 

4 contains a discussion of the empirical model and of the statistical methods adopted to build and 

validate it. In section 5 we report the results of the modelling exercise.  Section 6 addresses the 

issue of using the empirical model developed so far to provide out-of-sample predictions of the 

glacier response. A discussion of the results and some perspectives are reported in section 7. 

 

2. Glacier and climate data 

 

The estimate of glacier  fluctuations on decadal time scales requires the availability of time series 

of glacier response and of climate variability on a sufficiently long period of time. This 

requirement forced us to use proxy data as a substitute for the quantitative measurement of 

glacier  mass balance, which is generally  available, at least for the area of our study, only for 

few glaciers and for limited periods of time. The validity of the choice of proxy data is assessed 

a posteriori, based on the ability of the empirical model to reproduce and predict the average  

glaciers’  behavior. 

 

2.1 Snout position data 

In this study we focus on a set of selected glaciers from the Western sector of the Italian Alps, in 

the area of Piedmont and Val d’Aosta. Figure 2 shows a schematic map of the region under 

study, indicating the areas where glaciers are found. Glacier's snout data are collected by the staff 

of the Comitato Glaciologico Italiano - Consiglio Nazionale delle Ricerche (CGI-CNR) and 

regularly published on the CGI Bullettin (Geografia Fisica e Dinamica Quaternaria). All 

glaciers considered here are located inside a rectangular area having its North-Western corner at 

46° 24' 30'' N – 4° 07' 00'' E and its South-Eastern corner at 44° 07' 00'' N - 5° 38' 20'' E. The 

whole data set can be divided into two subsets (reported in tables 1 and 2 respectively): 



- G27-99: measurements from 1927 to 1999, 9 large glaciers  (table 1); 

- G69-99: measurements from 1969 to 1999, 45 glaciers including  those in G27-99 (table 2). 

 

 

< FIGURE 1 about here (picture of the Pre de Bar glacier) > 

 

< FIGURE 2 about here: Map of glaciated  areas > 

 

< TABLE 1 about here: G27-99 > 

 

< TABLE 2 about here: G69-99 > 

 

The raw data are the distances, , between a set of  points at the snout of the 

j-th glacier and an ensemble of fixed  landmarks. The index  i  represents the year of the 

measurement. The landmarks at the glacier snout are chosen by the observers on the basis of  the 

glacier's conditions; landmarks can be changed from one year to another (keeping track of the 

difference between the new position and the old one) if the glacier's morphology undergoes 

relevant changes. The change of a landmark is a potential source of error as the relationship 

between new and old landmarks is not always recorded with high precision. In the analysis that 

follows, for each year and for each glacier  we consider the mean glacier's snout position, , 

calculated  by  averaging   over the  measurements that are available on the i-th year. We 

then focus on the mean annual snout variation: 
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which measures the change in the glacier's  snout position from the previous to the current year. 

Note that  can be computed only if both  and  are available:  A gap of one year in the 

measurement of  implies a gap of two years in the time series of .  
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Sample time series of the annual terminus positions, , for five glaciers in the set G27-99 are 

shown in figure 3. The corresponding time series of annual snout fluctuations are shown in 

figure 4. The longest time series comes from the Lys glacier. This glacier has been almost 

continuously monitored from 1913. All the glaciers shown in figure 3 underwent significant 

retreat during the measurement period. The retreat appears to be more rapid for the Lys, the 

Belvedere and the Pre de Bar glaciers, which are the largest glaciers in the data set. In particular, 

the Lys and Belvedere glaciers have retreated by almost 500 meters since 1930. In the early '60s, 

the Pre de Bar glacier entered  an advancing phase, followed, with some delay, by other glaciers. 

The Pre de Bar and Lex Blanche glaciers seem to anticipate the onset of the advancing phase of 

Lys, consistent with the fact that the latter is considerably longer than the others. In the data set 

G69-99, only short and sparse time series are available, and individual records are not shown.  

 

< FIGURE 3 about here (sample time series of glacier  snout positions) > 

 

< FIGURE 4 about here (sample time series of glacier  snout fluctuations) > 

 

Tables 1 and 2 provide, for each of the glaciers  in the two data sets, the values of the average 

snout fluctuation, , and of the r.m.s. deviation, . Almost all values of  are negative, 

confirming the widespread retreat of Alpine glaciers in this area. However, the values of  are 

usually larger than the average snout fluctuations, indicating the presence of strong variability 

superposed on the recessional trend. To compare and average the behavior of different glaciers, 

in all the following analyses we use the standardized snout fluctuations, , defined as 
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2.2 Distribution of snout fluctuations 
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First we analyze the probability distributions of the standardized annual snout fluctuations, 

 , for the two data sets G27-99 and G69-99. Two different tests for Gaussianity are 

performed, namely the standard  and the Kolmogorv-Smirnov (KS) tests. The results reported 

in table 3 show that when the tests are performed on the entire data sets, the hypothesis that the 

snout fluctuations have a Gaussian PDF must be rejected. Visual inspection of the time series 

suggest that non-Gaussianity is due to the presence of sparse outliers. To explore this possibility, 

for each glacier   we define as a potential outlier any snout fluctuation  lying at a distance 

larger than  from the mean fluctuation .  For each potential outlier, we search in the 

documentation available in the GCI bulletins to check whether unusual events were reported for 

that year. For the G27-99 data set, the documentation confirms that whenever a potential outlier 

is detected, either ice break-up, melting of a thin residual layer, or the presence of a lingering 

snow cover may have caused an anomalous estimate of the glacier  snout position. However, no 

such relation could be established for the data set G69-99. 

 

In the analysis that follows, we opted for removing  the documented outliers from the G27-99 

data set. Once these data points are discarded, the distribution of snout fluctuations becomes 

Gaussian, as indicated by the results of the KS and  tests reported in table 3. The Gaussianity 

of the snout fluctuations for the long data set G27-99 is interesting because it is consistent with 

the view that glacier snout fluctuations can be described as Brownian fluctuations driven by 

variations in climatic indices (Oerlemans 2001). The observed Gaussianity also indicates that a 

linear empirical model can be adopted, at least as a first step, to describe glacier snout 

fluctuations in G27-99. We note, anyway, that the deviation from Gaussianity is quite mild even 

when the whole G27-99 data set is retained, and the results reported in the following sections do 

not significantly change when all  data points (including  the outliers) are included in the 

analysis. 

 

< TABLE 3 about here: tests for Gaussianity > 

 

For the G69-99 data set the situation is more complicated, as no documentation justifies the 

exclusion of most of the potential outliers. A linear model is thus bound to provide poorer results 

for this data set. At present, we cannot offer a definite explanation on the origin of non-
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Gaussianity of snout fluctuations in G69-99. We note, however, that this data set contains 

measurements from a range of glaciers with widely different size, orientation and characteristics, 

and the sample can hardly be considered  to be homogeneous. 

 

2.3  Average  time  series  of  snout  fluctuations 

Figure 5 shows the average (standardized) glacier snout fluctuations for the two data sets, 

together with the fraction of retreating glaciers in each year. The documented outliers were 

removed from data set G27-99, and the averaged time series have been further averaged by a 5-y 

running mean. The annual snout fluctuations averaged over G27-99 and G69-99 are consistent 

with each other, and an oscillation with approximately decadal time scale appears to be a robust 

feature of the averaged signals. The decadal oscillation in the snout fluctuation is anti-correlated 

with the fraction of retreating glaciers. This indicates that the oscillations around the recessional 

trend are not dominated by the behaviour of a few large glaciers  but they represents the average, 

collective response of glaciers in the North-Western Italian Alps to fluctuations in climatic  

conditions on decadal time scales.  

 

< FIGURE 5 about here: average glacier  snout fluctuations > 

 

2.4 Climatic Data 

 

In past years, much work has been done on relating glacier mass balance to meteorological 

parameters, see e.g. Vincent (2002) and references therein for a study on four French glaciers. In 

general, these relationships are rather complicated and vary even on individual glaciers. Here, we 

are not trying to capture the details of the dynamic and thermodynamic processes affecting the 

response of individual glaciers.  Rather, we seek for a quantitative estimate of the average 

response of an ensemble of glaciers to decadal climate variability. 

 

With this objective in mind, we focus on the records of temperature and precipitation, which are 

available in the study area for the last 50 years (temperature) and 90 years (precipitation), and 

verify whether these can be used to estimate and predict glacier snout fluctuations. In the 

following, we use the data collected by the ground-based observational network managed by 



ARPA Piemonte in North-Western Italy. We use the records of daily precipitation rates, , and 

minimum and maximum  temperatures, respectively and , recorded by a large number of 

weather stations in Piedmont and Val d’Aosta. Since maximum and minimum temperatures are 

strongly correlated in this data set, the mean daily temperature  is used in the 

analysis. For each weather station, monthly averages are computed.   Only months for which 

more than 20 days of observations are available are retained in the analysis. 

 

An important point concerns the selection of the meteorological stations. The option of choosing, 

for each glacier, the meteorological  measurements that are closer in space to the location of the  

glacier itself, turns out to be potentially misleading. In fact, not only weather stations are hardly 

found in close proximity of the glaciers but, most importantly, local variability could blur  the 

regional climate signal.  Another option, which is adopted here, is to average the meteorological  

records over a larger area to provide a mean regional climatic record.  Since glaciers respond 

slowly to weather changes and integrate the climate forcing over time, we believe that looking at 

the average regional  meteorological  record  is preferrable when considering the average 

response of the glaciers in an extended area. 

 

Following this approach, we obtain a mean regional climatic time series by averaging  over all 

measurement stations. In the analysis that follows, we always consider standardized variables, 

rather than raw values, to reduce bias due to differences in the altitude and position of the 

weather stations. Therefore, monthly averages for each station are first standardized by 

subtracting the mean and dividing by the r.m.s. fluctuation before averaging over different 

stations.  The monthly data are then aggregated  to provide seasonal values. In appendix 1 we 

give a brief account of the computation, step by step, of the average seasonal precipitation, 

, where n and m indicate the months marking the beginning and the end of the season and i 

labels the year. The same procedure is used to compute the seasonal temperature, . 

 

3. Glacier  response to climate variability   

 

The seasonal cycle in the Western Alps is characterized by minimum temperatures in the months 

of December/January and maximum temperatures in July/August. Precipitation has an annual 
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cycle with maxima in spring (May) and fall (November) and minima in July and January (e.g., 

Regione Piemonte, 1998). The response of alpine glaciers to climate variability is mediated by 

the glacier  mass balance, which depends on the difference between accumulation (mainly in 

winter) and ablation (mainly in summer). Here we make the working hypothesis that winter 

precipitation is a good proxy for accumulation. In general, only precipitation at temperatures 

below freezing should be taken into account (e.g., Vincent 2002). For most of the alpine glaciers  

considered  here, however, winter precipitation falls as snow, and one can tentatively use the 

time series of winter precipitation. The definition of a proxy data set for summer ablation is more 

delicate. An important variable affecting ablation is summer insolation, whose record, however, 

is not available for the data set under study. As a proxy for ablation, we use the record of 

summer temperatures. 

 

A first issue concerns the definition of the time lag between variations in temperature and 

precipitation and glacier snout fluctuations: Even though climatic variations induce rapid 

changes in the glacier mass balance,  there is a time delay, , between a variation in mass 

balance and the corresponding fluctuation in the glacier snout position. Several order-of-

magnitude estimates of the response time , based on different physical arguments, can be 

found in the literature.  Paterson (1994) suggests  , where H is the maximum  thickness 

of the glacier and a is the ablation rate at the terminus. Paterson's estimate, when applied to 

temperate glaciers in maritime climate such as those considered here, gives a response time of 

10-60 y.  

 

In the following  we use an empirical approach, and we estimate the value of the time lag 

between meteo-climatic variables and glacier snout response, as well as the appropriate duration 

of the “winter” and “summer” seasons from the point of view of accumulation and ablation, by 

systematically examining the lagged  cross-correlations between climatic variables and snout 

fluctuations. The ablation period is easily identified in the warmest, driest summer months, 

during which insolation is maximum.  The duration of summer is estimated as the time period, 

centred around July-August, for which there is the largest negative lagged cross-correlation 

between glacier snout fluctuations and temperature. The accumulation period is assumed to be 

centred on December-January and its duration is estimated by maximizing the lagged correlation 

with precipitation. Different durations are considered and the corresponding lagged correlations 

are estimated for several different values of the time lag.  

t
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A confidence level for the lagged  cross-correlation coefficient, r( ) where  is the time lag 

between either temperature or precipitation and snout fluctuations, can be estimated in a non-

parametric way by employing a randomization technique (see also the discussion in section 4).  

In this test, one of the time series is kept fixed and the other (say the climatic variable) is 

randomly shuffled before estimating the correlation coefficient. In this way, the theoretically 

expected value for the cross correlation between snout fluctuations and the shuffled climatic 

variable is zero. The procedure is repeated many times and the fraction of trials which result in 

values of the correlation coefficients that are larger than the original  one (in absolute value) is 

taken to represent the empirical probability that the estimated value of the correlation coefficient 

occurred by chance (see, e.g., Jacobson et al., 2004, and references therein). In addition to the 

randomization probability, an error bar, , can be associated with each value of . This is done 

by a jackknife procedure in which we randomly select half of the data values from the entire time 

series and then compute the correlation coefficient  from the selected subset. Again, the 

procedure is repeated many times and the values that bracket 95% of the correlation coefficient 

estimates can be taken as an estimate the error bars. If the error bars include zero, then the 

correlation is not significant. 

 

The results on the lagged cross-correlations between climatic data and snout fluctuations are 

reported in tables  4-6. Only correlations with a confidence level of at least 95% (obtained from 

the random shuffling  method) are shown. 

 

< TABLE 4 about here: lagged  cross-correlations > 

 

< TABLE 5 about here: lagged cross-correlations > 

 

< TABLE 6 about here: lagged cross-correlations > 

 

3.1 Winter precipitation 

When considering the full period (1927-1997), the cross-correlation between glacier fluctuations 

and precipitation is not very high (between 0.4 and 0.5) and the time lag is about 9 years. Figure 
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6 shows the average snout fluctuations for G27-99 together with a set of seasonal precipitation  

data, shifted by their maximum  correlation time lag  (see table  4). Around 1950 there is a 

sudden change in the phase between the two signals. We then computed the cross-correlation for 

the periods 1927-1950 and 1950-2000 separately (table 5). The average cross-correlation 

between precipitation and glacier response in the two separate halves increase significantly, 

reaching  r=0.6 for the period 1927-1950 and almost r =0.8 for the period 1950-2000. In 

addition, the time lags in glacier response are different for the two periods, with a larger  lag of 

about 9-10 years during the second half of the Century and a smaller lag of about 6 years during 

the first half. This suggests a change in the dynamical regime of the glaciers that took place at 

the middle of last Century. This interpretation is supported by the fact that after 1950 most 

glaciers entered a phase of slow advance (or slower retreat). 

 

< FIGURE 6 about here: average snout fluctuations and average winter precipitation > 

 

< FIGURE 7 about here: cross-correlation between snout fluctuations and winter precipitation > 

 

In particular, after 1950, the average precipitation of the extended winter period, November to 

March, shows the highest cross-correlation with the mean annual snout variation (r=0.78), with 

lag  t = 10 y. Figure 7 shows the lagged cross-correlation between glacier snout fluctuations and 

winter precipitation (from November to March) as a function of the lag.  

 

The seasonal precipitation data were also cross-correlated with the mean annual G69-99 snout 

fluctuations. All climate indices show lower correlation than with G27-99. Similarly to the case 

of G27-99, the largest correlation is found for the extended winter period, from November to 

March, though with a slightly shorter time lag. 

 

3.2 Temperature 

 

In the case of the temperature record, climate indices can be computed only for the second half 

of the last Century. Therefore, no comparison between the retreating and advancing  phases  is 

possible. Also in this case, several composites where systematically correlated with the mean 

t



annual snout variation (table 6). Figure 8 shows the average snout fluctuations for G27-99 

together with a set of seasonal temperature variables shifted by their maximum  correlation time 

lag  t. 

 

For the case of G27-99, the average correlation with the climatic indices is about r = 0.6, with 

time lags between 6 and 9 years. The index that shows the largest correlation (r = 0.63) 

corresponds to the extended summer period, from May to October, and to a time lag  t = 8 y. 

Figure 9 shows the lagged cross-correlation between glacier snout fluctuations and average 

summer temperature (from May to October) as a function of the lag.  In the case of G69-99, we 

find slightly larger values of the cross-correlations and smaller lags  than for G27-99. For G69-

99, the index that shows the largest correlation corresponds to the shorter period of July-October 

( ), with a smaller lag,  t = 7 y. However, this difference is not significant, as confirmed 

by the size of the error bars in Table 6. 

 

< FIGURE 8 about here: average snout fluctuations and average summer temperature > 

 

< FIGURE 9 about here: cross-correlation between snout fluctuations and temperature > 

 

4. Construction of an empirical model of glacier response 

 

4.1 General methodology 

The simplest empirical model relating summer temperature and winter precipitation to glacier 

snout fluctuations assumes a linear dependence between the variables: 

 

     (3) 

 

where  is the standardized snout fluctuation in year i, averaged over all glaciers in the 

sample,  and  are the average standardized winter precipitation and summer 

temperature at years  and  respectively,  and  are the chosen lags for 
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precipitation and temperature, and we have omitted the indication of the duration of the period in 

the climatic variables. In this model, the homogeneous  term a0 measures the long-term trend. 

The coefficients aT   and  ap weight the temperature and precipitation dependencies, respectively. 

The last term is a noise term where  is the variance of the stochastic component and Wi is 

white noise with zero mean and unit variance. 

 

To estimate the coefficients in the model we employ a standard least-squares method.  In this 

context, in-sample predictions are equivalent to the least-square fit of the model to the data. A 

useful parameter to be monitored is the fraction of the variance of the data that is explained by 

the model: 

       (4) 

where   is the variance of the data.  

 

4.2 Statistics of model residuals 

A stochastic component is usually introduced in empirical regression models, to represent 

unresolved processes. Physically, the source of the stochastic term is related to measurement 

errors (mainly in the estimate of glacier  snout position), and to processes that are not account for 

by the model. For example, the glacier  terminus can undergo rapid changes due to break-ups 

and ice falls associated with motion on steep portions of the glacier bed, or with rapid melting of 

thin ice residuals. A stochastic component such as that included in equation (3) is a simplified 

way to describe these unresolved processes.  

 

In the standard approach to stochastic modelling, the noise term  is required to have a 

Gaussian distribution with zero mean and unit variance, and to be d–correlated in time, i.e., 

 where the brackets indicate ensemble average,  if  and  if  

(Tong 1990). This is a “maximally random” version of the stochastic term that ensures that no 

significant statistical structure is left out of the model. In the following, we call “residuals”, , 

the differences between the data and the deterministic version of the model (3), i.e., 

. The analysis of the residuals provides a further test of the model: 

The residuals must be uncorrelated in time and have a Gaussian distribution if the model (3) is a 
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good descriptor of the dynamics, see e.g. Tong (1990) and Jacobson et al (2004) for a thorough 

discussion of residual evaluation. Gaussianity can be checked by looking at the higher moments 

of the residual's PDF and/or by a standard Kolmogorov-Smirnov test. Following Tong (1990), 

temporal decorrelation is assured at 95% confidence level, by requiring that no more than 5% of 

the  autocorrelation values exceed  the threshold  , where N is the dimension of the 

sample. 

 

4.3 Robust estimate of model parameters and correlations 

Randomization or bootstrap techniques are used to assess the significance of model parameter 

estimates (Tong, 1990; Jacobson et al, 2004). In practice, the randomization method works as 

follows. Suppose that a physical process is described by an empirical model containing a 

parameter, a, which links the output variable, y, to an input variable, x. In the simplest case, and 

the one considered here, we deal with a linear dependence, y=ax+srW  where W is white noise. 

First, the value of a is estimated by the least-square fit of the x-y data. A large number of 

surrogate time series, , is then generated, by random-shuffling the values of the input 

variable x. For each individual permutation, xr, in the shuffled data set, the stochastic model is 

fitted to the xr –y data and a value of the parameter, say ar, is obtained (here, r labels the specific 

permutation of the input variable). The procedure is repeated a large number of times and a 

shuffling population of parameter values   is obtained.  

 

The expected value of ar is zero. However, random fluctuations and finite statistics induce non-

zero values of the parameters ar. The distribution of the values of ar allows for  assessing 

whether the estimated value of a is significantly different from zero. Practically, this is done by 

estimating what fraction of the parameters values , obtained from the shuffling population, 

is larger, in absolute value, than |a| (note the use of a two-sided probability test). If this fraction 

is lower than a predetermined threshold (here set at 5%), then the parameter a is considered to be 

significantly different from zero at the selected confidence level (with our choice, at the 95% 

confidence level).  

 

Error bars on the parameter estimates can be obtained by the jackknife method. Here, one 

estimates the parameter values from a random sub-sampling of the full data set (usually, half of 
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the total number of available data points) and repeats the estimates on a large number of different 

sub-samplings (i.e., random extractions from the data set). A distribution of parameter estimates 

is then obtained, which provides information on the average parameter value and on its 

variability due to random sub-samplings. 

 

5. Reproduction of glacier snout fluctuations 

 

5.1 Identification of the key variables 

Our aim here is to build an empirical model for the ensemble response of large alpine glaciers to 

climate variability. To this end, we assume two simple constraints. First, the climatic variables 

must have a large lagged correlation with the snout fluctuations. Second, whatever is the 

mechanism that transmits the annual mass-balance signal through the glacier to its terminus, we 

ask that the maximum correlation lags  and  are close to each other. In deriving the 

empirical model, we shall concentrate on the period after 1950, for which both precipitation and 

temperature are available. 

 

For winter precipitation, Table 5 indicates that the variable with the largest lagged correlation 

with snout fluctuations is , with a time lag =10 y. All other precipitation variables have a 

significantly smaller correlation, and we thus opt for using this variable. For summer 

temperature, the variable with the largest correlation is . However, in this case the 

correlation is maximum  for a lag  of 6 y, quite different from the lag obtained for precipitation. 

We note, however, that the variable   has a correlation with the snout fluctuations which is 

statistically equivalent to that of  (as indicated by the 95% confidence limits), and the 

correlation is maximized for a larger lag =8 y. We thus opt for using  as a proxy for 

summer ablation and  for winter accumulation. For the subset G69-99, the cross-correlation 

analysis suggests the use of  for ablation  and  for accumulation. However, for 

consistency with the case of the subset G27-99 and owing to the small difference of the cross-

correlation between   and , we opt for to use  also for G69-99. 

 

5.2  In-sample prediction 
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Model (3) is fitted to the average snout fluctuations in the G27-99 data set. Figure 10 shows the 

original  snout fluctuation data together with the output produced by the deterministic part of the 

model (i.e., without the random noise term). The least-square fit uses the seasonal variables  

 and , shifted by their maximum correlation lag (of 8 and 10 years respectively). The 

empirical model correctly reproduces the decadal oscillation in the snout fluctuation signal and 

the variance explained by the model amounts to about 66%. We repeated the modelling exercise 

with other choices of the summer temperature variables, obtaining analogous  results. 

 

< FIGURE 10 about here: in-sample model prediction> 

 

The values of the model parameter are reported in Table 7 for the G27-99 data set and in Table 8 

for G69-99. These tables report also the probability that estimates from an ensemble of 1000 

random re-orderings give parameter values that exceed, in absolute value sense, the value 

estimated from the original data, .  

 

< TABLE 7 about here: results G27-99 > 

 

< TABLE 8 about here: results G69-99 > 

 

The results of the randomization test on the G27-99 data set indicate that the null hypothesis – 

that the values of the model parameters obtained from the least square fit are not significantly 

different from the value obtained with a random reordering of the data – must be rejected. The 

test is very robust for the parameters  and . For the parameter , the probability is at the 

threshold for rejection at the 95% confidence level.  This is consistent with the fact that 

temperature records show a lower correlation with snout fluctuations than precipitation (figure 

10).  For G69-99, the estimated values of  and  are not significantly different from zero, and 

the only parameter that is significantly different from zero is . For this reason, we shall not 

consider further the empirical  modelling  of  the G69-99 data set. It is interesting, however, that 

the significant dependence on winter precipitation in both data sets indicates that this variable is 

an important driver of glacier  fluctuations. 
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The model residuals, Ri, are computed by subtracting the deterministic model hindcast from the 

data. As shown in figure 11(a), the distribution of the residuals is Gaussian at the 95% 

confidence  level  in a  sense for the G27-99 data set. The skewness of the distribution of the 

residuals is -0.38 with a 95% confidence  threshold of -0.40. The kurtosis is -0.7 with a 95% 

confidence  threshold of -0.8. Figure 11(b) shows that 90% of the values of the autocorrelation 

are below the threshold for white noise sequences (see the figure caption for further details). This 

confirms that a linear, empirical regressive process is able to capture at least some of the main 

processes responsible for the average  response of glacier snout fluctuations to climate 

variability. 

 

< FIGURE 11 about here: residuals  for G27-99> 

 

 

 

6. Out-of-sample prediction  of  glacier response 

 

An important test of a model concerns its capability of forecasting glacier fluctuations from the 

knowledge of (measured or forecasted) climatic indices beyond the temporal range used to train 

the model. In the case of out-of-sample predictions, the model parameters must be determined, 

by means of least-square fitting, from a given portion of the data set, and the model should then 

be used to forecast the glacier  response to temperature and precipitation variations in the data 

portion other than that used to estimate the model parameters. Clearly, good out-of-sample 

predictions are harder to obtain but they are much more useful than in-sample predictions, as 

they allows for true forecasting. 

 

To verify the ability of the linear model to perform out-of-sample predictions, we estimate the 

model parameters from the first portion of the available data (which we call the training period) 

and use the parameter estimates obtained in this way to forecast glacier snout fluctuations from 

the knowledge of temperature and precipitation in the second half of the time series (which is 

then used as the verification  period). Figure 12 shows the original data with the result of the out-
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of-sample predictions for the period 1980-1999.  The empirical linear model (3) has been trained 

on the years 1961-1980 (corresponding to temperature measured in the period 1953-1972 and 

precipitation in the period 1951-1970).  The empirical model is then advanced in time, with the 

inclusion of a white-noise stochastic component with variance equal to that of the residuals of 

the model. The procedure is repeated 1000 times; figure 12 shows the average of the ensemble of 

realizations together with the 5th and the 95th percentiles on the ensemble of out-of-sample 

predictions. The observed data fall inside the ensemble prediction band defined by the 5th and 

95th percentiles.  

 

< FIGURE 12 about here: out-of-sample prediction of snout fluctuations> 

 

An interesting point concerns the performance of the empirical model when different training 

sets are used.  The entire data set contains N = 39 yearly data points, from 1961 to 1997. In the 

following, we train the model on the first  years and we then integrate forward in time for 

 years, so that all the needed temperature and precipitation indices are available.  

Figure 13 shows the results for different values of . Each curve in the figure is obtained as an 

average over 10000 realizations of the model forecasts. The random component of the empirical 

model has zero mean  and variance estimated from the residuals calculated on the training set.  

 

Unlike in previous figures, the results reported in figure 13 have been converted to dimensional 

units and refer to the average snout position rather than to snout fluctuation, to provide an 

illustration of the expected mean retreat of large alpine glaciers. The standardized annual mean 

snout variation  has been converted to dimensional units by averaging over the ensemble of 

glaciers  the individual  mean snout fluctuations and their r.m.s. deviations, i.e.  

where  and  . The mean snout position is then obtained as . 

 

< FIGURE 13 about here: out-of-sample forecasts for different training sets > 

 

Figure 13 confirms that when the training set is long enough, the linear model is able to 

quantitatively predict the average snout position. In the case of the forecasts starting in 1968 and 
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1972, corresponding to short training sets of duration  = 7 y and  = 13 y, the performance 

of the model is poor, featuring a considerable spread and large deviations from the observations. 

Instead, in the case of longer training sets, the spread of the model forecasts decreases and the 

agreement between the forecasts and the observations is very good. 

 

5. Discussion and conclusions 

 

We have analyzed the time series of snout fluctuations of a large ensemble of glaciers in the 

Western Italian Alps, focussing on the behaviour of nine large glaciers  that were monitored for 

several decades. Most of the glaciers display an overall recessional trend, which is faster in the 

first half of the 20th Century. In the second half of the Century, these glaciers  are characterized 

by a slower retreat and by short episodes of snout advance. In addition, the overall recession is 

modulated by oscillations on a decadal time-scale, as shown in Figures 3, 4 and 5.  

 

The results of the analysis indicate that the ensemble-averaged yearly snout fluctuations are 

significantly correlated with the summer temperature and winter precipitation signals, which can 

be adopted as proxies for the full climatic conditions and for the overall glacier mass balance. A 

simple empirical, regressive lagged-linear model based on these variables explains about 66% of 

the variance of the average snout fluctuation signal.  

 

Since the climatic variables used in the empirical model are standardized, the quantitative values 

of the model parameters, reported in Table 7, give an estimate of the relative importance of 

summer temperatures and winter precipitation in characterizing the snout fluctuations. For the 

long  G27-99 data set, the weight of  winter precipitation  is almost twice as large as that of 

summer temperature. Thus, winter precipitation rates seem to drive the snout fluctuations more 

effectively than summer temperatures. This also suggests that the slow-down of glacier retreat in 

the second half of the 20th Century might result from the occurrence of a warmer/wetter climate 

in Alpine areas. Other occurrences of this phenomenon have been reported elsewhere (Mayo and 

March, 1990). 
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The linear empirical model has been shown to produce reliable out-of-sample predictions of 

glacier response to climate variability. In this approach, we determined the model parameters 

only from the first portion of the data set and we used the model  determined so far to predict 

glacier snout fluctuations in the second part of the data set, using as input the measured time 

series of summer temperature and winter precipitation. To test the performance of the procedure, 

the model output is then compared to the measured snout fluctuation data available in the second 

part of the record, as shown in Figures 12 and 13. The results of the comparison indicate that the 

simple model (3) is capable of correctly forecasting, out-of-sample, glacier  snout fluctuations 

from the knowledge of proxy climatic variables.   

 

The satisfactory performance of the out-of-sample forecast provided by the empirical model 

introduced here suggests interesting developments, when used in combination with climate 

change predictions (e.g.,  Oerlemans et al., 1998; Van de Wal and Wild, 2001). The statistical 

robustness of the results obtained in this work indicates that, when reliable and high-resolution 

simulations of future climate change scenarios at regional scale  over Europe will become 

available, the empirical approach discussed here can provide quantitative estimates of the impact 

of climate change on average glacier  snout fluctuations in the Alps. 
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Appendix 1. Estimate of the seasonal variables. 

Let  be the monthly mean precipitation rate at the q-th station in year i  and month m. The 

standardized monthly precipitation rate is defined as: 
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is the average and 

 

is the r.m.s. value.  Here   is the number of data values available  for the q-th station and the 

m-th month. The seasonal value is then computed as 

     (A2) 

where  is the number of months included in the definition of the season and  is the 

number of available weather stations. 
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Glacier Lat Lon     L 

[m] 

Slope 

[deg] 

Asp 

[deg] 

N 

 

 

[m] 

 

[m] 

Belvedere 45°57’ 4°34’ 6000 10 45 43 -11.7 14.4 

Cherillon 45°57’ 4°50’ 1800 19 90 42 -3.5 9.6 

Lex Blanche 45°47’ 5°38’ 3500 24 135 35 -0.8 16.2 

Lys 45°40’ 4°37’ 5300 20 270 80 -6.0 15.4 

Moncorve 45°30’ 5°12’ 2125 20 270 25 -9.2 11.7 

Piccolo di 

Verra 

45°50’ 4°41’ 3200 21 270 34 -11.7 14.8 

Pre de Bar 45°54’ 5°24’ 3500 23 135 57 -3.0 13.8 

Toula 45°50’ 5°31’ 1500 24 135 18 2.9 10.4 

Valtournanche 45°54’ 4°45’ 2000 19 270 51 -11.7 12.1 

 

Table 1. Characteristics of the glaciers in the data set G27-99. For each glacier, the columns 

report, from left to right: latitude, longitude, nominal glacier length, average slope, aspect 

(orientation), number of sampled years, average snout fluctuation and standard deviation (r.m.s. 

fluctuation) of the snout variations.  
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Glacier Lat Lon     L 
[m] 

Slope 
[deg] 

Asp 
[deg] 

N 
 

 

[m] 

 
[m] 

Clapier 44°07’ 5°02’ 360 16 45 25 -1.0 2.7 

Peirabroc 44°07’ 5°02’ 154 13 90 29 -1.2 1.8 
Galambra 45°06’ 5°35’ 850 20 45 8 -4.7 10.7 

Fourneaux 45°07’ 5°36’ 600 15 315 7 -1.1 14.1 
Agnello 45°09’ 5°33’ 900 20 45 9 -5.3 10.7 

Rocciamelone 45°12’ 5°22’ 1000 1 45 5 -0.4 1.8 
Pera Ciaval 45°14’ 5°19’ 250 1 135 3 -2.2 11.6 

Bessanese 45°18’ 5°19’ 2300 15 135 12 -6.1 11.8 
Ciamarella 45°19’ 5°19’ 900 18 90 13 -1.4 5.6 

Martellot 45°22’ 5°16’ 800 38 135 12 -1.8 6.8 
Capra 45°26’ 5°20’ 950 16 0 5 -7.2 4.0 

Basei 45°28’ 5°20’ 900 30 0 14 -1.0 1.5 
Breuil 45°29’ 5°h1’ 1000 25 90 9 -3.7 7.2 

Ciardoney 45°31’ 5°03’ 1950 8 90 12 -1.3 6.9 
Sengie Setten 45°32’ 5°03’ 1050 32 45 6 -5.5 10.5 
Money 45°31’ 5°07’ 2600 25 45 8 -7.8 10.4 

Lauson 45°34’ 5°10’ 1000 15 45 11 -3.6 3.7 
Vaudaletta 45°31’ 5°19’ 400 20 315 5 -10.2 15.2 

Lavassey 45°28’ 5°20’ 1950 22 135 14 -7.6 8.1 
Fond 
Orientale 

45°28’ 5°21’ 2150 15 315 13 -3.9 10.5 

Soches-
Tsantel 

45°29’ 5°23’ 3500 12 45 14 -5.8 6.1 

Goletta 45°29’ 5°23’ 2375 18 0 8 -3.4 4.0 

Gliairetta 
Vaud 

45°30’ 5°26’ 3575 9 90 6 -7.5 12.0 

Rutor 45°30’ 5°27’ 8375 6 315 23 -2.7 5.3 
Chavannes 45°44’ 5°38’ 1300 15 90 10 -7.0 6.5 

Estellette 45°46’ 5°38’ 1250 24 135 6 5.5 7.4 
Netscho 45°49’ 4°35’ 300 23 315 11 -2.2 2.5 

Piode 45°54’ 4°34’ 2250 31 135 17 -7.9 17.8 
Nord Andolla 46°05’ 4°24’ 600 30 135 14 -4.8 7.1 

Osand Sett. 46°24’ 4°07’ 4330 7 90 19 -4.0 7.0 
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Maledia 44°07’ 5°03’ 130 18 45 26 -1.5 3.2 

Muraion 44°07’ 5°03’ 230 16 45 22 -0.9 3.3 
Gelas 44°07’ 5°03’ 170 18 0 21 -0.7 2.5 

Tza de Tzan 45°58’ 4°53’ 5900 15 90 10 -8.4 15.8 
Grande di 
Verra 

45°55’ 4°42’ 5250 18 90 26 -11.6 7.8 

Indren 45°53’ 4°35’ 2500 21 90 14 -5.6 4.4 

 

Table 2. Characteristics of the glaciers in the subset G69-99. Same  details as in table 1. 

 



 

Data set N    d d0 

G69-99 458 22 54 32 0.077 0.063 

G27-99 394 22 66 32 0.089 0.071 

G27-99(limited) 356 19 26 30 0.047 0.072 

 

Table 3. Results of the  and K-S tests of the Gaussianity of the distribution of glacier snout 

fluctuations. N is the total number of data points, is the number of degrees of freedom for the 

 test, d is the distance of the distribution from a Gaussian, according to the K-S test. The 

values  and d0 are the critical values above which the hypothesis that the data have a Gaussian 

distribution must be rejected. 
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  G27-99   G69-99  
Months    

[years] 
   

[years] 

 0.45 0.17 9 0.58 0.14 9 

 0.41 0.18 9 0.48 0.12 10 

 0.46 0.17 9 0.53 0.20 9 

 0.47 0.17 6 0.61 0.19 8 

 0.57 0.11 5 0.62 0.19 9 

 

Table 4. Lagged  cross-correlations between winter precipitation and average snout fluctuations 

for the G27-99 and G69-99 data sets. 
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  1900-1950   1950-2000  
Months    

[years] 
   

[years] 

 0.63 0.24 6 0.78 0.08 10 

 0.57 0.26 6 0.57 0.12 11 

 0.64 0.24 6 0.63 0.13 9 

 0.58 0.26 6 0.52 0.17 9 

 0.66 0.24 5 0.64 0.15 9 

 

Table 5. Lagged  cross-correlations between winter precipitation and average snout fluctuations 

for the data set G27-99, during the two halves of the XX century. 
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  G27-99   G69-99  
Months    

[years] 
   

[years] 

 -0.62 0.12 6 -0.63 0.11 6 

 -0.63 0.12 8 -0.69 0.09 7 

 -0.66 0.14 6 -0.66 0.10 7 

 -0.54 0.15 9 -0.68 0.10 8 

 -0.61 0.12 8 -0.70 0.09 7 

 -0.63 0.13 8 -0.71 0.08 7 

 

Table 6. Lagged  cross-correlations between summer temperatures and average snout 

fluctuations for the data sets G27-99 and G69-99. 
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Parameter Value  Jackknife  

 -0.61 -0.62±0.18 0.05 

 1.11 1.10±0.22 0.0003 

 0.29 0.29±0.04 0. 

 

Table 7. Parameter estimates and probability of the null hypothesis that the parameter value is 

null, for the G27-99 data sets. The first column identifies the parameter, the second column 

reports the value obtained by fitting the linear model to the whole data set, the third column 

reports the average value of the parameter and the r.m.s. fluctuation (1s) obtained by a jackknife 

procedure where the parameter is estimated from half of the data set, and the fourth column 

reports the probability that the parameter estimate from a random reordering of the data is larger, 

in absolute value, than the original parameter. Probabilities and jackknife estimates have been 

obtained from a total of 1000 random re-orderings (for the bootstrap) or sub-samplings (for the 

jackknife) of the time series.  
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Parameter Fit Jacknife  

 -0.48 -0.50±0.16 0.15 

 0.60 0.60±0.18 0.02 

 0.11 0.10±0.03 0.93 

 

 

Table 8. Same as in Table 7 but for the data set G69-99.  
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Figure 1.  Picture of the Pre de Bar glacier  (Val d’Aosta, Italy) in  summer 2001. The lower red 
line marks the glacier snout. The upper red line provides a qualitative illustration of the 
Equilibrium Line that separates the region where accumulation dominates from the region where 
ablation dominates. The black arrow qualitatively indicates the ice flow. Note the stream formed 
by the melting ice below the snout. 



 

 
 

 
Figure 2.  Schematic map of the study area (North-Western Italy). The locations where mountain 
glaciers are found are indicated in blue. 



 

            
 
 
Figure 3.  Annual snout positions, , for five representative glaciers  in the data set G27-99. We 
arbitrarily set the origin of the distance axis at the glaciers’  position in 1930, when several 
glaciers started to be monitored. 

 

Xi
j



 
 
 
           

      
  
 
Figure 4.  Annual snout fluctuations, , for the same five glaciers  shown in figure 3.  
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Figure 5. Average annual snout variation (solid points) and fraction of retreating glaciers (hollow 
points) for the datasets G27-99 (upper panel) and G69-99 (lower panel). 

 
 



 
 

Figure 6.  Average glacier snout fluctuations (solid line) and winter precipitation (defined in 
different periods as indicated in the legend). Winter precipitation has been displaced by the time 
lag that gives the maximum cross-correlation with the snout fluctuations. 

 
 

 

                               
 

Figure 7. Solid curve: Lagged cross-correlation between average snout fluctuations and winter 
precipitation from November to March as a function of the time lag in years, for the G27-99 data 
set in the period 1950-1999. Dashed curve: Probability that the cross-correlation is different from 
zero, as obtained from random re-orderings of the data set. The upper horizontal line indicates 
the level of 95% significance. 
 



                    
 
Figure 8.  Average glacier snout fluctuations (solid line) and summer temperature (defined in 
different periods as indicated in the legend). Summer  temperature has been displaced by the 
time lag that gives the maximum  cross-correlation with the snout fluctuations. 
 
 
 

                                  
 
Figure 9: Lagged cross-correlation between average snout fluctuations and average summer 
temperature from May to October for the G27-99 data set. Dashed curve: Probability that the 
cross-correlation is different from zero, as obtained from random re-orderings of the data set. 
The upper horizontal line indicates the level of 95% significance. 



           
 

Figure 10. Dashed curve: In-sample deterministic prediction for the G27-99 averaged annual 
snout variation with the empirical lagged-linear   model. The solid curve is the averaged snout 
variation derived from the data; the dashed line is the output of the deterministic part of the 
model. The explained variance is 66%.
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Figure 11. Panel a: Distribution of the residuals of the model trained on G27-99. The superposed 
dashed line represents a Gaussian distribution. The distribution of the residuals is Gaussian at the 
95% confidence level in the  sense. The skewness of the distribution of the residuals is -0.38 
with a 95% confidence threshold of -0.40. The kurtosis is -0.7 with a 95% confidence  threshold 
of -0.8. Panel (b) shows the autocorrelation of the residuals. The dashed lines are the thresholds 
required for rejecting the hypothesis that the residuals are correlated. More than 90% of the 
values do not exceed the threshold. Positive autocorrelation for lag less than 5 years is expected 
because of the 5-y running mean  applied to the data. 
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Figure 12. Out-of-sample prediction of the average annual snout variation for the dataset G27-
99. The solid line represents the data. The solid points are the average of 1000 different out-of-
sample predictions obtained by training the stochastic linear model on the first 20 years of data. 
The hollow points represent the 5-th and 95-th percentiles of 1000 different forecasts.  
    



 

             
 

Figure 13. Cumulated average snout variation for the dataset G27-99. The thick line is the snout 
variation obtained from data. The thin lines are the averages over 10000 out-of-sample forecasts 
obtained from the linear stochastic model with different training subsets. The forecasts reported 
in the figure start in 1968, 1972, 1976, 1980, 1984, 1988, 1992 and 1996. The durations of the 
corresponding training sets are  7, 13, 17, 21, 25, 29, 33 and 37 years. 

 


