This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organometallics, copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/epdf/10.1021/om100079x.

Organometallic Complexes of Palladium(II) Derived from 2,6Diacetylpyridine Dimethylketal

José Vicente, ${ }^{*, \dagger}$ Aurelia Arcas ${ }^{\dagger}$ and Francisco Juliá-Hernández
Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Aptdo. 4021, E-30071 Murcia, Spain

Delia Bautista ${ }^{\ddagger}$

SAI, Universidad de Murcia, Aptdo. 4021, E-30071 Murcia, Spain
Peter G. Jones ${ }^{\S}$
Institut für Anorganische und Analytische Chemie der Technischen Universität
Braunschweig, Postfach 23329, 38023, Braunschweig, Germany

[^0]
Summary

PdCl_{2} reacts with 2,6-diacetylpyridine (dap) (1:1) in refluxing MeOH to give the pincer complex $\left[\mathrm{Pd}\left(O^{1}, N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}\right](\mathbf{1})$ and $(\mathrm{QH})_{2}\left[\left\{\mathrm{PdCl}_{2}(\mu-\mathrm{Cl})\right\}\right]_{2}(\mathbf{2})$, where L is the monoanionic ligand resulting from the deprotonation of the acetyl methyl group of the monoketal of dap and QH is $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{NH}\left\{\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}\right\}_{2}-2,6$, the diketal of Hdap^{+}. Reaction of 2 with NEt_{3} (1:2) in MeOH affords the diketal of dap, $\mathrm{Q}=$ $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left\{\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}\right\}_{2}-2,6$ (3). Complex 1 reacts with two equiv of RNC at $0^{\circ} \mathrm{C}$ to give trans $-\left[\operatorname{Pd}\left(C^{1}-\mathrm{L}\right) \mathrm{Cl}(\mathrm{CNR})_{2}\right]\left(\mathrm{R}=\mathrm{Xy}(\mathbf{4 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{4 b})\right)$ but at room temperature affords $\left[\operatorname{Pd}\left(O^{2}, C^{2}-\mathrm{L}_{\mathrm{R}}\right) \mathrm{Cl}(\mathrm{CNR})\right]\left(\mathrm{R}=\mathrm{Xy}(\mathbf{5 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{5 b})\right)$. The ligand L_{R} results from the insertion of one isocyanide into the $\mathrm{Pd}-\mathrm{C}$ bond plus a tautomerization process from β ketoimine to β-ketoenamine, and coordinates in 5 through the carbonyl oxygen atom $\left(\mathrm{O}^{2}\right)$ and the inserted isocyanide carbon atom $\left(\mathrm{C}^{2}\right)$. The reaction of $\mathbf{1}$ with one equiv of RNC at $0{ }^{\circ} \mathrm{C}$ leads a mixture of $\left[\mathrm{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}(\mathrm{CNR})\right]\left(\mathrm{R}=\mathrm{Xy}(\mathbf{6 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{6 b}) ; 85-\right.$ $90 \%), \mathbf{1}$ and $\mathbf{4}$, but at room temperature gives the pincer complex $\left[\operatorname{Pd}\left(O^{1}, N^{1}, C^{2}-\mathrm{LR}\right) \mathrm{Cl}\right]$ $\left(\mathrm{R}=\mathrm{Xy}(\mathbf{7 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{7 b})\right)$ resulting from the same insertion/tautomerization processes that lead to 5. Complex 7 reacts at $0{ }^{\circ} \mathrm{C}$ (1) with 2 equiv of RNC to give trans $-\left[\operatorname{Pd}\left(C^{2}-\right.\right.$ $\left.\left.\mathrm{L}_{\mathrm{R}}\right) \mathrm{Cl}(\mathrm{CNXy})_{2}\right]\left(\mathrm{R}=\mathrm{Xy}(\mathbf{8 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{8 b})\right)$ or (2) with one equiv of ${ }^{\mathrm{t}}$ BuNC to afford $\mathbf{5 b}$. The reaction of $\mathbf{1}$ (1) with [$\mathrm{Tl}(\mathrm{acac})]$ gives $\left[\operatorname{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right)(\mathrm{acac})\right]$ (9), (2) with chelating ligands $\mathrm{L}^{\wedge} \mathrm{L}$ affords $\left[\mathrm{Pd}\left(C^{1}-\mathrm{L}\right) \mathrm{Cl}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=2,2^{\prime}\right.$-bipyridine $=$ bpy $(\mathbf{1 0}), 4,4$ '-di-tert-butyl-2,2'-bipyridine $=$ dbbpy (11)), (3) with one equiv of PPh_{3} gives, in the same way as with isocyanides, an equilibrium mixture of $\left[\mathrm{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1 2}), \mathbf{1}$ and trans-$\left[\mathrm{Pd}\left(C^{1}-\mathrm{L}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{1 3})$, which is the only product when two equiv of PPh_{3} is added to the reaction mixture, and (4) with excess of PPh_{3} affords the monoketal of dap, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\{\mathrm{C}(\mathrm{O}) \mathrm{Me}-2\}\left\{\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}-6\right\}$ (14) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. The crystal structures of complexes $\mathbf{1 , 2 , 5 b}, \mathbf{6 a}$ and $\mathbf{7 a}$ have been determined.

Introduction

We are currently involved in the synthesis of ketonyl metal complexes $[\mathrm{M}] \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{R}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Hg}, \mathrm{Tl})$ because of the great stability that this alkyl ligand confers to their complexes, their interesting reactivity ${ }^{1-3}$ and their roles as intermediates in organic synthesis. ${ }^{2,4}$ Recently, we have reported the synthesis and reactivity of $\quad\left[\mathrm{Pd}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}\right\} \mathrm{Cl}\right]_{\mathrm{n}}, \quad\left[\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}^{2}\right\} \mathrm{Cl}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \quad$ and $\left[\mathrm{Pt}_{2}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}\right\}_{6}(\mu-\mathrm{Cl})_{3}\right]^{-}$, studies that have allowed us to prepare unprecedented types of metal complexes. ${ }^{3,5}$

We report here our attempts to prepare ketonyl palladium complexes derived from 2,6-diacetylpyridine (dap). Our interest centred on the possibility that this ligand would allow us to prepare complexes with mono- and di-anionic ligands resulting from deprotonation reactions. Scheme 1 shows two possible types of pincer complexes that could be prepared. The reactivity of complexes of type \mathbf{A} is expected to be similar to that of other palladium ketonyl complexes, although it could be modified by the coordination of the pyridine moiety. Cyclometalation of 2-acetylpyridine has only been reported for $\mathrm{Rh}(\mathrm{III})$ and $\mathrm{Au}(\mathrm{III}),{ }^{6}$ and one $\mathrm{Pd}(\mathrm{II})$ complex has been prepared (but not isolated) by using a silyl enol ether of 2-acetyl pyridine, ${ }^{7}$ while $\left[\mathrm{Te}\left(O^{1}, N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}_{3}\right]$, obtained by reacting dap with TeCl_{4}, is the only reported complex with the ligand present in $\mathbf{A} .{ }^{8}$ However, the reactivity of these species has not been studied. Formation of mixed enolato/ketonyl $\mathrm{O}, \mathrm{N}, \mathrm{C}$-complexes (B) is expected in those containing the dianionic ligand because the strong $\mathrm{C} / \mathrm{C}^{9}$ transphobia ${ }^{10}$ would destabilize the C, N, C pincer isomer. This second functionality would confer on these complexes the expected reactivity of enolato metal complexes (aldol reactions, for example) but, more
interestingly, the dual and unprecedented nature of these complexes could lead to novel types of reactivity.

Scheme 1

The study of the synthesis and reactivity of dap metal complexes has additional relevance because complexes of $\mathrm{Fe}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{II})$ with bis(imino) derivatives of dap (PDI) are highly active catalysts for polymerization and oligomerization of olefins. ${ }^{11}$ It has been reported that some of these PDI ligands prepared with two different amines have important effects on the catalytic perfomance of their complexes. ${ }^{12,13}$ One additional reason for preparing complexes \mathbf{A} would be their use as catalysts or for the synthesis of complexes with non-symmetrical PDI-related monoanionic ligands.

Pincer complexes have attracted great interest becuase of their important applications in organic synthesis, homogeneous catalysis, bond activation, and design of new materials. ${ }^{14}$ In spite of the great number of reported $\mathrm{Pd}(\mathrm{II})$ pincer complexes, those of type A (C,N,O-pincer) are represented only by one family derived from 2-alkylsubstituted 8 -quinolinols ${ }^{15}$ and one complex derived from 8 -alkylquinoline-2-carboxylic acid. ${ }^{16}$

Attempts to prepare complexes of type A were initially unsuccesful; instead we isolated a family of [C,N,O]-pincer ketonyl complexes derived from 2,6diacetylpyridine dimethylketal when methanol was used as solvent. However, during the study of the reactivity of these complexes we discovered that some of their
derivatives decompose to give the desired complexes, which provided us the necessary information for their rational synthesis. In this paper we report the synthesis of these dimethylketal derivatives and their reactivity toward isocyanides. There is only one related precedent for these complexes, the 2-lithium phenyl dimethylketal, which is described as a non isolated intermediate obtained from the dimethylketal of 2bromoacetophenone via metal-halogen exchange. ${ }^{17}$

Experimental Section

General Procedures. The reactions were carried out without precautions to exclude light or atmospheric oxygen or moisture. Melting points were determined on a Reicher apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba 1106 microanalyzer. IR spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrometer with Nujol mulls between polyethylene sheets. NMR spectra were recorded on a Brucker AC 200, or Avance 300 or 400 spectrometers at room temperature. Chemical shifts were referred to TMS $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. When needed, NMR assignments were performed with the help of APT, HMQC and HMBC techniques. Chart 1 shows the atom numbering used to name the ligands in NMR assignments. The R groups ($\mathrm{Xy},{ }^{\mathrm{t}} \mathrm{Bu}$) of inserted and coordinated isocyanides are distinguished by using the notation $\mathrm{Xy}^{\mathrm{i}},{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{i}}$ and ${ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{c}}, \mathrm{Xy}^{\mathrm{c}}$, respectively.

Chart 1

Synthesis of $\quad\left[\mathrm{Pd}\left(O^{1}, N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}\right] \quad$ (1) and $\quad\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{NH}\left\{\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}\right\}-\right.$
$\mathbf{2 , 6})_{2}\left[\left\{\mathbf{P d C l}_{2}(\mu-\mathbf{C l})\right\}\right]_{2} \mathbf{(2)}$. To a suspension of $\mathrm{PdCl}_{2}(390.6 \mathrm{mg}, 2.20 \mathrm{mmol})$ in MeOH $(20 \mathrm{~mL})$ was added 2,6-diacetylpyridine ($359.3 \mathrm{mg}, 2.20 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(57 \mu \mathrm{~L}, 0.40$ $\mathrm{mmol})$. The suspension was refluxed for 95 min and then filtered through Celite. The orange filtrate was concentrated (2 mL) and $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. The resulting precipitate was filtered off and air-dried. The solid was extracted with $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$ giving a solution A (used to prepare 1) and a solid, which was air-dried giving orange 2. Yield $92.4 \mathrm{mg}, 18 \%$ (based on the stoichiometry shown in Scheme 2). Mp: 131-132 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3248,3217, v(\mathrm{CN}) 1617, v(\mathrm{PdCl}) 346,334 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{MeCN}-d_{3}\right): \delta 12.55(\mathrm{br}, \mathrm{NH}), 8.75\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 8.13\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H} 3,5,{ }^{3} J_{\mathrm{HH}}=8\right.$ $\mathrm{Hz}), 3.30(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OMe}), 1.71(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): δ 150.4 (C4), 126.1 (C3,5), 100.2 (C6), $50.8(\mathrm{MeO}), 24.7(\mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Cl}_{6} \mathrm{Pd}_{2}: \mathrm{C}, 33.29 ; \mathrm{H}, 4.72 ; \mathrm{N}, 2.98$. Found: C, 33.08; H, 4.92; N, 2.90. Single crystals of $\mathbf{2}$ were obtained by slow evaporation of a MeOH solution of $\mathbf{2}$.

Solution A was concentrated (1 mL) and column chromatographed on silica gel using CHCl_{3} as eluent. The first collected fraction was concentrated (1 mL). Addition of $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and n-pentane (4 mL) gave a suspension that was filtered off to give complex 1 as a yellow solid. Yield: $267.1 \mathrm{mg}, 69 \%$ (based on the stoichiometry shown in Scheme 2). Mp: $137-138^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}) 1684, v(\mathrm{CN}) 1603, v(\mathrm{PdCl}) 321 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8\right.$ $\left.\mathrm{Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.63\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.42 (s, $6 \mathrm{H}, \mathrm{OMe}), 1.77$ (s, $3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.7$ (CO), 158.5 (C7), 152.7 (C8), 139.8 (C4), 126.4 (C5), 123.6 (C3), 106.9 (C6), 51.5 (MeO), 30.7 (C1), $25.0(\mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{ClPd}: \mathrm{C}, 37.74 ; \mathrm{H}, 4.03$; N , 4.00. Found: C, 37.63; H, 3.97; N, 3.95. Single crystals of $\mathbf{1}$ were obtained by slow evaporation of a MeOH solution of $\mathbf{1}$.

Synthesis of $\mathbf{C}_{5} \mathbf{H}_{3} \mathbf{N}\left\{\mathbf{C}(\mathbf{O M e})_{2} \mathbf{M e}\right\}_{2}$ (3). To a suspension of $\mathbf{2}$ (2466.9 mg, 2.63 $\mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(733 \mu \mathrm{~L}, 5.26 \mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated to dryness. The residue was extracted with n pentane ($2 \times 20 \mathrm{~mL}$) and the solution was concentrated to dryness to give $\mathbf{3}$ as a colorless solid. Yield: $1246.0 \mathrm{mg}, 93 \%$. Mp: $103-104{ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{CN}) 1582 .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71-7.57(\mathrm{~m}, 3 \mathrm{H}, \mathrm{py}), 3.19(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeO}), 1.66(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50.30 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7$ ($o-\mathrm{C}$), 136.2 ($p-\mathrm{C}$), 120.4 ($m-\mathrm{C}$), 101.8 ($C \mathrm{Me}$), 49.1 (OMe), 23.6 (Me). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{NO}_{4}: \mathrm{C}, 61.16$; H, 8.29; N, 5.49. Found: C, 61.05; H, 8.57; N, 5.58.

Synthesis of trans-[Pd(C $\left.\left.\boldsymbol{C}^{1}-\mathbf{L}\right) \mathbf{C l}(\mathbf{C N X y})_{2}\right] \cdot \mathbf{0 . 5 H}_{2} \mathrm{O}$ (4a). To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1}(23.3 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL}), \mathrm{XyNC}(20.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added. After 5 min the solution was concentrated to dryness. The residue was vigorously stirred in a cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and n-pentane (6 mL). The resulting suspension was filtered off, the solid washed with n-pentane and air-dried to give 4 a as a pale yellow solid. Yield: $37.4 \mathrm{mg}, 90 \%$. $\mathrm{Mp}: 134-135{ }^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{~N} \equiv \mathrm{C}) 2192, v(\mathrm{C}=\mathrm{O}) 1647, v(\mathrm{C}=\mathrm{N}) 1579, v(\mathrm{PdCl}) 280 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.92-7.90$ (m, $1 \mathrm{H}, \mathrm{ABC}$ system), 7.77-7.72 (m, 2H, ABC system), 7.27-7.11 (m, 6H, Xy), 3.73 (s, 2H, CH2), 3.08 (s, 6H, OMe), 2.49 (s, 12H, Me, Xy), 1.48 (s, 3H, Me). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum could not be registered because $\mathbf{4 a}$ decomposes quickly to $\mathbf{5 a}$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3.5} \mathrm{ClPd}$: C, 56.05 ; H, 5.35 ; N, 6.76. Found: C, 55.91 ; H, 5.29; N, 6.81

Synthesis of trans-[Pd(C) $\left.\left.\boldsymbol{C}^{1}-\mathbf{L}\right) \mathbf{C l}\left(\mathbf{C N}^{t} \mathbf{B u}\right)_{2}\right](\mathbf{4 b})$. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1}(18.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, ${ }^{\mathrm{t}} \mathrm{BuNC}(11.1 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added and the mixture was stirred for 20 min . Concentration to dryness, addition of n-pentane (6 mL) and vigorous stirring led to a suspension. The solid was filtered off, washed with
$\mathrm{Et}_{2} \mathrm{O}$ and air-dried to give $\mathbf{4 b}$ as a colorless solid. Yield: $26.2 \mathrm{mg}, 96 \%$. Mp: 124-125 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{~N} \equiv \mathrm{C}) 2211, v(\mathrm{C}=\mathrm{O}) 1651, v(\mathrm{C}=\mathrm{N}) 1579, v(\mathrm{PdCl}) 289 .{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95-7.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ABC}\right.$ system), 3.35 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.22 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$), $1.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.52\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum could not be registered because $\mathbf{4 b}$ decomposes quickly to $\mathbf{5 b}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{ClPd}$: C, 48.85 ; H, 6.25; N, 8.14. Found: C, 48.53; H, 6.58; N, 8.07.

Synthesis of $\left[\mathbf{P d}\left(\boldsymbol{O}^{\mathbf{2}}, \boldsymbol{C}^{\mathbf{2}} \mathbf{- L x y}\right) \mathbf{C l}(\mathbf{C N X y})\right]$ (5a). To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $\mathbf{7 a}$ ($22.9 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added $\mathrm{XyNC}(6.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and the mixture stirred for 10 min . Concentration (1 mL) and addition of n-pentane $(9 \mathrm{~mL})$ gave a suspension; the solid was filtered off, washed with n-pentane and air-dried to give a mixture (26.2 mg) of $\mathbf{5 a}, \mathbf{7 a}$ and $\mathbf{8 a}$ (81:15:4) with traces of XyNC. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right)$ of 5a: $\delta 8.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3\right.$ or $\left.5,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4$, $\left.{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 7.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5\right.$ or $\left.3,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.30-7.20(\mathrm{~m}, 6 \mathrm{H}$, Xy), 5.86 (d, $1 \mathrm{H}, \mathrm{H} 1, J=1 \mathrm{~Hz}$), $3.12(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeO}), 2.52\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}^{\mathrm{c}}\right), 2.28$ (s, 6 $\mathrm{H}, \mathrm{Me}, \mathrm{Xy}^{\mathrm{i}}$), 1.51 (s, $3 \mathrm{H}, \mathrm{Me}$).
 $0.37 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, ${ }^{\text {'BuNC }}(3.43 \mathrm{~mL}, 226.2 \mathrm{mM}$ solution, 0.78 mmol) was added. The solution was stirred for 4.5 days at room temperature and then concentrated to dryness. The resulting residue was purified by preparative TLC chromatography on silica gel (70-200 $\mu \mathrm{m})$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(1: 2)$ as eluent. The first fraction $\left(\mathrm{R}_{\mathrm{f}}=0.50\right)$ was collected and extracted with acetone ($3 \times 15 \mathrm{~mL}$) to give a solution that was concentrated to dryness. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anhydrous MgSO_{4} was added. The resulting suspension was stirred and filtered. The filtrate was concentrated to dryness and the resulting residue was recrystallized from $\mathrm{Et}_{2} \mathrm{O} / n$ pentane, to give $\mathbf{5 b}$ as a yellow solid. Yield: $150.9 \mathrm{mg}, 79 \%$. $\mathrm{Mp}: 240^{\circ} \mathrm{C}$ dec. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$:
$v(\mathrm{C} \equiv \mathrm{N}) 2211, v(\mathrm{C}=\mathrm{O}) 1590, v(\mathrm{C}=\mathrm{N}) 1513, v(\mathrm{PdCl}) 281 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{JHH}_{\mathrm{HH}}=1 \mathrm{~Hz}\right), 7.75\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.69$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1 \mathrm{~Hz}, 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 1, J=1 \mathrm{~Hz}), 6.00(\mathrm{br}, 1 \mathrm{H}\right.$, NH), 3.19 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{MeO}$), 1.66 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.61 (br, 9H, Me, 'Bu'i), 1.48 (s, 9H, Me, $\left.{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{c}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 196.6(\mathrm{CO}), 190.5(\mathrm{C} 2), 159.1(\mathrm{C} 7)$, 151.9 (C8), $136.5(\mathrm{C} 4), 127.5\left(\mathrm{t}, \mathrm{CN}^{\mathrm{t}} \mathrm{Bu}^{1}{ }^{1} \mathrm{~J}_{\mathrm{CN}}=20 \mathrm{~Hz}\right), 123.4(\mathrm{C} 5), 121.7(\mathrm{C} 3), 105.1$ (C1), 101.6 (C6), 59.3 (br, $\mathrm{CMe}_{3}{ }^{\mathrm{c}}$), 56.5 ($\mathrm{CMe}^{\mathrm{i}}$), 49.2 (OMe), 30.2 ($\left.\mathrm{Me},{ }^{\mathrm{t}}{ }^{\mathrm{B}}{ }^{\mathrm{c}}\right), 29.4$ (Me, ${ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{i}}$), $23.0(\mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{ClPd}$: C, 48.85; H, 6.25; N, 8.14. Found: C, 48.56; H, 6.25; N, 8.15. Single crystals were obtained by slow diffusion of a mixture $\mathrm{Et}_{2} \mathrm{O} / n$-hexane into a toluene solution of $\mathbf{5 b}(1: 1: 1)$.

Synthesis of $\left[\operatorname{Pd}\left(\boldsymbol{N}^{1}, \boldsymbol{C}^{\mathbf{1}} \mathbf{- L}\right) \mathbf{C l}(\mathbf{C N X y})\right](\mathbf{6 a})$. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1}$ ($44.5 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was added $\mathrm{XyNC}(16.7 \mathrm{mg}, 0.13 \mathrm{mmol})$ and the resulting pale yellow solution was stirred for 30 min and concentrated (1 mL). Addition of n-pentane (4 mL) gave a suspension; the solid was filtered off, washed with n pentane and air-dried to give a mixture $(56.2 \mathrm{mg})$ of $\mathbf{6 a}, \mathbf{1}, \mathbf{4 a}(85: 9: 6)$ with traces of XyNC that could not be separated. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 a}: \delta 8.06(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3\right.$ or $\left.5,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5$ or $\left.3,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.26-7.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Xy}), 3.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.27(\mathrm{~s}, 6$ H, OMe), 2.49 (s, 6 H, Me, Xy), 2.03 (s, 3 H, Me).

Synthesis of $\left[\mathbf{P d}\left(\boldsymbol{N}^{1}, \boldsymbol{C}^{\mathbf{1}} \mathbf{- L}\right) \mathbf{C l}\left(\mathbf{C N}{ }^{t} \mathbf{B u}\right)\right](\mathbf{6 b})$. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1}$ ($30.2 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was added ${ }^{\mathrm{t}} \mathrm{BuNC}(400 \mu \mathrm{~L}$ of a 226.2 mM CHCl_{3} solution, 0.09 mmol). The resulting pale yellow solution was stirred for 20 min and concentrated (1 mL). Addition of n-pentane (4 mL) gave a suspension; the solid was filtered off, washed with n-pentane and air-dried to give a mixture (32.1 mg) of $\mathbf{6 b}$, $\mathbf{1}$ and $\mathbf{4 b}(84: 7: 9)$ with traces of ${ }^{\text {B BuNC }}$ that could not be separated. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 b}: \delta 8.02\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3\right.$ or $5,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$ $\left.\mathrm{Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5\right.$ or $\left.3,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 3.27(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 3.24 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$), 1.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.55 ($\mathrm{s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$).

Synthesis of $\left.\left[\mathbf{P d}\left(\boldsymbol{O}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{1}}, \boldsymbol{C}^{\mathbf{2}} \mathbf{- L x y}\right) \mathbf{C l}\right] \mathbf{(7 a)}\right)$ To a solution of $\mathbf{1}(104.6 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was added $\mathrm{XyNC}(47.1 \mathrm{mg}, 0.36 \mathrm{mmol})$. The pale yellow solution was stirred for 10 days to give a orange solution that was concentrated to dryness. The resulting solid was purified by preparative TLC chromatography using silica gel (70-200 mm) with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(7: 1)$ as eluent. The yellow fraction at $R_{\mathrm{f}}=$ 0.26 was collected and extracted with acetone ($3 \times 20 \mathrm{~mL}$) to give a solution, which was concentrated to dryness. The residue was stirred with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and n-pentane (8 $\mathrm{mL})$. The suspension was filtered, the solid washed with n-pentane and air-dried to give 7a as an orange solid. Yield: $98.3 \mathrm{mg}, 68 \%$. Mp: $180^{\circ} \mathrm{C}$ dec. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3321$, $v\left(\mathrm{C}=\mathrm{N}\right.$, py) 1609, $v(\mathrm{C}=\mathrm{O}) 1566, v(\mathrm{C}=\mathrm{NH}) 1504, v(\mathrm{PdCl}) 334 .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 8.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 8.15(\mathrm{t}, 1$ $\left.\mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.59\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.13-7.03(\mathrm{~m}, \mathrm{ABC}$ system, 3 H, Xy), 4.67 (s, 1 H, H1), 3.47 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{MeO}$), 2.25 (s, 6H, Me, Xy) 1.92 (s , 3H, Me). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.45 MHz, CDCl_{3}): $\delta 181.9(\mathrm{CO}), 164.9(\mathrm{C} 2), 158.2(\mathrm{C} 7)$, 150.5 (C8), 140.0 (C4), 138.2 (C-N, Xy), 135.0 (o-C(Xy)), 128.3 ($m-C(\mathrm{Xy})$), 127.5 ($p-$ $C(\mathrm{Xy})$), 126.2 (C3), 124.7 (C5), 108.5 (C6), 93.5 (C1), 52.2 (MeO), 26.3 (Me), 18.3 (Me, Xy). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{ClPd}: \mathrm{C}, 49.91 ; \mathrm{H}, 4.82$; N, 5.82. Found: C, 49.91; H, 5.03; N, 5.74. Single crystals of 7a were obtained by slow diffusion of n pentane into a CHCl_{3} solution of $7 \mathbf{7 a}$.

Synthesis of $\left.\left[\mathbf{P d}\left(\boldsymbol{O}^{\mathbf{1}}, \boldsymbol{N}^{\mathbf{1}}, \boldsymbol{C}^{\mathbf{2}} \mathbf{- L B u}\right) \mathbf{C l}\right] \mathbf{(7 b}\right)$. To a solution of $\mathbf{1}(69.6 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was added ${ }^{\mathrm{t}} \mathrm{BuNC}\left(924 \mu \mathrm{~L}, 226.2 \mathrm{mM} \mathrm{CHCl}_{3}\right.$ solution, 0.21 mmol). The yellow solution was refluxed for 16 h and the resulting solution was
concentrated to dryness. The resulting solid was purified by means of silica gel (70-200 mm) preparative TLC chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ (3:1) as eluent. The yellow fraction at $R_{\mathrm{f}}=0.14$ was collected and extracted with acetone ($3 \times 20 \mathrm{~mL}$) and the solution was concentrated to dryness. The residue was stirred with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and n pentane (8 mL). The suspension was filtered, the solid washed with n-pentane and airdried to give 7b as a yellow solid. Yield: $79.8 \mathrm{mg}, 89 \%$. Mp: $172-173^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{NH}) 3334, v\left(\mathrm{C}=\mathrm{N}\right.$, py) 1607, $v(\mathrm{C}=\mathrm{O}) 1560, v(\mathrm{C}=\mathrm{NH}) 1534, v(\mathrm{PdCl}) 321 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 8.13(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4$, $\left.{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.63(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.55\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right)$, 5.17 (br, $1 \mathrm{H}, \mathrm{H} 1$), 3.41 (s, 6H, MeO), 1.88 (s, 3H, Me), 1.42 (s, 9H, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.81 MHz, CDCl 3): $\delta 180.8$ (br, CO), 164.8 (br, C2), 158.0 (C7), 150.6 (C8), 139.9 (C4), 126.0 (C3), 124.5 (C5), 108.0 (C6), 94.2 (C1), 55.6 (CMe3), 52.1 (MeO), 29.1 (CMe3), 26.1 (Me). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{ClPd}$: C, 42.59 ; H, 5.58; N, 6.20. Found:C, 42.70; H, 5.35; N, 6.35.

Synthesis of trans-[Pd($\left.\left.\boldsymbol{C}^{2}-\mathbf{L x y}\right) \mathbf{C l}(\mathbf{C N X y})_{2}\right] \cdot \mathbf{1} / \mathbf{4 C H C l} 3(8 a)$. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $7 \mathrm{a}(50.7 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ was added $\mathrm{XyNC}(29.0 \mathrm{mg}, 0.22$ mmol). The solution was stirred for 5 min and concentrated to dryness. The resulting residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and n-pentane was added. The suspension was filtered, the solid washed with n-pentane and air-dried to give 8a as a pale yellow solid. Yield: $69.2 \mathrm{mg}, 85 \% . \mathrm{Mp}: 125-126^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{~N} \equiv \mathrm{C}) 2175, v(\mathrm{C}=\mathrm{O}) 1567, v(\mathrm{PdCl}) 285$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.68$ (br, $1 \mathrm{H}, \mathrm{NH}$), 8.12 (dd, $1 \mathrm{H}, \mathrm{H} 3,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}$, $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.80\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.72\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=\right.$ 1.2 Hz), 7.22 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 1$), 7.25-6.95 (m, 9H, Xy), 3.19 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{MeO}$), 2.37 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$, $\left.\mathrm{Xy}^{\mathrm{i}}\right), 2.32\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}^{\mathrm{c}}\right), 1.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 180.1 (C2), 178.5 (CO), 158.9 (C7), 155.5 (C8), 141.4 (br, $\mathrm{C} \equiv \mathrm{N}$), 141.5 ($C_{\mathrm{ipso}}, \mathrm{Xy}^{1}$),
136.6 (C4), 136.2 (o-C, Xy ${ }^{\mathrm{c}}$), 134.7 ($\left.o-\mathrm{C}, \mathrm{Xy}^{\mathrm{i}}\right)$, 130.3 ($p-\mathrm{C}, \mathrm{Xy}^{\mathrm{c}}$), 128.4 ($m-\mathrm{C}, \mathrm{Xy}^{\mathrm{i}}$), 128.0 ($m-\mathrm{C}, \mathrm{Xy}^{\mathrm{c}}$), 126.7 ($\mathrm{p}-\mathrm{C}, \mathrm{Xy}^{\mathrm{i}}$), 122.3 (C5), 120.9 (C3), 102.5 (C1), 101.8 (C6), 49.0 (OMe), $23.2(\mathrm{Me}), 19.3\left(\mathrm{Me}, \mathrm{Xy}^{\mathrm{i}}\right), 18.7\left(\mathrm{Me}, \mathrm{Xy}^{\mathrm{c}}\right)$. Anal. Calcd for $\mathrm{C}_{38.25} \mathrm{H}_{41.25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{1.75} \mathrm{Pd}: \mathrm{C}, 59.40 ; \mathrm{H}, 5.38 ; \mathrm{N}, 7.24$. Found: C, 59.44; H, 5.13; N, 7.50.

Synthesis of trans-[Pd($\left.\left.\boldsymbol{C}^{2}-\mathbf{L x y}\right) \mathbf{C l}\left(\mathbf{C N}^{t} \mathbf{B u}\right)_{2}\right] \cdot \mathbf{1} / \mathbf{4} \mathbf{C H C l}_{3}(\mathbf{8 b})$. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 7b ($24.8 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was added 'BuNC ($531 \mu \mathrm{~L}, 226.2$ $\mathrm{mM}, 0.12 \mathrm{mmol}$). The solution was stirred for 5 min at $0^{\circ} \mathrm{C}$ and concentrated to dryness. The resulting residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and n-pentane was added. The suspension was filtered, the solid washed with n-pentane and air-dried to give $\mathbf{8 b}$ as a pale yellow solid. Yield: $32.6 \mathrm{mg}, 91 \%$. Mp: $127-128{ }^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{~N} \equiv \mathrm{C}) 2208$, $v(\mathrm{C}=\mathrm{O}) 1538, v(\mathrm{PdCl}) 290 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.96(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 8.02$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right.$) , $7.75\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.65(\mathrm{dd}, 1$ $\left.\mathrm{H}, \mathrm{H} 3,{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{JHH}^{2}=1.2 \mathrm{~Hz}\right), 6.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 1), 3.21(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeO}), 1.75(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 1.64\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{i}}\right), 1.45\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{c}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 178.3 (CO), 176.0 (C2), 158.6 (C7), 156.3 (C8), 136.4 (C4), 130 (m, C=N), 121.8 (C3), 120.5 (C5), 101.9 (C6), 99.1 (C1), 58.5 (CNH), $53.0\left(\mathrm{CMe}_{3}{ }^{\mathrm{c}}\right), 49.1(\mathrm{MeO}), 31.3(\mathrm{Me}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{i}}\right), 29.8\left(\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{c}}\right), 23.3(\mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{26.25} \mathrm{H}_{41.25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{1.75} \mathrm{Pd}: \mathrm{C}, 50.10 ; \mathrm{H}$, 6.61; N, 8.90. Found: C, 49.89; H, 6.57; N, 9.19.

Synthesis of $\left[\mathbf{P d}\left(\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{C}^{\mathbf{1}} \mathbf{- L}\right)(\boldsymbol{O}, \boldsymbol{O}\right.$-acac) $) \mathbf{(9)}$. To a solution of $\mathbf{1}(39.7 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(8 \mathrm{~mL}), \mathrm{Tl}(\mathrm{acac})^{18}(34.3 \mathrm{mg} ; 0.11 \mathrm{mmol})$ was added. The suspension was filtered through Celite, and the filtrate was concentrated to dryness. The residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and n-pentane (7 mL). The crystals were filtered off, washed with n-pentane and air-dried to give 9 as a yellow solid. Yield: $44.6 \mathrm{mg}, 96 \%$. Mp: 159-160 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}) 1673, v\left(\mathrm{CO}\right.$, acac) $1579,1515 .{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.75\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}\right.$
$=1.6 \mathrm{~Hz}), 7.64\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 5.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{acac}), 3.43$
(s, $2 \mathrm{H}, \mathrm{H} 1), 3.25(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 1.92(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{acac}), 1.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz, CDCl_{3}): $\delta 192.9$ (br, CO), 186.8 (br, CO, acac), 185.3 (br, CO, acac), 163.3 (C7), 160.3 (C8), 139.4 (C4), 124.8 (C5), 120.2 (C3), 101.2 (C6), 99.6 (CH, acac), 49.3 (OMe), 40.5 (C1), 27.2 (br, Me, acac), 26.7 (br, Me, acac), 24.4 (Me). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO} 5 \mathrm{Pd}$: C, 46.44 ; H, 5.12; N, 3.39. Found: C, 46.32; H, 5.01; N, 3.44

Synthesis of $\left[\mathbf{P d}\left(\boldsymbol{C}^{\mathbf{1}} \mathbf{- L}\right) \mathbf{C l}(\mathbf{b p y})\right](\mathbf{1 0})$. To a solution of $\mathbf{1}(17.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ in acetone (4 mL), bpy ($8.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added. After stirring for 20 min , the suspension was filtered and the resulting yellow solid was washed with acetone and airdried to give 10. Yield: $21.2 \mathrm{mg}, 82 \%$. Mp: $224-225^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}) 1608$, $v(\mathrm{CN}) 1580, v(\mathrm{PdCl}) 336 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.58\left(\mathrm{~d}, 1 \mathrm{H}\right.$, bpy, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5$ $\mathrm{Hz}), 9.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{bpy},{ }^{3} J_{\mathrm{HH}}=5 \mathrm{~Hz}\right), 8.05(\mathrm{~m}, 3 \mathrm{H}$, bpy +1 H, py), $7.94(\mathrm{~d}, 1 \mathrm{H}$, py, $\left.{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.76\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{bpy}), 7.52\left(\mathrm{t}, 1 \mathrm{H}\right.$, bpy, ${ }^{3} J_{\mathrm{HH}}=$ $5 \mathrm{~Hz}), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.15(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeO}), 1.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{ClPd}: \mathrm{C}, 49.82 ; \mathrm{H}, 4.38$; N, 8.30. Found: C, 49.94; H, 4.41; N, 8.23.

Synthesis of $\left[\mathbf{P d}\left(\boldsymbol{C}^{\mathbf{1}} \mathbf{- L}\right) \mathbf{C l}(\mathbf{d b b p y})\right] \cdot \mathbf{1 / 2} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{1 1})$. To a solution of $\mathbf{1}(61.8 \mathrm{mg}$, $0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, dbbpy ($4,4^{\prime}$ '-di-tert-butyl-2, 2^{\prime} '-bipyridine, $47.5 \mathrm{mg}, 0.18$ mmol) was added. The resulting solution was stirred (5 min) and concentrated (1 mL). Addition of n-pentane (8 mL) gave a suspension that was cooled in the fridge $\left(-4^{\circ} \mathrm{C}\right)$ for 30 min , and filtered. The solid was washed with n-pentane and air-dried to give $\mathbf{1 1}$ as a pale yellow solid. Yield: $104.1 \mathrm{mg}, 94 \% . \mathrm{Mp}: 218-219^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}) 1642$, $v(\mathrm{CN}) 1614,1583,1545, v(\mathrm{PdCl}) 337 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.54(\mathrm{~d}, 1 \mathrm{H}$, dbbpy, ${ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz}$), $9.04\left(\mathrm{~d}, 1 \mathrm{H}\right.$, dbbpy, ${ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz}$), $7.99\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{dbbpy},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{dbbpy},{ }^{4} \mathrm{JHH}_{\mathrm{H}}=2 \mathrm{~Hz}\right), 7.73(\mathrm{t}$,
$1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}$), $7.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2 \mathrm{~Hz}\right.$), $7.66(\mathrm{dd}$, 1 H , dbbpy, $\left.{ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.43\left(\mathrm{dd}, 1 \mathrm{H}\right.$, dbbpy, $\left.{ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right)$, $3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeO}), 1.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.45\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.39(\mathrm{~s}, 9 \mathrm{H}$, $\left.{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz, CDCl_{3}): $\delta 205.8(\mathrm{CO}), 163.6$ (C, dbbpy), 163.2 (C, dbbpy), 158.7 (C7), 157.1 (C8), 156.3 (C, dbbpy), 153.9 (C, dbbpy), 151.9 (CH, dbbpy), 149.2 (CH, dbbpy), 136.4 (C4), 124.2 (CH, dbbpy), 123.2 (CH, dbbpy), 122.8 (C3), 121.3 (C5), 118.4 (CH, dbbpy), 117.6 (CH, dbbpy), 101.9 (C6), 49.2 (MeO), 35.4 (CMe3), 30.3 (CMe_{3}), 30.2 (CMe3), 23.7 (Me), 21.3 (C1). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3.5} \mathrm{ClPd}: \mathrm{C}, 55.51 ; \mathrm{H}, 6.26 ; \mathrm{N}, 6.70$. Found: C, $55.68 ; \mathrm{H}, 6.26 ; \mathrm{N}, 6.63$.

Synthesis of $\left[\mathbf{P d}\left(\boldsymbol{N}^{\mathbf{1}}, \boldsymbol{C}^{\mathbf{1}}-\mathbf{L}\right) \mathbf{C l}(\mathbf{P P h} 3)\right](\mathbf{1 2})$. To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $\mathbf{1}(35.4$ $\mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(26.5 \mathrm{mg}, 0.10 \mathrm{mmol})$. The resulting yellow solution was stirred for 20 min and concentrated (1 mL). Addition of $\mathrm{Et}_{2} \mathrm{O}$ (5 mL) gave a suspension; the solid was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and air-dried to give a mixture (60.9 mg) of $\mathbf{1 2}, \mathbf{1}$ and $\mathbf{1 3}(90: 5: 5)$ that could not be separated. NMR data of 12: ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3$ or H5, $\left.{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.76-7.41\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H} 5\right.$ or $\left.\mathrm{H} 3+\mathrm{PPh}_{3}\right), 3.30(\mathrm{br}, 6$ $\mathrm{H}, \mathrm{OMe}), 2.89$ (br, $2 \mathrm{H}, \mathrm{H} 1$), 2.03 (s, $3 \mathrm{H}, \mathrm{Me}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 36.8 (s).

Synthesis of trans-[Pd(C1-L)Cl(PPh$\left.)_{2}\right](\mathbf{1 3})$. To a cooled solution $\left(0^{\circ} \mathbf{C}\right)$ of $\mathbf{1}$ ($59.3 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL) was added PPh_{3} ($90.6 \mathrm{mg}, 0.35 \mathrm{mmol}$). The resulting yellow solution was stirred for 10 min and concentrated (1 mL). Addition of $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and n-pentane (8 mL) gave a suspension; the solid was filtered off, washed with n-pentane and air-dried to give $\mathbf{1 3}(140.3 \mathrm{mg})$ contamined with a product containing PPh_{3} that we could not remove. NMR data of $\mathbf{1 3}:{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $7.94\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.82\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3\right.$ or $\left.\mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right)$,
7.80-7.40 (m, 16 H, H5 or H3 + PPh3), 3.45 (br, $2 \mathrm{H}, \mathrm{H} 1$), 3.20 (br, $6 \mathrm{H}, \mathrm{OMe}$), 1.68 (s, $3 \mathrm{H}, \mathrm{Me}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 23.8$ (s).

Synthesis of $\mathbf{C}_{5} \mathbf{H}_{3} \mathbf{N}\{\mathbf{C}(\mathbf{O}) \mathbf{M e}-2\}\left\{\mathbf{C}(\mathbf{O M e})_{2} \mathbf{M e}-6\right\}(14)$. To a solution of $\mathbf{1}$ (15.2 $\mathrm{mg}, 0.04 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ in a NMR tube $\mathrm{PPh}_{3}(57.7 \mathrm{mg}, 0.22 \mathrm{mmol})$ was added. After 5 min at room temperature, a ${ }^{1} \mathrm{H}$ NMR spectrum was recorded showing signals that we assign to 14 . In addition, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR showed resonances due to $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ and its dissociation products $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and $\mathrm{PPh}_{3} .14$ could not be purified by recrystallization becuase of the excess of PPh_{3}; TLC chromatography in silica gel led to hydrolysis to give dap. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 14: $\delta 7.94$ (dd, $1 \mathrm{H}, \mathrm{H} 3$ or H 5 , $\left.{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1 \mathrm{~Hz}\right), 7.85\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 5\right.$ or $\left.\mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1 \mathrm{~Hz}\right), 7.80$ $\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 3.21(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 2.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$.

X-ray Structure Determinations. Complexes 2, 5a, 6a and 7a were measured on a Bruker Smart APEX diffractometer and 1 on an Oxford Diffraction Nova O diffractometer. Data were collected in ω scan mode using monochromated Mo $K \alpha$ radiation for $\mathbf{2 , 5 a}, \mathbf{6 a}$ and $7 \mathbf{a}$ and mirror-focussed $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.54184 \AA)$ for 1. Absorption corrections were applied on the basis of multiscans (program SADABS for 2, 5a, 6a and 7a and CrysAlis RED for 1). All structures were refined anisotropically on F^{2} using the program SHELXL-97. ${ }^{19} \mathrm{NH}$ hydrogens were refined freely, but with a DFIX restraint to the NH distance in $\mathbf{5 b}$. The ordered methyl groups were refined as rigid groups (AFIX 137), and the other hydrogens were refined using a riding model. Special features and exceptions: for complex 5b the absolute structure parameter is $-0.006(16) .{ }^{20}$ The $\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}$ group of one of the molecules is disordered over two positions, (ca 67:33\%).

Results and Discussion

Reactions of 2,6-Diacetylpyridine with Palladium Compounds. Numerous attempts to prepare ketonyl palladium complexes derived from 2,6-diacetylpyridine (dap) failed. Thus, by reacting dap with the usual starting palladium(II) compounds $\left(\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right], \quad \mathrm{PdCl}_{2}, \quad\left[\mathrm{PdCl}_{2}(\mathrm{NCMe})_{2}\right], \quad\left(\mathrm{NMe}_{4}\right)_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]\right)$, using various solvents ($\mathrm{Me} 2 \mathrm{C}(\mathrm{O}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, \mathrm{MeCN}$) and reaction temperatures, in the absence of a base or adding $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{Tl}_{2}\left(\mathrm{CO}_{3}\right)$ or $\mathrm{K}^{\dagger} \mathrm{BuO}$, led to decomposition or complex mixtures. We interpreted these negative results in terms of the low coordinative capacity of dap, in turn attributable to the electron-withdrawing character of both ortho acetyl substituents. It is well-known that coordination to the metal of a ligand with a strong donor atom assists the required $\mathrm{C}-\mathrm{H}$ activation that affords a metalated complex of such a ligand. Indeed, a limited number of metal complexes with the dap ligand have been isolated ${ }^{12,21,22}$ and the only reported crystal structure of a dap complex, $[\operatorname{Ag}(O, N, O-$ dap $\left.)_{2}\right]^{2+}$, shows that the $\mathrm{Ag}-\mathrm{N}$ bond distances are much longer $(2,316(6) \AA$) than those in $\left.[\mathrm{Ag}(\mathrm{py}))_{2}\right]^{+}(2,126(4)$ and $2,133(4) \AA) .{ }^{22}$

Finally, the only succesful result was obtained by reacting dap and $\mathrm{PdCl}_{2}(1: 1)$ in refluxing MeOH , which gave a mixture of the pincer complex $\left[\mathrm{Pd}\left(O^{1}, N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}\right]$ (1), where L is the monoanionic ligand resulting from deprotonation of the acetyl methyl group of the monoketal of dap (Scheme 2), and $(\mathrm{QH})_{2}\left[\mathrm{PdCl}_{2}(\mu-\mathrm{Cl})\right]_{2}$ (2) (Scheme 2), where QH is the diketal of Hdap ${ }^{+}$. This mixture could be separated on the basis of the different solubility of its components in CHCl_{3}. The yield of $\mathbf{1}$ was improved (69%, based on the stoichiometry shown in Scheme 2) in the presence of NEt_{3} in the molar ratio $\mathrm{Pd}: \mathrm{dap}_{\mathrm{NE}} \mathrm{NE}_{3}=1: 1: 0.4$. An increase in the amount of $\mathrm{NEt}{ }_{3}$ caused decomposition to palladium metal, decreasing the yield of $\mathbf{1}$ and increasing that of $\mathbf{2}$. Probably, the increase in the coordination ability of the pyridine N , resulting from the
transformation of one acetyl group into its ketal, favors the deprotonation of the other acetyl.

Scheme 2

The 1:2 reaction between 2 and NEt_{3} at room temperature in MeOH for 1 day gives the diketal of dap, $\mathrm{Q}=\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left\{\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}\right\}_{2}-2,6(\mathbf{3}$; Scheme 2), in 93% yield. The synthesis of this compound has not been reported and our attempts to synthesize it using para-toluenesulfonic acid as catalyst were unfruitful. When the reaction was carried out using an excess of NEt_{3}, impure $\mathbf{3}$ was obtained. This compound is soluble in organic solvents and is stable in the solid state and in solution.

Reactions of 1 with Isocyanides. Complex 1 reacts with one equiv of isocyanide RNC to give $\left[\operatorname{Pd}\left(O^{1}, N^{1}, C^{2}-\mathrm{LR}\right) \mathrm{Cl}\right](\mathrm{R}=\mathrm{Xy}(7 \mathbf{a}), \mathrm{Bu}(7 \mathbf{b})$; Scheme 3). These reactions are slow at room temperature; complex 7b was better prepared in refluxing CHCl_{3}, but 7 a had to be prepared at room temperature over 10 days because refluxing in $\mathrm{CHCl}_{3}(1.5 \mathrm{~h})$ led to mixtures, whose main component was the $\mathrm{Pd}(\mathrm{I})$ complex $\left[\mathrm{PdCl}(\mathrm{CNXy})_{2}\right]_{2}$. We have reported a similar behavior when studying the reactivity of $\left[\mathrm{Pd}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}\right\} \mathrm{Cl}\right]_{\mathrm{n}}$ toward isocyanides. ${ }^{5}$ Formation of 7 probably occurs through (1) coordination of the isocyanide to give $\left[\operatorname{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}(\mathrm{CNR})\right]$ (\mathbf{X}; Scheme 3), (2) insertion into the $\mathrm{Pd}-\mathrm{C}$ bond of the isocyanide ligand (\mathbf{Y}) and (3) an iminoacyl to β -
ketoenamine tautomerization to give 7 . The reaction of 7 with two equiv of isocyanide at $0^{\circ} \mathrm{C}$ afforded trans- $\left[\mathrm{Pd}\left(C^{2}-\mathrm{LR}\right) \mathrm{Cl}(\mathrm{CNR})_{2}\right]\left(\mathrm{R}=\mathrm{Xy}(\mathbf{8 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{8 b})\right)$

Scheme 3

The reaction of $\mathbf{1}$ with two equiv of isocyanide at $0^{\circ} \mathrm{C}(5 \mathrm{~min}$ for $\mathrm{R}=\mathrm{Xy}, 20 \mathrm{~min}$ for $\left.\mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}\right)$ allowed us to isolate trans-[Pd($\left.\left.C^{1}-\mathrm{L}\right) \mathrm{Cl}(\mathrm{CNR})_{2}\right]\left(\mathrm{R}=\mathrm{Xy}(\mathbf{4 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{4 b})\right.$; Scheme 4). ${ }^{1} \mathrm{H}$ NMR investigations of the reaction at $25{ }^{\circ} \mathrm{C}$ indicated formation of 4 and its decomposition into an unknown compound, which is the main product, along with minor amount of $\mathbf{7}, \mathbf{8},\left[\mathrm{PdCl}(\mathrm{CNR})_{2}\right]_{2}$ (faster in the case of 4a). Preparative reactions at $25{ }^{\circ} \mathrm{C}$ led to the isolation of the above-mentioned main product $\left[\mathrm{Pd}\left(O^{2}, C^{2}-\right.\right.$ $\left.\left.\mathrm{L}_{\mathrm{R}}\right)\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Cl}\right](\mathbf{5 b})$, whereas the corresponding product with $\mathrm{XyNC}(\mathbf{5 a})$ could only be isolated in impure form, contaminated by 7a and 8a (81:15:4). Transformation of complex $\mathbf{4}$ into 5 probably also proceeds through an insertion/tautomerization process.

Scheme 4

Reaction Pathways. 1:1 Reactions. Attempts to isolate intermediates in the
synthesis of 7 (Scheme 3) were also carried out. Thus, complex 1 was reacted at $0^{\circ} \mathrm{C}$ with one equiv of isocyanide, allowing the isolation of the postulated intermediate \mathbf{X} (Scheme 3), $\left[\operatorname{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}(\mathrm{CNR})\right]$ (Scheme 5, $\mathrm{R}=\mathrm{Xy}(6 \mathbf{a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{6 b})$), which reacts with isocyanide to afford $\mathbf{4}$, leaving the corresponding amount of $\mathbf{1}$ unreacted (85:9:6 isolated molar ratios). It can be concluded that the reaction $\mathbf{6} \rightarrow \mathbf{4}$ is faster than $\mathbf{1} \rightarrow \mathbf{6}$. Therefore, the final result of the $1: 1$ reaction at $0^{\circ} \mathrm{C}(\mathbf{1}+\mathbf{6}+\mathbf{4})$ differs from that at room temperature ($\mathbf{7}+$ minor amounts of other complexes). The 10 day reaction of $\mathbf{1}$ with one equiv of XyNC at $25^{\circ} \mathrm{C}$ was monitored by ${ }^{1} \mathrm{H}$ NMR, showing initial formation of $\mathbf{6 a}$ along with minor amounts of $\mathbf{4 a}$ (Scheme 5), later with formation of traces of 5a and 8a and a decrease of concentration of $\mathbf{6 a}$ and $\mathbf{4 a}$. Through the 10 day period the concentration of $\mathbf{7 a}$ increased and that of $\mathbf{1}$ remained constant (approx 4% of the initial concentration).

Scheme 5

2:1 Reactions. $\mathbf{4}$ is a key product that forms at low and room temperatures and in 1:1 or 2:1 reactions. $\mathrm{A}^{1} \mathrm{H}$ NMR study of the behavior of $\mathbf{4 a}$ at $25^{\circ} \mathrm{C}$ in CDCl_{3} showed that it decomposed partially to give 6a, the concentration of which varied with time but decreased finally to zero along with $\mathbf{4 a}$ (after 2 days). Formation of complexes 5a, 7a and 8a was observed later than $\mathbf{6 a}$ but, while the amounts of $\mathbf{5 a}$ and $\mathbf{8 a}$ increased over

48 h and 25 min , respectively, and then decreased, the amount of 7a increased continously. Perhaps the decomposition of 8a to the $\mathrm{Pd}(\mathrm{I})$ complex $\left[\mathrm{PdCl}(\mathrm{CNXy})_{2}\right]_{2}$ (a radical mechanism might reasonably be assumed) could explain the concentration decrease of 5a and 8a (Scheme 4). In fact, a ${ }^{1} \mathrm{H}$ NMR study of the behavior of $\mathbf{8 a}$ at 25 ${ }^{\circ} \mathrm{C}$ in CDCl_{3} showed that it decomposed after 5 days to $\left[\mathrm{PdCl}(\mathrm{CNXy})_{2}\right]_{2}$ ($\mathbf{8 a}:\left[\mathrm{PdCl}(\mathrm{CNXy})_{2}\right]_{2}$ molar ratio is 4 ; minor amounts of $\mathbf{5 a}$ and traces of $\mathbf{7 a}$ were also observed). This can explain why the attempt to prepare 7a by refluxing a 1:1 mixture of 1 and XyNC , gave mainly $\left[\operatorname{PdCl}(\mathrm{CNXy})_{2}\right]_{2}$. Complex 4b behaves similarly but all processes were much slower. Thus, after 4 days the $\mathbf{4 b}: \mathbf{6 b}: \mathbf{7 b}: \mathbf{5 b}: \mathbf{8 b}$ molar ratios are 3:0:4:88:5.

Reactions of $\left[\mathbf{P d}\left(O^{1}, N^{1}, C^{1}-L\right) C l\right](1)$ with \mathbf{P}-, \mathbf{N} - or O-donor Ligands. The reaction of complex 1 with PPh_{3} gave similar results to that with isocyanides. Thus, at 0 ${ }^{\circ} \mathrm{C}$ the equimolecular reaction led to the expected product $\left[\mathrm{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)\right]$ (12) along with $1(5 \%)$ and trans- $\left[\mathrm{Pd}\left(C^{1}-\mathrm{L}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right](13)(5 \%)$ (Scheme 4). This prevented the isolation of pure 12. The reaction with two equivalents of PPh_{3} gave complex 13 but it could not be obtained in an analytically pure form because traces of an impurity containing PPh_{3} could not be separated. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture obtained from 1 and an excess of PPh_{3} (1:5.5) showed, almost instantly, the presence of a mixture of the monoketal of dap, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\{\mathrm{C}(\mathrm{O}) \mathrm{Me}-2\}\left\{\mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}-6\right\}$ (14), $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ and its dissociation products $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and PPh_{3} as well as traces of dap. This was formed by hydrolysis of $\mathbf{1 4}$, because the traces of water initially observed in the spectrum disappeared. The excess of PPh_{3} (5.5:1) precluded separation of the mixture by recrystallization, and TLC chromatography using silica gel led to the hydrolysis of $\mathbf{1 4}$ to give dap.

Complex 1 reacted with 2,2'-bipyridine (bpy) or 4,4'-di-tert-butyl-2,2'-
bipyridine (dbbpy) to afford the adducts $\left[\mathrm{Pd}\left(C^{1}-\mathrm{L}\right) \mathrm{Cl}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ bpy (10), dbbpy (11)) (Scheme 4) and with $[\mathrm{Tl}(\mathrm{acac})]$ to give $[\mathrm{Pd}(\mathrm{L})(\mathrm{acac})]$ (9).

Scheme 6

Crystal Structures. The crystal structures of complexes 1 (Figures 1 and 2), $\mathbf{2}$ (Figures 3 and 4), 5b (Figure 5), 6a (Figures 6 and 7) and 7a (Figures 8 and 9) have been determined (Table 1). All show a nearly square-planar coordination around the palladium atom. Crystals apparently suitable for an X-ray crystallographic study were selected for 5a. Although a complete crystallographic analysis was not possible, because of severely disordered methoxy groups, the position of the ligands was established with certainty to be that indicated in Scheme 3.

In complex 1 (Figure 1), the three rings of the coordinated pincer ligand are almost coplanar, being the angle between the mean planes of the py ring and the palladacycles PdNCCO and $\operatorname{PdNCC}(\mathrm{O}) \mathrm{C}$ of 3.9° and 2.6°, respectively. The molecules are connected by $\mathrm{Pd} \cdots \mathrm{Pd}(3.3460(3) \AA$) and $\mathrm{Pd} \cdots \mathrm{Cl}(3.9016(6) \AA$) contacts (van der Waals radii of Pd: $2.05 \AA$ and $\mathrm{Cl}: 1.8 \AA^{23}$) giving dimers that form layers via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Figure 2).

Figure 1. Ellipsoid representation of 1 (50% probability). Selected bond lengths (A) and angles (deg): Pd-N 1.9752(19), $\mathrm{Pd}-\mathrm{C}(1)$ 2.000(2), $\mathrm{Pd}-\mathrm{O}(1)$ 2.2149(16), $\mathrm{Pd}-\mathrm{Cl}$ 2.3040(5), $\mathrm{Pd}-\mathrm{Pd} \# 1$ 3.3460(3), $\mathrm{O}(3)-\mathrm{C}(2) 1.217(3), \mathrm{C}(1)-\mathrm{C}(2) 1.497(3), \mathrm{C}(2)-\mathrm{C}(3)$ 1.499(3), N-Pd-C(1)83.85(9), N-Pd-O(1) 76.32(7), C(1)-Pd-Cl 96.63(7), O(1)-Pd-Cl 103.03(4).

Figure 2. Packing diagram showing $\mathrm{Pd} \cdots \mathrm{Pd}$ and $\mathrm{Pd} \cdots \mathrm{Cl}$ contacts (thin dashed bonds), and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (thick dashed bonds) in complex $\mathbf{1}$.

In complex 2 (Figure 3), the $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anion lies across an inversion center with each palladium atom in a square-planar enviroment. The geometrical parameters of the anion agree with those found in other $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]^{2-}$ salts. ${ }^{24}$ Anions and cations are
connected by hydrogen bonds between terminal Cl atoms of the anion and Me and MeO groups of cations (Figure 4).

Figure 3. Ellipsoid representation of 2 (50% probability). Selected bond lengths (\AA) and angles $(\operatorname{deg}): ~ P d(1)-\mathrm{Cl}(3)=2.2750(6), \operatorname{Pd}(1)-\mathrm{Cl}(2)=2.2798(6), \operatorname{Pd}(1)-\mathrm{Cl}(1)=$ $2.3259(6), \operatorname{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})=2.3287(6), \mathrm{N}(1)-\mathrm{C}(5)=1.344(3), \mathrm{N}(1)-\mathrm{C}(1)=1.353(3)$, $\mathrm{O}(1)-\mathrm{C}(6)=1.410(3), \mathrm{O}(2)-\mathrm{C}(6)=1.405(3), \mathrm{O}(3)-\mathrm{C}(10)=1.415(2), \mathrm{O}(4)-\mathrm{C}(10)=$ $1.407(3), \mathrm{C}(1)-\mathrm{C}(6)=1.526(3), \mathrm{C}(5)-\mathrm{C}(10)=1.525(3), \mathrm{Cl}(3)-\mathrm{Pd}(1)-\mathrm{Cl}(2)=92.25(2)$, $\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=91.53(2), \mathrm{Cl}(3)-\mathrm{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})=91.04(2), \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})=$ $85.26(2), \operatorname{Pd}(1)-\mathrm{Cl}(1)-\mathrm{Pd}(1 \mathrm{~A})=94.735(19), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)=117.27(19), \mathrm{N}(1)-\mathrm{C}(5)-$ $\mathrm{C}(10)=118.56(19), \mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(5)=104.23(16)$.
ख

囚

Figure 4. Packing diagram showing the hydrogen bonds between terminal Cl atoms of
the anion and Me and MeO groups of cations in complex 2.
In $\mathbf{5 b}$ (Figure 5), two crystallographically independent molecules are present in the unit cell with a strong intermolecular Pd-Pd interaction (3.1652(3) $\AA)^{23}$ within the asymmetric unit. The angle between the coordination planes of these two molecules is 6.6°. In $6 \mathbf{a}$ (Figure 6), the metal is in a very distorted square planar coordination; the mean deviation from the coordination plane is $0.12 \AA$, with the CH_{2} carbon $0.16 \AA$ and the chlorine atom $0.13 \AA$ out of this plane. This distortion might be attributable to the steric hindrance of the uncoordinated ortho substituent. The chlorine atom lies $+1.911 \AA$ and $C(9)-0.124 \AA$ out of the plane of the pyridyl ligand and the palladium atom (mean deviation $0.070 \AA$). The molecules of $\mathbf{6 a}$ are connected through $\mathrm{CH} \cdots$ OMe hydrogen bonds giving dimers that form double chains along the axis a via the hydrogen bond of one Me and the chlorine atom (Figure 7).

Figure 5. Ellipsoid representation of one of the two independent molecules in complex $\mathbf{5 b}$ (50\% probability). Selected bond lengths (\AA) and angles (deg) for 5b1: $\operatorname{Pd}(1)-\mathrm{C}(17)$ $=1.914(3), \operatorname{Pd}(1)-\mathrm{C}(1)=1.988(3), \mathrm{Pd}(1)-\mathrm{O}(1)=2.021(2), \mathrm{Pd}(1)-\mathrm{Cl}(1)=2.3846(8)$, $\operatorname{Pd}(1)-\mathrm{Pd}\left(1^{\prime}\right)=3.1652(3), \mathrm{O}(1)-\mathrm{C}(3)=1.293(4), \mathrm{C}(1)-\mathrm{N}(1)=1.324(4), \mathrm{C}(1)-\mathrm{C}(2)=$ $1.412(4), \mathrm{N}(1)-\mathrm{C}(13)=1.498(4), \mathrm{C}(2)-\mathrm{C}(3)=1.386(4), \mathrm{C}(3)-\mathrm{C}(4)=1.492(4), \mathrm{C}(17)-$ $\mathrm{N}(2)=1.150(4), \mathrm{C}(17)-\mathrm{Pd}(1)-\mathrm{C}(1)=95.89(12), \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)=82.15(10), \mathrm{C}(17)-$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)=88.92(8), \mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=93.00(6), \mathrm{C}(17)-\mathrm{Pd}(1)-\mathrm{Pd}(2)=82.29(8)$, $\mathrm{C}(1)-\operatorname{Pd}(1)-\operatorname{Pd}(1)=81.80(8), \quad \mathrm{O}(1)-\operatorname{Pd}(1)-\operatorname{Pd}(1)=99.98(6), \quad \mathrm{Cl}(1)-\operatorname{Pd}(1)-\operatorname{Pd}(1)=$ $99.87(2), \mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Pd}(1)=111.24(18), \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)=111.2(2), \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)=$ 114.2(3), $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)=120.9(3) . \mathbf{5 b} 2: \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)=1.912(3), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)=$ $1.978(3), \mathrm{Pd}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)=2.048(2), \mathrm{Pd}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)=2.3956(7), \mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)=1.289(4)$, $\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)=1.326(4), \mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)=1.408(4), \mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)=1.389(4), \mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)=$ $1.487(4), \mathrm{C}\left(17^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)=92.04(12), \mathrm{C}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)=82.21(11), \mathrm{C}\left(17^{\prime}\right)-$ $\operatorname{Pd}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)=90.47(9), \quad \mathrm{O}\left(1^{\prime}\right)-\operatorname{Pd}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)=94.58(6), \quad \mathrm{C}\left(17^{\prime}\right)-\operatorname{Pd}\left(1^{\prime}\right)-\operatorname{Pd}(1)=$ 98.63(9), $\mathrm{C}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\operatorname{Pd}(1)=82.68(9), \mathrm{O}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{Pd}(1)=92.18(6), \mathrm{Cl}\left(1^{\prime}\right)-\operatorname{Pd}\left(1^{\prime}\right)-$ $\operatorname{Pd}(1)=100.62(2), C\left(3^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\operatorname{Pd}\left(1^{\prime}\right)=109.42(18), \mathrm{C}^{\prime}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\operatorname{Pd}\left(1^{\prime}\right)=111.1(2)$, $\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)=114.0(3), \mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)=121.8(3)$.

Figure 6. Ellipsoid representation of $\mathbf{6 a}$ (50% probability). Selected bond lengths (\AA) and angles $(\mathrm{deg}): \mathrm{Pd}-\mathrm{C}(1)=1.9037(15), \mathrm{Pd}-\mathrm{C}(2)=2.0558(14), \mathrm{Pd}-\mathrm{N}(1)=2.1169(12)$, $\mathrm{Pd}-\mathrm{Cl}=2.4001(4), \mathrm{C}(1)-\mathrm{N}(2)=1.156(2), \mathrm{N}(2)-\mathrm{C}(21)=1.4044(18), \mathrm{C}(2)-\mathrm{C}(3)=$ $1.477(2), \mathrm{C}(3)-\mathrm{O}(2)=1.2205(18), \mathrm{C}(3)-\mathrm{C}(4)=1.505(2), \mathrm{C}(4)-\mathrm{N}(1)=1.3557(18), \mathrm{N}(1)-$ $\mathrm{C}(8)=1.3462(18), \mathrm{C}(8)-\mathrm{C}(9)=1.537(2), \mathrm{C}(9)-\mathrm{O}(1)=1.4044(17), \mathrm{C}(9)-\mathrm{O}(3)=$ $1.4228(18), \mathrm{C}(10)-\mathrm{O}(3)=1.432(2), \mathrm{C}(12)-\mathrm{O}(1)=1.4358(18), \mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(2)=90.24(6)$, $\mathrm{C}(2)-\mathrm{Pd}-\mathrm{N}(1)=79.90(5), \mathrm{C}(1)-\mathrm{Pd}-\mathrm{Cl}=87.31(5), \mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Pd}=172.58(13), \mathrm{C}(1)-$
$\mathrm{N}(2)-\mathrm{C}(21)=168.61(14), \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Pd}=94.11(9), \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)=111.86(12), \mathrm{N}(1)-$ $\mathrm{C}(4)-\mathrm{C}(3)=112.59(12), \mathrm{C}(8)-\mathrm{N}(1)-\mathrm{Pd}=135.13(10), \mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Pd}=105.73(9), \mathrm{N}(1)-$ $\mathrm{C}(8)-\mathrm{C}(9)=120.67(13)$.

Figure 7. Packing diagram showing the hydrogen bonds in complex $\mathbf{6 a}$.
The structure of 7a (Figure 8) shows the metal in a slightly distorted square planar coordination, the mean deviation from the coordination plane being $0.081 \AA$. The complex has two palladacycles; the five-membered ring has an envelope conformation with the sp^{3} carbon out of the ring-plane and the six-membered ring has a boat conformation, with the CO carbon and the palladium atom out of the plane. Each molecule has one classical intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond and four nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds affording a double chain (Figure 9).

Figure 8. Ellipsoid representation of 7a (50% probability). Selected bond lengths (\AA) and angles $(\operatorname{deg}): ~ \mathrm{Pd}(1)-\mathrm{C}(1)=1.9492(17), \operatorname{Pd}(1)-\mathrm{N}(1)=2.0257(15), \operatorname{Pd}(1)-\mathrm{O}(1)=$ $2.1673(12), \mathrm{Pd}(1)-\mathrm{Cl}(1)=2.3022(5), \mathrm{O}(1)-\mathrm{C}(9)=1.443(2), \mathrm{N}(1)-\mathrm{C}(4)=1.349(2), \mathrm{N}(1)-$ $\mathrm{C}(8)=1.352(2), \mathrm{C}(1)-\mathrm{N}(2)=1.351(2), \mathrm{C}(1)-\mathrm{C}(2)=1.379(2), \mathrm{N}(2)-\mathrm{C}(21)=1.443(2)$, $\mathrm{C}(2)-\mathrm{C}(3)=1.418(3), \mathrm{C}(3)-\mathrm{O}(2)=1.242(2), \mathrm{C}(3)-\mathrm{C}(4)=1.515(2), \mathrm{C}(8)-\mathrm{C}(9)=$ $1.534(2), \mathrm{C}(9)-\mathrm{O}(3)=1.389(2), \quad \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)=92.73(7), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)=$ 79.19(5), $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=93.60(5), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=172.35(4), \mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ $=94.99(3), \mathrm{C}(9)-\mathrm{O}(1)-\mathrm{Pd}(1)=110.19(10), \mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Pd}(1)=126.05(12), \mathrm{C}(8)-\mathrm{N}(1)-$ $\operatorname{Pd}(1)=114.51(12), \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)=122.75(13), \mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(21)=122.71(15)$, $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)=128.73(16), \quad \mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)=122.29(16), \quad \mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)=$ $115.73(16), \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)=121.71(16), \mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)=121.87(16), \mathrm{N}(1)-\mathrm{C}(8)-$ $\mathrm{C}(9)=119.09(15), \mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)=105.70(14), \mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(2)=118.60(16)$.

区

Figure 9. Packing diagram showing the hydrogen bonds in complex 7a.

The structures of complexes $\mathbf{5 b}$ and $\mathbf{7 a}$ show that Pd and the Xy group are mutually trans as shown in Schemes 3 and 4. Although a complete X-ray crystallographic study was not possible for $\mathbf{5 a}$, the same geometry around the PdC NHXy bond was established with certainty, which was also observed in other β ketoenamine complexes previously described by us. ${ }^{5}$ In addition, both have a high degree of electron delocalization over the OCCCN group as shown in Scheme 4 because (1) it is almost planar (mean deviation of the five atoms from the mean plane 0.034°, 0.020° (for the two molecules of $\mathbf{5 b}$) and $0.051^{\circ}(\mathbf{7 a})$, respectively), (2) the $\mathrm{C}-\mathrm{O}$ bond distance is longer (5b: 1.293(4), 1.289(4) \AA; 7a: $1.242(2) \AA$) than in $\mathbf{1}(1.217(3) \AA)$ or $6 \mathbf{a}(1.2205(18) \AA$), (2) the $\mathrm{C}(1)-\mathrm{C}(2)$ distances (5b: 1.412(4) $\AA, 1.408(4)$; 7a: 1.379(3) \AA) and $\mathrm{C}(2)-\mathrm{C}(3)(5 \mathbf{b}: 1.386(4), 1.389(4) \AA$; 7a: $1.418(2) \AA$) are intermediate between that of a single $(\mathrm{O}) C-C=C(1.464 \AA)$ and a double $(\mathrm{O}) \mathrm{C}-C=C$ bond $(1.340 \AA)^{25}$ and (3) the $\mathrm{C}-\mathrm{N}$ bond distances (5b: 1.324(4), 1.326(4) $\AA ; \mathbf{7 a}: 1.351(2) \AA$) are intermediate between that of a single $\mathrm{R}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Pd}$ bond (mean value, $1.450 \AA$) ${ }^{26}$ and a double $\mathrm{XyNH}=\mathrm{C}(\mathrm{Me}) \mathrm{Pd}$ bond (ca. $1.30 \AA$ A). ${ }^{27}$

The $\mathrm{Pd}-\mathrm{CH}_{2}$ bond distance is longer in $\mathbf{6 a}(2.0558(14) \AA$) than in $\mathbf{1}(2.000(2)$ \AA), showing the greater trans influence of the Cl ligand than the O-donor ligand. The $\mathrm{Pd}-\mathrm{N}$ bond distances decrease in the series $\mathbf{6 a}(2.1169(12) \AA), \mathbf{7 a}(2.0257(15) \AA), \mathbf{1}$ (1.9752(19) \AA), because the angle between the coordination and pyridine planes decreases $\left(44.3^{\circ}, 18.4^{\circ}, 5.8^{\circ}\right)$, thus favoring the Pd to pyridine π-back bonding, and also becuase of the greater trans influence of the XyNC than the Cl ligand. The $\mathrm{Pd}-\mathrm{Cl}$ bond distances in complexes $\mathbf{1}$ and $7 \mathbf{a}(2.3040(5)$ and $2.3022(5) \AA$) are shorter than those in 5b (2.3846(8), 2.3956(7) \AA) and 6a (2.4001(4) A), attributable to the lower trans influence of a N -donor ligand than a C-donor ligand.

Spectroscopic Properties. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of all compounds
are in agreement with the structures shown in Schemes 2-6, except for the MeO protons and the corresponding carbons, which appear as only one resonance corresponding to the six protons or the two carbons, respectively, in the range $\delta 3.08-3.47$ and 49-52.2 ppm, respectively. The exchange of these MeO groups cannot be slowed down enough at $-60^{\circ} \mathrm{C}$ to see the expected two resonances in their spectra but they coalesce at this temperature in complex 1 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR methyl resonances of the $\mathrm{MeC}(\mathrm{OMe})_{2}$ group appear as singlets in the ranges $\delta 1.48-2.03$ and $23-26.3 \mathrm{ppm}$, respectively.

The ketonyl complexes $(\mathbf{1}, \mathbf{4}, \mathbf{6}, \mathbf{9}-\mathbf{1 1})$ show the CH_{2} protons as singlets in the range $\delta 3.73-3.35$. In the case of $\mathbf{6}$, the equivalence of the CH_{2} protons can be explained assuming a fast equilibrium with the cationic $\left[\operatorname{Pd}\left(O^{1}, N^{1}, C^{1}-\mathrm{L}\right)(\mathrm{CNR})\right] \mathrm{Cl}$. These protons are less shielded than the CH_{2} of the acetonyl palladium complexes $\left[\mathrm{Pd}_{2}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}\right\}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{CNR})_{2}\right]$, \quad trans- $\left[\mathrm{Pd}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}\right\} \mathrm{Cl}(\mathrm{CNR})_{2}\right] \quad$ and $\left[\operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Me}\right\}(\mathrm{CNR})_{3}\right] \mathrm{TfO}\left(\mathrm{R}=\mathrm{XyNC},{ }^{\text {t }} \mathrm{BuNC}\right.$; range $\left.\delta 3.18-2.61\right),{ }^{5}$ caused by the pyridine group. As expected, for isocyanide complexes $\mathbf{4}$ and $\mathbf{6}$, the CH_{2} protons are more shielded for ${ }^{\mathrm{t}} \mathrm{BuNC}(\mathbf{4 b}: 3.35$; $\mathbf{6 b}$: 3.27) than $\mathrm{XyNC}(\mathbf{4 a : ~ 3 . 7 3 ; ~ 6 a : ~ 3 . 4 4) ~}$ complexes. The NH proton in L_{R} palladacyclic complexes 5 and 7 appears as a broad resonance in the range $6.00-8.65 \mathrm{ppm}$, shielded with respect to that in the monocoordinate Lr ligands ($\mathbf{8 a}$: 13.68 ; $\mathbf{8 b}$: 12.96), which supports the proposal of an intramolecular hydrogen bond in the latter (Scheme 4). Again, the NH proton is more shielded for $\mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{7 b}: 7.63$; 8b: 12.96) than for Xy (7a: 8.65; 8a: 13.68). The $\mathbf{C H C}(\mathrm{O})$ proton is weakly coupled with the NH proton for $\mathbf{5 a}$ or $\mathbf{5 b}(6.45$ or $5.86 \mathrm{ppm}, \mathbf{J}$ $=1 \mathrm{~Hz})$ but it appears as a singlet for $\mathbf{7 a}, \mathbf{8 a}$, or $\mathbf{8 b}(4.67,7.22$, or 6.86 ppm$)$ or a broad signal for $\mathbf{7 b}(5.17 \mathrm{ppm})$.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$ at room temperature, the Me acac protons appear
as a broad resonance but at $-40^{\circ} \mathrm{C}$ this resolves into two signals, which could be associated with an equilibrium between $\left[\operatorname{Pd}\left(N^{1}, C^{1}-\mathrm{L}\right)(O, O\right.$-acac $\left.)\right]$ and $\left[\operatorname{Pd}\left(O^{1}, N^{1}, C^{1}-\right.\right.$ $\mathrm{L})(C$-acac $)]$. However, in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the two Me acac carbon nuclei resonate as two broad singlets at room temperature.

The IR spectra of chloro complexes show a band assignable to $v(\mathrm{PdCl})$ at various wavenumbers depending on the nature of the ligands in trans position. Thus, complexes with chloro trans to a N -donor ligand $(\mathbf{1}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 1})$ show $v(\mathrm{PdCl})$ absortion in the range $337-321 \mathrm{~cm}^{-1}$, while in complexes with chloro trans to a C-donor ligand (4, $6,8,12,13)$ the absorption is observed in the range $290-280 \mathrm{~cm}^{-1}$, in agreement with the stronger trans influence of a C -donor ligand with respect to a N -donor ligand.

The ketonyl complexes $\mathbf{1}, 4,9-11$ show the $v(\mathrm{C}=\mathrm{O})$ absortion in the range 1684$1608, \mathrm{~cm}^{-1}$ while in complexes 5, $\mathbf{7}$ and $\mathbf{8}$ the $v(\mathrm{C}=\mathrm{O})$ appears at lower frequency, 1590$1538 \mathrm{~cm}^{-1}$, showing the reduction of the $\mathrm{C}-\mathrm{O}$ bond order, consistent with the results of the X-ray diffraction study of complexes $\mathbf{5 b}$ and $\mathbf{7 a}$, and attributable to the electron delocalization over the OCCCNC group of the β-ketoenamine ligand.

The IR spectra of complexes with the ligand XyNC show the $v(\mathrm{~N} \equiv \mathrm{C})$ band in the region $2192-2175 \mathrm{~cm}^{-1}$ and those with ${ }^{\text {'BuNC }}$ in the narrow range $2211-2208 \mathrm{~cm}^{-1}$ showing, as usual, an increase with respect to $v(\mathrm{CN})$ in the free ligands (2109 and 2134 cm^{-1}, respectively).

Conclusion

2,6-Diacetylpyridine can be palladated using PdCl_{2} in methanol via its transformation into its dimethylketal. The resulting complex, which contains the monoanionic pincer ligand resulting from the deprotonation of the acetyl methyl group of the monoketal of dap, reacts with isocyanides giving complexes resulting from
coordination or/and insertion of the isocyanide followed by a tautomerization process from β-ketoimine to β-ketoenamine. The reaction pathway has been studied at different molar ratios and temperatures.

Acknowledgement. We thank Ministerio de Educación y Ciencia (Spain), FEDER (CTQ2007-60808/BQU) and Fundación Séneca (04539/GERM/06 and 03059/PI/05) for financial support and a grant to F. J.-H.

Supporting Information Available. Listing of all refined and calculated atomic coordinates, anisotropic thermal parameters, bond lengths and angles and CIF files for compounds $\mathbf{1 , 2 , 5 b}, \mathbf{6 a}$ and $\mathbf{7 a}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Vicente, J.; Bermúdez, M. D.; Chicote, M. T.; Sánchez-Santano, M. J. J. Chem. Soc., Chem. Commun. 1989, 141. Vicente, J.; Abad, J. A.; Cara, G.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1990, 29, 1125. Vicente, J.; Bermúdez, M. D.; Chicote, M. T.; Sánchez-Santano, M. J. J. Chem. Soc., Dalton Trans. 1990, 1945. Vicente, J.; Abad, J. A.; Cara, G.; F., G.-J. J. J. Chem. Soc., Dalton Trans. 1992, 2481. Vicente, J.; Bermúdez, M. D.; Carrillo, M. P.; Jones, P. G. J. Chem. Soc., Dalton Trans. 1992, 1975. Vicente, J.; Bermúdez, M. D.; Carrillo, M. P.; Jones, P. G. J. Organomet. Chem. 1993, 456, 305. Vicente, J.; Abad, J. A.; Bergs, R.; Jones, P. G.; Bautista, D. J. Chem. Soc., Dalton Trans. 1995, 3093. Vicente, J.; Abad, J. A.; Bergs, R.; G., J. P.; Bautista, D. J. Chem. Soc., Dalton Trans. 1995, 3093. Vicente, J.; Chicote, M. T.; Huertas, S.; Ramírez de Arellano, M. C.; Jones, P. G. Eur. J. Inorg. Chem. 1998, 511. Vicente, J.; Abad, J. A.; Chicote, M. T.; Abrisqueta, M.-D.; Lorca, J.-A.; Ramírez de Arellano, M. C. Organometallics 1998, 17, 1564. Vicente, J.; Chicote, M. T.; Rubio, C.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 1999, 18, 2750. Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; Bautista, D. Organometallics 2001, 20, 2767. Vicente, J.; Arcas, A. Coord. Chem. Rev. 2005, 249, 1135. Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; Sironi, A.; Masciocchi, N. Chem. Commun. 2005, 1267. Vicente, J.; Chicote, M. T.; Martínez-Martínez, J. A.; Jones, P. G.; Bautista, D. Organometallics 2008, 27, 3254.
(2) Vicente, J.; Bermúdez, M. D.; Escribano, J.; Carrillo, M. P.; Jones, P. G. J. Chem. Soc., Dalton Trans. 1990, 3083. Vicente, J.; Bermúdez, M. D.; Carrión, F. J. Inorg. Chim. Acta 1994, 220, 1.
(3) Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; D., B. Organometallics 2006, 25, 4404. Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; Aullon, G.; Bautista, D. Organometallics 2007, 26, 6155. Vicente, J.; Arcas, A.; FernándezHernández, J. M.; Bautista, D. Organometallics 2008, 27, 3978.
(4) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011. Carfagna, C.; Musco, A.; Sallese, G.; Santi, R.; Fiorani, T. J. Org. Chem. 1991, 56, 261. Tsuji, J. Palladium Reagents and Catalysts; John Wiley: Chinchester, U. K., 1995. Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108. Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740. Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. Sodeoka, M.; Hamashima, Y. Bull. Chem. Soc. Jpn. 2005, 78, 941. Chen, G. S.; Kwong, F. Y.; Chan, H. O.; Yu, W. Y.; Chan, A. S. C. Chem. Commun. 2006, 1413.
(5) Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; Bautista, D.; Jones, P. G. Organometallics 2005, 24, 2516.
(6) Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K. Organometallics 2009, 28, 433. Fan, D.; Melendez, E.; Ranford, J. D.; Lee, P. F.; Vittal, J. J. J. Organomet. Chem. 2004, 689, 2969.
(7) Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450.
(8) Gysling, H. J.; Luss, H. R.; Gardner, S. A. J. Organomet. Chem. 1980, 184, 417.
(9) Vicente, J.; Arcas, A.; Gálvez-López, M.-D.; Juliá-Hernández, F.; Bautista, D.; Jones, P. G. Organometallics 2008, 27, 1582.
(10) Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Jones, P. G. J. Am. Chem. Soc. 2002, 124, 3848. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G. Organometallics 2002, 21, 4454. Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C. Chem. Eur. J. 1999, 5, 3066. Vicente, J.; Abad, J. A.;

Frankland, A. D.; López-Serrano, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 2002, 21, 272. Vicente, J.; Arcas, A.; Bautista, D.; Tiripicchio, A.; Tiripicchio-Camellini, M. New J. Chem. 1996, 20, 345. Amatore, C.; Bahsoun, A. A.; Jutand, A.; Meyer, G.; Ntepe, A. N.; Ricard, L. J. Am. Chem. Soc. 2003, 125, 4212. Crespo, M.; Granell, J.; Solans, X.; Fontbardia, M. J. Organomet. Chem. 2003, 681, 143. Huynh, H. V.; Han, Y.; Jothibasu, R.; Yang, J. A. Organometallics 2009, 28, 5395. López, C.; Caubet, A.; Pérez, S.; Solans, X.; Font-Bardía, M. J. Organomet. Chem. 2003, 681, 82. Ng, J. K. P.; Chen, S.; Li, Y.; Tan, G. K.; Koh, L. L.; Leung, P. H. Inorg. Chem. 2007, 46, 5100.
(11) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283.
(12) Campora, J.; Cartes, M. A.; Rodriguez-Delgado, A.; Naz, A. M.; Palma, P.; Perez, C. M.; del Rio, D. Inorg. Chem. 2009, 48, 3679.
(13) Ionkin, A. S.; Marshall, W. J.; Adelman, D. J.; Fones, B. B.; Fish, B. M.; Schiffhauer, M. F. Organometallics 2006, 25, 2978. Small, B. L.; Brookhart, M. Macromolecules 1999, 32, 2120.
(14) Lipke, M. C.; Woloszynek, R. A.; Ma, L.; Protasiewicz, J. D. Organometallics 2009, 28, 188. Inés, B.; Sanmartin, R.; Churruca, F.; Domínguez, E.; Urtiaga, M. K.; Arriortua, M. I. Organometallics 2008, 27, 2833. Bollinger, J. E.; Blacque, O.; Frech, C. M. Chem. Eur. J. 2008, 14, 7969. Bollinger, J. E.; Blacque, O.; Frech, C. M. Angew. Chem., Int. Ed. 2007, 46, 6514. Gong, J. F.; Zhang, Y. H.; Song, M. P.; Xu, C. Organometallics 2007, 26, 6487. Solé, D. Organometallics 2006, 25, 1995. Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527. Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750. Singleton, J. T. Tetrahedron 2003, 59, 1837. Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239. Bolliger, J. L.; Frech, C. M. Adv. Synth. Catal. 2009, 351, 891.

Gossage, R. A.; Van De Kuil, L. A.; Van Koten, G. Acc. Chem. Res. 1998, 31, 423. Gossage, R. A.; Ryabov, A. D.; Spek, A. L.; Stufkens, D. J.; van Beek, J. A. M.; van Eldik, R.; van Koten, G. J. Am. Chem. Soc. 1999, 121, 2488. Leis, W.; Mayer, H. A.; Kaska, W. C. Coord. Chem. Rev. 2008, 252, 1787. Moreno, I.; SanMartin, R.; Ines, B.; Herrero, M. T.; Dominguez, E. Current Organic Chemistry 2009, 13, 878. Pugh, D.; Danopoulos, A. A. Coord. Chem. Rev. 2007, 251, 610. Vicente, J.; Abad, J. A.; Lopez-Serrano, J.; Jones, P. G.; Najera, C.; Botella-Segura, L. Organometallics 2005, 24, 5044. Bonnet, S.; van Lenthe, J. H.; Siegler, M. A.; Spek, A. L.; van Koten, G.; Gebbink, R. Organometallics 2009, 28, 2325. Gagliardo, M.; Selander, N.; Mehendale, N. C.; van Koten, G.; Gebbink, R.; Szabo, K. J. Chem. Eur. J. 2008, 14, 4800. Li, J.; Minnaard, A. J.; Gebbink, R.; van Koten, G. Tetrahedron Lett. 2009, 50, 2232. McDonald, A. R.; Dijkstra, H. P.; Suijkerbuijk, B. M. J. M.; van Klink, G. P. M.; van Koten, G. Organometallics 2009, 28, 4689. O'Leary, P.; van Walree, C. A.; Mehendale, N. C.; Sumerel, J.; Morse, D. E.; Kaska, W. C.; van Koten, G.; Gebbink, R. Dalton Trans. 2009, 4289.
(15) Billodeaux, D. R.; Fronczek, F. R.; Yoneda, A.; Newkome, G. R. Acta Crystallogr., Sect. C Cryst. Struct. Commun. 1998, C54, 1439. Yoneda, A.; Newkome, G. R.; Theriot, K. J. J. Organomet. Chem. 1991, 401, 217. Yoneda, A.; Ouchi, M.; Hakushi, T.; Newkome, G. R.; Fronczek, F. R. Chem. Lett. 1993, 709. Yoneda, A.; Hakushi, T.; Newkome, G. R.; Fronczek, F. R. Organometallics 1994, 13, 4912.
(16) Deeming, A. J.; Rothwell, I. P. J. Organomet. Chem. 1981, 205, 117.
(17) Morrow, G. W.; Wang, S.; Swenton, J. S. Tetrahedron Lett. 1988, 29, 3441.
(18) Vicente, J.; Chicote, M. T. Inorg. Synth. 1998, 32, 172.
(19) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.
(20) Flack, H. D. Acta Crystallogr., Sect. A 1983, 39, 876.
(21) Keypour, H.; Pritchard, R. G.; Parish, R. V. Trans. Met. Chem. 1998, 23, 609. Orrell, K. G.; Osborne, A. G.; Sik, V.; Dasilva, M. W. Polyhedron 1995, 14, 2797. Drew, M. G. B.; Nelson, J.; Nelson, S. M. J. Chem. Soc., Dalton Trans. 1981, 1678.
(22) Silong, B.; Engelhardt, L. M.; White, A. H. Aust. J. Chem. 1989, 42, 1381.
(23) Batsanov, S. S. Inorg. Mater. 2001, 37, 871.
(24) Chitanda, J. M.; Quail, J. W.; Foley, S. R. Acta Cryst. Sect. E 2008, 64, m907. Fábry, J.; Dusek, M.; Fejfarová, K.; Krupková, R.; Vanek, P.; Nemec, I. Acta Cryst. Sect. C 2004, 60, m426.
(25) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.
(26) Enzmann, A.; Eckert, M.; Ponikwar, W.; Polborn, K.; Schneiderbauer, S.; Beller, M.; Beck, W. Eur. J. Inorg. Chem. 2004, 1330. Miki, K.; Tanaka, N.; Kasai, N. Acta Cristallogr., Sect. B 1981, 37, 447.
(27) Owen, G. R.; Vilar, R.; White, A. J. P.; Williams, D. J. Organometallics 2003, 22, 4511.

Table 1. Crystal data and structure refinement of complexes 1, 2, 5b, 6 a and 7 a .

Complex	1	2	5b	6a	7 a
formula	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{Pd}$	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Pd}$	$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{Pd}$	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Pd}$	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Pd}$
Fw	350.08	469.07	516.35	481.25	481.25
Temperature (K)	103(2)	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	triclinic	orthorhombic	monoclinic	triclinic
Space group	$P 2_{1} / c$	P-1	Pca 2_{1}	$P 2_{1} / n$	P-1
$a(\mathrm{~A})$	9.6781(3)	$9.6256(11)$	17.7339(13)	8.9235(8)	9.5126(8)
b (${ }_{\text {A }}$)	9.8431(3)	$9.9998(11)$	16.8224(12)	13.3711(9)	9.9473(8)
$c(\AA)$	13.6170(4)	11.0056(12)	16.5342(12)	17.1832(9)	11.0615(8)
α (deg)	90	101.138(2)	90	90	85.846(2)
β (deg)	107.968(2)	99.345(2)	90	104.841(2)	84.091(2)
γ (deg)	90	115.648(2)	90	90	84.091(2)
Volume (\AA^{3})	1233.92(6)	900.00(17)	4932.6(6)	1981.9(2)	95..55(13)
Z	4	2	8	4	2
$\rho_{\text {calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.884	1.731	1.391	1.613	1.674
$\mu\left(\mathrm{mm}^{-1}\right)$	$14.109(\mathrm{Cu} K \alpha)$	1.490 (Mo K α)	0.885 (Mo K α)	1.094 (Mo K α)	1.135 (Mo K α)
$F(000)$	696	472	2128	976	488
crystal size (mm)	$0.18 \times 0.15 \times 0.10$	$0.18 \times 0.07 \times 0.05$	$0.27 \times 0.14 \times 0.08$	$0.25 \times 0.19 \times 0.13$	$0.25 \times 0.17 \times 0.10$
θ range (deg)	5.65 to 71.17	1.96 to 28.17	1.67 to 28.61	1.96 to 28.15	2.01 to 28.19
no. of rflns coll	17199	10399	57505	22209	10968
no. of indep rflns / $R_{\text {int }}$	2255/ 0.0195	4013 / 0.0202	11843 / 0.0289	4564 / 0.0190	4257 / 0.0146
Transmissn	1.0000-0.5095	0.9292-0.7752	0.9326-0.8175	0.8709-0.8181	0.8949-0.7613
restraints/parameters	0 / 157	$0 / 209$	$13 / 541$	0 / 249	$0 / 253$
Goodness-of-fit on F^{2}	1.108	1.074	1.135	1.055	1.074
$R 1$ ($\mathrm{I} \times 2 \sigma(I)$)	0.0194	0.0254	0.0317	0.0197	0.0215
$w R 2$ (all reflns)	0.0502	0.0553	0.0716	0.0527	0.0538
Largest diff. peak / hole (e. \AA^{-3})	0.852 / -0.750	0.536 / -0.356	0.836 / -0.475	0.422 / -0.595	1.236 / -0.480

[^0]: † E-mail: jvs1 @um.es (J.V.); aurelia@um.es (A.A.). Web: http: //www.um.es/gqo/ ${ }^{\text {* }}$ To whom correspondence regarding the X -ray diffraction studies of complexes $\mathbf{2}, \mathbf{5 b}$, 6a and 7a should be addressed. E-mail: dbc @um.es.
 ${ }^{\text {§ }}$ To whom correspondence regarding the X-ray diffraction studies of complex $\mathbf{1}$ should be addressed. E-mail: p.jones @tu-bs.de.

