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NEGATIVE RESULTS FOR APPROXIMATION USING SINGLE
LAYER AND MULTILAYER FEEDFORWARD NEURAL NETWORKS

J. M. ALMIRA, P. E. LOPEZ-DE-TERUEL, D. J. ROMERO-LÓPEZ, F. VOIGTLAENDER

Abstract. We prove a negative result for the approximation of functions defined on
compact subsets of Rd (where d ≥ 2) using feedforward neural networks with one hidden
layer and arbitrary continuous activation function. In a nutshell, this result claims
the existence of target functions that are as difficult to approximate using these neural
networks as one may want. We also demonstrate an analogous result (for general d ∈ N)
for neural networks with an arbitrary number of hidden layers, for activation functions
that are either rational functions or continuous splines with finitely many pieces.

1. Introduction

The standard model of feedforward neural networks with one hidden layer leads to the
problem of approximation of functions f : Rd → R by elements of the set

Σσ,d
n =

{ n∑

k=1

ck σ(w
k · x− bk) : w

k ∈ Rd, ck, bk ∈ R

}
,

where σ ∈ C(R;R) is the given activation function of the network, and wk ·x =
∑d

i=1w
k
i xi

is the dot product of the vectors wk = (wk
1 , . . . , w

k
d) and x = (x1, . . . , xd).

It is well known that
⋃∞

n=1Σ
σ,d
n is dense in C(Rd) (for the topology of uniform conver-

gence on compact subsets of Rd) if and only if σ is not a polynomial; see [19, Theorem 1]
(also see [11] for a related density result). This means that feedforward networks with a
nonpolynomial activation function can approximate any continuous function and, thus,
are good for any learning objective in the sense that, given a target function f ∈ C(Rd;R),
a precision ε > 0, and any compact K ⊂ Rd, there exists n ∈ N with the property that
an associated feedforward neural network with one hidden layer and n units can be (in
principle) trained to approximate f on K with uniform error smaller than ε. In other
words, we know that for any nonpolynomial activation function σ ∈ C(R), any compact
set K ⊂ Rd, any ε > 0 and any f ∈ C(K), there exists n0 = n0(ε, f, σ) ∈ N such that

E(f,Σσ,d
n )C(K) := inf

g∈Σσ,d
n

‖f − g‖C(K) ≤ ε for all n ≥ n0.

This result only guarantees, however, that the approximation error vanishes as n→ ∞;
it does not provide an explicit error bound. The study of the expressivity of neural net-
work architectures via more explicit error bounds for the approximation of certain classes
of functions F ⊂ C(K) has a long history. As especially noteworthy results we men-
tion the work [23] concerning the approximation of Cn functions using shallow networks
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with certain smooth activation functions and the work of Barron [3, 4] concerning the
approximation using shallow sigmoidal networks of functions f whose Fourier transform

f̂ satisfies
∫
Rd |ξ| |f̂(ξ)| dξ <∞. An important feature of the latter result is that it avoids

the curse of dimension to a significant extent, since the obtained approximation rate is
O(n−1/2), independent of the input dimension d. In particular, for this function class,
neural networks strongly outperform linear approximation schemes [4]. Building on the
techniques developed by Barron, the authors of [13, 24] describe a wide range of function
classes for which approximation using neural networks can overcome the curse of dimen-
sion. On the other hand, several examples of highly-oscillating functions such as those
studied in [25, 27, 17, 18] show that it is sometimes necessary to dramatically increase the
number of units (or the number of layers) of a neural network if one wants to approximate
certain functions well. Note that [17, 18] consider functions defined on finite subsets of
Rd and study the number of neurons needed for a good approximation as d → ∞. This is
in contrast to the setting considered in the present paper, where the functions are defined
on infinite sets and the input dimension is kept fixed.

In addition to quantifying the expressivity (or richness) of sets of neural networks
in terms of upper and lower error bounds for function approximation, other important
“richness measures” have been studied, including the VC dimension [14] that plays a
crucial role for generalization bounds, and topological complexity measures like (the sum
of) Betti numbers considered in [5].

Yet, none of the results discussed above provide comprehensive information about the
“worst-case” decay of best approximation errors for general continuous functions. In
this paper we demonstrate a negative result which establishes the existence of target
functions f that are as difficult to approximate using neural networks with one hidden
layer as one may want. We also demonstrate an analogous result for neural networks
with an arbitrary number of hidden layers for some special types of activation functions
σ. Concretely, in Section 2 we demonstrate that for any activation function σ ∈ C(R),
for any input dimension d ≥ 2 and for any compact set K ⊂ Rd with non-empty interior
and any given sequence of real numbers {εn}n∈N that converges to zero, there exists a
continuous function f ∈ C(K) such that

E
(
f,Σσ,d

n

)
C(K)

≥ εn for all n ∈ N.

We also demonstrate the same type of result for the norms Lq(K) for q ∈ [1,∞).
The proofs of these theorems are based on combining a general negative result in ap-

proximation theory demonstrated by Almira and Oikhberg in 2012 [1] (see also [2]) with
information about the asymptotic decay of the distance between a set of Sobolev func-
tions and the class of all linear combinations of n ridge functions, as derived by Maiorov
in 2010; see [22].

It is important to point out that our result for networks with a single hidden layer
requires the use of functions of at least two variables and does not apply in the univariate
setting. This is natural not only because of the method of proof that we use, which is
based on the result by Maiorov [22] that is only true for d ≥ 2, but also because quite
recently Guliyev and Ismailov have shown that for the case d = 1 a general negative result
for approximation by feedforward neural networks with a single hidden layer is impossible;
see [9, Theorems 4.1 and 4.2]. Precisely, they have explicitly constructed an infinitely
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differentiable sigmoidal activation function σ such that Σσ,1
2 is a dense subset of C(R)

with the topology of uniform convergence on compact subsets of R. For Σσ,1
3 instead of

Σσ,1
2 and with a less explicit construction, the same result has been established earlier in

(the proof of) [21, Proposition 1].
On the other hand, as a consequence of Kolmogorov’s superposition theorem (see

[20, Chapter 17, Theorem 1.1]), a general negative result for approximation by feedfor-
ward neural networks with several hidden layers and general activation function σ is
impossible, not only for univariate functions (d = 1), but also for multivariate (d ≥ 2)
functions; see [21, Theorem 4] for a proof of this claim and [10, 15, 16] for other related
results. Nevertheless, in Section 3 we demonstrate several negative results for neural
networks with several hidden layers, for specific choices of activation functions σ and
arbitrary input dimensions d ≥ 1. Specifically, we prove that if σ is either a continuous
rational function or a continuous spline with finitely many pieces, then for any pair of
sequences of natural numbers {rk}k∈N and {nk}k∈N and any sequence {εk}k∈N that con-
verges to 0, and for convex compact subsets K of Rd of cardinality #K ≥ 2, there exists
a function f ∈ C(K) such that

E
(
f, τσ,drk,nk

)
C(K)

≥ εk for all k ∈ N,

where τσ,dr,n denotes the set of functions of d real variables defined by a neural network with
activation function σ and at most r layers and n units in each layer. We also establish a
similar result for approximation in Lq(K) for sets K ⊂ Rd with nonempty interior.

It is important to point out that the results of Section 3 apply for all values of d ≥ 1
and in particular to neural networks with activation functions

σ(t) = ReLU(t) =

{
0 t < 0

t t ≥ 0
and σ(t) = HardTanh(t) =





−1 t < −1

t −1 ≤ t ≤ 1

1 t > 1,

which are two of the most commonly used activation functions in machine learning.

2. A negative result for feedforward neural networks with a single

hidden layer

The proof of our main result for networks with a single hidden layer will be based on an
abstract result in approximation theory derived in [1]. To properly state the precise re-
sult, we first introduce the relevant notation and terminology from approximation theory.
Given a Banach space (X, ‖ · ‖), we say that (X, {An}n∈N0

) is an approximation scheme
(or that {An}n∈N0

is an approximation scheme in X) if {An}n∈N0
satisfies the following

properties (see, e.g., [1, Definition 1.3]):

(A1) A0 = {0} ( A1 ( · · · ( An ( An+1 ( · · · is a nested sequence of subsets of X
(with strict inclusions).

(A2) There exists a map J : N0 → N0 (called the jump function of the approximation
scheme) such that J(n) ≥ n and An + An ⊆ AJ(n) for all n ∈ N0.

(A3) λAn ⊆ An for all n ∈ N and all scalars λ ∈ R.

(A4)
⋃

n∈NAn is dense in X .
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For us, it will be important that the family {Rd
n}n∈N0

, with Rd
0 := {0} and

Rd
n :=

{
n∑

i=1

gi(a
i · x) : ai ∈ Sd−1, gi ∈ L2

loc(R), i = 1, . . . , n

}
for n ∈ N, (1)

where Sd−1 = {x ∈ Rd : ‖x‖22 =
∑d

j=1 |xj|
2 = 1}, forms an approximation scheme; see

Lemma 4 below. The elements of the set Rd
1 are called ridge functions in d variables.

The proof that {Rd
n}n∈N0

indeed forms an approximation scheme is based on the following
result, taken from [22, Theorem 1], which will also play an important role in the proof of
our main theorem.

Theorem 1. ([22]) Let d ∈ N≥2, s ∈ N, r > 0, x0 ∈ Rd, and1 1 ≤ q ≤ p ≤ ∞. Define
B := Br(x0) := {x ∈ Rd : ‖x− x0‖ < r} and

Ws,p :=
{
f ∈ Lp(B) : ‖f‖W s,p(B) := ‖f‖Lp +

∑

|α|=s

‖∂αf‖Lp ≤ 1
}
, (2)

where α ∈ Nd
0 is a multi-index, and the derivative ∂αf is understood in the weak sense.

Then we have

dist
(
Ws,p, Lq(B) ∩Rd

n

)
Lq := sup

f∈Ws,p

E
(
f, Lq(B) ∩Rd

n

)
Lq(B)

≍ n−s/(d−1) for all n ∈ N.

Remark 2. (i) Theorem 1 (applied with p = q) shows in particular that Lq(B)∩Rd
n is not

dense in Lq(B) for B = Br(x0), since otherwise we would have E(f, Lq(B)∩Rd
n)Lq(B) = 0

for all f ∈ Ws,p ⊂ Lp(B) = Lq(B).

(ii) The proof in [8, End of Section 6] (which works for any 1 ≤ q ≤ p ≤ ∞) shows
that even

dist
(
Ws,p, C(B) ∩ Rd

n

)
Lq(B)

. n−s/(d−1) for all n ∈ N. (3)

We prove, for the sake of completeness, the following result:

Proposition 3. For any σ ∈ C(R;R) and n, d ∈ N, we have Σσ,d
n ⊆ Rd

n.

Proof. Let φ(x) =
∑n

k=1 ck σ(w
k · x− bk) be any element of Σσ,d

n and let us define

gk : R → R, gk(t) =

{
ck σ(‖w

k‖ t− bk) if wk 6= 0

ck σ(−bk) otherwise

and ak := wk/‖wk‖ if wk 6= 0, while ak := e1 = (1, 0, . . . , 0) ∈ Rd if wk = 0. Then
gk ∈ C(R) ⊂ L2

loc(R), and a
k ∈ Sd−1 for k = 1, . . . , n. Moreover,

n∑

k=1

gk(a
k·x) =

∑

{k:wk 6=0}

ck σ(‖w
k‖ak·x−bk)+

∑

{k:wk=0}

ck σ(−bk) =

n∑

k=1

ck σ(w
k·x−bk) = φ(x),

which means that φ ∈ Rd
n. �

Now, we can prove that the family {Rd
n}n∈N0

of sums of ridge functions indeed forms
an approximation scheme.

1Note that there is a slight typo in [22, Theorem 1]: In the theorem statement, it is assumed that
1 ≤ p ≤ q ≤ ∞, while the correct assumption (under which the theorem is proven) is 1 ≤ q ≤ p ≤ ∞.
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Lemma 4. Let d ∈ N≥2, and let K ⊂ Rd be a compact set with non-empty interior. Let
X := C(K), or X := Lq(K) for some q ∈ [1,∞). Let Rd

0 := {0}, and for n ∈ N let Rd
n as

defined in Equation (1). Then (X, {Rd
n ∩X}n∈N0

) is an approximation scheme with jump
function J(n) := 2n.

Proof. It is easy to see that λRd
n ⊆ Rd

n for all λ ∈ R and n ∈ N0, so that Property (A3)
is satisfied. Next, note that Rd

n = Rd
1 + · · ·+ Rd

1, with n summands, which easily shows
that (Rd

n ∩X) + (Rd
n ∩X) ⊆ Rd

2n ∩X , so that also (A2) is satisfied.
Furthermore, if we choose (e.g.) σ : R → R, x 7→ max{0, x}, then Proposition 3 shows

that
⋃

n∈NR
d
n ∩ X ⊇

⋃
n∈N Σ

σ,d
n , where the right-hand side is dense in

(
C(K), ‖ · ‖C(K)

)

by [19, Theorem 1], and hence also dense in X with respect to the norm of X . Therefore,
Property (A4) is satisfied as well.

To prove (A1), first note that Rd
0 = {0} and Rd

n ∩ X ⊆ Rd
n+1 ∩ X . Now, assume

towards a contradiction that Rd
n ∩ X = Rd

n+1 ∩ X for some n ∈ N0. We claim that

this implies (X ∩ Rd
n) + Σσ,d

k ⊂ X ∩ Rd
n for all k ∈ N0, where Σσ,d

0 := {0}. Indeed, for
k = 0, this is trivial. Now, if the claim holds for some k ∈ N0, and if f ∈ X ∩ Rd

n and

g ∈ Σσ,d
k+1, then g = g1 + g2 for certain g1 ∈ Σσ,d

1 and g2 ∈ Σσ,d
k . Proposition 3 shows that

Σσ,d
ℓ ⊂ Rd

ℓ ∩ C(K) ⊂ X ∩ Rd
ℓ , so that f+g1 ∈ (X∩Rd

n)+(X∩Rd
1) ⊂ X∩Rd

n+1 = X∩Rd
n.

By induction, this implies f + g = f + g1 + g2 ∈ (X ∩ Rd
n) + Σσ,d

k ⊂ X ∩ Rd
n. We have

thus shown (X ∩ Rd
n) +

⋃∞
k=1Σ

σ,d
k ⊂ X ∩ Rd

n ⊂ L1(K) ∩ Rd
n, where the left-hand side is

dense in L1(K), while the right-hand side is not, by Remark 2 and since K has non-empty
interior. This contradiction shows that X ∩Rd

n ( X ∩Rd
n+1 for all n ∈ N0, as needed for

Property (A1). �

As the final preparation for the proof of our main result regarding feedforward networks
with a single hidden layer, we collect the following abstract result about approximation
schemes from [1, Theorems 2.2 and 3.4]. See also [2, Theorem 1.1] for a related result.

Theorem 5 (Almira and Oikhberg, 2012). Given an approximation scheme {An}n∈N0
in

the Banach space X, the following are equivalent claims:

(a) For every null-sequence {εn}n∈N ⊂ R there exists an element x ∈ X such that

E(x,An)X = inf
an∈An

‖x− an‖X ≥ εn for all n ∈ N.

(b) There exists a constant c > 0 and an infinite set J0 ⊆ N such that, for all n ∈ J0
there exists xn ∈ X \ An such that

E(xn, An)X ≤ cE(xn, AJ(n))X for all n ∈ J0,

where J is the jump function in Condition (A2).

Remark. If (X, {An}n∈N0
) satisfies (a) or (b) of Theorem 5, we say that the approximation

scheme satisfies Shapiro’s theorem.

Let us state the main result of this section:

Theorem 6. Let σ ∈ C(R;R). Let d ≥ 2 be a natural number and let K ⊂ Rd be a
compact set with nonempty interior. Let either X = Lq(K) for some q ∈ [1,∞), or
X = C(K).
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For any sequence of real numbers {εn}n∈N satisfying limn→∞ εn = 0, there exist a target
function f ∈ X such that

E(f,Σσ,d
n )X ≥ E(f,X ∩ Rd

n)X ≥ εn for all n ∈ N.

Proof. Since K has nonempty interior, there are r > 0 and x0 ∈ K such that B ⊂ K,
for B := Br(x0) ⊂ K. If X = Lq(K) set X0 := Lq(B); if otherwise X = C(K), set
X0 := C(B) and q := ∞. Let W1,q as defined in Equation (2). We then have W1,q ⊂ X0;
indeed, for q < ∞ this is clear, and if q = ∞, then the Sobolev embedding theorem (see
[6, Section 5.6, Theorem 5]) shows that W1,∞ ⊂ W 1,∞(B) ⊂ W 1,2d(B) ⊂ C(B) = X0,
where W k,p(B) denotes the usual Sobolev space.

Now, by Equation (3) and Theorem 1 (both applied for s = 1), there exist two positive
constants c0, c1 > 0 (depending only on d and on r = r(K)) such that:

(i) For any f ∈ W1,q ⊂ X0, we have

E(f,X0 ∩ R
d
n)X0

= E(f,X0 ∩R
d
n)Lq(B) ≤ E

(
f, C(B) ∩Rd

n

)
Lq(B)

≤ c1 n
−1/(d−1).

(ii) For any m ∈ N there exists fm ∈ W1,q ⊂ X0 such that

E(fm, X0 ∩ R
d
m)X0

≥ E(fm, L
q(B) ∩Rd

m)Lq(B) ≥ c0m
−1/(d−1).

Combining these inequalities for m = 2n, n ∈ N, we have that

E
(
f2n, X0 ∩ R

d
2n

)
X0

≥ c0 (2n)
−1/(d−1) = c0 2

−1/(d−1) n−1/(d−1)

≥ 2−1/(d−1)c−1
1 c0 E

(
f2n, X0 ∩R

d
n

)
X0

.

In particular, Property (ii) above implies that E(f2n, X0∩R
d
n)X0

≥ E(f2n, X0∩R
d
2n)X0

> 0

and hence f2n ∈ X0 \X0 ∩Rd
n. Furthermore,

E(f2n, X0 ∩R
d
n)X0

≤ 21/(d−1) c−1
0 c1 E(f2n, X0 ∩ R

d
2n)X0

for all n ∈ N,

which shows that the approximation scheme
(
X0, {X0 ∩R

d
n}n∈N0

)
satisfies Condition (b)

of Theorem 5, with J0 = N.
Thus, by Theorem 5, for the given sequence εn → 0, there exists a function f ∈ X0

such that
E(f,X0 ∩ R

d
n)X0

≥ εn for all n ∈ N.

In case of q <∞, one can extend f by zero to obtain a function f̃ ∈ X such that f̃ |B = f .
If otherwise q = ∞, we can use the Tietze extension theorem (see [7, Theorem 4.34]) to

obtain a continuous function f̃ ∈ C(K) = X such that f̃ |B = f . In any case, we then see
by Proposition 3 that

E
(
f̃ ,Σσ,d

n

)
X
≥ E

(
f̃ , X ∩ Rd

n

)
X
≥ E

(
f,X0 ∩ R

d
n

)
X0

≥ εn for all n ∈ N,

as desired. �

3. Negative results for feedforward neural networks with several

hidden layers

In [21, Theorem 4] it was proved that, for a proper choice of the activation function
σ, which may be chosen to be real analytic and of sigmoidal type, a feedforward neu-
ral network with two hidden layers and a fixed finite number of units in each layer is
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enough for uniform approximation of arbitrary continuous functions on any compact set
K ⊂ Rd. Concretely, the result was demonstrated for neural networks with 3d units in
the first hidden layer and 6d + 3 units in the second hidden layer. Moreover, reducing
the restrictions on σ, the same result can be obtained for a neural network of two hidden
layers with d units in the first hidden layer and 2d + 2 units in the second hidden layer;
see [12]. Finally, Guliyev and Ismailov have recently shown that there exists an algorith-
mically computable activation function σ such that feedforward neural networks with two
hidden layers and with 3d+2 (hidden) units in total can uniformly approximate arbitrary
continuous functions on compact subsets of Rd; see [10].

In this section we prove that, for certain natural choices of σ (which exclude the patho-
logical activation functions discussed above), a negative result holds true for neural net-
works with any number of hidden layers and units in each layer. Concretely, consider
feedforward neural networks for which the activation function σ is either a continuous
rational function or a continuous piecewise polynomial function with finitely many pieces.
Examples of such activation functions are the well known ReLU and HardTanh activation
functions, which are linear spline functions with two and three pieces, respectively. Note
that the use of rational or spline approximation tools in connection with the study of
neural networks is natural and has been used by several other authors; see, for instance
[25, 26, 27, 28, 29].

In order to prove our negative result, we first collect several facts from the literature.
First, from the findings in [1, Section 6.3] concerning rational functions, we get the fol-
lowing:

Theorem 7. Let I = [a, b] with a < b, and let R1
n(I) denote the set of rational functions

r(x) = p(x)/q(x) with max{deg(p), deg(q)} ≤ n and such that q vanishes nowhere on I.
Let {ni}i∈N be a sequence of natural numbers. Let A0 := {0} and Ai := R1

ni
(I), for i ∈ N.

Finally, let either X = C(I) or X = Lq(I) where q ∈ (0,∞). Then for any null-sequence
{ǫi}i∈N, there is a function f ∈ X satisfying

E(f, Ai)X ≥ ǫi for all i ∈ N.

Proof. In case of ni = i for all i ∈ N, the result follows from [1, Item (1) of Theorem 6.9].
Now, let {ni}i∈N be a general sequence of natural numbers. Define ki := i+max1≤j≤i nj

for i ∈ N, noting that the sequence {ki}i∈N is strictly increasing and satisfies ki ≥ ni for all
i ∈ N. Define k0 := 0. With the null-sequence {ǫi}i∈N given in the theorem, we introduce
a new sequence {εn}n∈N defined by

εn := ǫℓ for the unique ℓ ∈ N satisfying kℓ−1 < n ≤ kℓ.

Then limn→∞ εn = 0. Thus, by the case from the beginning of the proof, there exists
f ∈ X such that E(f,R1

n(I))X ≥ εn for all n. In particular,

E(f, Ai)X = E(f,R1
ni
(I))X ≥ E(f,R1

ki
(I))X ≥ εki = ǫi for all i ∈ N.

This completes the proof. �

For splines, we will use the following result.

Theorem 8. Let Sn,r(I) denote the set of polynomial splines of degree ≤ n with r free
knots in the interval I = [a, b], a < b. Let {ri}i∈N and {ni}i∈N be two sequences of
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natural numbers. Define A0 := {0} and Ai := Sni,ri ∩ C(I) for i ∈ N. Finally, let either
X = C(I) or X = Lq(I) where q ∈ (0,∞).

Then for any null-sequence {ǫi}i∈N, there is a function f ∈ X satisfying

E(f, Ai)X ≥ ǫi for all i ∈ N.

Proof. Define Ri := i+max1≤j≤i rj and Ni := i+max1≤j≤i nj for i ∈ N, noting that both
sequences {Ri}i∈N and {Ni}i∈N are strictly increasing and that Ri ≥ ri and Ni ≥ ni for
all i ∈ N, which easily implies that Bi := SNi,Ri

∩X ⊃ Ai for all i ∈ N.
Then [1, Theorem 6.12] shows that there is f ∈ X satisfying E(f, Bi)X ≥ ǫi for all

i ∈ N. Because of Ai ⊂ Bi and hence E(f, Ai)X ≥ E(f, Bi)X , this implies the claim. �

We are now in a position to prove our negative result for approximation by feedforward
neural networks with many layers. In the following, we always assume that the activation
function σ is either a continuous spline σ : R → R or a rational function σ(t) = p(t)/q(t)
with univariate polynomials p, q ∈ R[t] and q(t) 6= 0 for all t ∈ R. Then, we consider the
approximation of continuous learning functions, defined on a compact subset of Rd, by
neural networks using the activation function σ.

We denote by τσ,dr,n the set of functions of d real variables computed by a feedforward
neural network with at most r hidden layers and n units in each layer, with activation
function σ. For example, an element of τσ,d1,n is a function of the form

φ(x) =

n∑

i=1

ci σ(w
i · x+ bi) where w

i, x ∈ Rd and ci, bi ∈ R,

and an element of τσ,d2,n is either in τσ,d1,n , or a function of the form

φ(x) =

n∑

i=1

di σ

(
n∑

j=1

ci,j σ(w
i,j · x+ bi,j) + δi

)
, where wi,j, x ∈ Rd and ci,j, bi,j, di, δi ∈ R.

The following is our main result concerning uniform approximation using neural net-
works with more than one hidden layer.

Theorem 9. Let K ⊂ Rd be a compact and convex set with at least two elements. Let
{rk}k∈N and {nk}k∈N be arbitrary sequences of natural numbers, and let {εk}k∈N be an
arbitrary sequence of real numbers converging to zero. Then:

(a) If σ(t) = p(t)/q(t) is a univariate rational function with q(t) 6= 0 for all t ∈ R,
then there exists f ∈ C(K) such that

E
(
f, τσ,drk,nk

)
C(K)

≥ εk for all k ∈ N.

(b) If σ : R → R is continuous and piecewise polynomial with finitely many pieces,
then there exists f ∈ C(K) such that

E
(
f, τσ,drk,nk

)
C(K)

≥ εk for all k ∈ N.

In particular, this result applies to networks with activation functions σ = ReLU or
σ = HardTanh, which both are continuous piecewise linear functions with finitely
many pieces.
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Proof. (a) Since #K ≥ 2, there are a, b ∈ Rd with a 6= 0 such that b, b + a ∈ K. By
convexity of K, this means that ψ : [0, 1] → K, t 7→ b+ t a is well-defined and continuous.
Since σ is a continuous rational function, it is not hard to see that for arbitrary r, n ∈ N,
there is some ω(r, n) = ω(r, n, σ) ∈ N such that if R ∈ τσ,dr,n is arbitrary, then R ◦ ψ is a
univariate, continuous rational function of degree at most ω(r, n). Now, for {εk}k∈N as in
the statement of the current theorem, Theorem 7 yields a continuous function g ∈ C([0, 1])
such that E

(
g,R1

ω(rk,nk)
([0, 1])

)
C([0,1])

≥ εk for all k ∈ N. Clearly, one can extend g to a

continuous function g ∈ C(R). Now, define f : Rd → R, x 7→ g
(
(x− b) · a/‖a‖2

)
and note

that f is continuous and satisfies f(ψ(t)) = g
(
ta · a/‖a‖2

)
= g(t) for all t ∈ [0, 1]; that is,

f ◦ ψ = g.
Now, for R ∈ τσ,drk ,nk

, we saw above that R ◦ ψ is a continuous univariate rational

function of degree at most ω(rk, nk), i.e., R ◦ ψ ∈ R1
ω(rk ,nk)

([0, 1]). Since range(ψ) ⊂ K
and f ◦ ψ = g, this implies

‖f − R‖C(K) ≥ ‖f ◦ ψ −R ◦ ψ‖C([0,1]) ≥ E
(
g,R1

ω(rk,nk)
([0, 1])

)
C([0,1])

≥ εk.

Since R ∈ τσ,drk,nk
was arbitrary, this proves that E(f, τσ,drk,nk

)C(K) ≥ εk for all k ∈ N.

(b) For a, b ∈ Rd, let us define φa,b : R → Rd, t 7→ b+ ta and Ka,b := φ−1
a,b(K). Note that

Ka,b ⊂ R is either empty, or a closed interval, which is compact if a 6= 0. Next, let

Sd,slice
n,k (K) :=

{
f : K → R : f continuous and f ◦ φa,b|Ka,b

∈ Sn,k(Ka,b) for all a, b ∈ Rd
}
,

where we interpret the condition f ◦ φa,b|Ka,b
∈ Sn,k(Ka,b) as true in case of Ka,b = ∅.

Since σ : R → R is continuous and piecewise polynomial with finitely many pieces, it
follows from [27, Lemma 3.6] that for each n, r ∈ N there are N(n, r) = N(σ, n, r) ∈ N
and M(n, r) =M(σ, n, r) ∈ N such that

{
f |K : f ∈ τσ,dr,n

}
⊂ Sd,slice

N(n,r),M(n,r)(K).

Since K is convex with #K ≥ 2, there are a, b ∈ Rd with a 6= 0 and such that
Ka,b = [α, β] =: I for certain α, β ∈ R with α < β.

Define Nk := N(nk, rk) and Rk := M(nk, rk). By Theorem 8, there is a function
f0 ∈ C(I) such that

E
(
f0,SNk ,Rk

(I)
)
C(I)

≥ εk for all k ∈ N.

By extending f0 to be constant on (−∞, α) and on (β,∞), we obtain a continuous function
f1 ∈ C(R) satisfying f1|I = f0.

Define f : K → R, x 7→ f1 (a · (x− b)/‖a‖2), and note for t ∈ I = Ka,b that

(f ◦ φa,b) (t) = f1
(
a · (b+ at− b)/‖a‖2

)
= f1(t) = f0(t).

Now, for arbitrary g ∈ τσ,drk ,nk
, we have g|K ∈ Sd,slice

N(nk,rk),M(nk,rk)
(K) = Sd,slice

Nk,Mk
(K) and hence

g|K ◦ φa,b ∈ SNk ,Mk
(I). Since φa,b(I) ⊂ K, we thus get

‖f − g‖C(K)≥‖f ◦ φa,b − g ◦ φa,b‖C(I)=‖f0 − (g|K ◦ φa,b)‖C(I)≥E (f0,SNk,Mk
(I))C(I)≥εk,

and hence E(f, τσ,drk,nk
)C(K) ≥ εk for all k ∈ N. �
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Remark 10. A slight modification of the proof of Theorem 9 shows that the very same
statement holds true as soon as the compact (but not necessarily convex) set K satisfies
that {b + t a : t ∈ [0, 1]} ⊂ K for certain a, b ∈ Rd with a 6= 0. This in particular holds
for any compact set K with nonempty interior.

A similar lower bound as in Theorem 9 also holds for approximation in Lq.

Theorem 11. Let K ⊂ Rd be measurable with nonempty interior and let q ∈ (0,∞).
Assume that either σ : R → R is continuous and piecewise polynomial with finitely many
pieces, or that σ(t) = p(t)/q(t) is a rational function with q(t) 6= 0 for all t ∈ R.

Then, for arbitrary sequences {rk}k∈N and {nk}k∈N of natural numbers, and any null-
sequence {ǫk}k∈N ⊂ R, there exists a function f ∈ Lq(K) satisfying

E
(
f, τσ,drk,nk

)
Lq(K)

≥ ǫk for all k ∈ N.

Proof. Because K has nonempty interior, there exist x(0) ∈ K and δ > 0 satisfying

K0 := x(0) + [−δ, δ]d ⊂ K. For brevity, set I :=
[
x
(0)
1 − δ, x

(0)
1 + δ

]
. Now, we distinguish

two cases:

Case 1 (σ is rational): In this case, it is easy to see that for arbitrary r, n ∈ N
there exists ω(r, n) = ω(n, r, σ) ∈ N such that for any y ∈ Rd and any R ∈ τσ,dr,n , the
function t 7→ R(y+ t e1) is a continuous rational function of degree at most ω(r, n), where
e1 = (1, 0, . . . , 0) ∈ Rd is the first standard basis vector. Next, Theorem 7 provides a
function g0 ∈ Lq(I) satisfying

E
(
g0,R

1
ω(rk ,nk)

(I)
)
Lq(I)

≥ ǫk/(2δ)
(d−1)/q for all k ∈ N.

Extend g0 by zero to a function g ∈ Lq(R), and define f : Rd → R, x 7→ 1K0
(x) · g(x1),

where Fubini’s theorem easily shows that f ∈ Lq(Rd).

Now, given any y ∈ K0 with y1 = x
(0)
1 and any R ∈ τσ,drk,nk

, recall that t 7→ R(y+ t e1) is
a continuous rational function of degree at most ω(rk, nk), so that

‖f(y + t e1)− R(y + t e1)‖Lq
t ([−δ,δ]) = ‖g(y1 + t)− R(y + t e1)‖Lq

t ([−δ,δ])

≥ E
(
g,R1

ω(rk,nk)
(I)
)
Lq(I)

≥ ǫk/(2δ)
(d−1)/q.

Therefore, writing y(s
′) := x(0) + (0, s2, . . . , sd) ∈ K0 for s′ = (s2, . . . , sd) ∈ [−δ, δ]d−1,

Fubini’s theorem shows that

‖f −R ‖qLq(K) ≥

∫

[−δ,δ]d
|f(x(0) + s)− R(x(0) + s)|q ds

=

∫

[−δ,δ]d−1

∥∥f(y(s′) + t e1)−R(y(s
′) + t e1)

∥∥q
Lq
t ([−δ,δ])

ds′

≥ (2δ)d−1 ·
ǫqk

(2δ)d−1
= ǫqk ,

(4)

and hence E(f, τσ,drk,nk
)Lq(K) ≥ ǫk for all k ∈ N.

Case 2 (σ is a spline): In this case, [27, Lemma 3.6] shows for arbitrary n, r ∈ N that
there are N(n, r) = N(σ, n, r) ∈ N and M(n, r) = M(σ, n, r) ∈ N such that for each
R ∈ τσ,dr,n and arbitrary y ∈ Rd, we have

(
t 7→ R(y + t e1)

)
∈ SN(n,r),M(n,r) ∩ C(R). Set
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Ni := N(ni, ri) andMi :=M(ni, ri), as well as Ai := SNi,Ri
∩C(I) for i ∈ N and A0 := {0}.

Then Theorem 8 yields a function g0 ∈ Lq(I) satisfying E(g0, Ai)Lq(I) ≥ ǫi/(2δ)
(d−1)/q for

all i ∈ N. As in the previous step, extend g0 by zero to a function g ∈ Lq(R), and define
f : Rd → R, x 7→ 1K0

(x) · g(x1), noting that f ∈ Lq(Rd) as a consequence of Fubini’s
theorem.

Now, recall that
(
t 7→ R(y+ t e1)

)
∈ SNk,Mk

∩C(I) = Ak for any y ∈ K0 with y1 = x
(0)
1

and any R ∈ τσ,drk,nk
, and hence

‖f(y + t e1)− R(y + t e1)‖Lq
t ([−δ,δ]) = ‖g(y1 + t)−R(y + t e1)‖Lq

t ([−δ,δ])

≥ E(g, Ak)Lq(I) ≥ ǫk/(2δ)
(d−1)/q.

Using this estimate, Equation (4) shows exactly as above that E(f, τσ,drk,nk
)Lq(K) ≥ ǫk. �
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