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Abstract

In this paper we study the family of cyclic codes such that its minimum distance reaches the maximum of its BCH bounds.
We also show a way to construct cyclic codes with that property by means of computations of some divisors of a polynomial of
the form xn − 1. We apply our results to the study of those BCH codes C, with designed distance δ, that have minimum distance
d(C) = δ. Finally, we present some examples of new binary BCH codes satisfying that condition. To do this, we make use of
two related tools: the discrete Fourier transform and the notion of apparent distance of a code, originally defined for multivariate
abelian codes.

I. INTRODUCTION

The computation of the minimum distance of a cyclic code, or a lower bound for it, is one of the main problems on abelian
codes (see, for example, [3], [6], [7]). The oldest lower bound for the minimum distance of a cyclic code is the BCH bound
[5, p. 151]. The study of this bound and its generalizations is a classical topic which includes the study of the very well-known
family of BCH codes. In particular, an interesting problem is to determine when the maximum of the BCH bounds of a given
cyclic code equals its minimum distance (see [2], [6]). This is our interest.

In this paper we deal with three problems related to the study of the BCH bound. The first one is how to give necessary
and sufficient conditions for a cyclic code to insure that the maximum of its BCH bounds equals its minimum distance. The
second problem is how to construct such cyclic codes. Our third problem is related to construction techniques of BCH codes
for which its designed distance, its maximum BCH bound and its minimum distance coincide.

To solve our first problem, we make use of two related tools: the discrete Fourier transform and the notion of apparent
distance of a code, originally defined for multivariate abelian codes in [1]. These tools and the notation needed are given in
Section 2. In Section 3, we characterize those cyclic codes for which its minimum distance reaches the maximum of its BCH
bounds (problem 1). Then we study how to construct cyclic codes with that property by means of computations of divisors of
a polynomial of the form xn − 1 (problem 2). Section 4 is devoted to solve our third problem. We apply our results to the
study of those BCH codes C, with designed distance δ, that have minimum distance d(C) = δ (see [6, Section 9.2]). In this
paper, some examples of construction techniques and examples of new binary BCH codes whose minimum distance equals
its designed distance are presented. We point out that all computations were done by using the GAP4r7 program [4] with the
cooperation of Alexander Konovalov. The authors are indebted to him.

II. NOTATION AND PRELIMINARIES

We will use standard terminology from coding theory (see for example [6, Chapter 7] or [2, Section 2]). We denote by q a
power of the prime number p and by Fq the field of q elements. Let n be a positive integer which is coprime to q. We denote
by Rn the set of n-th roots of unity and by Un the set of primitive n-th roots of unity.

We denote by Fq[x] the ring of polynomials with coefficients in Fq . For any g = g(x) ∈ Fq[x] we denote by deg(g) its
degree, by supp(g) its support and by ω(g) = |supp(g)| its weight. For any positive integer n, we consider the quotient ring
Fq[x]/(x

n − 1) which will be denoted by Fq(n). As usual, we identify the elements g ∈ Fq(n) with polynomials; so we may
take g ∈ Fq(n) and then write g ∈ Fq[x] (where deg(g) < n). For any f ∈ Fq[x] we denote by f its image under the canonical
projection onto Fq(n).

As in [7], a cyclic code C of length n in the alphabet Fq will be identified with the corresponding ideal in Fq(n) (up to
permutation equivalence). Then, by a cyclic code we mean an ideal of Fq(n). It is well known that if gcd(n, q) = 1 then the
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quotient ring Fq(n) is semisimple and then every cyclic code has a unique monic generator polynomial [6, Theorem 7.1] and
a unique idempotent generator [6, Theorem 8.1]. We always assume that gcd(n, q) = 1.

We denote by Zn the integers modulo n and we identify any class in Zn with its canonical representative. It is well-known
that every cyclic code C in Fq(n) is totally determined by its set of zeros (or its root set), which is defined as Z(C) =
{α ∈ Rn | c(α) = 0, for all c ∈ C}; thus, for any polynomial f ∈ Fq(n), we have that f ∈ C if and only if f(α) = 0
for all α ∈ Z(C). Fixed α ∈ Un, we denote the defining set of C with respect to α as Dα(C) =

{
i ∈ Zn | αi ∈ Z(C)

}
(see [6, p. 199]). It is well-known that, when gcd(n, q) = 1, defining sets are partitioned in q-cyclotomic cosets modulo
n [6, p. 104], which are defined as follows: given any element a ∈ Zn, the q-cyclotomic coset of a modulo n is the set
Cq(a) = {a, qa, . . . , qna−1a}( mod n), where na is the smallest positive integer such that qnaa ≡ a mod n. We recall that
the notions of set of zeros and defining set are also applied to polynomials in Fq(n) in the obvious way.

For any code C, we denote its minimum distance by d(C). The BCH bound states that for any cyclic code in Fq(n) that
has a string of δ−1 consecutive powers of some α ∈ Un as zeros, the minimum distance of the code is at least δ [6, Theorem
7.8]. In terms of defining sets, if there is a string of δ − 1 consecutive integers modulo n in Dα(C), for some α ∈ Un, then
d(C) ≥ δ. Note that different roots of unity may yield different defining sets and consequently different lower bounds. For
any cyclic code C the maximum of its BCH bounds will be denoted by ∆(C). Sometimes it is called the BCH (lower) bound
of the code (see [1, p. 22] and [2, p. 984]).

The following Remark shows that in order to compute the maximum ∆(C) we do not need to consider all the elements in
Un. This fact will be used later.

Remark 1. Let Cq(a1), . . . , Cq(ah) be the q-cyclotomic cosets modulo n and fix a complete set of representatives {a1, . . . , ah}.
Suppose we have chosen α ∈ Un to get a defining set Dα(C). We want to identify the elements β ∈ Un satisfying that
Dβ(C) ̸= Dα(C). Then, β must satisfy the equality βaiq

j

= α for some representative ai with gcd(n, ai) = 1 and j ∈ Z. In
this case Dβ(C) = ai ·Dα(C), where the multiplication has the obvious meaning. We define

A(n) = {ai | gcd(ai, n) = 1}. (1)

It is easy to see that On(q) = |Cq(ai)| for any ai ∈ A(n). In addition, since Dβai (C) = D
βaiq

j (C) = D
βaiq

j′ (C) (j, j′ ∈ Z),

we conclude that we have to consider at most ϕ(n)
On(q)

distinct defining sets or elements in Un to get ∆(C).
For example, set n = 41 and q = 2. The 2-cyclotomic cosets are C2(0), C2(1) and C2(3). So A(41) = {1, 3}. Fixed α ∈ U41,

let C be the cyclic code with defining set Dα(C) = C2(1). Some BCH bounds for C with respect to α are δ1 = 3 by considering
{1, 2} ⊂ Dα(C), and δ2 = 4 by considering {8, 9, 10} ⊂ Dα(C). Now we also have to consider Dβ(C) = 3 ·Dα(C) = C2(3)
and compute the corresponding BCH bounds. We find δ3 = 6 by considering {11, 12, 13, 14, 15} ⊂ Dβ(C). In this case,
∆(C) = 6. It is worth to mention that in the binary and ternary cases for n ≤ 70 we have that ϕ(n)

On(q)
≤ 6 and for n ≤ 90 we

have that ϕ(n)
On(q)

≤ 8.

A cyclic code C in Fq(n), with generator polynomial g(x), is a BCH code of designed distance δ if there exists α ∈ Un and
b ∈ {0, . . . , n− 1} such that g(x) is the polynomial with the lowest degree over Fq such that

{
αb+j | j = 0, . . . , δ − 2

}
⊆

Z(C) (see [6, p. 202]). Equivalently, C is a BCH code if for any cyclotomic coset Q ⊆ Dα(C) we have that Q ∩
{b+ j | j = 0, . . . , δ − 2} ̸= ∅. As it is known, this implies that C is the cyclic code with highest dimension such that
its set of zeros satisfies the inclusion mentioned above. We denote such a code by Bq(α, δ, b). The Bose distance of a BCH
code C = Bq(α, δ, b) is defined as the largest δ′ such that C = Bq(α

′, δ′, b′), for some b′ ∈ {0, . . . , n−1} and some α′ ∈ Un.
We note that for a BCH code it may happen that its Bose distance is less than ∆(Bq(α, δ, b)), as we shall see in the next
example.

Let L|Fq be an extension field. For any element a ∈ L we denote by minq(a) the minimal polynomial of a in Fq[x]. In the
case q = 2 we only write min(a).

Example 2. Set q = 2, n = 21 and fix α ∈ U21 such that min(α) = x6 + x5 + x4 + x2 + 1. Let C = B2(α, 4, 6) be
the BCH code generated by lcm{min(α),min(α3),min(α7)}. Consider the 2-cyclotomic cosets modulo 21, C2(0) = {0},
C2(1) = {1, 2, 4, 8, 11, 16}, C2(3) = {3, 6, 12}, C2(5) = {5, 10, 13, 17, 19, 20}, C2(7) = {7, 14} and C2(9) = {9, 15, 18}.
One may check that the defining set of the code C with respect to α is Dα(C) = C2(1)∪C2(3)∪C2(7) = C2(6)∪C2(7)∪C2(8).
In this case A(21) = {1, 5} so we also have to consider the element β ∈ U21 such that β5 = α. Then Dβ(C) = 5 ·Dα(C) =
C2(5)∪C2(7)∪C2(9). One may see that the Bose distance is δ = 4, given by considering {6, 7, 8} ⊂ Dα(C) and {13, 14, 15} ⊂
Dβ(C). However ∆(C) = 5, because {1, 2, 3, 4} ⊂ Dα(C) and {17, 18, 19, 20} ⊂ Dβ(C). But {1, 2, 3, 4} ⊂ C2(1) ∪ C2(3)
and {17, 18, 19, 20} ⊂ C2(5) ∪C2(9), so that C cannot be a BCH code of designed distance δ = 5. Hence the Bose distance
is less than the maximum of all possible BCH bounds (or simply the BCH bound, ∆(C)).

Let L|Fq be an extension field such that Un ⊆ L and fix α ∈ Un. The (discrete) Fourier transform of a polynomial
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f ∈ Fq(n) with respect to α (also called Mattson-Solomon polynomial), that we denote by φα,f is defined as

φα,f (x) =

n−1∑
j=0

f(αj)xj .

Clearly, φα,f ∈ L(n); moreover, the function Fourier transform may be viewed as an isomorphism of algebras φα : L(n) −→
(Ln, ⋆), where the multiplication “⋆” in Ln is defined coordinatewise (see [1, Section 2.2] or [6, § 8.6]). Then we may see φα,f

as a vector in Ln or as a polynomial in L(n). The inverse of the Fourier transform is given by φ−1
α,g(x) =

1
n

∑n−1
i=0 g(α−i)xi,

where g ∈ L(n) (see for example [1], [2], [6]). For any i ∈ {0, . . . , n − 1} we denote φα,f [i] = f(αi), the coefficient (or
coordinate) corresponding to xi.

Remark 3. For any α ∈ Un, f ∈ Fq(n) and g ∈ L(n) we have that:
1) supp (φα,f ) =

{
i ∈ {0, . . . , n− 1} | f

(
αi
)
̸= 0

}
and hence Zn \ supp (φα,f ) = Dα(f), the defining set of f .

2) Since f = φ−1
α,φα,f

(x) then supp(f) =
{
i ∈ {0, . . . , n− 1} | φα,f

(
α−i

)
̸= 0

}
, so that |supp(f)| = n− |Z (φα,f ) |.

3) φ−1
α,g ∈ Fq(n) if and only if

(
g
(
αj

))q
= g

(
αj

)
for any j ∈ {0, . . . , n− 1}.

4) φ−1
α,g ∈ Fq(n) if and only if φ−1

β,g ∈ Fq(n) for all β ∈ Un.
The first two assertions come directly from the definition of the discrete Fourier transform together with the fact that it is an
isomorphism. The third one comes directly from the well-known property that an element a ∈ L satisfies that a ∈ Fq if and
only if aq = a. Finally to see the last assertion observe that if we take another primitive root of unity β ̸= α the coefficients
of φ−1

β,g are obtained by permuting those of φ−1
α,g .

The following lemma, related with the discrete Fourier transform, will play an important role later.

Lemma 4. Let g ∈ L(n). If φ−1
α,g ∈ Fq(n) for any α ∈ Un then supp(g) is a union of cyclotomic cosets. If g is an idempotent

in (Ln, ⋆) the converse holds; that is, if supp(g) is union of q-cyclotomic cosets then φ−1
α,g ∈ Fq(n).

Proof. First, suppose that φ−1
α,g ∈ Fq(n). Observe that for any f(x) ∈ Fq(n), φ

q
β,f (x) =

∑n−1
j=0

(
f
(
βj

))q
xj =

∑n−1
j=0 (f (βq))

j
xj =

φβq,f (x). So the defining set of φ−1
α,g is a union of cyclotomic cosets. Since supp(g) = Zn \Dα(φ

−1
α,g) we are done.

We first note that any idempotent in (Ln, ⋆) verifies that its coordinates (or coefficients) are only 1 or 0. Now, suppose that
g ∈ (Ln, ⋆) is an idempotent and supp(g) is a union of q-cyclotomic cosets. Then there exists an idempotent e ∈ Fq(n) such
that Dα(e) = Zn \ supp(g); in fact, e is the idempotent generator of the code over Fq with defining set Zn \ supp(g) with
respect to α. Since e is an idempotent in Fq(n) we have that φα,e is an idempotent in (Ln, ⋆) and also supp(φα,e) = supp(g).
Then φα,e = g and hence φ−1

α,g ∈ Fq(n).

Let us recall some definitions in [1, Chapter 3] related to the computation of the BCH bound. The context of these definitions
is the study of multivariate polynomials. We only need the univariate polynomials version.

Definition 5. Let L be a field. For any element g ∈ L(n) we define the apparent distance of g, that we denote by d∗(g), as
follows

1) If g = 0 then d∗(0) = 0.
2) If g ̸= 0 then

d∗(g) = max
{
n− deg

(
xhg

)
| 0 ≤ h ≤ n− 1

}
.

It is easy to see that one may compute the apparent distance of a polynomial 0 ̸= g ∈ L(n) as follows. Suppose that
g =

∑
aix

i. If we associate to the polynomial its coefficient vector M(g) = (a0, . . . , an−1) then the apparent distance d∗(g)
is the length of the biggest chain of consecutive zeros (modulo n) in M(g) plus 1.

Example 6. Let f = 1+x+x4 ∈ F2(5). Compute x0f = 1+x+x4, xf = 1+x+x2; x2f = x+x2+x3; x3f = x2+x3+x4;
x4f = 1 + x3 + x4. Then d∗(f) = 5− deg(xf) = 3.

If we take M(f) = (1 1 0 0 1) then d∗(f) = 2 + 1 = 3.

Let f ∈ L(n). It is clear that the polynomials f and xhf have the same set of zeros (or root set). Hence, deg
(
xhf

)
≥

|Dα(f)|, for any α ∈ Un, where Dα(f) denotes the defining set of f . Therefore d∗(f) ≤ n− |Dα(f)| for any α ∈ Un.
Now, by the definition of the inverse Fourier transform (see Remark 3), we have that

ω(f) = n− |Dα(φα,f )|. (2)

Hence,
d∗(φα,f ) ≤ n− |Dα(φα,f )| = ω(f), for all f ∈ Fq(n) and α ∈ Un. (3)

This implies that the minimum of the apparent distances of the images of the nonzero codewords of a cyclic code is a lower
bound for its minimum distance. Camion’s definition of apparent distance of an abelian code comes from these ideas. In our
case, we present that definition as follows.
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Definition 7. Let C be a cyclic code in Fq(n) and consider α ∈ Un. The apparent distance of C with respect to α is
d∗α(C) = minc∈C, c̸=0{d∗(φα,c)} and the apparent distance of C is

d∗(C) = max
α∈Un

{d∗α(C)}.

We also define the set of optimal roots of C as

R(C) =
{
β ∈ Un | d∗β(C) = d∗(C)

}
.

For the paragraph prior Definition 7 we have that d∗(C) ≤ d(C) for any cyclic code C. In [1, p. 22] Camion shows that
for any cyclic code C the equality d∗(C) = ∆(C) holds.

Note that the value d∗(φα,c) depends on the support of φα,c; that is, it depends on the distribution of the zeros of c with
respect to α; so, the minimum d∗α(C) depends on the distribution of Dα(C). Hence, in order to compute the maximum d∗(C)
we need to look at the different defining sets of C, for each α ∈ Un. As we have seen in Remark 1, if we fix α ∈ Un and
{a1, . . . , ah}, a complete set of representatives of the q-cyclotomic cosets modulo n, to consider the different defining sets of
C we only need to consider the roots β ∈ Un such that βai = α for some ai coprime with n. Then, for any α ∈ Un we define
the set

Rα = {β ∈ Un | βa = α, a ∈ A(n)}. (4)

where A(n) was defined in (1).
Therefore, in practice, to compute the apparent distance of a cyclic code C in Fq(n) it is enough to fix α ∈ Un and compute

d∗(C) = max{d∗β(C) | β ∈ Rα}.
Let e, g ∈ C be the idempotent generator and the generator polynomial of C, respectively. If f, h ∈ Fq(n) then supp (φβ,fh) ⊆

supp (φβ,f ) because φβ,fh = φβ,f ⋆φβ,h, and then, for any c ∈ C, and any β ∈ Un, we have that supp (φβ,c) ⊆ supp (φβ,g) =
supp (φβ,e); so that, d∗ (φβ,g) = d∗ (φβ,e) ≤ d∗ (φβ,c). Hence, d∗β(C) = d∗ (φβ,e) and

∆(C) = d∗(C) = d∗ (φβ,e) = d∗ (φβ,g) ≤ d(C), ∀β ∈ R(C). (5)

(see [1, p. 22]).

Example 8. Set q = 2, n = 17 and take a1 = 0, a2 = 1, a3 = 3 as representatives of the 2-cyclotomic cosets in Z17. Then
A(17) = {1, 3}. Let C be the cyclic code with defining set Dα(C) = C2(1) = {1, 2, 4, 8, 9, 13, 15, 16} with respect to α ∈ U17,
such that min(α) = x8+x7+x6+x4+x2+x+1. The reader may check that e = x16+x15+x13+x9+x8+x4+x2+x+1
is the idempotent generator of C, and M(φα,e) = (1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0). Then d∗ (φα,e) = 3. Taking β such that
β3 = α, one may check that d∗ (φβ,e) = 4. Hence ∆(C) = d∗(C) = d∗ (φβ,e) = 4.

As an immediate consequence of (5) we have the following corollary.

Corollary 9. Let C be a cyclic code in Fq(n) and let e, g ∈ C be the idempotent generator and the generator polynomial of
C, respectively. For f ∈ {e, g} we have that if d∗(φα,f ) = ω(f) for some α ∈ Un then d(C) = ∆(C) and α ∈ R(C).

Proof. By hypothesis, d∗(φα,f ) = ω(f) ≥ d(C). Now, if β ∈ R(C) then d∗(φα,f ) ≤ d∗(φβ,f ) and so (5) get us the result.

In the following table we list non trivial cyclic codes of lenght at most 31, satifying the conditions of the corollary above;
that is, d∗φα,f = ω(f) for some α ∈ Un. Here, D(C) = Zn \D(C). Computations were done by using GAP4r7.

Lenght D(C) dimF(C) d(C)
7 C2(3) 3 4

C2(1) 3 4
C2(0) ∪ C2(3) 4 3
C2(0) ∪ C2(1) 4 3

9 C2(3) 2 6
C2(0) ∪ C2(3) 3 3

C2(1) 6 2
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Lenght D(C) dimF(C) d(C)
15 C2(5) 2 10

C2(0) ∪ C2(5) 3 5
C2(1) 4 8
C2(7) 4 8

C2(0) ∪ C2(3) 5 3
C2(0) ∪ C2(7) 5 7
C2(0) ∪ C2(1) 5 7
C2(3) ∪ C2(5) 6 6

C2(0) ∪ C2(5) ∪ C2(7) 7 5
C2(1) ∪ C2(3) 8 4
C2(3) ∪ C2(7) 8 4
C2(3) ∪ C2(7) 8 4

C2(1) ∪ C2(5) ∪ C2(7) 10 2
21 C2(7) 2 14

C2(3) 3 12
C2(9) 3 12

C2(0) ∪ C2(7) 3 7
C2(0) ∪ C2(3) 4 9
C2(0) ∪ C2(9) 4 9
C2(3) ∪ C2(7) 5 10
C2(7) ∪ C2(9) 5 10

C2(0) ∪ C2(3) ∪ C2(9) 7 3
C2(1) ∪ C2(7) 8 6
C2(5) ∪ C2(7) 8 6
C2(1) ∪ C2(9) 9 4
C2(3) ∪ C2(5) 9 4

C2(0) ∪ C2(5) ∪ C2(9) 10 5
C2(0) ∪ C2(1) ∪ C2(3) 10 5
C2(5) ∪ C2(7) ∪ C2(9) 11 6

C2(0) ∪ C2(1) ∪ C2(7) ∪ C2(9) 12 3
25 C2(3) ∪ C2(5) 5 5
27 C2(9) 2 18

C2(3) 5 6
C2(1) 18 2

C2(0) ∪ C2(9) 3 9
31 C2(1) 5 16

C2(5) 5 16
C2(15) 5 16

C2(0) ∪ C2(1) 6 15
C2(0) ∪ C2(15) 6 15
C2(3) ∪ C2(7) 10 6
C2(5) ∪ C2(11) 10 10

C2(1) ∪ C2(3) ∪ C2(15) 15 6
C2(1) ∪ C2(5) ∪ C2(11) 15 6
C2(1) ∪ C2(7) ∪ C2(15) 15 6
C2(5) ∪ C2(9) ∪ C2(15) 15 6

C2(0) ∪ C2(1) ∪ C2(3) ∪ C2(7) 16 5
C2(0) ∪ C2(1) ∪ C2(11) ∪ C2(15) 16 5
C2(0) ∪ C2(1) ∪ C2(5) ∪ C2(15) 16 5
C2(0) ∪ C2(3) ∪ C2(5) ∪ C2(11) 16 5
C2(0) ∪ C2(5) ∪ C2(7) ∪ C2(11) 16 5
C2(0) ∪ C2(3) ∪ C2(5) ∪ C2(11) 16 5

Let us comment how these results allow us to construct cyclic codes and to compute its apparent distance (or the BCH
bound). First, let us observe that for any cyclic code C generated by e = e2 ∈ Fq(n) one has that φα,e is an idempotent in
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(L, ⋆). So, φα,e[i] = e(αi) = 0 if i ∈ Dα(C) and 1 otherwise.
Now, let {a1, . . . , ah} be a complete set of represantives of the q-cyclotomic cosets modulo n. For each choice D =

∪t
j=1Cq(aij ), with ij ∈ {1, . . . , h} and 1 ≤ t ≤ h, we denote by FD ∈ Fn

q the vector such that FD[i] = 0 if i ∈ D and 1
otherwise. Then FD may be viewed as the image under the Fourier transform of the idempotent generator of a cyclic code C
in Fq(n) such that D = Dα(C) with respect to some α ∈ Un. That is, if C is the cyclic code with defining set Dα(C) = D,
with respecct to α ∈ Un, and e2 = e is its idempotent generator then we have that FD = φα,e ∈ Fn

q . To compute the apparent
distance d∗(C) we first consider the set A(n) = {ai1 , . . . , aik} ⊆ {a1, . . . , ah}. Then, for every j = 1, . . . , k, let βj ∈ Un be
such that β

aij

j = α; recall that this implies Dβj (C) = aij ·Dα(C). The apparent distance of φβj ,e is the length of the biggest
chain of consecutive zeros (modulo n) in FDβj

(C) plus 1. So, d∗(C) = max
j=1,...,k

d∗(FDβj
(C)).

Example 10. Set n = 21, q = 2 and A(21) = {1, 5}. Consider the 2-cyclotomic cosets: C2(0), C2(1), C2(3), C2(5), C2(7),
C2(9) listed in Example 2. Choose D = C2(1) ∪ C2(3) ∪ C2(7). Then

FD = (1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1) .

Let C = ⟨e⟩ be the cyclic code such that Dα(C) = D for some α ∈ U21. Then d∗(φα,e) = 5. We only need to consider
β ∈ U21 such that β5 = α. In that case, Dβ(C) = 5 ·Dα(C) = C2(5) ∪ C2(9) ∪ C2(7). Then

FDβ(C) = (1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0) .

So d∗(FDβ(C)) = 5 too. Hence d∗(C) = 5 and R(C) = {β, β5}. The reader may check that C has four BCH bounds,
δ = 2, 3, 4, 5.

III. THE MINIMUM DISTANCE AND THE BCH BOUND

For an arbitrary element g ∈ L(n), which we may view as a polynomial with deg(g) ≤ n − 1, it is easy to see that the
equality gcd(g, xn−1) = gcd(xhg, xn−1) holds for any h ∈ {0, . . . , n−1} as xh and xn−1 are relatively prime polynomials;
so, we may write

mg = gcd(xhg, xn − 1) (6)

as mg does not depend on h. For any h ∈ {0, . . . , n− 1} we also write

xhg = (xn − 1)fg,h + xhg (7)

where 0 ≤ deg(xhg) < n. Note that if g ̸= 0 then xhg ̸= 0 because deg(g) < n. By using results in [1] and [3] (see also [6,
Theorem 8.6.31]) we obtain the following result.

Lemma 11. Consider g ∈ L(n) and let mg be as above. Then
1) d∗(g) ≤ n− deg(mg).
2) If g | xn − 1 then d∗(g) = n− deg(g).

Proof. (1) It comes from the fact that mg | xhg for any 0 ≤ h ≤ n− 1, and from Definition 5. (2) By the definition of d∗(g)
we have that d∗(g) ≥ n− deg(g). To get the converse inequality note that g = smg , for some s ∈ Fq , and apply (1).

Now let C be a cylic code in Fq(n) and let c ∈ C be any codeword. By (3) we have that d∗(φα,c) ≤ ω(c). We wonder if
the equality may occur. Next result will be helpful to find an answer (see [1, Theorem 4.1] and [3, Theorem 2]).

Lemma 12. Let C be a cyclic code in Fq(n) and c ∈ C. Then n− deg
(
mφα,c

)
= ω(c), for all α ∈ Un.

Proof. We have that n− deg
(
mφα,c

)
= |{αj | φα,c(α

j) ̸= 0}|. By Remark 3 and (2) we are done.

Note that by Lemma 11 we have that the apparent distance of any f ∈ L(n) is less than or equal to the number of nonzeros
of mf . The following result shows us when the equality holds.

Proposition 13. Consider f ∈ L(n) and let mf be as in (6). Then d∗(f) = n − deg(mf ) if and only if there exists
h ∈ {0, . . . , n− 1} such that xhf | xn − 1 (equivalently, xhf and mf are associated polynomials in L[x]).

Proof. Suppose first that the equality holds. By definition of apparent distance we know that there exists h ∈ {0, . . . , n− 1}
such that d∗(f) = n− deg

(
xhf

)
. Hence deg

(
xhf

)
= deg (mf ). By (6) and (7) we have that mf and xhf have exactly the

same set of zeros and hence they are associated polynomials, or equivalently, xhf | xn − 1.
Conversely, suppose that there exists h ∈ {0, . . . , n − 1} such that xhf | xn − 1. Again by (7) and (6), xhf and mf

must be associated polynomials. By definition of apparent distance we have that d∗(f) = d∗
(
xhf

)
and by Lemma 11(2),

d∗
(
xhf

)
= n− deg

(
xhf

)
. The result follows immediately.
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Now we deal with our first problem. We are going to present some results that give theoretical characterizations for a given
cyclic code to satisfy the equality d(C) = ∆(C).

Theorem 14. Let n be a positive integer, p a prime number and q a power of p. Assume that gcd(n, q) = 1. Consider the
field Fq and an extension L|Fq such that Un ⊆ L. Let C be a cyclic code in Fq(n). Then d(C) = ∆(C) if and only if there
exists a polynomial f ∈ L(n), such that

1) d∗(f) = d∗(C).
2) d∗(f) = n− deg(mf ).
3) φ−1

α,f ∈ C, for some α ∈ R(C).

Moreover, in this case, there exists h ∈ {0, . . . , n− 1} such that xhf | xn − 1.

Proof. First, suppose that d(C) = ∆(C). Then we have that d(C) = d∗(C). Let c ∈ C such that ω(c) = d(C), consider
α ∈ R(C) and set, as in (6), mφα,c

= gcd(φα,c, x
n − 1). By definition of apparent distance and by applying results above,

we have that
ω(c) ≥ d∗(φα,c) ≥ d∗α(C) = d∗(C) = d(C) = ω(c) = n− deg

(
mφα,c

)
.

Hence d∗(φα,c) = d∗(C), since d∗ (φα,c) = n− deg
(
mφα,c

)
. So, f = φα,c satisfies all required conditions.

Conversely, suppose there exists f ∈ L(n) satisfying conditions (1 – 3) of the statement. By Lemma 12 and the definition
of minimum distance, we have that d∗(f) = ω(φ−1

α,f ) ≥ d(C). Then by Condition (1), d∗(C) ≥ d(C), and hence by (5),
∆(C) = d(C).

The final assertion follows directly from Proposition 13.

So, to check if a code satisfies the conditions in the theorem above, Proposition 13 shows us that we have to focus on
properties of some divisors of xn− 1. After Corollary 16 we will make some comments about complexity in order to consider
those divisors.

Corollary 15. Let C be a cyclic code in Fq(n). Then d(C) = ∆(C) if and only if there exist k ∈ {0, . . . , n−1} and a divisor
g | xn − 1, in L[x], such that setting f = xkg, the following conditions hold

1) d∗(f) = d∗(C) .
2) φ−1

α,f ∈ C, for some α ∈ R(C).

Proof. Set h = n− k. Then g = xhf and the result follows from Proposition 13 and the theorem above.

We note that, in the setting of the previous corollary, it may happen that there exist α, β ∈ Un such that φ−1
α,f ∈ C but

φ−1
β,f /∈ C.
We may rewrite the condition (3) in Theorem 14 or (2) in Corollary 15, as follows.

Corollary 16. Let C be a cyclic code in Fq(n). Then d(C) = ∆(C) if and only if there exist k ∈ {0, . . . , n−1} and a divisor
g | xn − 1, in L[x], such that the following conditions hold.

1) d∗(g) = d∗(C), and setting f = xkg,
2) supp(f) ⊆ Zn \Dα(C), for some α ∈ R(C),
3) (f(αj))q = f(αj), for any j ∈ {0, . . . , n− 1}.

Proof. From Remark 3, it comes immediately that condition (2) in Corollary 15 holds if and only if conditions (2)+(3) of this
corollary hold.

Given a linear code C of length n, we wonder about how difficult is to check the equality ∆(C) = d(C); in other words,
using our previous results, how difficult is to find a polynomial satisfying the required conditions?

To apply any of the corollaries above we have to compute the divisors g | xn − 1 in L[x] with deg(g) = n −∆(C). This
means that we have to check at most h ·

(
n

n−∆(C)

)
polynomials, where h = |A(n)|. Clearly, if ∆(C) is not a “big” number

we may check all divisors in L[x]. In case that ∆(C) was a “big” number, we could reduce it by taking an intermediate field,
Fq ⊂ K ⊂ L, where the number of divisors of xn − 1 (in K[x]) is smaller. However, in that case, our searching of codes
would not be exhaustive.

For example, consider the binary cyclic code C of length 45 with Dα(C) = C2(3) ∪ C2(5), for some α ∈ U45. One may
see that ∆(C) = 3 and dim(C) = 35. Consider A(45) = {1, 7}. To check any of our corollaries above we have to consider
2
(
45
42

)
-polynomials (note that 214 < 2

(
45
42

)
< 215) so our method works. On the other hand, for codes with apparent distance

greater than 5, we might choose to consider the factors of x45 − 1 in an intermediate ring. For example, in F24 [x] there are
15 factors of degree 1 and 10 factors of degree 3. No more than 50 computations. Essentially the same happens in F26 [x].

Now we give another sufficient condition to characterize cyclic codes whose apparent distance reaches its minimum distance.

Corollary 17. Let C be a cyclic code in Fq(n) with generator idempotent e ∈ C. If there exist h ∈ {0, . . . , n−1} and α ∈ Un

such that xhφα,e | xn − 1 then d(C) = ∆(C) and α ∈ R(C).
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Proof. From Proposition 13 and Lemma 12 we may deduce that d∗ (φα,e) = n− deg
(
mφα,e

)
= ω(e). So, the result follows

directly from Corollary 9.

The previous results give us conditions for a cyclic code C to satisfy the equality d(C) = ∆(C). Now we deal with our
second problem, that is, the construction of such kind of codes.

Corollary 18. Consider an intermediate field Fq ⊆ K ⊆ L, let g ∈ K[x] be a divisor of xn− 1 and β ∈ Un. If φ−1
β,

xkg

belongs

to Fq(n), for some k ∈ {0, . . . , n− 1}, then the family of permutation equivalent cyclic codes
{
Cα =

(
φ−1
α,

xkg

)
| α ∈ Un

}
satisfies ∆(Cα) = d(Cα) for all α ∈ Un. Moreover, in this case, dimFq

(Cα) = |supp(g)|, for all α ∈ Un.

Proof. Fix α ∈ Un. Set f = xkg and let e ∈ Fq(n) be the idempotent generator of the ideal C =
(
φ−1
α,f

)
in Fq(n) (see

Remark 3(4)). It is easy to check that supp(φα,e) = supp(f) = Zn \ Dα(C) and hence, d∗(φα,e) = d∗(f). On the one
hand, by Proposition 13 and Lemma 12 one has that d∗f = n − deg(mf ) = ω

(
φ−1
β,f

)
≥ d(C). On the other hand, by (5),

d∗f = d∗ (φα,e) ≤ d∗α(C) ≤ d∗(C) ≤ d(C). So we are done.

Then, in order to construct codes with the desired property we need to find a divisor g of xn − 1 satisfying the condition
(2) in Corollary 15. However, in the case K = F2, it is clear that g ∈ (Fn

2 , ⋆) is always an idempotent, and so, we only have
to check that supp(g) is union of 2-cyclotomic cosets (see Lemma 4).

Let us show by an example how the combination of Corollary 16 and Corollay 18 works.

Example 19. Set q = 2, n = 45. In this case A(45) = {1, 7}. Take g = x40 + x39 + x38 + x36 + x35 + x32 + x30 + x25 +
x24 + x23 + x21 + x20 + x17 + x15 + x10 + x9 + x8 + x6 + x5 + x2 + 1. One may check that g | x45 − 1 in F2[x] (so that
K = F2). To find the parameter k mentioned in the corollary above, we may analize the vector M(g) or we may fix β ∈ U45

(as instance, such that min(β) = x12 + x3 + 1) and compute g(1) and g(β3), because Dβ(g) = Z45 \ (C2(0) ∪ C2(3)). Let
us choose the last alternative. Since g(1) = 1 and g(β3) = β30 then k = 5 will work because setting f = x5g we have that
f(1) = 1, f

(
β3

)
= (β3)5β30 = β45 = 1 and then f

(
β6

)
= f

(
β12

)
= f

(
β24

)
= 1, as C2(3) = {3, 6, 12, 24}. So that,

φ−1
α,f ∈ F(45), for all α ∈ U45. Now set C = (φ−1

β,f ). Then Dβ(C) = C2(1) ∪ C2(3) ∪ C2(9) ∪ C2(21) = Z45 \ supp(M(f))
and, by analizing M(g) or M(f) = FDβ(C) as in Example 10, we have that 5 = d(C) = ∆(C) and dim(C) = 21.

As supp(x5g) = Z45 \ Dβ(C), one may see that there are three subsets that determines d∗(C); to wit, {1, 2, 3, 4},
{16, 17, 18, 19} and {31, 32, 33, 34}. We choose {1, 2, 3, 4} ⊂ Dβ(C) and construct the code C ′ such that Dβ(C

′) =
Dβ(C) \C2(21). Note that C is a subcode of C ′, because Dβ(C

′) ⊂ Dβ(C). Now one has that C ′ satisfies the conditions in
Corollary 15, because d∗(C) = 5 = d∗(f) and φ−1

α,f ∈ C ⊂ C ′, so that 5 = d(C ′) = ∆(C ′) and dim(C ′) = 25, that is, C ′

has better parameters than C.

In the next section (see, as instance, Example 25) we will refine this type of construction to obtain BCH codes C such that
∆(C) = d(C). Now we continue with the construction of codes C satisfying that ∆(C) = d(C).

Corollary 20. Consider an intermediate field Fq ⊆ Fq′ ⊆ L, let h be an irreducible factor of xn−1 in Fq′ [x] with defining set
Dα(h) for some α ∈ Un. Set g = (xn−1)/h. If there are positive integers j, t such that g(αj) = αt and gcd

(
j, n

gcd(q−1,n)

)
| t

then there exists a q-ary code of length n whose BCH bound equals its minimum distance.

Proof. By hypothesis, the congruence (in X),

q − 1

gcd(q − 1, n)
jX ≡ − q − 1

gcd(q − 1, n)
t mod

n

gcd(q − 1, n)

has a solution X = k, with 0 ≤ k ≤ n
gcd(q−1,n) . Then (q − 1)(jk + t) ≡ 0 mod n, which means that q(jk + t) ≡ jt + k

mod n, and hence xkg(αj) = αjk+t ∈ Fq . Clearly, for any jq′a ∈ Dα(h) we have jq′ak + tq′a ≡ q′a(jk + t) ≡ jk + t

mod n, so that xkg(αjq′a) ∈ Fq . As xkg(αi) = 0 for all i ∈ Zn \Dα(h), we may apply Corollary 18 to get the desired result.
More precisely, the code C =

(
φ−1

α,xkg

)
⊆ Fq(n) satisfies the required conditions.

Corollary 21. Let n = 2m − 1, for some m ∈ N. There exist at least ϕ(n)
m binary codes of length n whose BCH bound equals

its minimum distance.

Proof. We are going to apply the corollary above with 2 = q = q′. Take L = F2m . For each 0 < j < n, coprime with n, we
consider the 2-cyclotomic coset C2(j), which has exactly m elements. Consider α ∈ Un. Let h|xn − 1 be the polynomial in
Fq[x], such that Dα(h) = C2(j) and gj = (xn − 1)/h. By hypothesis, α is a primitive element for L, so that gj(αj) = αk

for some k ∈ Zn. The condition gcd (j, n) | k holds obviously. So that there exists a binary code of length n whose BCH
bound equals its minimum distance. Moreover, by Corollary 18 the family of codes {Cj =

(
φ−1

α,xkgj

)
| gcd(j, n) = 1}

satisfies that d(Cj) = ∆(Cj) for any j. To compute the number of different codes in that family we consider the set
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B = {C2(j) | j ∈ Zn, gcd(j, n) = 1}. One may check that |B| = ϕ(n)
m . Let Cq(j) ̸= Cq(j

′) ∈ B. If α ∈ Un and
h, h′ are the divisors of xn − 1 with Dα(h) = Cq(j) and Dα(h

′) = Cq(j
′) then gj = (xn − 1)/h and gj′ = (xn − 1)/h′

have the same degree, and hence supp(gj) ̸= supp(gj′) because they are binary polynomials. Since D(Cj) = supp(xkgj) the
result comes immediately.

Example 22. Set q = 2, n = 15. Then A(15) = {1, 7}. By Corollary 21 there exist at least two codes such that its BCH bound
equals its minimum distance (they will be determined by the polynomials g3 and g4 defined below). Denote the irreducible
factors of x15 − 1 in F2[x], by h1 = Φ2, h2 = Φ3, h3 = x4 + x+ 1, h4 = x4 + x3 + 1 and h5 = Φ5, where Φj denotes the
j-th cyclotomic polynomial. Setting gi =

xn−1
hi

, i = 1, . . . , 5, we apply the corollaries above (with K = F2) as follows.
Consider the factor g2. Then one may check that in this case φ−1

α,xg2
= x10 +x5 ∈ F2(15), for all α ∈ U15. The cyclic code

C generated by x10 + x5 satisfies dim(C) = 10 and ∆(C) = 2 = d(C). Now let us fix α ∈ U15 such that h3 = min(α) and
h4 = min(α13), where min(αt) denotes the minimal polynomial of αt in F2[x]. Then φ−1

α,xg3
= x14+x13+x11+x7 ∈ F2(15)

and φ−1

α,x3g4
= x8 + x4 + x2 + x ∈ F2(15). This gives us the table

Generator Dimension ∆ = d

φ−1
α,xg2

10 2

φ−1
α,xg3

8 4

φ−1

α,x3g4
8 4

The polynomial g1 gets an improper code. In the case of g5, as Dα(g5) = Z15 \ C2(3), it happens that, g5
(
α3

)
= α14, so

the conditions of Corollary 20 are not satisfied.
After inspecting the divisors of x15 − 1 in F2[x] we find more interesting codes. For instance, one may check that the

polynomial h2h3h5 satisfies the conditions of Corollary 18, with k = 0, and hence it yields a code, say C ′, such that
∆(C ′) = d(C ′) = 5 and dim(C ′) = 7.

Example 23. Set q = 2 and n = 21. Denote the irreducible factors of x21−1 in F2[x] by h1 = Φ2, h2 = Φ3, h3 = x3+x+1,
h4 = x3 + x2 + 1, h5 = x6 + x4 + x2 + x+ 1 and h6 = x6 + x5 + x4 + x2 + 1.

Set gi = xn−1
hi

, i = 1, . . . , 6, and fix α ∈ U21 such that min(α) = h6. We apply Corollary 20 as above (with K = F2) to get
the following table of binary codes of length 21 whose BCH bound equals its minimum distance. We complete with another
one satisfying the conditions of Corollary 18.

Generator Dimension ∆ = d

φ−1
α,xg2

14 2

φ−1
α,g3 12 3

φ−1

α,x3g4
12 3

φ−1
α,xg5

8 6

φ−1

α,x5g6
8 6

φ−1

α,h1h3h5h6
10 5

IV. APPLICATIONS: CONSTRUCTING BCH CODES WHOSE MINIMUM DISTANCE EQUALS THEIR APPARENT DISTANCE

The following result allows us to construct BCH codes Bq(α, δ, b) for which d(Bq(α, δ, b)) = ∆(Bq(α, δ, b)) = δ. We recall
that the ideal generated by a polynomial g ∈ Fq(n) is denoted by (g).

Theorem 24. Let n be a positive integer, p a prime number, q a power of p and Un the set of primitive n-th roots of unity.
Assume that gcd(n, q) = 1. Consider the fields Fq ⊆ K ⊆ L such that Un ⊂ L. Let g ∈ K[x] be a divisor of xn − 1. If there
exist k ∈ {0, . . . , n − 1} and β ∈ Un such that φ−1

β,xkg
∈ Fq(n) then there exists a family of permutation equivalent BCH

codes {Cα = Bq(α, δ, b) | α ∈ Un} with δ = n− deg(g) and b ∈ Zn, such that δ = ∆(Cα) = d(Cα) and φ−1

α,xkg
∈ Cα.

Proof. Set g =
∑n−1

i=0 aix
i and suppose that there there exist k ∈ {0, . . . , n − 1} and β ∈ Un such that φ−1

β,xkg
∈ Fq(n).

Let f = xkg and consider α ∈ Un. By Lemma 11, d∗(g) = n − deg(g). Clearly mf = g and d∗(f) = d∗(g). We collect
T =

⋃n+k−1
j=deg(g)+k+1 Cq(j), where j is the canonical representative of j module n, and ε =

∑n−1
i=0 rix

i such that ri = 0 if
i ∈ T and 1, otherwise.

We claim that d∗(g) = d∗(ε). From the definition of ϵ one has that d∗(g) ≤ d∗(ε). We are going to see the reverse
inequality. By Remark 3(3), as φ−1

β,f ∈ Fq(n) we have that supp (f) is union of q-cyclotomic cosets modulo n. So, for any
j ∈ {deg(g) + k + 1, . . . , n + k − 1} we have that Cq(j) ∩ supp (f) = ∅ and hence T ⊆ Zn \ supp (f), which means that
supp (f) ⊆ supp (ε) and hence d∗(g) = d∗(f) ≥ d∗(ε).

By construction, supp(ε) is union of q-cyclotomic cosets, so φ−1
α,ε ∈ Fq(n) (see Lemma 4). We set C =

(
φ−1
α,ε

)
in Fq(n).

We are going to see that C satisfies the conditions (1) and (2) of Corollary 15.
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(1) We have already seen that d∗(f) = d∗(g) = d∗(ε). Now, by Proposition 13 and Lemma 12 one has that d∗f = n −
deg(mf ) = ω

(
φ−1
α,f

)
≥ d(C). On the other hand, by (5), d∗f = d∗(ϵ) = d∗

(
φα,φ−1

α,ϵ

)
≤ d∗α(C) ≤ d∗(C) ≤ d(C).Therefore

d∗(C) = d∗(f).
(2) Since supp(f) ⊆ supp(ε), we have that f ⋆ ε = f , and then φ−1

α,f · φ−1
α,ε = φ−1

α,f , which means that φ−1
α,f ∈ (φ−1

α,ε) = C
(see also Remark 3(4)). So that, conditions of Corollary 15 are satisfied, and hence d(C) = ∆(C).

Finally, to see that C is a BCH code with designed distance δ = ∆(C), we note that, any q-cyclotomic coset Q ⊆ supp(ε) =
Dα(C) verifies that Q∩{deg(g)+ k+1, . . . , n+ k− 1} ≠ ∅. So, as we mentioned in Section II, this means that C is a BCH
code with b = deg(g) + k + 1 and designed distance δ = ∆(C) = n− deg(g).

The theorem above gives us a method to transform a given cyclic code C = (g), with d(C) = ∆(C) into another code
with higher dimension; in fact, we can get a new BCH code. The key idea is to consider as generator ε instead of g via the
definition of T . This definition may be done in different ways that can drives us to different BCH codes. All these ideas are
shown in the next example.

Example 25. We continue with the code C showed in Example 19. Recall that q = 2, n = 45 and C is the cyclic code with
Dβ(C) = C2(1) ∪ C2(3) ∪ C2(9) ∪ C2(21), where β ∈ U45 is such that min(β) = x12 + x3 + 1. Following the proof of the
previous theorem we have that T = C2(1) ∪C2(3) and set ε =

∑
i ̸∈T xi. Then C ′′ =

(
φ−1
β,ε

)
has Dβ(C

′′) = C2(1) ∪C2(3);
so that it is the BCH code B2(β, 5, 1) of dimension 29 such that d(C ′′) = ∆(C ′′) = 5. This code has even better parameters
than C ′ (see Example 19).

It is also possible to obtain, from the code C ′, the BCH code B2(β, 5, 16) with d(B2(β, 5, 16)) = ∆(B2(β, 5, 16)) = 5 and
dimension 29, by taking T ′ = C2(1) ∪ C2(9).

The following theorem is a classical result on the theory of BCH codes.

Theorem 26 ( [6]). Let h,m ∈ N. A BCH code C of length n = qm − 1 and designed distance δ = qh − 1 over Fq satisfies
that d(C) = ∆(C).

Now let us show some examples of construction of new BCH codes.

Example 27. Set q = 2 and n = 15. Consider the polynomial g = g3 in Example 22; that is g = x11 + x8 + x7 + x5 + x3 +
x2 + x+ 1. Then, its coefficient vector is

M(g) = (1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0)

and we may check that d∗(g) = 4. We know that φ−1
α,g ̸∈ F2(n) for all α ∈ U15, because C2(7) is not contained in supp(g)

(see Lemma 4). However, the polynomial xg with coefficient vector

M(xg) = (0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0)

satisfies that φ−1
α,xg

∈ F2(n) for all α ∈ U15. Let us fix α ∈ U15. Then C = (φ−1
α,xg

) is a binary code with d(C) = d∗(C) = 4
and dimF2

(C) = 8 (see Corollary 18). But, C is not a BCH code. Following the ideas in Theorem 24 we may replace 0’s by
1’s in the suitable places to get the vector

M(ε) = (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0)

such that C ′ =
(
φ−1
α,ε

)
is a BCH code in F2(n), with d(C ′) = d∗(C ′) = δ = 4 and dimF2

(C ′) = 10. Clearly, this code cannot
be considered in Theorem 26.

We finish by extending Corollary 20 to BCH codes.

Corollary 28. Consider an intermediate field Fq ⊆ Fq′ ⊆ L, let h be an irreducible factor of xn−1 in Fq′ [x] with defining set
Dα(h) for some α ∈ Un and g = (xn−1)/h. If there are positive integers j, t such that g(αj) = αt and gcd

(
j, n

gcd(q−1,n)

)
| t

then there exists a BCH code of designed distance δ, C = Bq(α, δ, b), such that δ = ∆(C) = d(C) = deg(h), for certain
b ∈ Zn.

Proof. Comes immediately from Corollary 20 together with Theorem 24.

Example 29. We continue with the codes determined by the polynomials g2, g3 and g4 in Example 22. Recall that in this
case α ∈ U15 satisfies that min(α) = h3. By applying the ideas contained in the proof of Theorem 24, one may obtain the
following BCH codes whose minimum distance equals the maximum of their BCH bounds.

It is possible to modify the defining set, w.r.t. α, of a cyclic code in order to obtain a defining set for a new code with higher
dimension. In this case we will say that the original one was dimensional-extended to the new one. For example,

(
φ−1
α,xg2

)
in Fq(15) has dimension 10 and it can be dimensional-extended to the codes B2(α, 2, 0) of dimension 14 and B2(α, 2, 3t)

of dimension 11, for t = 1, 2, 3. The cyclic code determined by g3, that is
(
φ−1
α,xg3

)
in Fq(15), has dimension 8 and it may



11

be dimensional-extended to B2(α, 4, 13) of dimension 10. Finally, from
(
φ−1

α,x3g4

)
, with dimension 8, we get B2(α, 4, 0) of

dimension 10.
Note that the dimensional-extended BCH codes associated to g2, g3 and g4 are not considered in the classical result 26.

There is another interesting code which has not been considered: the code
(
φ−1

α,h1h2h3h5

)
, where h1, h2, h3, h5 were defined

in Example 22, is the code B2(α, 5, 11) of dimension 10.

Example 30. We also also show how to extend the dimension of the codes in Example 23. We recall that q = 2, n = 21 and
α satisfies that min(α) = h6. In this case, we have the following BCH codes whose minimum distance and apparent distance
coincide.

It is possible to modify the set Dα

(
φ−1
α,xg2

)
in three different ways. The biggest dimensional-extended code that we can

obtain is B2(α, 2, 0) of dimension 20. In the case of
(
φ−1
α,g3

)
, it determines two BCH codes. The first one is B2(α, 3, 19)

of dimension 15 and the second one is B2(α, 3, 12) of dimension 12. The code
(
φ−1

α,x3g4

)
may be dimensional-extended

to B2(α, 3, 15) of dimension 12, and B2(α, 3, 1) of dimension 15. The code
(
φ−1
α,xg5

)
may be dimensional-extended to

B2(α, 6, 17) of dimension 11. In the case of
(
φ−1

α,x5g6

)
, we obtain B2(α, 6, 0) of dimension 11. Finally,

(
φ−1

α,h1h3h5h6

)
is the

BCH code B2(α, 10, 17) of dimension 10.

We finish with an example of a binary BCH code of length 33 whose minimum distance equals the maximum of their
BCH bounds. We have not found in the literature any binary BCH code satisfying that condition and having this length and
dimension.

Example 31. Set q = 2, n = 33 and α ∈ U33 such that min(α) = x10 + x7 + x5 + x3 + 1 and g = min(α)min(α3)min(α5).
One may check that g verifies the conditions of Theorem 24 with k = 0 and T = C2(1); in fact φ−1

α,g = x22+x11+1. Hence,
it determines B2(α, 3, 31) of dimension 23.
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