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2 Departamento de Informática y Sistemas, University of
Murcia, 30100 Murcia, Spain; aruiz@um.es; ginesgm@um.es

Internet of Things (IoT) technologies to automate pro-

cesses and increase productivity. Besides, Machine Learn-

ing and Deep Learning allow performing continuous de-

cision making based on data analysis. In this work, we

fill a gap in the literature and present a novel archi-

tecture based on IoT and Machine Learning / Deep

Learning technologies for the continuous assessment of

agricultural crop quality. This architecture is divided

into three layers that work together to gather, pro-

cess, and analyze data from different sources to eval-

uate crop quality. In the experiments, the proposed ap-

proach based on data aggregation from different sources

reaches a lower percentage error than considering only

one source. In particular, the percentage error achieved

by our approach in the test dataset was 6.59, while the

percentage error achieved exclusively using data from

sensors was 6.71.

Keywords crop quality; deep learning; internet of

things; machine learning; smart farming

1 Introduction

Automation has reached all areas of our society, and

farms and agriculture are no exception. In this con-

text, more and more farms and agricultural fields con-

tain some type of automation to increase the perfor-

mance of their production processes [15]. This increase

in automation, together with the arrival of mobile next-

generation networks (5G) and Internet of Things (IoT)

technologies, will allow the connection of millions of de-

vices with high bandwidth and minimal latency. In ad-

dition, Big Data technologies, together with Machine

Learning (ML) and Deep Learning (DL) techniques,

will allow the analysis and extraction of information

from the data in a matter of seconds [14].
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Among all these technologies, IoT has had a huge

impact on agriculture, enabling the integration of com-

munication capabilities to sensors and actuators [11,

23]. This translates into the possibility of using hard-

ware devices in the final installations to communicate

information related to the production environment, such

as the pH of the water, the level of fertilizers, or the

level of luminosity. This information from the sensors

is sent to a local server or a server in the cloud. In

general, in order to achieve low latency responses, part

of the data processing is performed in compute nodes

close to the sensors following the Edge Computing (EC)

paradigm [21]. In contrast, the rest of the information

is stored in the cloud databases to be analyzed later.

Once the analysis is completed, IoT technologies also

allow actuators to receive commands to take corrective

actions on the system. This communication is usually

performed through wireless channels, and it is frequent

that IoT devices form Wireless Sensor Networks (WSN)

using open standards.

In recent years, ML/DL technologies have gained

prominence in the context of crop quality prediction [31].

These techniques are based on developing models capa-

ble of extracting information from the input data and

continuously predicting the final product quality. The

development of these models is usually divided into two

distinct stages. The first stage is called training and is

where the model learns the information underlying the

data. In the second stage, called the test, the models are

tested with previously unseen data to determine their

performance. Thus, ML/DL can analyze information

from agricultural sensors and improve decision-making

tasks.

Despite the extensive use of IoT architectures on

farms and in the field of precision agriculture, many of

these architectures are aimed at monitoring variables.

One of the biggest challenges today is integrating IoT

architectures with ML/DL models that help us extract

precise information to make the right decisions. In this

way, the production of farms can be improved. The cur-

rent solutions only monitor crops to extract statistics

that can be used to improve future plantations. How-

ever, some unexpected events can be produced during

the crop growth that can reduce the plantation pro-

duction. Combining monitoring and corrective actions

will minimize the effect of these unexpected events, and

therefore maximizing the production. In the specific

case of crop quality, another relevant challenge is the as-

sessment of the product quality using information from

diverse sensors such as environmental sensors or RGB

cameras. For example, RGB cameras can give more in-

sight into certain pests that perform a visual degrada-

tion of the crop color. In contrast, other sensors such

as wind speed or pH water can give more information

about chemical and physical information. Data aggre-

gation and harmonization are complex tasks that must

be tackled [6].

To overcome the aforementioned challenges, we present

the following contributions:

– FARMIT, which is an IoT architecture designed for

continuous crop quality assessment. The layers of

FARMIT can be divided into three categories: phys-

ical, edge, and cloud. The goal of these layers is

to gather information about the crop and analyze

them. Based on the analysis, the architecture can

take corrective actions to improve the quality of

crops.

– A deployment of FARMIT in a real scenario in or-

der to assess the quality of tomatoes under green-

houses. We show the experimental result obtained

from this deployment, where FARMIT uses ML/DL

techniques.

The remainder of this manuscript is structured as

follows. Section 2 reviews the state of the art in terms of

IoT architectures proposed for smart farming and pre-

cision agriculture. In addition, in this section, ML/DL

techniques for crop prediction and crop quality are also

reviewed. In Section 3, we present the IoT architecture

to gather and store sensing information from farms.

The scenario where we applied the previous architec-

ture is presented in Section 4. In Section 5, the results

regarding the crop quality forecasting and prediction

are presented. Finally, the conclusions and future work

are presented in Section 6.

2 Related Work

In this section, we review the literature in the field of

both IoT architectures in farms and precision agricul-

ture and the usage of ML/DL techniques to evaluate

crop quality.

2.1 IoT Architectures for Farms and Precision

Agriculture

The IoT architectures combine different communica-

tion protocols, security mechanisms, and smart devices

that are resource constrained [12]. Generally, these ar-

chitectures are supported by the Fog [28] or Edge [21]

computing paradigm. For example, the authors of [24]

propose a novel and secure Cache Decision System fol-

lowing the Fog computing paradigm that operates in

a wireless network focused on smart-buildings. In this

sense, the Cache Decision System proposed enables a
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safer and more efficient environment for internet brows-

ing and data management. In addition, new approaches

have been proposed to improve the performance of such

architectures. For example, the authors of [3] introduce

a variant of the optimistic concurrency control proto-

col in cloud-fog environments. They probed that the

proposed mechanism reduces the communication delay

significantly and enables low-latency fog computing ser-

vices of the IoT applications. In the security context,

the authors of [18] propose a novel approach to gener-

ate and detect watermark in images with the goal of

share image information in smart cities y a safety way.

On the one hand, the generation method takes a gray

image watermark that is encoded as watermark signal

into the block Discrete Cosine Transform (DCT) com-

ponent. On the other hand, the method to detect and

extract the watermark is based on a cooperative Con-

volutional Neural Network (CNN).

In the agricultural context, the usage of IoT has

expanded in the last years , and its use is well docu-

mented in the literature [20]. For example, the authors

of [16] presented an IoT architecture for strawberry dis-

ease prediction especially designed for smart farms. The

architecture is capable of handling the collection, anal-

ysis, monitoring, and prediction of agricultural environ-

ment information. The authors also presented an IoT-

hub network model that enables efficient data transfer

between IoT devices. Several IoT-hubs can be deployed,

and the communication is powered by LoRa technology.

In addition, the IoT-hub communicates with the up-

per layers of the architecture using the oneM2M com-

mon platform. On top of the architecture, the authors

presented a service capable of analyzing the data and

predict strawberry infection. The authors of [25] pre-

sented a generic reference architecture for monitoring

remote sensing in the field of precision agriculture. The

work proposed a 7-layer architecture and discussed the

technologies employed in each layer. To be specific, the

layers are: sensor, link, encapsulation, middleware, con-

figuration, management, and application layer. The au-

thors also presented a use case based on a 24-hour

real-time saffron cultivation surveillance system that

relies on signal and image collection and preprocess-

ing. The authors of [7] proposed another IoT architec-

ture for smart farming called LoRaFarM. This archi-

tecture is low-cost, modular, and Long-Range Wide-

Area Network-based IoT platform intended to manage

generic farms in a highly customizable way. In addition,

the platform was evaluated on a real farm in Italy. In

this evaluation, the LoRaFarM was collecting environ-

mental data for three months.

Apart from the previous solutions, the other two ar-

chitectures for smart farming were presented in [4, 29].

A point in common between those two works is the us-

age of Fiware [5], which is an open-source initiative for

context data management, facilitating smart solutions.

On the one hand, the architecture presented in [4] in-

tegrates IoT, Edge Computing, Artificial Intelligence,

and Blockchain technologies. In addition, this architec-

ture was aimed to monitor the state of dairy cattle and

feed grain in real-time. On the other hand, the work

proposed by the authors of [29] presents a flexible plat-

form capable of coping with soilless culture needs in full

recirculation greenhouses using moderately saline wa-

ter. The architecture is supported by three planes: local,

edge, and cloud. The local plane interacts with crop de-

vices to gather information. The edge plane is in charge

of managing and monitoring the main tasks. Finally, the

cloud plane performs the data analysis process. Both

of the previous architectures were implemented in real

scenarios.

All the works examined propose architectures for

only collecting one type of sensor data. This means that

they ignore the control opportunities that IoT tech-

nologies provide. In the end, this will cause a loss in

crop production and, therefore, an economic loss. In

this work, we present an architecture for data collec-

tion and, depending on the results of the analysis per-

formed, it can even take corrective actions to improve

the quality of the crop, minimizing production losses.

In contrast to previously discussed solutions, our archi-

tecture allows to aggregate data from different sources

such as traditional sensors that give data about physical

and chemical properties and visual sensors such as RGB

cameras that give data about physical appearance.

2.2 Machine Learning and Deep Learning to Evaluate

Crop Quality

The usage of ML/DL techniques in agriculture has been

widely explored [19]. To be specific, crop management,

livestock management, water management, and soil man-

agement are the most prominent areas where ML/DL

are applied. Among them, we are interested in crop

management, where we can identify the following ac-

tivities: yield prediction, disease detection, weed detec-

tion, crop quality, and species recognition.

In this context, crop quality is the subfield in charge

of estimating the final quality of crops, and it is closely

related to disease detection. The importance of this field

is critical since the price and the competitiveness of

companies depend on the quality of their products. In

this sense, the authors of [30] presented a study focused

on the detection and classification of common types of

foreign matter embedded inside cotton lint. During the

study, a short wave near-infrared hyperspectral imaging
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system was used. The authors of [13] presented a study

to differentiate between deciduous-calyx pear (DCF)

and persistent-calyx pear (PCF). In the same direction

that previous authors, a non-destructive hyperspectral

imaging technique was used. The authors stated that

PCF and DCF could be differentiated using the model

proposed, which is based on Support Vector Machines

(SVM). The final accuracy achieved was 93.3% for DCF

and 96.7% for PCF. Another work to determine the

quality was proposed by the authors of [26]. The au-

thors stated that the quality of the rice depends on

the origin country. They conducted experiments to de-

termine the geographical origin of rice. Specifically, it

was determined using inductively coupled plasma mass

spectrometry (ICP-MS) together with different classi-

fication methods. Random Forest and SVM were the

techniques that achieved the best performance (96%).

The conclusion was that the variation in non-essential

element profiles in rice grain depends on the geograph-

ical origin.

To predict diseases, the authors of [8] presented a

new image processing technique to detect thrips (Thy-

sanoptera) on strawberry plants. SVM was used for the

classification of parasites and the detection of thrips.

Images taken by a mobile agricultural robot were the

input data to the SVM. The images were taken at 80 cm

distance and under good natural light conditions. In ad-

dition, the images needed to be converted from RGB to

HSV color space. The yellow rust wheat disease detec-

tion is studied in [1]. The authors presented a method-

ology for the timely detection of yellow rust disease. For

this, the authors used reflectance spectrum and a classi-

fication algorithm at different yellow rust development

stages. Using a selection of the top 5% significant spec-

tral features, the authors achieved a true positive rate

of 86%. In [9], a CNN approach was used for identify-

ing plant disease, focusing only on plant leaves images.

Several CNN architectures were tested, being the one

based on VGG, the one that achieved the best success

rate (99.53%). The model was trained with 87 848 im-

ages, and it was tested with 17 548 images.

Finally, in [22], an IoT architecture for smart farm-

ing that incorporates ML algorithms was presented.

The ML method incorporated in the architecture is

based on the PART classification technique, and it is

able to predict crop productivity and drought.

Most of the works examined propose evaluating the

quality of the crop or carrying out the detection of pests

from the study of the crop images. This approach ig-

nores other useful chemical information that is crucial

to determine crop quality. As a result, considering only

the images at specific moments of crop growth limits

the development of predictive models. For example, to

develop a model to predict the quality of a crop in the

following week, it is necessary to provide the model with

other features that provide information about the con-

ditions in which the crop has grown, such as the pH

water, wind speed or pesticides used. In our proposal,

visual information is considered to evaluate the appear-

ance of the crop. However, measures of quality, growth,

and pest registration are also used to predict the quality

of the crop in the near future.

3 FARMIT Architecture

In this section, we describe the proposed IoT architec-

ture to evaluate crop quality. The architecture, called

FARMIT, was designed to be scalable and flexible. To

accomplish these requirements, FARMIT makes use of

both the cloud [27] and the edge [21] computing paradigm

and it is powered by FIWARE [10]. The architecture

presents three different layers: physical, edge, and cloud.

The physical layer is the nearest to the activities carried

out on the farm. This layer allows the data acquisition

and transmission to the Farm Controller (FC) located

in the edge layer. The FC receives data from the previ-

ous layer and transmits it to the cloud layer. In addi-

tion, the FC is responsible for controlling and managing

the infrastructure. Finally, in the cloud layer, we find

three tiers: data, analysis, and application. The data

tier is in charge of receiving data and context infor-

mation from FC and storing it in the cloud database

(Cloud DB). The analysis tier is in charge of processing

information and extracting relevant metrics and fea-
tures from the data. Another responsibility of this tier

is to train a prediction model and integrate a decision

maker based on the predictions. Finally, the application

tier comprises multiple operational and business appli-

cations that can be developed over the analysis tier.

The FARMIT architecture works in two different

phases: training and production. During the training

phase, the architecture uses all the data gathered from

sensors to train the ML/DL models in the analysis tier.

In contrast, during the production phase, FARMIT is

ready to evaluate data recently gathered, analyze them,

and perform the proper action to correct any anomaly.

Except for Decision Maker and Action Enforcement

Module, the modules work similarly in both phases. In

particular, these two modules mentioned above do not

take place in the training phase.

A global view of the architecture is presented in Fig-

ure 1. In the following sections, we detail each layer and

the components that integrate them.
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Fig. 1: Scheme of the proposed FARMIT architecture.

3.1 Physical Layer

This layer is the closest to the activities carried out on

the farm. It is mainly made up of sensors responsible for

collecting data from different sources and executing spe-

cific actions using actuators. Both sensors and actuators

are implemented in combination with resource-limited

hardware, i.e., Microcontroller Units (MCU) [2]. MCUs

are in charge, on the one hand, of obtaining informa-

tion from the sensors using the analog-digital convert-

ers. On the other hand, they interact with the actuators

through digital-analog converters. In addition, to com-

municate with the sensors and actuators, the MCU can

use different protocols designed for this purpose. It is

usual to follow a master-slave communication scheme

where the MCU initiates communication, and the sen-

sor or actuator responds to the request. Among the

protocols used in this area, we can find the SPI and

I2C protocols [17].

There are a wide variety of sensors, from those that

measure air quality to those that determine the pH

level in the water. In general, it is common to find sen-

sors that take measurements of temperature, ambient

humidity, soil humidity, electrical conductivity, wind

speed and direction, carbon dioxide, pH, light intensity,

solar radiation, and atmospheric pressure, among oth-

ers. Concerning actuators, we also find different types,

but in general, they are related to sensors. It is common

to find actuators that correct the deficiencies measured

by the sensors. For example, if the soil humidity mea-

sured by a sensor is not adequate, an actuator will pro-

ceed to let more or less water pass to the crop as neces-

sary. Regarding FARMIT architecture, it is focused on

data aggregation, and it is not limited to certain types

of sensors or actuators, but also FARMIT can integrate

a wide range of these devices since the upper layer is

in charge of managing them. In this sense, our proposal

gives freedom when it comes to deploying the necessary

sensors for a particular application.

Additionally, the devices deployed in this layer usu-

ally have a restriction in relation to energy consump-

tion. Frequently, these devices are deployed in the open

field where it is not possible to connect them to the elec-

trical network. Therefore, it is necessary to equip these

devices with batteries. Thus, the optimization of elec-

tricity consumption becomes a critical aspect to extend

the life of batteries.

The other responsibility of this layer is to allow com-

munication between the sensors/actuators and the FC.

Specifically, we can find gateways that act as wireless

access points for the infrastructure devices and route

data packets. The need for these gateways is motivated

by two fundamental points. The first is to homogenize

the communication protocols, and the second is related

to the optimization of the energy consumption of the

sensors/actuators.

3.2 Edge Layer

The FC is located at the edge and serves as an in-

termediary between the physical and cloud layers. The

goal is to achieve low latency in communication with

the sensors layer and carries out controlling and man-

agement tasks on physical devices. The FC consists of

three modules: data management, device management,

and control management. The FC can be deployed in

a physical or virtualized server in the farm facility, and

each FARMIT deployment needs to be considered the

current sensors and the future sensors that can be de-

ployed.

3.2.1 Device Management Module

This module is in charge of managing the devices that

are in the lower layer. In particular, this module man-

ages the connection of new sensors/actuators in the

FARMIT architecture and, moreover, ensures the cor-

rect operation of all the devices of the lower layers.

When a new device is connected, it must communi-

cate with the device management module to obtain its
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configuration. For example, a configuration parameter

could be the interval in which samples must be col-

lected by sensor devices. Also, network gateways get

both routing and security configuration information from

the device management module.

Once the device is configured, the device manage-

ment module gives it a unique ID and records its activ-

ity in the local database. In this database, in addition

to recording the data sent by the device, there is also

information on the location of the device and its net-

work configuration. Using this information, the device

management module can carry out periodic checks to

verify communication with the device is correctly con-

figured, and information is being sent according to the

established intervals.

Since FARMIT is an architecture powered by FI-

WARE, this module is implemented using the proper

IoT Agent, which is a Backend Device Management

Generic Enabler. In particular, this component behaves

as the gateway to route the information to the upper

layer using specific topics defined in the MQTT server.

3.2.2 Data Management Module

This module is in charge of managing and storing the

data from sensors. The data model used by FARMIT

is provided by the FIWARE project, i.e., the agrifood

data model. When the devices collect data from the

physical world, these data are sent to the FC, which

are received by the data management module that has

mainly two functions. The first of these functions is to

preprocess and store the data in the local database on

the FC. The second function is to synchronize the FC
database with the database in the cloud layer.

The data preprocessing allows removing unwanted

data and noise filtering present in the data. On the one

hand, the data from the sensors can represent a large

volume of network traffic and may even contain data

that is not relevant to the tasks to be performed in

the cloud layer. This module allows us to select which

data will be transferred to the cloud. Imagine that the

FC receives a wide range of data that are not required

for the crop quality task, but it is essential to carry out

other tasks such as sensors or crop tracking. In the con-

trol panel, the operators can define that this informa-

tion must not be sent to the cloud. On the other hand,

the physical layer sensors can introduce noise inherent

to the technology used or present outliers. This module

allows us to filter this noise so that the data that finally

reach the cloud layer are useful for quality assessment

tasks. For example, imagine that a certain temperature

sensor sends extremely large values because of a mal-

function, i.e., it is broken. In this case, the operator

can establish basic rules to ignore such values until the

sensor was replaced. It is worth mentioning that bot

processes require the operator’s intervention to define

the action in the control panel.

Data synchronization is performed following a two-

way scheme. This means that not only data from FC

is sent to the cloud layer, but if there is a loss of infor-

mation in the FC, the data management module can

recover that information from the cloud database and

store it in the local database located at the edge layer.

3.2.3 Action Enforcement Module

This module is in charge of monitoring and controlling

the execution of commands in actuators. The FC is not

only capable of monitoring the data sent by the sensors,

but based on these measurements and decisions deliv-

ered by the cloud layer, it can autonomously take cor-

rective actions. These commands end up reaching the

actuators and producing an effect in the physical world

that will ultimately correct the anomaly measured by

the sensors.

On the one hand, the corrective actions can be di-

rectly applied by operators registered in the FARMIT

application tier and propagated through the architec-

ture until they reach the FC, where they are trans-

mitted to the actuators. On the other hand, the local

database stores the normal values, defining the range of

values where measurements made by sensors must be

enclosed. If any of these measurements are outside the

range of normal measurements for each sensor, the FC

can autonomously take action to correct this situation.

A third way to perform a corrective action is based on

the result reported by the Analysis tier. If this tier dis-

covers any anomalies in the data, it can communicate

with this module to take the proper corrective action.

To perform corrective actions, operators can define

policies. They are stored both in the local database and

in the database of the cloud layers. These policies are

made up of an antecedent and a consequent. The an-

tecedent establishes a condition based on data stored in

the local database (e.g., sensor data) that, if fulfilled,

will cause the consequent to be evaluated. The conse-

quent establishes the actions to take.

3.3 Data Tier

Depending on the needs of the farm facility, it may be

required to deploy two or more FC that will collect and

manage their own data and devices. In many cases, the

devices that each of the FC manages will be different.

This layer receives data from the different FC deployed

in farm facilities, managing and aggregating this data
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and managing the context information. This layer is

made up of the Data Acquisition module and the Con-

textual Information module.

3.3.1 Data Acquisition Module

This module receives the information from the differ-

ent FC deployed in the facility and is responsible for

storing it in the database present in this layer (Cloud

DB). The received information includes data from the

sensors and includes data from the FC itself, such as its

geographical position and operating statistics. Besides,

each FC is identified with a unique ID that is assigned

during its installation. This unique ID links the data

stored in the database with each of the deployed FC.

Among other functions, this allows that if there is a loss

of information in the FC, it can recover the information

by making a query to this layer and requesting the lost

information.

3.3.2 Context Information Module

The main objective of this module is to harmonize and

aggregate the data received by the data acquisition

module and stored in the cloud database. The data re-

ceived by this layer came from different sources. On

the one hand, there are traditional sensors deployed in

crop fields that measure temperature, humidity, or wind

direction. On the other hand, the information in the

form of images can also be received, either through fixed

cameras or even cameras installed on drones. Addition-

ally, the QA staff can provide operational information

through applications deployed in the application tier.

This information could complement IoT sensor mea-

surements and, therefore, should be taken at different

intervals and during different hours of the day. This

module is in charge of extracting context information

from all this data and making it available for later anal-

ysis in the upper layers.

This module is implemented using the Orion Con-

text Broker provided by the FIWARE project. In par-

ticular, Orion Context Broker receives the data from

the different sensors provided by the Data Acquisition

module and makes it available to the upper layer through

the cloud database.

3.4 Analysis Tier

This tier includes the necessary procedures to extract

knowledge from the data tier. The main goal is to train

an ML/DL model to serve the result on demand to the

application tier. Most of the modules in this tier are

oriented to process and curate the data to be used with

ML/DL algorithms. Specifically, this layer comprises

four modules: Data Processing, Feature Filtering, Fea-

ture Extraction, Prediction Model, and Decision Maker.

The workflow begins by retrieving the data from the

cloud database at the lower tier. This database con-

tains both information from traditional sensors as well

as data extracted from sensors capable of taking images

(whether thermal, infrared, or RGB). This data goes

through the Processing Module to adapt it to be used

in the following modules. The Feature Filtering module

removes those features that do not provide information

to the model. Once the filtering is done, the Feature

Extraction module extracts new features that provide

more information to the model. Next, the Model Pre-

diction module trains the model and provides the ap-

plication tier with prediction results. Finally, the De-

cision Maker module compares the Model Prediction

output with the corrective policies defined in the cloud

database. If any policy is fulfilled, this module makes

the proper decision to correct the crop quality devia-

tion.

3.4.1 Data Processing Module

The first task that this module performs is to process

all data stored in the cloud database. The data must

be processed depending on its data type, i.e., an image

needs to be processed differently from a traditional sen-

sor such as a temperature sensor. For example, FAR-

MIT supports the usage of visual and non-visual in-

formation. In the highly recommended case that RGB

cameras are deployed in the plantation, one of the op-

erations that can be performed is converting different

color spaces. This operation allows extracting relevant

features to the specified prediction problem in a later

module. In contrast, all the data from traditional sen-

sors are treated similarly by FARMIT architecture. In

particular, one of the most popular ways of performing

the processing is to aggregate data based on a statis-

tic summary. The second task consists in scaling the

continuous features present in the datasets. This task

is extremely important since many ML/DL models per-

form better when the data is on the same scale. Finally,

the third task carried out by this module consists in en-

coding the categorical variables following an adequate

schema for the problem under study.

Additionally, under training mode, this module splits

the dataset into training and test datasets and, more-

over, offers two strategies for splitting. On the one hand,

it offers the possibility of choosing these datasets us-

ing a random approach. In other words, the training

and test datasets are generated from random samples

of the original dataset. On the other hand, this mod-
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ule allows making the dataset division while preserving

the temporal coherence of the data. In general, the sec-

ond approach is especially useful when data is used as

a time series.

3.4.2 Feature Filtering Module

This module is responsible for removing those features

that do not provide information to the prediction model,

degrading its performance in the worst case. One of the

primary operations that this module uses to calculate

which features do not provide information is to perform

a study of the variance of each one. This study gives

an estimation of how much the value of these features

changes throughout the whole dataset. Those features

that do not change are candidates to be removed by

this module.

3.4.3 Feature Extraction Module

Once the features have been filtered, the main task of

this module is to extract new relevant features. The pri-

mary technique used by this module is the use of differ-

ent statistical metrics. This allows enriching the dataset

with high-level features, extracting patterns from the

raw data, and improving the performance of the model

in terms of prediction.

Although each FARMIT implementation can signif-

icantly be different, we highly recommend including two

sets of features. The first set is based on the statis-

tical summary commented above. Among the metric

we recommend are the mean, the minimum, the max-

imum, the standard deviation, and the range (defined

as the difference between the maximum and minimum).

In contrast, since crop growth is closely related to time,

we recommend including some type of feature to encode

the sense of time.

3.4.4 Model Prediction Module

This module is in charge of training the model using

the training dataset and then evaluating the prediction

model performance using the test dataset. Three tasks

are defined to carry out the training phase: selection

of the model, selection of hyper-parameters and their

values, and training and fine-tuning of the model, as

shown in Fig. 2.

The first task is to select an appropriate model to

address the problem of crop quality prediction. In gen-

eral, the models that work with sequences are good al-

ternatives since the crop quality can be studied from the

succession of the data given by the sensors over time.

However, other models can be considered, achieving

good results. For example, ML models such as SVM or

Random Forests, or DL models as LSTM or RNN, could

be considered. The second task is to define the hyper-

parameters to be tested and their range. One consider-

ation to keep in mind is that, in general, the greater the

number of hyper-parameters to be tested, the longer the

time in the fine-tuning phase of the model. Finally, the

third task is to establish a search strategy for hyper-

parameters. Among the most popular strategies, we

highlight grid-search and random search. In general, the

first one is used when a small range of hyper-parameters

to be tested is selected. This will allow us to perform

the search by testing all the defined hyperparameters

in an acceptable time. However, when a wide range of

hyperparameters to be tested is selected, it is recom-

mended to use the random search strategy, although it

will not test all possible combinations.

Once the model is trained, it is ready to make pre-

dictions on data that it has not previously seen. This

mode of operation will be the most common in the FAR-

MIT architecture. While the training mode should be

done when the sensor data changes substantially, the

prediction mode is used when a user wants to predict

the quality of a specific crop.

3.4.5 Decision Maker Module

This module is in charge of deciding the corrective ac-

tion to take in the case that any deviation is observed

in the crop quality. To make decisions, this module

consults the corrective policies previously defined in

the cloud database. First, the prediction made by the

trained model is obtained. Then, each policy is evalu-

ated to determine if any of them is fulfilled. If, based
on the predictions, any of the policy precedents are ful-

filled, this module will evaluate the policy consequence

to decide the action to take and thus be able to correct

the deviations in crop quality. However, this module is

not responsible for acting. Instead, that responsibility

falls on the Action Enforcement module that receives

the action to take and perform it.

Policies are based on the knowledge of experts and

specify the actions to be taken. An example of a cor-

rective policy is present in Algorithm 1.

Algorithm 1: Reduce water flow by 5% when

sweetness is less than 7.5
if SWEETNESS < 7.5 then

REDUCE AMOUNT WATER(5%)

In this policy, we compare if the sweetness value is

lower than 7.5, then the amount of water must be re-
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Model Selection

 Consider models that handle
 time-series data

Hyper-parameters Selection

 Consider limiting the number
 of hyper-parameters selected

Search Strategy Selection

 Grid Search
 Random Search

Fig. 2: Model Prediction Module phases in prediction mode.

duced by 5%. In the case that the antecedent is true,

i.e., the prediction obtained for sweetness is lower than

7.5, then the corrective action is triggered and commu-

nicated to the system in order to be enforced by the

corresponding IoT actuators.

In general, the antecedent of the policy is one of the

variables predicted by the Model Prediction Module.

In contrast, the consequent is an action to correct the

anomaly.

3.5 Application Tier

This tier is responsible for offering different operational

and business applications to the operators. Thanks to

the service-oriented interface that FARMIT exposes,

these applications can be both desktop and mobile,

as well as web applications. Regardless of technology,

these applications communicate with FARMIT through

REST services. Upon a specific request, the application

tier communicates with the prediction module of the

lower layer to obtain the results. These results will be

returned to user applications as HTTP responses fol-

lowing a REST scheme.

4 Deployment in a Tomato Plantation

The FARMIT architecture was deployed in a tomato

plantation in the south of Spain. The main objective

was to evaluate and control the taste quality of cherry

tomatoes. The plantation comprises three greenhouses

that contained a certain number of tomato plants. In

the physical layer, we deployed both traditional and

visual sensors. The traditional sensors were in charge

of measuring both physical and chemical properties,

while visual sensors were intended to provide informa-

tion about the appearance of the tomatoes. In particu-

lar, the traditional sensors deployed were: temperature,

wind, rain, electrical conductivity, humidity, radiation,

carbon dioxide, direction, and wind speed sensor. Re-

garding visual sensors, we deployed three RGB cameras

in several control points in the greenhouses. These cam-

eras have to deal with different lighting conditions. For

example, Fig. 3 shows as these lighting conditions vary

depending on whether the images were taken during the

day or at night. Another factor that can influence the

Fig. 3: Different light conditions in greenhouses

brightness of the images obtained from the cameras is

the meteorological state (cloudy, sunny, or rainy).

Additionally, in the three greenhouses where FAR-

MIT was deployed, different operational applications

for Human-Machine Interfaces (HMI) were deployed in

the application tier, whose main objective was to allow

the QA staff to input data. These data include neces-

sary measurements performed by the quality depart-

ment, the pests and defects that were affecting certain
lines and greenhouses, and the activities carried out by

the workers in the plantation. In relation to the pests

that could affect the tomato, we highlight the white-

fly, thrips, and tuta. Likewise, other defects that the

tomato could present were registered, such as anoma-

lies in its color, that the size was less than 22 mm or

that the stem was less than 5 cm thick, among others.

All of these sensors were registered in the FC lo-

cated in the edge layer through the Device Management

Module. Once they were registered, they were allowed

to send sensor data, which is managed by the Data

Management Module. The data sent to this module was

filtered and stored in the local database. This commu-

nication was performed using the IoT Agent provided

by the FIWARE project.

Another data that was collected using applications

was the scores obtained during the tastings tests. In

particular, during the ML/DL training phase, a series

of different properties of the tomato were scored by
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Table 1: Tomato properties measured and its descrip-

tion

Property Description
Sweetness The basic taste associated with

aqueous sucrose solutions.
Acidity The basic taste associated with

aqueous solutions of citric acid.
Tomato Smell Aromas commonly associated with

freshly picked fresh tomatoes, which
are generally described as sweet
(fructose), acid (citric acid), fruity,
earthy, herbaceous, and ripe.

Hardness The resistance presented by the
tomato when biting it.

Brix Degrees Measures the concentration of sol-
uble solids dissolved in a mixture,
but due to the prevalence of sugars,
pectins and organic amino acids in
soluble solids of fruit and vegetable
juices, it represents an estimate of
the sugar content.

Madurity Index Value determined by the QA depart-
ment based on the maturity of the
tomato.

professional tasters and the QA department. The tast-

ings were performed over a specific plantation, and each

plantation can be evaluated by different tasting along

the time. In each tasting, one or more tasters evalu-

ated different samples collected from the plantation.

Specifically, the measured tomato properties were: Brix

Degrees, Maturity Index, Hardness, Sweetness, Acidity,

and Tomato Smell. These six metrics, whose meaning

is shown in Table 1, determined were used as tomato

quality measures and, therefore, to label the data in the

training phase of the ML/DL model.

5 Experimental Results

This section details the specific operation of the differ-

ent FARMIT modules to generate the predictive model.

This process is only required initially when the model

has not yet been generated, and the information from

the different sensors is significant enough to determine

the quality of the tomato. The objective of this pre-

dictive model is to evaluate tomato quality depending

on the information from visual and non-visual sensors

deployed in the greenhouses as well as the information

collected by the QA department. This section is focused

on the analysis tier and its components since they are

responsible for generating the model.

5.1 Data Processing

Once the FC sent the information and it was stored in

the cloud database, the next step performed by FAR-

MIT was the data processing to adapt it to be used in

the predictive model. Firstly, preliminary data process-

ing was necessary because data were not collected at the

same time intervals or under the same conditions. For

example, the QA department weekly collected informa-

tion about the growth of the crop (such as the number

of leaves on a plant or the number of fruits on a plant)

using a set of control plants for each season and each

greenhouse, as shown in Table 2. In contrast, the values

reported by the sensors in charge of collecting informa-

tion about the water, such as electrical conductivity,

water consumption, or pH level, were recorded for each

day of the week as shown in Table 3. The other sensors,

such as temperature, humidity, or wind speed and di-

rection, were configured to communicate their measure-

ments with different time intervals. While some com-

municated the measurements every 15 seconds, other

sensors reported their measurements every 30 minutes.

This information was stored in a database table indi-

cating the sensor to which they referred, a timestamp,

and the reported value.

Table 4 shows the number of samples regarding its

source. As can be seen, samples from sensors are the

most numerous, followed by samples from images and

samples related to quality. To relate all these variables,

the data processing module groups them by the year

and the week in which the measurements were taken.

All the aforementioned data had this information avail-

able except for some sensors where a timestamp was

available. Fortunately, the week number and the year

could be extracted from the timestamp, allowing to

group them with all the other database tables easily.

Additional work was carried out on integrating the

information on the pests affecting the tomato crops, the

tasks performed during the entire cultivation time, and

the defects in the tomato crops during the entire culti-

vation time. These data were encoded following the One

Hot Encoding (OHE) strategy, resulting in a dataset

with 409 features divided into the categories shown in

Table 5.

Additionally, this module created the time series

to train the predictive model using two different ap-

proaches. The first approach generates time-series con-

sidering every week from the planting week to the week

when the tasting was carried out. In other words, tast-

ing number n included data for all the weeks between

the week of planting and the week in which the tast-

ing was performed. The second approach takes advan-

tage of the fact that each plantation was exposed to
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Table 2: Crop growth measurements. Season, Week, and Year indicate the season, week, and year in which the

measure was taken. Sample indicates the sample measured. IdGreenhouse indicates the ID of the greenhouse where

the sample was taken. Finally, Value indicates the value measured

Season Week Year IdGreenhouse Value Sample

1 43 2019 1 15.0 1
1 43 2019 1 20.0 2
1 43 2019 1 16.0 3
1 43 2019 1 20.0 4
1 43 2019 1 16.0 5
1 43 2019 1 15.0 6

Table 3: Values measured for pH. Season, Week, Year, and Day of week indicate the season, week, year, and day of

week in which the pH was measured. IdGreenhouse indicates the ID of the greenhouse where the pH was measured.

Finally, Value indicates the pH measured

Season Week Year IdGreenhouse Value Day of week

1 47 2019 1 3.69 1
1 47 2019 1 3.62 2
1 47 2019 1 3.58 3
1 47 2019 1 5.14 4
1 47 2019 1 2.98 5
1 47 2019 1 3.17 6

Table 4: Number of samples in the dataset regarding

its source

Source Sample Number of Samples

Task-related 2 521
Defect-related 1 495
Growth-related 6 579
Quality-related 17 248

Histogram-related 45 803
Sensor-related 8 497 937
Pest-related 355

Table 5: Number of features in the dataset after the

data processing step. The category Others includes:

year, week, season, and IdGreenhouse

Features Number of Features

Task-related 104
Defect-related 26
Growth-related 48
Quality-related 48

Histogram-related 120
Sensor-related 56
Pest-related 3

Others 4

several tastings tests. Therefore, this second approach

generates the time series considering the weeks when

the current and the last tastings were performed. In

other words, if a tasting was carried out in week number

12 and another in week number 17, the generated time-

series only contains the data between these two tastings

tests. In both approaches, each of the generated time

series was labeled with the mean of the tasters’ scores.

Once all the data were grouped, the data process-

ing module generated the training and test datasets.

This partition could be done in two different ways. The

first was to divide the data preserving temporal coher-

ence between them. In contrast, the second consisted

of selecting these datasets in a uniform random way,

following a standard i.i.d. sampling scheme. Both ap-

proaches followed an 80/20 partition scheme. In other

words, 80% of samples were used for training purposes,

and 20% of samples were used for testing.

The last task of this module consisted of scaling the

data so that all of them were on the same scale and

could be used to train ML/DL models.

5.2 Feature Filtering

This module removed those features that did not con-

tribute information to the model. To accomplish this

task, a study of the variance of each of the features

in the dataset was performed. Finally, those features

whose values remained constant throughout the dataset

were removed. Specifically, a total of 248 features were

removed from the dataset. Additionally, the year, week,

and season features were removed since they did not

provide useful information to the model. Taking into

account the previous features, the total number of fea-
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Table 6: Number of features removed in the feature

filtering process. The category Others includes: year,

week, and season

Features Number of Features

Task-related 97
Defect-related 21
Growth-related 0
Quality-related 0

Histogram-related 30
Sensor-related 10
Pest-related 0

Others 3

tures removed was 161, divided into the categories show

in Table 6.

5.3 Feature Extraction

This module extracted high-level features that could be

useful for generating the predictive model. Specifically,

three groups of features were extracted.

The first group of features was extracted from the

information grouped by the data processing module.

In order to relate the information from different sen-

sors, the data were grouped by week and year. From

this aggregation, the feature extraction module calcu-

lated a statistical summary. Specifically, the mean, the

standard deviation, the variance, the median, the min-

imum, the maximum, the sum, and the range metrics

were computed and added to the dataset.

The second group of features was extracted from

the images captured by the RGB cameras. These im-

ages were converted to the Lab color space for two rea-

sons. The first is that it allows separating the luminos-

ity (the L channel), making it possible to independently

study the color (channels a and b). The second reason is

that Lab color space allows differentiating small color

changes. Then, the histograms for each channel were

calculated and used as new features for the predictive

model.

The last group of features was drawn from the pre-

viously removed week feature. This feature was encoded

in the form of a unit circle extracting two new features

representing the sine and cosine. This time representa-

tion eases the learning of repetitive patterns.

5.4 Predictive Model

This module trained the predictive model. In particu-

lar, a model based on a Random Forest (RF) regressor

with 100 estimators was selected to test performance in

our scenario. The selection of the RF model was made

based on its explainability, which is a desirable property

in tasks where the path followed to make the prediction

is required. In particular, due to its tree representa-

tion, the decisions take by RF can be interpreted by the

operator. The metric we used to evaluate performance

was Mean Squared Error (MSE), defined in Equation 1.

One of the most interesting properties of this metric is

that it is sensitive to large errors. In other words, it

is a good metric when there are potential outliers in

the dataset. This is particularly interesting when con-

sidering data gathered by sensors that may introduce

errors in the measurement or when the operator can in-

troduce erroneous data in the database through HMI.

The MSE computes the square difference between the

ground-truth, Y , and the predicted value, Ŷ , of each

sample, i. Then, the result is divided by the number of

total samples, n.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

Since the data processing module allowed the se-

lection of different approaches to generate the dataset,

this resulted in a total of 4 possible combinations shown

in Table 5 along with the error obtained in the test

dataset. Despite the different dataset generation ap-

proaches, all of them generated a training dataset with

80% of the total samples and a test dataset with 20%

of the samples.

The best result is reached when a random split and

weeks between the last and the current tasting is con-

sidered. Specifically, this approach achieved an MSE of

0.186. The approach considering all the weeks between

the tasting and the plantation and using a random split

achieved the second-best result with an MSE of 0.255.

The third best result was obtained by considering weeks

between the last and the current tasting and following

a sequential split, achieving an MSE of 0.284. Finally,

the worst result was achieved considering all the weeks

between the plantation and the current tasting and fol-

lowing a sequential split. In particular, this approach

reached an MSE of 0.338.

Although the approach combining random split and

weeks between the last and the current tasting achieved

the best result, it is not always a realistic approach.

The main limitation is that we are facing a time-series

task, and we need to take into account several consider-

ations. The random split is not desirable because each

sample is a sequence of data weeks, and part of these

data weeks can be seen during the training. Besides,

the approaches considering weeks between the planta-

tion and the current tasting are risky in time-series se-
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Table 7: Comparison between different results.

Sequential Split Random Split

Considering weeks between
plantation and current tasting

0.338 0.255

Considering weeks between
last tasting and current tasting

0.284 0.186

quence creation. Imagine that different tastings were

performed over the same plantation, which is frequent.

In this case, all time-series sequences related to this

plantation must be included in the train or the test

dataset but not distributed in both datasets. This is

because future sample sequences will include data from

past weeks that will be seen during the training process.

Due to the drawbacks previously commented, we rec-

ommend using the approach considering weeks between

the last tasting and the current tasting and following a

sequential split scheme.

To illustrate the performance on the test dataset

achieved by the model, Fig. 4 shows the results for eight

samples. The blue bars indicate the value received by

the tasting tests, while the orange bars indicate the val-

ues predicted by the model. We can conclude that the

six variables determined in a tasting test are predicted

quite accurately with very few exceptions. We can see

that sample number 0 is where there is a more signifi-

cant deviation regarding the Maturity Index and hard-

ness label. In addition, Acidity is the label that presents

the highest relative deviation from the ground truth,

resulting in the label that gets the worst performance.

However, it can be seen that FARMIT achieved accept-

able performance. For this reason, we consider that the

usage of data from different sources such as those re-

lated to quality, growth, images, and traditional sensor,

together with information regarding pests, defects, and

tasks, provide valuable information when determining

the values of the tastings.

Besides, we carried out another experiment to demon-

strate that the approach combining features from dif-

ferent sources outperforms the approach using standard

sensors. To do this, we trained another RF model con-

sidering only the samples coming from the traditional

sensors. Both the model trained using all features and

the model using only traditional sensor features were

trained using a sequential split and week data between

the last and the current tasting. Finally, we compute

the percentage error of each predicted sample with re-

spect to the ground truth. Table 8 shows the mean of

the percentage error computed.

In conclusion, the approach that aggregates differ-

ent sources achieved a better performance than the ap-

proach that only uses features from traditional sensors.

Table 8: Comparison between using all features and us-

ing only features from standard sensors

Approach percentage error (%)

Using all features 6.59
Using features from sensors 6.71

This demonstrates that to carry out proper corrective

actions, it is necessary to consider information from dif-

ferent sources.

5.5 Decision Maker

Once the predictive model evaluates a sample, the out-

put is examined to carry out the proper action. In our

specific scenario, and taking into account the specific

variables measured, the operators defined several poli-

cies based on the experts’ knowledge shown in Algo-

rithm 2

Algorithm 2: Decision maker algorithm

if
SWEETNESS < 7.5 || TOMATO SMELL < 6.5
then

REDUCE AMOUNT WATER(5%)
else if ACIDITY ! = 1.7 || BRIX DEGREE > 8
then

REDUCE AMOUNT WATER(10%)
else if BRIX DEGREE < 6 then

INCREASE AMOUNT WATER(5%)
if HARDNESS < 6 then

INCREASE CONDUCTIV ITY (15%)

The QA department concluded that when the sweet-

ness is less than 7.5, the water reduction helps to cor-

rect the sweetness and back it to desirable levels. In

addition, the reduction of water also helps to improve

the acidity when it is not equal to 1.7, the Brix degrees

when they are higher than 8, and the tomato smell when

it is lower than 6.5. In contrast, the increase of water

can increment the Bix degrees when they are lower than

6. Finally, the QA department probed that increasing

the electrical conductivity of water when the hardness
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Fig. 4: Error in eight samples from the test dataset.

is lower than 6 can increase the aforementioned param-

eter.

6 Conclusions and Future Work

More and more farms and agricultural fields are au-

tomating their processes to improve their productivity.

This automation, in most cases, is achieved by means

of sensors that measure different variables and actua-

tors that perform actions in the physical world, and

therefore allow us to correct deviations in the system.

In this work, we proposed a novel three-layer archi-

tecture called FARMIT that uses both IoT and ML/DL

technologies to carry out a continuous assessment of
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the crop quality using data from different sources. The

architecture provides necessary mechanisms to analyze

aggregated data, extract information from it and rec-

ommend actions to correct quality deficiencies. For this

purpose, operators can define corrective policies that

trigger actions when a certain parameter is outside its

range. Additionally, we have deployed the architecture

in a tomato plantation with both sensors that obtain

visual information (RGB cameras) and non-visual infor-

mation, i.e., temperature, wind direction, or pH. From

these data, together with the data on pests, defects

and tasks carried out on the crop, an evaluation of the

tomato quality was performed. For this, a Random For-

est model was used to assess the crop quality, obtaining

results very close to those determined by a professional

taster. Besides, we conducted another experiment to

compare the performance of our proposal that consid-

ers data from different sources and a traditional solu-

tions that only consider data from sensors. In this sense,

our proposal achieved a lower percentage error (6.59%)

than a traditional solution (6.71%).

As future work, we consider the inclusion of new

types of information sources, such as aerial images taken

from drones. This will allow us to obtain graphical in-

formation on the entire plantation without installing a

large number of cameras. Additionally, we plan to test

DL models that improve the results we have obtained

in this work.

Acknowledgements This work has been funded by Spanish
Ministry of Science, Innovation and Universities, State Re-
search Agency (AEI), FEDER funds, under Grants RTI2018-
095855-B-I00 and RTI2018-098156-B-C53, and the Swiss Fed-
eral Office for Defence Procurement (armasuisse) (project
code and CYD-C-2020003).

References

1. Aharoni, R., Klymiuk, V., Sarusi, B., Young, S.,

Fahima, T., Fishbain, B., Kendler, S.: Spectral

light-reflection data dimensionality reduction for

timely detection of yellow rust. Precision Agricul-

ture 22(1), 267–286 (2021)

2. Al-Kofahi, M.M., Al-Shorman, M.Y., Al-Kofahi,

O.M.: Toward energy efficient microcontrollers and

internet-of-things systems. Computers & Electrical

Engineering 79, 106457 (2019)

3. Al-Qerem, A., Alauthman, M., Almomani, A.,

Gupta, B.: Iot transaction processing through coop-

erative concurrency control on fog–cloud comput-

ing environment. Soft Computing 24(8), 5695–5711

(2020)

4. Alonso, R.S., Sittón-Candanedo, I., Garćıa, Ó., Pri-
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26. Villafañe, R., Hidalgo, M., Piccoli, A., Marchevsky,

E., Pellerano, R.: Non-essential element concentra-

tions in brown grain rice: Assessment by advanced

data mining techniques. Environmental Science

and Pollution Research 25(22), 21362–21367 (2018)

27. Wang, L., Von Laszewski, G., Younge, A., He, X.,

Kunze, M., Tao, J., Fu, C.: Cloud computing: a per-

spective study. New generation computing 28(2),

137–146 (2010)

28. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing:

Platform and applications. In: 2015 Third IEEE

workshop on hot topics in web systems and tech-

nologies (HotWeb), pp. 73–78. IEEE (2015)

29. Zamora-Izquierdo, M.A., Santa, J., Mart́ınez, J.A.,

Mart́ınez, V., Skarmeta, A.F.: Smart farming iot

platform based on edge and cloud computing.

Biosystems engineering 177, 4–17 (2019)

30. Zhang, M., Li, C., Yang, F.: Classification of for-

eign matter embedded inside cotton lint using short

wave infrared (swir) hyperspectral transmittance

imaging. Computers and Electronics in Agriculture

139, 75–90 (2017)

31. Zhu, N., Liu, X., Liu, Z., Hu, K., Wang, Y., Tan, J.,

Huang, M., Zhu, Q., Ji, X., Jiang, Y., et al.: Deep

learning for smart agriculture: Concepts, tools, ap-

plications, and opportunities. International Journal

of Agricultural and Biological Engineering 11(4),

32–44 (2018)


	Introduction
	Related Work
	FARMIT Architecture
	Deployment in a Tomato Plantation
	Experimental Results
	Conclusions and Future Work

