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Abstract In this paper we analyze some caveats found in the state-of-the-art
ENSEMBLES regional projections dataset focusing on precipitation over Spain,
and highlight the need of a task-oriented validation of the GCM-driven control
runs. In particular, we compare the performance of the GCM-driven control runs
(20C3M scenario) with the ERA40-driven ones (”perfect” boundary conditions)
in a common period (1961-2000). Large deviations between the results indicate a
large uncertainty/bias for the particular RCM-GCM combinations and, hence, a
small confidence for the corresponding transient simulations due to the potential
nonlinear amplification of biases. Specifically, we found large biases for some RCM-
GCM combinations attributable to RCM in-house problems with the particular
GCM coupling. These biases are shown to distort the corresponding climate change
signal, or ”delta”, in the last decades of the 21st century, considering the A1B
scenario. Moreover, we analyze how to best combine the available RCMs to obtain
more reliable projections.
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1 Introduction

Regional Climate Models (RCMs) are one of the main tools available to produce
climate change projections at the regional scale needed for many impact studies
(Foley, 2010). These models run over a limited area of interest (e.g. Europe), driven
at the boundaries by the output of a particular Global Climate Model (GCM),
thus providing a regional (downscaled) version of the corresponding global simu-
lation. Nowadays, a number of public multi-model databases of regional climate
change projections are available for several regions of the world (see, e.g. the
WCRP CORDEX initiative, Giorgi et al., 2009). For instance, the state-of-the-art
ENSEMBLES database provides the biggest available ensemble of regional pro-
jections over Europe at an unprecedented 25km resolution (van der Linden and
Mitchell, 2009). These simulations were produced by more than ten RCMs which
were initialized and driven by lateral boundary conditions from the ERA40 reanal-
ysis (Uppala et al., 2005) as well as from several GCM simulations —considering
both the control 20C3M and transient A1B scenario runs—. The ERA40-driven
runs allow evaluating the skill of the RCMs with so-called ”perfect” boundary con-
ditions (Brands et al., 2011; Eum et al., 2011). On the other hand, GCM driven
RCM simulations allow to assess the uncertainty introduced by the particular
RCM-GCM coupling (20C3M scenario) and to estimate the climate change signal
(usually obtained applying the ”delta rule”, as the difference between the results
in a future A1B period and the control 20C3M one). Evaluation results usually
rely in the skill of the RCMs with reanalysis boundary conditions analyzing, e.g.,
the resulting biases w.r.t. observations (see, e.g. Christensen et al., 2010; Rum-
mukainen, 2010 and references therein). However, although the additional need of
evaluating the GCM-driven runs in the control scenario for climate change studies
has been pointed out in several works (see, e.g. Kjellström et al., 2011), this task
is still neglected in some recent impact studies (Mittal et al., 2013; Zhang and
Huang, 2013).

In this paper we analyze the performance of each particular RCM-GCM cou-
pling in the ENSEMBLES dataset by comparing the biases of the control GCM-
driven run with the ERA40-driven one in a common period (1961-2000). Large
deviations between both results indicate a large uncertainty/bias for the particu-
lar RCM-GCM combination and, hence, a small confidence for the corresponding
transient simulations for future scenarios, due to the potential nonlinear amplifi-
cation of biases (Christensen et al., 2008a). We found that some particular RCM-
GCM combinations exhibit large outlier-like biases in the control runs, much larger
than the corresponding reanalysis driven biases. Moreover, these combinations
yielded inconsistent climate change signals (as compared with the rest of the en-
semble) when applying the delta rule to the transient A1B and the control 20C3M
runs. This indicates that there is some non-linear amplification of the bias in the
transient run, thus questioning the application of bias correction techniques —
calibrated with control run data— in those cases. We also analyze how to best
combine the available projections in the light of these results, in order to obtain
more reliable scenarios.



Large biases in ENSEMBLES regional projections 3

We focus on precipitation, a key variable for many impact sectors (agricul-
ture, hydrology, etc.) which has a large uncertainty in RCMs. In particular we
consider the Spanish Iberian Peninsula, a challenging domain with great climatic
variability due to its complex orography and particular location, at the transition
between extra-tropical and subtropical influence, with both Atlantic and Mediter-
ranean influences (Giorgi and Lionello, 2008). Moreover, Spain is near the southern
boundary of the different integration domains used by the ENSEMBLES RCMs,
and consequently, the possible modelling errors and biases could be further ampli-
fied (Rummukainen et al., 2001).

2 Data and verification method

In this study we use the daily high-resolution gridded precipitation dataset over
Spain (Spain02 ), which cover the period 1950–2008 with a regular 0.2◦ resolu-
tion —approximately 20 km— which is publicly available for research activities
(at http://www.meteo.unican.es/datasets/spain02). This grid was produced from
2756 quality-controlled pluviometric stations, obtained from the Spanish Meteo-
rological Agency (AEMET). To ensure spatial and temporal homogeneity, these
series were quality and homogeneity tested (see Herrera et al., 2012 for more de-
tails).

On the other hand, we consider an ensemble of eleven state-of-the-art RCMs
(see Table 1) at a 25 km resolution produced in the EU-funded project ENSEM-
BLES (van der Linden and Mitchell, 2009). The dataset includes reanalysis-driven
simulations using the ERA-40 reanalysis (Uppala et al., 2005) and GCM-driven
simulations for the 20C3M scenario (for the period 1961-2000) as well as for the
A1B scenario (2001-2050, or 2001-2100, depending on the particular model). Most
of the RCMs are nested on a single GCM with only two exceptions —which are
nested onto three different GCMs—, thus resulting in an ensemble of 15 RCM-
GCM combinations (see Table 1). For practical reasons, the outputs of the RCMs
were bilinearly interpolated from their original resolution (aprox. 25 km) to the
Spain02 grid (approx. 20 km).

In the following we investigate the uncertainty of each RCM-GCM coupling
by comparing the performance of the 20C3M GCM-driven run (control) with the
ERA40-driven one in a common period (1961-2000). Specifically, we compare the
seasonally-averaged spatial patterns of the mean and the standard deviation (not
shown) of daily precipitation. For this aim we use Taylor diagram (Taylor, 2001),
which synthesizes three standard metrics of spatial similarity —standard devia-
tion, centered root-mean-square difference (RMSD) and correlation— in a single
bidimensional plot. Note that the statistics are normalized dividing both the cen-
tered root-mean-square and the standard deviations by the standard deviation of
the observations. Besides, in order to include information about overall biases, the
color of each point indicates the difference between the simulated and observed
mean, normalized by the observed mean. Better performance models are close to
observation, on the x-axis (labelled as OBS in the figures).

Note that an evaluation of the ERA40-driven RCMs has been already per-
formed for this variable and region (Herrera et al., 2010; Turco et al., 2011) con-
sidering both the mean and extreme spatial precipitation regimes and the spatially
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Table 1 RCM-GCM couplings from the ENSEMBLES project used in this study. The num-
bers are used to facilitate the reading of the Taylor diagrams presented later (see Fig. 1). The
acronyms correspond to that ones in the ensemble web page http://ensemblesrt3.dmi.dk. The
asterisks indicate the best performing RCM models for precipitation in this region accord-
ing to the evaluation of Herrera et al. (2010), based on the accuracy to reproduce the mean
precipitation regime and the annual cycle.

Number - Acronym RCM Driving GCM Reference
1 - C4I RCA3 HadCM3Q16 Samuelsson et al. (2011)
2 - CNRM ALADIN ARPEGE Radu et al. (2008)
3 - DMI HIRHAM ARPEGE Christensen et al. (2008b)
4 - DMI-BCM HIRHAM BCM Christensen et al. (2008b)
5 - DMI-ECHAM5 HIRHAM ECHAM5-r3 Christensen et al. (2008b)
6 - *ETHZ CLM HadCM3Q0 Jaeger et al. (2008)
7 - *HC HadRM3Q0 HadCM3Q0 Haugen and Haakensatd (2005)
8 - ICTP RegCM3 ECHAM5-r3 Pal et al. (2007)
9 - *KNMI RACMO ECHAM5-r3 van Meijgaard et al. (2008)
10 - *MPI M-REMO ECHAM5-r3 Jacob (2001)
11 - OURANOS MRCC4.2.1 CGCM3 Plummer et al. (2006)
12 - SMHI-BCM RCA BCM Samuelsson et al. (2011)
13 - SMHI-ECHAM5 RCA ECHAM5-r3 Samuelsson et al. (2011)
14 - SMHI-HCQ3 RCA HadCM3Q3 Samuelsson et al. (2011)
15 - *UCLM PROMES HadCM3Q0 Sanchez et al. (2004)

averaged annual cycle. The RCMs with better performance according to Herrera
et al. (2010) have been highlighted with an asterisk in Table 1.

3 Results and discussion

Figure 1 shows the performance of the different RCM-GCM couplings (see Ta-
ble 1) in order to reproduce the spatial pattern of the seasonal climatology for
precipitation. Each arrow in the diagram is associated with a particular coupling.
The starting point indicates the performance of the ERA40-driven run for the
corresponding RCM, while the end (denoted with a colored circle, labelled accord-
ing to Table 1) indicates the performance of the GCM-driven simulation for the
20C3M control scenario. The color of the circle indicates the bias of the latter
simulation. Note that the longer the length of the arrow, the bigger the differ-
ences/inconsistencies between the ERA40- and GCM- driven simulations. Overall,
the main conclusion is that some couplings exhibit significantly larger differences
than the others. This is the case of couplings 4, 5 and 12 (corresponding to DMI-
BCM, DMI-ECHAM5 and SMHI-BCM, respectively) in all seasons but Summer
(JJA), and couplings 4, 12 and 14 (DMI-BCM, SMHI-BCM and SMHI-HCQ3) in
Summer. These differences are associated with a low performance of the GCM-
driven simulations which exhibit large biases and standard deviations (larger than
2.5 times the observed ones in all cases). Note that these simulations correspond
to couplings of the two RCMs which have been nested into three different GCMs
in the ENSEMBLES datasets (see Table 1). The spatial structure of the RCM
seasonal climatologies is in a relatively good agreement with observations, with
spatial correlations between 0.65 and 0.85 and RMSD smaller than 1.5 in most
cases. Besides the mean climatologies, we have also analyzed the variability (i.e.
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the standard deviation of daily precipitation in each season), obtaining similar
conclusions (the results are not shown).

Besides, contrary to the behaviour seen in all the other seasons, the majority
of RCMs (except the low-performing ones) improve their performance in summer
when the boundary conditions are provided by the GCMs. This is the season with
less precipitation in Spain, which is influenced by local factors (e.g. convection) in
addition to large scale circulation in some regions, leading to a North-South spatial
gradient with smaller influence of the orography than in other seasons (see Herrera,
2011, for further details). Note that all the components in the downscaling process
have the same common problem to reproduce local drivers (Hohenegger et al.,
2008; Rummukainen, 2010) and, therefore, further research is necessary in order
to investigate potential explanatory factors, such as soil moisture accumulation in
previous months (see, e.g., Quesada et al., 2012).

As an illustrative example of the low-performing RCM-GCM combinations,
Figure 2 shows the mean daily precipitation maps corresponding to the DMI runs
for winter (DJF), including (b) the ERA40 driven outputs, (c-f) the reanalysis
ERA40 and the three GCM model outputs and (g-i) the corresponding three GCM-
driven DMI outputs. For the sake of comparison, the observations from Spain02
are also included in panel (a). Overall, this figure shows that those runs driven
by the global models BCM and ECHAM5 have a very large bias, as compared
to the ARPEGE-driven one, which is much closer to the observations and to the
reanalysis-driven results. Note that the precipitation magnitude is similar among
the corresponding global models (panels c-e) and, thus, the different RCM outputs
could be attributed to the particular RCM-GCM coupling. The same is true for the
SMHI model, where the BCM- and HCQ3-driven runs exhibit very large biases,
as compared to the ECHAM5-driven ones (not shown). Similar coupling problems
have been reported in the NARCCAP project (Mearns et al., 2012) where one of
the RCMs —the HadRM3 model— yielded very large biases when driven by the
NCEP/NCAR reanalysis (done for the first time in that project), as compared
with the corresponding results from other RCMs. However, rerunning HadRM3
using the ERA-Interim data (an alternative reanalysis previously used to drive
the HadRM3 model) resulted in biases of similar magnitude to those for the other
RCMs.

This poses some caveats on the use of the ENSEMBLES transient projections
in impact studies which typically use either daily data (to run impact models
in future climate conditions) or climatological climate change ”deltas” (to mod-
ify a baseline climatology to obtain the future climatology). On the one hand,
when daily data is required, the control run is typically used for calibrating bias-
correction techniques (factor scaling, quantile-quantile mapping, etc.) which are
commonly applied in this case (see Ehret et al., 2012, and references therein for a
debate on this topic). However, these techniques assume bias stationarity between
the control and transient runs, which can pose significant limitations in cases with
large biases —such as those presented in this study— and/or with systematic
conditional biases —such as biases in warm months (Boberg and Christensen,
2012)—. On the other hand, although a linear cancellation of bias is performed
when taking the difference (or ratio) of the transient and control climatologies
for the climate change signal (delta), the resulting signal could still be affected
by nonlinear amplifications of biases in an unpredictable form (Christensen et al.,
2008a).
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Fig. 1 Taylor diagrams for the seasonal precipitation climatology. Models with better per-
formance are close to the observations (labelled as OBS). The starting point of the arrow
indicates the performance of the ERA40-driven runs, while the end (denoted with a coloured
circle, labelled according to Table 1) indicates the performance of GCM-driven runs. The col-
ors indicate the bias (in percentage respect to the observed value) of the GCM-driven runs.
Bold face indicates particularly low-performing models.

In order to test this problem in an illustrative case, we consider the five differ-
ent runs driven by the same GCM (the ECHAM5 model), which include the low-
performing ECHAM5-driven DMI model. In all cases we computed the ”deltas”
given by the ratios of the winter precipitation in the period 2071-2100 w.r.t. the
control run 1971-2000 (see Fig. 3). This figure shows that in the case of the largest
bias (DMI-ECHAM5), the deficiencies of the coupling in the control scenario seem
to propagate to the corresponding delta (panel b), leading to a doubtful and inho-
mogeneous wetter climate change signal (with a relative increase over 60% in some
regions and without the negative signal of the south/south-east), while the other
ECHAM5-driven runs show a spatially consistent pattern similar to the GCM one
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Fig. 2 Maps of winter precipitation climatology (in mm/day) as given by (a) the Spain02
interpolated data set, (c) the reanalysis ERA40 and the DMI (b) ERA40- and (g-i) GCM-
driven simulations (for the control 20C3M period). The numbers below the figures indicate
the spatial mean error (m), w.r.t. Spain02, and standard deviation of those errors (σ). Panels
(d)-(f) show the precipitation climatologies for the GCMs.

(both in terms of spatial correlation and climate change signal). Note that the
mean spatial signal from the DMI model is positive, as opposite to the negative
values in all other cases. Moreover, the correlation of the regional climate change
signal with the global one is close to 0.5 in this case, whereas it is over 0.7 in all
other cases. Therefore, it is not advisable to work directly with the delta signals,
ignoring the performance of the RCM-GCM runs in the control period and the
side effects of large biases.

In the following we analyze how to best combine the available RCMs to ob-
tain more reliable projections. We consider four different ensembles: The ensemble
mean of the eleven ERA40-driven RCMs (E1 hereinafter), the mean of the fifteen
GCM-driven RCMs members (E2), the ensemble mean of the eleven best perform-
ing RCMs, i.e. excluding models 4, 5, 12 and 14 (E3) and, finally the ensemble
of five models according to Herrera et al. (2010) (E4); these RCMs are indicated
with an asterisk in Table 1.

Figure 4 confirms that, except for JJA, the best ensemble is E1, i.e. the
reanalysis-driven ensemble. Moreover, the E2 is the ensemble with lowest per-
formance for all the seasons. Overall, the best GCM-driven results are obtained
removing the four GCM-driven RCM runs with lowest performance. The perfor-
mance of the ensemble E4 (based on the skill of the ERA40-driven RCMs) is similar
or slightly lower than the one of the ensemble E3 (i.e. based on the skill of the
GCM-driven RCMs). Note that all the four ensembles overestimate the seasonal
average precipitation. The GCM-driven ensembles (E2, E3 and E4) have stronger
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(a) ECHAM5 (b) DMI-ECHAM5

(e) ICTP-ECHAM5

(c) KNMI-ECHAM5 (d) MPI-ECHAM5

(f) SMHI-ECHAM5
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Fig. 3 Winter climate change signal (”deltas”) given by the ratios (in %) of the precipitation
in the period 2071-2100 (A1B scenarios) over the control run 1971-2000 (20C3M scenario) for
(a) ECHAM5-r3 outputs and (b,f) the corresponding RCM-driven simulations. The numbers
inside the panels indicate the spatial correlation with the ECHAM5 results (to check spatial
consistency with the GCM) and the spatial mean climate change signal (in %).

bias than the ERA40-driven runs, except for JJA. These results suggest that the
problem of constructing an optimum ensemble is delicate since both reanalysis-
and GCM-driven control simulations have to be evaluated to detect potential low-
performing RCMs and/or couplings, respectively.

4 Conclusion

In this paper we have shown that the assessment of regional climate projections
in control conditions is necessary to avoid low-performing RCM-GCM couplings
which may bias the resulting transient projections and the corresponding climate
change signals. This was done by comparing the GCM-driven control run (20C3M)
with the ERA40-driven one (”perfect” boundary conditions) in a common period
(1961-2000). Large deviations between both results indicate a large bias for the
particular RCM-GCM combination, which might affect the future transient projec-
tions due to the possible nonlinear amplification of biases. We analyzed the state-
of-the-art ENSEMBLES dataset focusing on precipitation in the Spanish Iberian
Peninsula and found very large biases for some particular RCM-GCM couplings
which can be considered outliers/errors of the ensemble. Indeed, the performance
of the ensemble clearly improved discarding those simulations.
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Fig. 4 Taylor diagrams for different ensembles: (E1) the eleven ERA40-driven runs; (E2) all
the GCM-driven runs; (E3) as E2, but discarding the four deficient runs; (E4) ensemble formed
by the runs of the best five 5 ERA40-driven RCMs. See running text for more details.

Rummukainen et al. (2001) found that the RCM precipitation patterns sub-
stantially follow those of the driving GCM, but with local features mainly related
to the orographic details. Therefore, it could be argued that the GCMs could be
responsible of the deficient runs. However, in our analysis we found that the same
GCM (e.g. ECHAM5) can lead to inconsistent projections when driving different
RCMs (e.g. runs 5 and 13, see Table 1). Therefore, the problem seems to be related
to the coupling of some specific GCM with some RCM, more than to particular
deficiencies of the individual models. This is bad news, since it might indicates
that we cannot run freely whatever RCM-GCM combination.

The large biases found in some RCM-GCM couplings are shown to affect the
corresponding ”deltas” for a transient future period (w.r.t. the control run) leading
to inconsistent climate change projections which should not be used in impact
studies. Similar problems are expected to occur when applying bias corrections to
these couplings, thus warning on the systematic application of those techniques,
although they may improve climate scenarios in most cases (Maraun, 2012).
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As a final conclusion, this study highlights the importance of performing task-
oriented validation of the control runs to identify and discard low-performing (as
compared with the corresponding reanalysis-driven runs) RCM-GCM couplings.
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