Synthesis of Bis-(2,6-dinitroaryl)palladium(II) and Mono-(2,6-
 dinitroaryl)platinum(II) Complexes. A New Example of the Transphobia Effect and of Transmetallation from Pt to $\mathbf{H g}$

José Vicente,*, ${ }^{\dagger}$ Aurelia Arcas, ${ }^{\dagger}$ María-Dolores Gálvez-López and Francisco Juliá-Hernández Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Aptdo. 4021, E-30071 Murcia, Spain

Delia Bautista
SAI, Universidad de Murcia, Aptdo. 4021, E-30071 Murcia, Spain
Peter G. Jones ${ }^{\S}$
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany.

* To whom correspondence regarding the synthesis of complexes should be addressed.
† E-mail: jvs1@um.es (J.V.); aurelia@um.es (A.A.). Web: http://www.um.es/gqo/
${ }^{\ddagger}$ To whom correspondence regarding the X -ray diffraction studies of complexes 2a, 2b, 3, 5, and $\mathbf{1 1}$ should be addressed. E-mail: dbc@um.es
${ }^{\text {§ }}$ To whom correspondence regarding the X-ray diffraction studies of complexes $\mathbf{8}$ and $\mathbf{9}$ should be addressed. E-mail: p.jones@tu-bs.de

Abstract

The reaction of $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right]\left(\kappa^{2}-\mathrm{Ar}=\kappa^{2}-C, O-\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe}) ; \mathbf{1}\right)$ with one equiv of RNC gives $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac})(\mathrm{CNR})\right]\left[\mathrm{R}=\mathrm{Xy}(\mathbf{2 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{2 b})\right]$ and with four equiv of XyNC , trans $-\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)_{2}(\mathrm{CNXy})_{2}\right]\left(\kappa^{1}-\mathrm{Ar}=\kappa^{1}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe}) ; 3\right)$. These complexes has also been obtained (1) by reacting $\mathrm{Tl}(\mathrm{acac})$ with one equiv of trans $-\left[\operatorname{Pd}\left(\kappa^{1}-\right.\right.$ $\left.\mathrm{Ar}) \mathrm{Cl}(\mathrm{CNXy})_{2}\right]$ (4), obtained in turn by reacting trans-($\left.\mathrm{NMe}_{4}\right)_{2}\left[\mathrm{Pd}\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{Cl}(\mu-\mathrm{Cl})\right]_{2}$ (5) with four equiv of XyNC or (2) by reacting $\left[\mathrm{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)(C-\mathrm{acac})(\mathrm{phen})\right]$ (6) with four equiv of XyNC . cis-[$\left.\mathrm{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (7) reacts (1) with $\operatorname{Hg}(\mathrm{OAc})_{2}$ (1:1) to afford a mixture of $[\operatorname{Hg}(\mathrm{Ar})(\mathrm{OAc})]$, cis $-\left[\left\{\mathrm{Pt}\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})\right](\mathbf{8})$ and $\operatorname{trans}-\left[\left\{\mathrm{Pt}\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\right.$ $\left.\mathrm{OH})_{2}\right]$ (9) or (2) with $\mathrm{HgCl}_{2}(1: 1)$ to give trans- $\left[\left\{\mathrm{Pt}\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](\mathbf{1 0})$, which reacts with excess of $\mathrm{Ag}(\mathrm{OAc})$ to give $\mathbf{8}$. The reaction of $\mathbf{1 0}$ with excess of KOH , or with $\mathrm{Tl}(\mathrm{acac})$ (1:1) gives 9. Reaction of palladium complex 5 with two equiv of $\mathrm{Hg}(\mathrm{OAc})_{2}$ affords trans-$\left[\operatorname{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mu-\mathrm{OAc})\right]_{2}(\mathbf{1 1})$. The crystal structures of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{3}, \mathbf{5}, \mathbf{8}, \mathbf{9}$, and $\mathbf{1 1}$ have been determined.

Introduction

We have reported the synthesis of monoaryl palladium complexes $[\mathrm{Pd}](\mathrm{Ar})(\mathrm{Ar}=$ $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}-2, \mathrm{NO}_{2}-6,{ }^{1} \mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}-3,4,5,{ }^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2,{ }^{3} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{3}-2,4,6,{ }^{4} \mathrm{C}_{6} \mathrm{H}(\mathrm{CHO})-$ 2-(OMe) $)_{3}-3,4,5,{ }^{5,6} \mathrm{C}_{6} \mathrm{HR}-6-(\mathrm{OMe})_{3}-2,3,4\left(\mathrm{R}=\mathrm{CHO},{ }^{5-7} \mathrm{CH}_{2} \mathrm{OEt},{ }^{8} \mathrm{C}(\mathrm{O}) \mathrm{NHBu}^{\dagger}\right),{ }^{9} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}-2-\mathrm{R}{ }^{\prime}-5$ $\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}(\mathrm{OMe})_{2}, \mathrm{CH}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right),{ }^{10} \mathrm{CHO}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{R}=\mathrm{CHO}, \mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{H}^{11}\right.$ through transmetallation reactions using the corresponding mercurial $\left[\mathrm{HgAr}_{2}\right]$ or $[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]$. Except for $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2,{ }^{3}$ no diaryl complexes were obtained even when their syntheses were attempted using an excess of mercurial. ${ }^{1,10,11}$ Monoaryl palladium complexes are also the result of the reaction between other aryl mercurials and $\mathrm{Pd}(\mathrm{II})$ complexes, ${ }^{12-14}$ except in one case. ${ }^{14}$ In contrast, $[\mathrm{Pt}](\mathrm{Ar})_{2}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2,{ }^{15} \mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}-3,4,5\right)^{6}$, is always the product of the transmetallation reaction and all attempts to obtain $[\mathrm{Pt}](\mathrm{Ar})$ by reacting $\left[\mathrm{HgAr}_{2}\right]$ with $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Pt}_{2} \mathrm{Cl}_{6}\right]$ or $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ in a 1:1 molar ratio, were unsuccessful. Instead, $[\mathrm{Pt}](\mathrm{Ar})_{2}$ and the starting platinum complex were isolated. ${ }^{15,16}$ However, complexes $[\mathrm{Pt}](\mathrm{Ar})(\mathrm{Ar}=\mathrm{Ph}, 2-$ arylazoaryl, $\left.\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2}-2-\mathrm{NO}_{2}-5\right)^{12,17,18}$ and $[\mathrm{Pt}](\mathrm{Ar})_{2}(\mathrm{Ar}=\mathrm{Ph})^{17}$ have been prepared using organomercurials. These data suggest that transmetallation reactions using aryl mercurials can only monoarylate palladium complexes, except in a few cases, and mono o diarylate platinum complexes depending on the nature of the aryl ligand. The synthetic challenge of preparing $[\mathrm{Pd}](\mathrm{Ar})_{2}$ and $[\mathrm{Pt}](\mathrm{Ar})$ when $\mathrm{Ar}=\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}-3,4,5$, for which all attempts using the corresponding mercurial were unsuccessful, is the object of the present article. We have successfully used mercurials to prepare nitrophenyl complexes of other metals such as $\mathrm{Au},{ }^{19}$ and Rh. ${ }^{20}$

The most general method for the synthesis of $[\mathrm{Pd}](\mathrm{Ar})_{2}$ is the use of the corresponding Li or Mg derivative but we ruled out this method because of the presence of nitro groups in the aryl ligand. In fact, $\mathrm{LiC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2$ is very unstable ${ }^{21}$ and have only been used to prepare a family of
complexes cis-[Pt(Ar$\left.)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}-\mathrm{x}\right.$ where $\mathrm{x}=2,4, \mathrm{R}{ }^{\prime}=\mathrm{OMe}, \mathrm{Me}$, $\mathrm{CF}_{3}, \mathrm{NO}_{2} ; \mathrm{L}_{2}=\operatorname{cod}, \mathrm{x}=4, \mathrm{R}^{\prime}=\mathrm{OMe}, \mathrm{Me}$), a synthesis that functions only at very low temperatures. ${ }^{22}$ We report here the preparation of $[\mathrm{Pd}](\mathrm{Ar})_{2}$ complexes from a $[\mathrm{Pd}](\mathrm{Ar})$ complex by a new method that we have discovered in an experiment designed to study the consequences of forcing two carbon donor ligands to be coordinated mutually trans. We have shown that when a pair of C-donor/P-donor or C-donor/C-donor ligands in a $\mathrm{Pd}(\mathrm{II})$ complex is forced to be trans, the resulting species tends to be unstable, and some transformation (transphobia ${ }^{23-25}$ effect) is expected to prevent the attainment of such an arrangement. For example, a $\mathrm{C}-\mathrm{P}^{25,26}$ or $\mathrm{C}-\mathrm{S}^{27}$ coupling process (or the $\mathrm{C}-\mathrm{C}$ coupling in the well-known Suzuki, Stille and other catalytic reactions) or the insertion of dioxygen into a C-Pd bond have been reported. ${ }^{25}$ We have also shown that the resistence to being trans (transphobia) of C-donor/C-donor ligands pairs is greater than that for C -donor/P-donor ligands. The concept of transphobia is being used successfully by other authors mainly to discuss geometrical preferences in Pd(II) complexes. ${ }^{28}$

With respect to the synthesis of $[\mathrm{Pt}](\mathrm{Ar})\left(\mathrm{Ar}=\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}-3,4,5\right)$ complexes, we report attempts based on oxidative addition reactions of IAr towards $\mathrm{Pt}(0)$ and $\mathrm{Pt}(\mathrm{II})$ to $\mathrm{Hg}(\mathrm{II})$ transmetallation reactions. We are not aware of a Pt to Hg Ar-transmetallation, i. e., $[\mathrm{Pt}(\mathrm{II})] \mathrm{R}+[\mathrm{Hg}] \mathrm{X} \rightarrow[\mathrm{Hg}(\mathrm{II})] \mathrm{R}+[\mathrm{Pt}(\mathrm{II})] \mathrm{X}$ for $\mathrm{R}=$ aryl, but one example for $\mathrm{R}=\mathrm{C} \equiv \mathrm{CR}$ ' has been reported. ${ }^{29}$ Previous attempts to prepare $[\mathrm{Pt}](\mathrm{Ar})$ complexes by reacting $\left[\mathrm{Hg}(\mathrm{Ar})_{2}\right]$ with $\mathrm{Pt}(0)$ complexes led to complexes with $\mathrm{Pt}-\mathrm{Hg}$ bonds. ${ }^{30}$

Experimental Section

The reactions were carried out without precautions to exclude light or atmospheric oxygen or moisture. The IR (Nujol/polyethylene), C, H and N analyses and melting point determinations were carried out as described elsewhere. ${ }^{31}$ NMR spectra were recorded in a Varian Unity 300, Bruker AC 200 or Avance 300 or 400 spectrometers at room temperature.

Chemical shifts were referred to TMS ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. The NMR probe temperature was calibrated using ethylene glycol ${ }^{1} \mathrm{H}$ NMR standard methods. The ligands $\kappa^{1}-C$ -$\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}$ and $\kappa^{2}-\mathrm{C}, \mathrm{O}-\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}$ are represented by $\kappa^{1}-\mathrm{Ar}$ and $\kappa^{2}-\mathrm{Ar}$. When the coordination mode of this aryl ligand is not known, it is formulated simply as Ar. Complexes $\quad\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right] \quad(1), \quad\left(\mathrm{NMe}_{4}\right)_{2}\left[\mathrm{Pd}\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{Cl}(\mu-\mathrm{Cl})\right]_{2} \quad(5),{ }^{2} \quad\left[\mathrm{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)(C-\right.$ acac)(phen)] (6), and $c i s-\left[\operatorname{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right]^{23}$ (7) were prepared as reported previously. Single crystals of $\mathbf{5} \cdot 0.5 \mathrm{Me}_{2} \mathrm{CO}$ were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{Me}_{2} \mathrm{CO}$ solution of 5 .

Synthesis of [Pd($\left.\left.\kappa^{1}-\mathbf{A r}\right)(\mathbf{a c a c})(\mathbf{C N X y})\right]$ (2a). $\mathrm{XyNC}(7.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right](26.5 \mathrm{mg}, 0.06 \mathrm{mmol})(\mathbf{1})$ in $\mathrm{Me}_{2} \mathrm{CO}(6 \mathrm{~mL})$. After 45 min , the resulting solution was concentrated $(1 \mathrm{~mL})$ and addition of n-pentane $(4 \mathrm{~mL})$ gave a suspension that was filtered off and air-dried to give complex 2a as a pale yellow solid. Yield: $29.1 \mathrm{mg}, 86 \%$. Mp: $162.5-163.7^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): ~ \vee(\mathrm{CN}) 2202$; $(\mathrm{CO}) 1566 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.22\left(\mathrm{t}, 1 \mathrm{H}, p-\mathrm{H},{ }^{2} J_{\mathrm{HH}}=7.62 \mathrm{~Hz}\right), 7.09\left(\mathrm{~d}, 2 \mathrm{H}, m-\mathrm{H},{ }^{2} J_{\mathrm{HH}}=7.53 \mathrm{~Hz}\right), 5.40(\mathrm{~s}, 1 \mathrm{H}$, CH), 3.99 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$), 3.90 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.38 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{Xy}$), 1.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$ acac), 1.95 (s, 3 H , Me acac). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Pd} \bullet \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{0.5}$: C, 47.44; H, 4.78; N, 6.64. Found: C, $47.51 ; \mathrm{H}, 4.78 ; \mathrm{N}, 6.64$. Single crystals of $\mathbf{2 a} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ were obtained by slow diffusion of n pentane into an $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O}$ solution of $\mathbf{2 a}$.

Synthesis of $\left[\mathbf{P d}\left(\kappa^{1}-\mathbf{A r}\right)(\mathbf{a c a c})\left(\mathbf{C N}^{\mathrm{t}} \mathbf{B u}\right)\right](\mathbf{2 b}) .{ }^{\mathrm{t}} \mathrm{BuNC}(8.9 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$ was added to a solution of $\mathbf{1}(35.6 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(5 \mathrm{~mL})$. After 50 min , the resulting solution was concentrated (1 mL) and addition of n-pentane $(4 \mathrm{~mL})$ gave a suspension that was filtered off and air-dried to give complex 2b as a pale yellow solid Yield: $29.7 \mathrm{mg}, 71 \% . \mathrm{Mp}: 153-154{ }^{\circ} \mathrm{C}$. IR (cm^{-1}): $v(\mathrm{CN}) 2218 ; ~ v(\mathrm{CO}) 1580 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 5.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 3.99 (s, $6 \mathrm{H}, \mathrm{OMe}$), 3.90 (s, $3 \mathrm{H}, \mathrm{OMe}$), 1.97 (s, $3 \mathrm{H}, \mathrm{Me}$), 1.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 149 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Pd}$: C, 41.80; H, 4.58; N, 7.70. Found: C, 41.43; H, 4.80; N, 7.67. Single crystals of $\mathbf{2 b}$ were obtained by slow diffusion of n-pentane into a $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathbf{2 b}$.

Synthesis of trans-[Pd($\left.\left.\kappa^{1}-\mathbf{A r}\right)_{2}(\mathbf{C N X y})_{2}\right]$ (3). XyNC ($\left.39.5 \mathrm{mg}, 0.30 \mathrm{mmol}\right)$ was added to a solution of $1(34.8 \mathrm{mg}, 0.075 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(6 \mathrm{~mL})$. After 1 h stirring the solution was concentrated (3 mL) and the resulting solid was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathbf{3}$ as a colorless solid. Concentration of the filtrate afforded a second crop of $\mathbf{3}$. Yield: $27.2 \mathrm{mg}, 82 \%$. Dec pt: $260-261{ }^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{cm}^{-1}\right):(\mathrm{CN}) 2204 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19(\mathrm{t}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}$, $\left.{ }^{2} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 7.05\left(\mathrm{~d}, 4 \mathrm{H}, m-\mathrm{H},{ }^{2} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 3.96(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OMe}), 3.89(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 2.30$ (s, $12 \mathrm{H}, \mathrm{Me}$). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{Pd}$: C, 48.96; H, 4.11; N, 9.52. Found: C, 48.61; H, 4.15; N, 9.56. Single crystals of $\mathbf{3}$ were obtained by slow diffusion of n-pentane into a CHCl_{3} solution of 3 .

Síntesis of trans-[Pd($\left.\left.\kappa^{1}-\mathbf{A r}\right) \mathbf{C l}(\mathbf{C N X y})_{2}\right]$ (4). $\mathrm{XyNC}(98.5 \mathrm{mg}, 0.75 \mathrm{mmol})$ was added to a suspension of $\mathbf{5}(191 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. After 1 h stirring, the reaction mixture was filtered through anhydrous MgSO_{4}. The filtrate was concentrated (2 mL) and n pentane was added (1 ml). The suspension was filtered and the filtrate was concentrated (ca. 2 mL) to give a solid that was filtered off, washed with n-pentane and air-dried, to give 11, as a colorless solid. Yield: $137.9 \mathrm{mg}, 55 \% . \mathrm{Mp}: 150-151^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): ~ w(\mathrm{CN}) 2203 ;$ (PdCl) 314. ${ }^{1} \mathrm{H} \mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25\left(\mathrm{t}, 2 \mathrm{H}, p-\mathrm{H},{ }^{2} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.10\left(\mathrm{~d}, 4 \mathrm{H}, m-\mathrm{H},{ }^{2} J_{\mathrm{HH}}=7.6\right.$ $\mathrm{Hz}), 3.99$ (s, $6 \mathrm{H}, \mathrm{OMe}$), 3.91 (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.37 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{ClO}_{7} \mathrm{Pd}: \mathrm{C}, 48.99 ; \mathrm{H}, 4.11$; N, 8.47. Found: C, $48.97 ; \mathrm{H}, 4.31$; N, 8.51. Single crystals of 4 were obtained by slow diffusion of n-pentane into a CDCl_{3} solution of 4 .

Synthesis of ArI (6). A solution of $\left[\mathrm{Hg}(\mathrm{Ar})_{2}\right](204 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{I}_{2}(213 \mathrm{mg}, 0.84$ $\mathrm{mmol})$ in dimethylformamide (10 mL) was heated for 1 h . When the solution was cooled, a 1 M aqueous solution of $\mathrm{NaBr}(50 \mathrm{~mL})$ was added and the resulting suspension was filtered. The solid was washed with water and air-dried to give $\mathbf{6}$ as a colorless solid. Yield: $191 \mathrm{mg}, 87 \%$.

Mp: 175-177 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.03$ (s, $6 \mathrm{H}, \mathrm{OMe}$), 3.99 (s, $3 \mathrm{H}, \mathrm{OMe}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{O}_{7}$: C, 28.14; H, 2.36; N, 7.29. Found: C, 28.54; H, 2.28; N, 7.31.

Synthesis of cis-[\{Pt($\left.\left.\left.\kappa^{1}-\mathbf{A r}\right)\left(\mathbf{P P h}_{3}\right)\right\}_{2}(\mu-\mathbf{O H})(\mu-\mathbf{O A c})\right] \cdot 2 \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{(8)} \cdot \mathrm{Ag}(\mathrm{OAc})(20 \mathrm{mg}$, $0.12 \mathrm{mmol})$ was added to a solution of $\mathbf{1 0}(42 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, After 48 h stirring, the suspension was filtered, the filtrate was concentrated $(2 \mathrm{~mL})$ and $\mathrm{AcOH}(1 \mu \mathrm{~L})$ was added. A crystalline solid was obtained by slow diffusion of n-hexane (20 mL) into the resulting solution. The solid was isolated by filtration, washed with n-hexane and air-dried to give $\mathbf{8}$ as a yellow solid. Yield: $28 \mathrm{mg}, 61 \% . \mathrm{Mp}: 170-174{ }^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): ~ w(\mathrm{OH}) 3605 .{ }^{1} \mathrm{H}$ NMR (400.9 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.31\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right), 3.74(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.70(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OMe}), 1.78(\mathrm{~b}, 1$ $\mathrm{H}, \mathrm{OH}), 0.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcO}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},-30^{\circ} \mathrm{C}$): $\delta 7.95-7.89\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PPh}_{3}\right)$, 7.51-7.47 (m, $\left.14 \mathrm{H}, \mathrm{PPh}_{3}\right), ~ 7.07-7.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PPh}_{3}\right), 3.75$ ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}\right), 3.71$ ($\mathrm{s}, 12 \mathrm{H}, \mathrm{OMe}$), $1.93\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=2.4 \mathrm{~Hz}\right), 0.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcO}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(81.01 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $4.6\left(\mathrm{~s}, \mathrm{PPh}_{3},{ }^{1} J_{\mathrm{PtP}}=4292 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.08\left(\mathrm{~s}, \mathrm{PPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=\right.$ 4292 Hz). Anal. Calcd for $\mathrm{C}_{58} \mathrm{H}_{56} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{Pt}_{2}$: C, 41.59; H, 3.37; N, 3.34. Found: C, 41.83; H, 3.40; N, 3.42. Single crystals of $\mathbf{8}$ were obtained by slow diffusion of n-hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 8 .

Synthesis of trans-[\{Pt($\left.\left.\left.\kappa^{1}-\mathbf{A r}\right)\left(\mathbf{P P h}_{3}\right)\right\}_{2}(\mu-\mathbf{O H})_{2}\right]$ (9). Method a. $\mathrm{KOH} 85 \%(15 \mathrm{mg}$, $0.23 \mathrm{mmol})$ was added to a stirred suspension of $\mathbf{1 0}(38 \mathrm{mg}, 0.03 \mathrm{mmol})$ in thf $(10 \mathrm{~mL})$, . The mixture was stirred for 24 h , the solvent was evaporated to dryness and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added. The resulting suspension was filtered and the filtrated was concentrated to 1 mL . Addition of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ gave a suspension that was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and airdried to give complex $\mathbf{9}$ as a pale yellow solid.Yield: $30 \mathrm{mg}, 82 \%$.

Method b. $\mathrm{Tl}(\mathrm{acac})(20 \mathrm{mg}, 0.07 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 0}(50 \mathrm{mg}, 0.03$ $\mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}(3 / 0.5 \mathrm{~mL})$. The mixture was stirred for 24 h , the suspension was
concentrated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The resulting solution was stirred with Celite for 12 hours. The suspension was filtered and the filtrate was concentrated (1 mL). Addition of $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ gave a suspension that was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and airdried. Yield: $23 \mathrm{mg}, 48 \%$. Mp: $284{ }^{\circ} \mathrm{C}(\mathrm{dec}) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): ~ v(\mathrm{OH}) 3602 .{ }^{1} \mathrm{H}$ NMR (400.9 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right): \delta 7.80-7.29\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right), 3.66(\mathrm{~s}, 18 \mathrm{H}, \mathrm{OMe}),-0.71\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{OH},{ }^{3} J_{\mathrm{PH}}=3\right.$ Hz). ${ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 7.78-7.35\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right), 3.651$ (s, $6 \mathrm{H}, \mathrm{OMe}$), $3.645(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OMe}),-0.75\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{OH},{ }^{3} J_{\mathrm{PH}}=3 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162.29 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 4.29\left(\mathrm{~s}, \mathrm{PPh}_{3},{ }^{1} J_{\mathrm{PtP}}=4168 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta 5.15\left(\mathrm{~s}, \mathrm{PPh}_{3}\right.$, $\left.{ }^{1} J_{\mathrm{PtP}}=4152 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.81 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$): $\delta 148.64\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}} \mathrm{Ar}\right), 146.82(\mathrm{~s}$, $\left.\mathrm{C}_{\mathrm{q}} \mathrm{Ar}\right), 143.16\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}} \mathrm{Ar}\right), 134.70\left(\mathrm{~d}, o-\mathrm{C} \mathrm{PPh}_{3},{ }^{2} J_{\mathrm{PC}}=11 \mathrm{~Hz}\right), 131.56\left(\mathrm{~s}, p-\mathrm{C} \mathrm{PPh}_{3}\right), 128.93(\mathrm{~d}$, $\left.m-\mathrm{C} \mathrm{PPh} 3,{ }^{3} J_{\mathrm{PC}}=11 \mathrm{~Hz}\right), 128.69\left(\mathrm{~d}, i-\mathrm{C} \mathrm{PPh}_{3},{ }^{1} J_{\mathrm{PC}}=65 \mathrm{~Hz}\right), 115.31\left(\mathrm{~d}, \mathrm{C}_{\mathrm{q}} \mathrm{Ar},{ }^{2} J_{\mathrm{PC}}=10 \mathrm{~Hz}\right)$, 62.48 (s, m-OMe), 61.49 (s, p-OMe). Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}_{2} \mathrm{Pt}_{2}: \mathrm{C}, 44.33 ; \mathrm{H}, 3.44 ; \mathrm{N}$, 3.83. Found: C, $44.06 ; \mathrm{H}, 3.24 ; \mathrm{N}, 3.83$. Single crystals of $9 \cdot 1.28 \mathrm{CDCl}_{3} \cdot 0.72 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained by slow diffusion of n-hexane into a $\mathrm{CDCl}_{3}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{9}$.

Synthesis of trans-[Pt($\left.\left.\kappa^{1}-\mathbf{A r}\right)\left(\mathbf{P P h}_{3}\right)(\mu-\mathbf{C l})\right]_{2} \mathbf{(1 0)} . \mathrm{HgCl}_{2}(110 \mathrm{mg}, 0.41 \mathrm{mmol})$ was added to a solution of $7(357 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting suspension was stirred for 24 hours. The suspension was filtered and the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$. The filtrate was concentrated (3 mL) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The resulting suspension was filtered and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ and air-dried to give $\mathbf{1 0}$ as a pale yellow solid. Yield: $262 \mathrm{mg}, 95 \%$. Mp: $308{ }^{\circ} \mathrm{C}(\mathrm{dec}) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): ~ v(\mathrm{PtCl}) 290,272 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11-6.91\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right), 3.68(\mathrm{~s}, 18 \mathrm{H}, \mathrm{OMe}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162.29 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.33\left(\mathrm{~s}, \mathrm{PPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4473 \mathrm{~Hz}\right.$). Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{Pt}_{2}: \mathrm{C}, 43.24 ; \mathrm{H}$, $3.23 ;$ N, 3.75 . Found: C, $43.05 ; H, 3.20 ;$ N, 3.80 . Crystals apparently suitable for an X-ray crystallographic study were obtained for $\mathbf{1 0}$ by slow diffusion of n-hexane into a CDCl_{3}
solution of $\mathbf{1 0}$.
Synthesis of trans-[Pd($\left.\left.\kappa^{2}-\mathbf{A r}\right)(\mu-\mathbf{O A c})\right]_{2}(\mathbf{1 1}) . \mathrm{Hg}(\mathrm{OAc})_{2}(63.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added to a suspension of $\left(\mathrm{NMe}_{4}\right)_{2}\left[\mathrm{Pd}\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{Cl}(\mu-\mathrm{Cl})\right]_{2}(5)(101.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(6$ $\mathrm{mL})$. The resulting suspension was stirred for 30 min and then concentrated (2 mL) and filtered. The solid was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, the mixture filtered through Celite, $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added to the filtrate and the suspension was filtered to give $\mathbf{1 1}$ as a red solid. Yield: $28 \mathrm{mg}, 34 \%$. Mp: 210-211 ${ }^{\circ} \mathrm{C}$. IR (cm^{-1}): $v(\mathrm{CO}) 1548,1530 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.13(\mathrm{~s}, 6 \mathrm{H}, p-$ OMe), 3.96, 3.89 (two s, $6 \mathrm{H}, m-\mathrm{OMe}$), 2.08 (s, $6 \mathrm{H}, \mathrm{Me}$). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{36} \mathrm{Pd}_{2}$: C, $31.24 ; \mathrm{H}, 2.84 ; \mathrm{N}, 6.63$. Found: C, $31.26 ; \mathrm{H}, 2.86 ; \mathrm{N}, 6.63$. Single crystals of $\mathbf{1 1}$ were obtained by slow diffusion of n-hexane vapor into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 1}$.

X-Ray Structure Determinations. For clarity, solvent contents are omitted here, but are defined in Tables 1 and 2. Compounds 2a, 2b, 3, $\mathbf{5}$ and $\mathbf{1 1}$ were measured on a Bruker Smart APEX machine diffractometer. Data were collected using monochromated Mo-K α radiation in w scan mode. Data for compounds 8 and 9 were measured on a Bruker SMART 1000 diffractometer using monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation in ω and ϕ scan modes. Absorption corrections were based on the multi-scan method (program SADABS). The structures of $\mathbf{2 b}, \mathbf{3 , 5}$ and $\mathbf{1 1}$ were solved by direct methods and 2a by the heavy atom method. All were refined anisotropically on F^{2}. Restraints to local aromatic ring symmetry or light atom displacement factor components were applied in some cases. The ordered methyl groups were refined using a rigid groups, and the other hydrogens were refined using a riding mode. Special features. 2a: the ether of solvation is disordered over an inversion center. 2b: One of the nitro group is disordered over two positions, ca $60: 40 \% .5: \mathrm{NMe}_{4}$ cations are disordered over two positions. 8: One dichloromethane is disordered over two positions; the OH hydrogen was refined freely. 9: The solvent content was interpreted as overlapping CDCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the OH hydrogens were refined freely, but with an O-H distance restraint.

Results and Discussion

$\left[\operatorname{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(O, O-\mathrm{acac})\right]$ (1) reacts with one equiv of isocyanides to give the adducts $\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)(O, O-\mathrm{acac})(\mathrm{CNR})\right]\left[\mathrm{R}=\mathrm{Xy}(\mathbf{2 a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathbf{2 b}) ;\right.$ Scheme 1]. We have reported reactions of 1 with other neutral ligands to give adducts $\left[\mathrm{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac}) \mathrm{L}\right]\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$, py, tht, bis(diphenylphosphino)methanemonoxide (dppmo)] and $\left[\operatorname{Pd}\left(\kappa^{2}-\operatorname{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac})(\mathrm{phen}) .{ }^{2}\right.$ When $\mathbf{1}$ was reacted with four equiv of XyNC in acetone, several fast changes of color were observed (to orange via colorless, green and yellow) and after 5 min a colorless solid begin to precipitate. After 1 h stirring, concentration of the solution precipitated trans $-\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)_{2}(\mathrm{CNXy})_{2}\right](3)$ in 82% yield as a colorless solid. In the orange filtrate, a complex mixture of products was detected by ${ }^{1} \mathrm{H}$ NMR, among which $\mathbf{3}$ was identified. An X-ray crystallographic study of a few crystals obtained from this filtrate was carried out. Although a complete crystallographic analysis was not possible because of poor data quality the presence of a palladium atom in a square planar environment with two cis XyNC ligands was showed with certainty. The other two coordination positions were occupied by a complex chelate ligand apparently resulting from the insertion of XyNC into $\mathrm{Pd}-\mathrm{C}_{(\text {acac }}$ bonds in which three isocyanides and two acac ligands were involved. When this reaction was carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the same fast changes of color were observed, althought the green persisted longer ($\sim 2 \mathrm{~min}$), but complex $\mathbf{3}$ was also isolated. When $\mathbf{1}$ was reacted with two equiv of XyNC , the yield of $\mathbf{3}$ decreased (19\%) and 2a also was obtained. Addition of four equiv of ${ }^{t} \mathrm{BuNC}$ to an acetone solution of 1 also led to several rapid color changes (to to pale yellow via orange and yellow) but only a complex mixture of products was isolated.

Scheme 1

The above reactions were designed with the purpose of obtaining a complex with four carbon donor ligands $\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)(C-\mathrm{acac})(\mathrm{XyNC})_{2}\right](\mathbf{A})$. We hypothesize that the great C / C transphobia, $\mathrm{T}(\mathrm{C} / \mathrm{C})$, should destabilize the complex, favoring an isocyanide insertion into the $\mathrm{Pd}-\mathrm{C}_{\text {acac }}$ bond or inducing some $\mathrm{C}-\mathrm{C}$ coupling process (see Introduction). However, instead, a new transphobia effect was observed in the 1:4 reaction: a disproportionation reaction leading to 3 and a mixture in which, at least, a product of stoichiometry $\operatorname{Pd}(\mathrm{acac})_{2}(\mathrm{CNXy})_{5} "(\mathbf{X})$ was obtained (see above). Formation of $\mathbf{3}$ containing four C -donor ligands, suggests that $\mathrm{T}(\mathrm{Ar} / \mathrm{C}$ acac) in the intermediate complex \mathbf{A} is greater than $\mathrm{T}(\mathrm{Ar} / \mathrm{Ar})$ or $\mathrm{T}(\mathrm{CNXy} / \mathrm{CNXy})$ in 3. The formation of $\mathbf{3}$ as a stable complex in spite of the four $\mathrm{C}-\mathrm{Pd}$ bonds must be attributed to the strong Ar-M bonds. ${ }^{1} \mathrm{H}$ NMR spectra of complex 3 at 20, 30, 40,50 and $60^{\circ} \mathrm{C}$ in CDCl_{3} during 45 min show no decomposition or isomerization process. Its platinum homolog, $\operatorname{trans}-\left[\mathrm{Pt}\left(\kappa^{1}-\right.\right.$ $\left.\operatorname{Ar})_{2}(\mathrm{CNXy})_{2}\right]$, is obtained by heating the cis isomer at $150{ }^{\circ} \mathrm{C}$. The greater stability of the trans isomer was rationalised in the case of the Pt complex on steric grounds. ${ }^{23}$ The low yield of $\mathbf{3}$ in the $1: 2$ reaction suggests that formation of \mathbf{X} is a fast process consuming part of the XyNC required for the synthesis of $\mathbf{3}$.

A Proposal for the Reaction Pathway of Formation of 3 from 1. It is reasonable to assume that the first step in this process is formation of complex 2a, which in turn reacts with XyNC to give the desired complex A (Scheme 2). We assume this complex to be trans because, with exclusively C-donor ligands, this seems the geometry with the lower steric hindrance between Ar and acac ligands. Formation of 3 requires an intermolecular transmetallation reaction that could occur through a dinuclear complex such as \mathbf{B}. The replacement of the acac ligand could be favored by the strong $\mathrm{T}(\mathrm{Ar} / C-\mathrm{acac})$ and the trans geometry of \mathbf{A}. Complexes with bridging aryl ligands have been postulated as intermediates in the formation of diaryl- from mono-aryl complexes. ${ }^{32} \mathrm{~A}$ few palladium complexes containing bridging aryl ligands have been isolated. ${ }^{33}$ Cleavage of the weakest $\mathrm{Ar}-\mathrm{Pd}$ bond, i.e. that trans to the acac ligand, and coordination of the replaced acac ligand would give 3 and a highly reactive species trans- $[\operatorname{Pd}(C-$ acac $)_{2}(\mathrm{CNXy})_{2}$] (because of the strong $\mathrm{T}(C-\mathrm{acac} / C$-acac $)$) which would insert XyNC to give, among other products, complex $" \operatorname{Pd}(\mathrm{acac})_{2}(\mathrm{CNXy})_{5} "(\mathbf{X})$. We have studied the reaction between $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ and XyNC under different reaction conditions but we have not yet isolated any pure compound from the mixtures of complexes that we obtain. We have reported that isocyanides insert into the $\mathrm{C}-\mathrm{Pd}$ bond of acetonyl complexes giving β-ketoenamino derivatives. ${ }^{34} \mathrm{~A}$ similar insertion followed by tautomerization could have occurred in the synthesis of \mathbf{X}.

Scheme 2

To support this proposal we have attempted the synthesis of \mathbf{A} by two other routes. Thus, (1) we have prepared trans $-\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{Cl}(\mathrm{CNXy})_{2}\right]$ (4), from trans $-\mathrm{Me}_{4} \mathrm{~N}\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{Cl}(\mu-\mathrm{Cl})\right]_{2}$ (5) and excess of XyNC , and reacted it with one equiv of $\mathrm{Tl}(\mathrm{acac})$ and (2) we have reacted cis-$\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)(C\right.$-acac $\left.)(\mathrm{phen})\right](6)$ with four equiv of XyNC. In agreement with the above proposed mechanism, both reactions led to the isolation of complex $\mathbf{3}$ instead of \mathbf{A}. The low stability of this intermediate contrasts with that of the related complexes $\mathbf{4}$ and $\mathbf{6}$ in which, for all trans pairs of groups, $\mathrm{T}<\mathrm{T}(\mathrm{Ar} / C-\mathrm{acac})$.

Synthesis of Monoaryl Pt Complexes. Oxidative Addition Reactions. To prepare $[\mathrm{Pt}](\mathrm{Ar})$ complexes by an oxidative addition reaction, we synthesized $\mathrm{IC}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-(\mathrm{OMe})_{3}-$ 3,4,5 (6) by reacting [HgAr_{2}] with I_{2}, following the method reported by Deacon. ${ }^{35}$ However, 6 did not react at room temperature with one equiv of $\left[\mathrm{Pt}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}$ in toluene under nitrogen and decomposition was observed upon refluxing. Addition of 2,2 '-bipyridine to the reaction mixture at room temperature, allowed the isolation of an impure sample of $\left[\left\{\operatorname{Pt}\left(\kappa^{1}-\operatorname{Ar}\right) I(b p y)\right]\right.$ in
low yield (13\%). Therefore, this route to monoaryl derivatives was discarded.
Transmetallation Reactions. The room-temperature reaction of $\operatorname{cis}-\left[\operatorname{Pt}\left(\kappa^{2}-\operatorname{Ar}\right)\left(\kappa^{1}-\right.\right.$ $\left.\mathrm{Ar})\left(\mathrm{PPh}_{3}\right)\right]$ (7) with $\mathrm{Hg}(\mathrm{OAc})_{2}(1: 1)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives a mixture of $[\mathrm{Hg}(\mathrm{Ar})(\mathrm{OAc})]$ and the dinuclear platinum(II) complexes cis-[$\left\{\mathrm{Pt}\left(\kappa^{1}-\mathrm{Ar}^{2}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\mathrm{OH})(\mu$-OAc $\left.)\right]$ (8) and $\operatorname{trans}-\left[\mathrm{Pt}\left(\kappa^{1}-\right.\right.$ $\left.\mathrm{Ar}_{)} \mathrm{PPh}_{3}(\mu-\mathrm{OH})\right]_{2}(\mathbf{9}$; Scheme 3). It is reasonable to assume that the transmetallation reaction took place through the dinuclear complex \mathbf{B}, containing two bridging acetato ligands, that complex $\mathbf{8}$ is the result of a partial hydrolysis of \mathbf{B}, and that $\mathbf{9}$ is the product of the hydrolysis of 8. The mixture of $\mathbf{8 , 9}$ and $[\mathrm{Hg}(\mathrm{Ar})(\mathrm{OAc})]$ could not be separated and all attempts to prevent any hydrolysis failed. The only $[\mathrm{Pt}](\mathrm{Ar})(\mu-\mathrm{OAc})$ complexes reported, the cycloplatinated derivatives $\left[\operatorname{Pt}\left(\mathrm{C}^{\wedge} \mathrm{E}\right)(\mu-\mathrm{OAc})\right]_{2}(\mathrm{E}=\mathrm{N}, \mathrm{P}, \mathrm{As})$, seem to be stable toward moisture..36,37 The main difference between these complexes and \mathbf{B} is that the latter has a much more crowded environment around Pt and this could be the reason for its high reactivity toward moisture. This would also explain the facile hydrolysis of complex 8 .

Scheme 3

10

The above reverse transmetallation reaction was unexpected, as we have reported that $\left[\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{~F}_{5}\right)$ reacts with one equiv of cis-Me4N$\left[\operatorname{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{Cl}\right]$ or half an equiv of cis-[Pt $\left.\left(\kappa^{2}-\operatorname{Ar}\right)\left(\kappa^{1}-\mathrm{Ar}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{PhCN}\right)$ to give $\mathrm{Pt}-\mathrm{Hg}$ complexes $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{Hg}(\mu-\mathrm{OAc})_{2}\left\{\mathrm{Pt}\left(\kappa^{1}-\mathrm{Ar}\right)_{2} \mathrm{Cl}\right\}\right],\left[\mathrm{Hg}(\mu-\mathrm{OAc})_{2}\left\{\operatorname{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)_{2}\right\}_{2}\right],\left[\operatorname{Hg}\left\{\operatorname{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)\right\}_{2}\right]$ or cis-Me ${ }_{4} \mathrm{~N}\left[\mathrm{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)\right] .{ }^{30}$ It is possible that some adduct similar to these $\mathrm{Pt}-\mathrm{Hg}$ complexes is an intermediate (for example, \mathbf{C} in Scheme 4). As the presence of PPh_{3} in the intermediate \mathbf{C} is the only difference with respect to the stable $\mathrm{Me}_{4} \mathrm{~N}\left[\operatorname{Hg}(\mu-\mathrm{OAc})_{2}\left\{\operatorname{Pt}\left(\kappa^{1}-\right.\right.\right.$ $\left.\mathrm{Ar})_{2} \mathrm{Cl}\right\}$], it is possible that this ligand is responsible for the cleavage of the $\mathrm{Pt}-\mathrm{Hg}$ bond in \mathbf{C} and the formation of a complex with a bridging aryl group (D) finally affording complex \mathbf{B} and [$\mathrm{Hg}(\mathrm{Ar})(\mathrm{OAc})]$.

Scheme 4

This unexpected result opened a route for the synthesis of the desired $[\mathrm{Pt}](\mathrm{Ar})$ complexes that we had attempted previously, but without success (see Introduction). However, given the difficulties we encountered in isolating $\mathbf{8}$ and $\mathbf{9}$ we attempted the reaction of $\mathbf{7}$ with one equiv of HgCl_{2} giving $\left[\mathrm{Pt}\left(\kappa^{1}-\mathrm{Ar}\right)(\mu-\mathrm{Cl}) \mathrm{PPh}_{3}\right]_{2}(\mathbf{1 0})$, the homolog of complex B. This complex can be easily precipitated from the reaction mixture by addition of $\mathrm{Et}_{2} \mathrm{O}$ while the by-product, $[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]$, remains soluble. The addition of excess of $\mathrm{Ag}(\mathrm{OAc})$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 0}$ gave 8, which must be recrystallized in the presence of acetic acid to avoid formation of traces of $\mathbf{9}$. We have unsuccessfully attempted to prepare the intermediate \mathbf{A} by reacting $\mathbf{8}$ with a large excess of HOAc; a complex mixture of products resulted. The reaction of $\mathbf{1 0}$ with excess KOH in thf or with two equiv of Tl (acac) in a mixture of $\mathrm{Me}_{2} \mathrm{CO}$ and water (6:1) gave 9 in 82 or 48% yields, respectively.

The reaction of palladium complex 5 with two equiv of $\mathrm{Hg}(\mathrm{OAc})_{2}$ does not proceed via transmetallation or formation of a $\mathrm{Pd}-\mathrm{Hg}$ compound but simply with a ligand substitution of chloro by acetato to give the dinuclear complex $\left[\operatorname{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}(11 ;$ Scheme 3$)$.

Crystal Structures. Crystals apparently suitable for an X-ray crystallographic study were obtained for 10. However, although a complete crystallographic analysis was not possible because the rings with the nitro and methoxy groups were badly disordered, the position of the ligands was established with certainty to be that indicated in Scheme 3.

Complete crystallographic analysis was carried out for complexes 2a (Figure 1), 2b
(Figure 2), $\mathbf{3}$ (Figure 3), $\mathbf{5}$ (Figure 4), $\mathbf{8}$ (Figure 5), 9 (Figure 6) (bonggw), and 11 (Figure 7). Solvent contents are given in Tables 1 and 2. All structures reveal a metal in a distorted square planar coordination. In the dinuclear complexes $\mathbf{5}$ and $\mathbf{9}$, the coordination planes are almost coplanar (angle between coordination planes: 1.8, 2.9 (5) and 0° by symmetry (9)) as has been found and theoretically predicted for most dinuclear complexes with two single-atom bridges, ${ }^{38}$ while in $\mathbf{8}$ the two coordination planes subtend an angle of 44.3°. A search of the Cambridge Structural Database reveals two platinum complexes containing both carboxylate and OH bridging ligands, $\left[\mathrm{Pt}_{2}(\mu \text {-carboxylate })(\mu-\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\left(\right.$ carboxylate $=$ acetate, ${ }^{39,40}$ glycolate $\left.{ }^{40}\right)$ and the angles between the coordination planes are 75.5° and 73.0°, respectively. Probably, $\mathbf{8}$ adopts a wider interplanar angle because of the steric hindrance of the large phosphine and aryl ligands.

Bond distances at palladium in complexes are consistent with the trans influence scale. Thus, we observe (1) similar $\mathrm{Pd}-\mathrm{O}(1)$ distances trans to XyNC and ${ }^{\dagger} \mathrm{BuNC}$ [2a 2.0130(14), 2b $2.0098(16) \AA$], (2) Pd-O bond distances trans to Ar [2a 2.0456(15), 2b 2.0519(16) \AA] longer than those trans to isocyanide [2a $2.0130(14), \mathbf{2 b} 2.0098(16) \AA$] , (3) $\mathrm{Pt}-\mathrm{O}$ bond distance trans to the aryl group ($92.087(3) \AA$) longer than that trans to $\mathrm{PPh}_{3}(92.067(3) \AA)$, (4) The $\mathrm{Pd}-\mathrm{O}$ bonds trans to aryl (11 2.086(2) \AA) longer than those trans to oxygen atoms (11 2.005(2)-2.019(2) \AA), (5) Pd-CNXy bond distances trans to isocyanide [31.965(3) and $1.966(3) \AA$] longer than those trans to $\mathrm{O}[\mathbf{2 a} 1.925(2) \AA$], and (6) $\mathrm{Pd}-\mathrm{Ar}$ bond distances trans to oxygen [2a 2.0002(2), 2b $2.002(2) \AA$] shorter than trans to $\operatorname{Ar}[\mathbf{3} 2.069(3), 2.071(3) \AA]$. In addition, the $\mathrm{Pd}-\mathrm{Cl}$ bond distances in $\mathbf{5}$ follow the expected order: $\mathrm{Pd}-\mathrm{Cl}$ bridging trans to Ar (2.4323(8), 2.4230(8), $2.4262(8), 2.4089(9) \AA)>$ bridging trans to $\mathrm{Cl}(2.3199(8), 2.3464(8), 2.3222(8), 2.3395(8) \AA)>$ terminal trans to Cl (2.2931(8), 2.2943(8), 2.3113(8), 2.3055(8) \AA).

In 5 , two crystallographically independent, but very similar, units are present. One of them (5a) is represented in Figure 4. The anion dimer is not far from approximate inversion
symmetry with four chloro ligands, two bridging and two terminal, and two mutually trans κ^{1} Ar groups.

The structure of $\mathbf{8}$ consists of a dimer formed by carboxylato and OH ligands bridging two $\operatorname{PtAr}\left(\mathrm{PPh}_{3}\right)$ units. The bridging acetato and hydroxo ligands are trans to Ar and PPh_{3}, respectively. The $\mathrm{Pt}-\mathrm{OH}(2.063(2), 2.069(2) \AA$) and $\mathrm{Pt}-\mathrm{C}(1.984(3), 1.985(3) \AA$) bond lengths are similar but the $\operatorname{Pt}(1)-\mathrm{P}(2.2192(7) \AA)$ and $\operatorname{Pt}(1)-\mathrm{O}(1)(2.1162(19) \AA)$ bond distances are significantly greater than $\operatorname{Pt}(2)-\mathrm{P}(2.2069(7) \AA$) and $\operatorname{Pt}(1)-\mathrm{O}(2)(2.0890(19) \AA)$ in spite of being both trans to OH and Ar ligand. The acetato ligand occupies a strangely asymmetric position, with $\mathrm{C}(1)-\mathrm{O}(1) 1.271(2)>\mathrm{C}(1)-\mathrm{O}(2) 1.254(3)$ and $\mathrm{O} 1 \ldots \mathrm{Pt} 23.22>\mathrm{O} 2 \ldots \mathrm{Pt} 13.53 \AA$, and $\mathrm{C}(1)-$ $\mathrm{O}(1)-\operatorname{Pt}(1) 127.6(2)>\mathrm{C}(1)-\mathrm{O}(2)-\operatorname{Pt}(2) 122.3(2)^{\circ}$. There is no obvious reason for this; in particular, there are no especially short non-bonded interactions involving these atoms (indeed, even the OH group forms no H bonds, presumably for steric reasons).

In the crystals of $\mathbf{9}$, two crystallographically independent, but very similar molecules are present, one of which is represented in Figure 5. Both molecules display inversion symmetry. There is a slight difference in the Pt \cdots Pt distances (3.2228(4) and 3.2161(3) \AA), which are intermediate between the expected values for a van der Waals interaction ($3.44 \AA$) and a covalent bond ($3.00 \AA$), but are bound to be short in view of the bridging OH groups. Again, the OH groups do not participate in hydrogen bonds.

The crystal structure of $\mathbf{1 1}$ consists of dinuclear molecules that adopt an anti geometry, with the acetate bridges conferring an open-book shape upon the molecule. The planes of coordination around the Pd centers are stacked with a relatively short $\mathrm{Pd}-\mathrm{Pd}$ distance of $2.8227(4) \AA$ which is shorter than the expected for Pd-Pd covalent bond ($3.00 \AA$) and lies in the range found in some other $[\mathrm{Pd}]_{2}(\mu-\mathrm{OAc})_{2}$ complexes $(2.821-2.936 \AA) .{ }^{37,41}$

Figure 1. Ellipsoid representation of complex 2a (50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pd}(1)-\mathrm{C}(6)=1.925(2), \mathrm{Pd}(1)-\mathrm{C}(11)=2.000(2), \mathrm{Pd}(1)-\mathrm{O}(1)=2.0130(14)$, $\mathrm{Pd}(1)-\mathrm{O}(2)=2.0456(15), \mathrm{O}(1)-\mathrm{C}(1)=1.280(3), \mathrm{O}(2)-\mathrm{C}(3)=1.275(3), \mathrm{O}(3)-\mathrm{N}(2)=1.208(3)$, $\mathrm{O}(4)-\mathrm{N}(2)=1.218(2), \mathrm{O}(5)-\mathrm{N}(3)=1.227(2), \mathrm{O}(6)-\mathrm{N}(3)=1.223(3), \mathrm{N}(1)-\mathrm{C}(6)=1.145(3)$, $\mathrm{N}(1)-\mathrm{C}(21)=1.405(3), \mathrm{N}(2)-\mathrm{C}(16)=1.475(3), \mathrm{N}(3)-\mathrm{C}(12)=1.477(3), \mathrm{C}(6)-\mathrm{Pd}(1)-\mathrm{C}(11)=$ 88.56(8), $\mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{O}(1)=87.58(7), \mathrm{C}(6)-\mathrm{Pd}(1)-\mathrm{O}(2)=91.23(7), \mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)=$ 92.67(6).

Figure 2. Ellipsoid representation of complex 2b (50\% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{Pd}(1)-\mathrm{C}(6)=1.927(2), \mathrm{Pd}(1)-\mathrm{C}(11)=2.002(2), \mathrm{Pd}(1)-\mathrm{O}(1)=2.0098(16)$, $\mathrm{Pd}(1)-\mathrm{O}(2)=2.0519(16), \mathrm{N}(1)-\mathrm{C}(6)=1.143(3), \mathrm{N}(1)-\mathrm{C}(7)=1.474(3), \mathrm{O}(1)-\mathrm{C}(1)=1.280(3)$,
$\mathrm{O}(2)-\mathrm{C}(3)=1.271(3), \mathrm{N}(3)-\mathrm{O}(4)=1.222(3), \mathrm{N}(3)-\mathrm{O}(3)=1.229(3), \mathrm{N}(3)-\mathrm{C}(12)=1.477(3)$, $\mathrm{N}(2)-\mathrm{O}\left(6^{\prime}\right) 1.126(6), \mathrm{N}(2)-\mathrm{O}(5)=1.185(4), \mathrm{N}(2)-\mathrm{O}(6)=1.279(4), \mathrm{N}(2)-\mathrm{O}\left(5^{\prime}\right)=1.301(6)$, $\mathrm{N}(2)-\mathrm{C}(16)=1.482(3), \mathrm{O}(7)-\mathrm{C}(15)=1.373(2), \mathrm{O}(7)-\mathrm{C}(19)=1.443(3), \mathrm{O}(8)-\mathrm{C}(14)=1.363(3)$, $\mathrm{O}(8)-\mathrm{C}(18)=1.444(3), \mathrm{O}(9)-\mathrm{C}(13)=1.360(3), \mathrm{O}(9)-\mathrm{C}(17)=1.449(3), \mathrm{C}(6)-\mathrm{Pd}(1)-\mathrm{C}(11)=$ 86.68(9), $\mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{O}(1)=88.02(8), \mathrm{C}(6)-\mathrm{Pd}(1)-\mathrm{O}(2)=92.92(8), \mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)=$ 92.36(6).

Figure 3. Ellipsoid representation of complex 3 (50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{Pd}(1)-\mathrm{C}(11) 1.965(3), \mathrm{Pd}(1)-\mathrm{C}(1) 1.966(3), \mathrm{Pd}(1)-\mathrm{C}(21) 2.069(3), \mathrm{Pd}(1)-\mathrm{C}(31)$ $2.071(3), \mathrm{O}(1)-\mathrm{N}(3) 1.219(3), \mathrm{O}(2)-\mathrm{N}(3) 1.207(3), \mathrm{O}(3)-\mathrm{N}(4) 1.220(3), \mathrm{O}(4)-\mathrm{N}(4) 1.224(3)$, $\mathrm{O}(5)-\mathrm{C}(23) 1.367(3), \mathrm{O}(5)-\mathrm{C}(27) 1.440(4), \mathrm{O}(6)-\mathrm{C}(24) 1.370(3), \mathrm{O}(6)-\mathrm{C}(28) 1.432(4), \mathrm{O}(7)-$ $\mathrm{C}(25) 1.369(3), \mathrm{O}(7)-\mathrm{C}(29) 1.445(4), \mathrm{O}(8)-\mathrm{N}(5) 1.215(3), \mathrm{O}(9)-\mathrm{N}(5) 1.215(3), \mathrm{O}(10)-\mathrm{N}(6)$ $1.218(3), \mathrm{O}(11)-\mathrm{N}(6) 1.219(3), \mathrm{O}(12)-\mathrm{C}(33) 1.371(3), \mathrm{O}(12)-\mathrm{C}(37) 1.433(4), \mathrm{O}(13)-\mathrm{C}(34)$ $1.368(3), \mathrm{O}(13)-\mathrm{C}(38) 1.444(3), \mathrm{O}(14)-\mathrm{C}(35) 1.371(3), \mathrm{O}(14)-\mathrm{C}(39) 1.446(3), \mathrm{N}(1)-\mathrm{C}(1)$ $1.149(3), \mathrm{N}(1)-\mathrm{C}(2) 1.405(3), \mathrm{N}(2)-\mathrm{C}(11) 1.151(3), \mathrm{N}(2)-\mathrm{C}(12) 1.404(3), \mathrm{N}(3)-\mathrm{C}(26) 1.479(3)$, $\mathrm{N}(4)-\mathrm{C}(22) \quad 1.474(3), \quad \mathrm{N}(5)-\mathrm{C}(32) \quad 1.472(3), \quad \mathrm{N}(6)-\mathrm{C}(36) \quad 1.477(3), \quad \mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{C}(21)$ 89.37(10), $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(21) \quad 89.97(10), \mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{C}(31) 90.89(10), \mathrm{C}(1)-\operatorname{Pd}(1)-\mathrm{C}(31)$ 89.73(10),

Figure 4. Ellipsoid representation of one of the two independient anionic complexes $\left[\mathrm{Pd}_{2}\left(\kappa^{1}-\right.\right.$ $\left.\operatorname{Ar})_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}\right]^{2-}(\mathbf{5 a})(50 \%$ probability $)$. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the two independient complexes 5a and 5b. 5a: $\operatorname{Pd}(1)-\mathrm{C}(1) 1.979(3), \operatorname{Pd}(1)-\mathrm{Cl}(1) 2.2931(8), \mathrm{Pd}(1)-$ $\mathrm{Cl}(2) 2.3199(8), \mathrm{Pd}(1)-\mathrm{Cl}(3) 2.4323(8), \mathrm{Pd}(2)-\mathrm{C}(11) 1.981(3), \mathrm{Pd}(2)-\mathrm{Cl}(4) 2.2943(8), \mathrm{Pd}(2)-$ $\mathrm{Cl}(3)$ 2.3464(8), $\mathrm{Pd}(2)-\mathrm{Cl}(2) 2.4230(8), \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1) 89.58(8), \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2) 90.94(8)$, $\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(3) 92.97(3), \mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(3) 86.50(3), \mathrm{C}(11)-\mathrm{Pd}(2)-\mathrm{Cl}(4) 89.28(9), \mathrm{C}(11)-$ $\mathrm{Pd}(2)-\mathrm{Cl}(3) 92.53(9), \mathrm{Cl}(4)-\mathrm{Pd}(2)-\mathrm{Cl}(2) 92.09(3), \mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{Cl}(2) 86.13(3) . \mathbf{5 b}: \mathrm{Pd}(1)-\mathrm{C}(1)$ $1.970(3), \mathrm{Pd}(1)-\mathrm{Cl}(1) 2.3113(8), \mathrm{Pd}(1)-\mathrm{Cl}(2) 2.3222(8), \mathrm{Pd}(1)-\mathrm{Cl}(3) 2.4262(8), \mathrm{Pd}(2)-\mathrm{C}(11)$ $1.972(3), \mathrm{Pd}(2)-\mathrm{Cl}(4) 2.3055(8), \mathrm{Pd}(2)-\mathrm{Cl}(3) 2.3395(8), \mathrm{Pd}(2)-\mathrm{Cl}(2) 2.4089(9), \mathrm{C}(1)-\mathrm{Pd}(1)-$ $\mathrm{Cl}(1) 91.09(9), \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2) 87.99(9), \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(3) 93.50(3), \mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(3)$ 87.45(3), $\quad \mathrm{C}(11)-\mathrm{Pd}(2)-\mathrm{Cl}(4) \quad 90.59(9), \quad \mathrm{C}(11)-\mathrm{Pd}(2)-\mathrm{Cl}(3) \quad 89.75(9), \quad \mathrm{Cl}(4)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$ 92.18(3), $\mathrm{Cl}(3)-\mathrm{Pd}(2)-\mathrm{Cl}(2) 87.46(3)$

Figure 5. Ellipsoid representation of complex 8 (50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pt}(1)-\mathrm{C}(11) 1.984(3), \operatorname{Pt}(1)-\mathrm{O}(3)$ 2.063(2), $\mathrm{Pt}(1)-\mathrm{O}(1) 2.1162(19), \operatorname{Pt}(1)-\mathrm{P}(1)$ 2.2192(7), $\operatorname{Pt}(2)-\mathrm{C}(51)$ 1.985(3), $\operatorname{Pt}(2)-\mathrm{O}(3)$ 2.069(2), $\mathrm{Pt}(2)-\mathrm{O}(2) 2.0890(19), \operatorname{Pt}(2)-\mathrm{P}(2)$ $2.2069(7), \mathrm{N}(11)-\mathrm{O}(12) 1.211(3), \mathrm{N}(11)-\mathrm{O}(11) 1.212(3), \mathrm{N}(11)-\mathrm{C}(12) 1.468(4), \mathrm{N}(12)-\mathrm{O}(17)$ $1.215(3), \mathrm{N}(12)-\mathrm{O}(16) 1.225(3), \mathrm{N}(12)-\mathrm{C}(16) 1.467(4), \mathrm{N}(51)-\mathrm{O}(51) 1.193(\mathrm{~N}(51)-\mathrm{O}(52)$ $1.205(3), \mathrm{N}(51)-\mathrm{C}(52) 1.478(4), \mathrm{N}(52)-\mathrm{O}(56) 1.226(3), \mathrm{N}(52)-\mathrm{O}(57) 1.231(3), \mathrm{N}(52)-\mathrm{C}(56)$, $1.472(4), \mathrm{O}(1)-\mathrm{C}(1) 1.271(3), \mathrm{O}(2)-\mathrm{C}(1) 1.254(3), \mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{O}(3) 89.84(10), \mathrm{O}(3)-\mathrm{Pt}(1)-$ $\mathrm{O}(1) \quad 90.20(8), \quad \mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{P}(1) \quad 94.06(8), \quad \mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{P}(1) \quad 85.84(6), \quad \mathrm{C}(51)-\mathrm{Pt}(2)-\mathrm{O}(3)$ 89.35(10), $\mathrm{O}(3)-\mathrm{Pt}(2)-\mathrm{O}(2)$ 87.98(9), C(51)-Pt(2)-P(2) 92.47(8), O(2)-Pt(2)-P(2) 90.09(6).

Figure 6. Ellipsoid representation of complex 9 (50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pt}(1)-\mathrm{C}(11) 1.983(3), \operatorname{Pt}(1)-\mathrm{O}(1) 2.067(3), \operatorname{Pt}(1)-\mathrm{O}(1) \# 12.087(3), \operatorname{Pt}(1)-\mathrm{P}(1)$
2.2085(9), $\operatorname{Pt}(1)-\operatorname{Pt}(1) \# 13.2228(4), \mathrm{O}(1)-\operatorname{Pt}(1) \# 12.087(3), \mathrm{N}(11)-\mathrm{O}(11) 1.184(4), \mathrm{N}(11)-$ $\mathrm{O}(12) 1.199(5), \mathrm{N}(12)-\mathrm{O}(16) 1.179(5), \mathrm{N}(12)-\mathrm{O}(17) 1.232(5), \mathrm{Pt}(2)-\mathrm{C}\left(11^{\prime}\right) 1.994(3), \operatorname{Pt}(2)-$ $\mathrm{O}(2) \# 2$ 2.081(3), $\mathrm{Pt}(2)-\mathrm{O}(2) 2.095(3), \mathrm{Pt}(2)-\mathrm{P}(2)$ 2.2137(9), $\mathrm{Pt}(2)-\mathrm{Pt}(2) \# 2$ 3.2161(3), $\mathrm{O}(2)-$ $\operatorname{Pt}(2) \# 2$ 2.081(3), $\mathrm{N}\left(11^{\prime}\right)-\mathrm{O}\left(11^{\prime}\right) 1.213(4), \mathrm{N}\left(11^{\prime}\right)-\mathrm{O}\left(12^{\prime}\right) 1.230(4), \mathrm{N}\left(12{ }^{\prime}\right)-\mathrm{O}\left(16^{\prime}\right) 1.194(4)$, $\mathrm{N}\left(12^{\prime}\right)-\mathrm{O}\left(17^{\prime}\right)$ 1.219(5), $\mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{O}(1) 94.07(12), \mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{O}(1) \# 1$ 78.24(11), $\mathrm{C}(11)-$ $\mathrm{Pt}(1)-\mathrm{P}(1)$ 92.69(10), $\mathrm{O}(1) \# 1-\mathrm{Pt}(1)-\mathrm{P}(1) 95.07(8), \mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(1) \# 139.35(8), \mathrm{O}(1) \# 1-\mathrm{Pt}(1)-$ $\operatorname{Pt}(1) \# 138.90(7), \mathrm{P}(1)-\operatorname{Pt}(1)-\operatorname{Pt}(1) \# 1133.94(2), \mathrm{C}\left(11^{\prime}\right)-\mathrm{Pt}(2)-\mathrm{O}(2) \# 2$ 92.43(11), C(11')-Pt(2)$\mathrm{O}(2) 171.70(11), \mathrm{O}(2) \# 2-\mathrm{Pt}(2)-\mathrm{O}(2) 79.27(11), \mathrm{C}\left(11^{\prime}\right)-\mathrm{Pt}(2)-\mathrm{P}(2) 93.42(9), \mathrm{O}(2) \# 2-\mathrm{Pt}(2)-\mathrm{P}(2)$ 173.94(7), $\mathrm{O}(2)-\mathrm{Pt}(2)-\mathrm{P}(2) 94.89(7), \mathrm{C}\left(11^{\prime}\right)-\mathrm{Pt}(2)-\mathrm{Pt}(2) \# 2$ 132.23(9), $\mathrm{O}(2) \# 2-\mathrm{Pt}(2)-\mathrm{Pt}(2) \# 2$ 39.80(7), $\mathrm{O}(2)-\operatorname{Pt}(2)-\operatorname{Pt}(2) \# 239.47(7), \mathrm{P}(2)-\operatorname{Pt}(2)-\operatorname{Pt}(2) \# 134.34(2)$.

Figure 7. Ellipsoid representation of complex 11 (50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pd}(1)-\mathrm{C}(11) 1.955(3), \mathrm{Pd}(1)-\mathrm{O}(4) 2.005(2), \mathrm{Pd}(1)-\mathrm{O}(5) 2.019(2), \operatorname{Pd}(1)-\mathrm{O}(1)$ 2.086(2), $\mathrm{Pd}(1)-\mathrm{Pd}(2)$ 2.8227(4), $\mathrm{Pd}(2)-\mathrm{C}(21)$ 1.958(4), $\mathrm{Pd}(2)-\mathrm{O}(12) 2.006(2), \mathrm{Pd}(2)-\mathrm{O}(2)$ $2.008(2), \mathrm{Pd}(2)-\mathrm{O}(3) 2.086(2), \mathrm{N}(1)-\mathrm{O}(6) 1.206(4), \mathrm{N}(1)-\mathrm{O}(5) 1.294(4), \mathrm{N}(1)-\mathrm{C}(12) 1.432(4)$, $\mathrm{N}(2)-\mathrm{O}(10) 1.222(4), \mathrm{N}(2)-\mathrm{O}(11) 1.226(4), \mathrm{N}(2)-\mathrm{C}(16) 1.471(4), \mathrm{N}(3)-\mathrm{O}(13) 1.214(4), \mathrm{N}(3)-$ $\mathrm{O}(12) 1.284(4), \mathrm{N}(3)-\mathrm{C}(22) 1.432(4), \mathrm{N}(4)-\mathrm{O}(18) 1.222(3), \mathrm{N}(4)-\mathrm{O}(17) 1.221(4), \mathrm{N}(4)-\mathrm{C}(26)$
$1.485(4), \mathrm{O}(1)-\mathrm{C}(1) 1.253(4), \mathrm{O}(2)-\mathrm{C}(1) 1.274(4), \mathrm{O}(3)-\mathrm{C}(3) 1.258(4), \mathrm{O}(4)-\mathrm{C}(3) 1.272(4)$, $\mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{O}(4) 97.03(12), \mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{O}(5) 81.29(12), \mathrm{O}(4)-\mathrm{Pd}(1)-\mathrm{O}(1) 89.08(10), \mathrm{O}(5)-$ $\mathrm{Pd}(1)-\mathrm{O}(1) \quad 92.60(9), \mathrm{C}(21)-\mathrm{Pd}(2)-\mathrm{O}(12)$ 81.28(12), $\mathrm{C}(21)-\mathrm{Pd}(2)-\mathrm{O}(2)$ 97.64(12), $\mathrm{O}(12)-$ $\mathrm{Pd}(2)-\mathrm{O}(3) 91.37(10), \mathrm{O}(2)-\mathrm{Pd}(2)-\mathrm{O}(3) 89.77(10)$

Spectroscopic Properties. The NMR spectra of all complexes are in agreement with the proposed structures. Thus, at room temperature, the ${ }^{1} \mathrm{H}$ NMR spectra of complexes show the expected two (2:1) or three ($1: 1: 1$) methyl singlets per $\kappa^{1}-\mathrm{Ar}$ or $\kappa^{2}-\mathrm{Ar}$ groups, respectively, except in 10, which fortuitously shows only one resonance corresponding to 18 protons. In complex $\mathbf{8}$, the Me protons of the acetato ligand $(0.68 \mathrm{ppm})$ are shielded with respect to those in complex 11 (2.08 ppm), certainly because of the proximity of aryl groups of PPh_{3} (see Figure 5).

The IR spectra of $\mathbf{8}$ and $\mathbf{9}$, show a weak band at 3605 and $3602 \mathrm{~cm}^{-1}$, respectively, assignable to $v(\mathrm{OH})$. In 10, bands at 290 and $272 \mathrm{~cm}^{-1}$ are assigned to $v(\mathrm{PdCl})_{\text {trans }}$ to P and $v(\mathrm{PdCl})_{\text {trans }}$ to Ar, respectively, in agreement with its crystal structure. The chloro complex 4 shows a band assignable to $r(\mathrm{PdCl})$ at $314 \mathrm{~cm}^{-1}$.

Conclusions

We report a rare example of disproportionation when $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\mathrm{acac})\right]$ is reacted with four equivalents of XyNC , yielding trans $-\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)_{2}(\mathrm{CNXy})_{2}\right]$. We attribute this to a new transphobia effect associated with formation of the intermediate $\left[\operatorname{Pd}(\mathrm{Ar})(C-\mathrm{acac})(\mathrm{XyNC})_{2}\right]$, the unstability of which arises from the strong $\mathrm{T}(\operatorname{aryl} / C$-acac). We have attempted to prepare this intermediate by other two routes, confirming its instability and observing instead the formation of trans $-\left[\operatorname{Pd}\left(\kappa^{1}-\operatorname{Ar}\right)_{2}(\mathrm{CNXy})_{2}\right]$. This complex is the first $[\mathrm{Pd}](\mathrm{Ar})_{2}$ with $\mathrm{Ar}=\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}-2,6-$ (OMe) $)_{3}$; we had previously attempted to prepare, unsuccessfully, by a transmetallation using [HgAr_{2}]. A rare example of Pt to Hg transmetallation has allowed us to prepare a family of
$[\mathrm{Pt}](\mathrm{Ar})$, by reacting cis-[$\left.\mathrm{Pt}\left(\kappa^{2}-\mathrm{Ar}\right)\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right]$ with $\mathrm{Hg}(\mathrm{OAc})_{2}$ or HgCl_{2}. Such monoaryl platinum complexes could not be prepared by a Hg to Pt transmetallation.

Acknowledgement. We thank the Dirección General de Investigación/FEDER for financial support (Grant CTQ2004-05396). M.D.G.-L. and F. J.-H thank Fundación Séneca and Universidad de Murcia, respectively, for Grants.

Supporting Information Available: Crystallographic data in CIF format for 2a, 2b, 3, 5, $\mathbf{8 , 9}$, and 11. These materials are available free of charge via the Internet at http://pubs. acs.org.

For the Table of Contents

Diaryl complex trans- $\left[\operatorname{Pd}\left(\kappa^{1}-\mathrm{Ar}\right)_{2}(\mathrm{CNXy})_{2}\right]$ is prepared from monoaryl $\left[\mathrm{Pd}\left(\kappa^{2}-\mathrm{Ar}\right)(\mathrm{O}, \mathrm{O}-\right.$ acac)] and XyNC and monoaryl platinum complexes have been obtained by reacting $\operatorname{cis}-\left[\operatorname{Pt}\left(\kappa^{2}-\right.\right.$ $\left.\mathrm{Ar})\left(\kappa^{1}-\mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)\right]$ with $\mathrm{Hg}(\mathrm{OAc})_{2}$ or HgCl_{2}.

References

(1) Vicente, J.; Arcas, A.; Borrachero, M. V.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 1655.
(2) Vicente, J.; Arcas, A.; Blasco, M. A.; Lozano, J.; Ramírez de Arellano, M. C. Organometallics 1998, 17, 5374.
(3) Vicente, J.; Chicote, M. T.; Martin, J.; Artigao, M.; Solans, X.; Font-Altaba, M.; Aguiló, M. J. Chem. Soc., Dalton Trans. 1988, 141.
(4) Vicente, J.; Arcas, A.; Borrachero, M. V.; Molíns, E.; Miravitlles, C. J. Organomet. Chem. 1989, 359, 127.
(5) Vicente, J.; Abad, J. A.; Stiakaki, M. A.; Jones, P. G. J. Chem. Soc., Chem. Commun. 1991, 137. Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G.; Bembenek, E. Organometallics 1993, 12, 4151.
(6) Vicente, J.; Abad, J. A.; Jones, P. G. Organometallics 1992, 11, 3512.
(7) Vicente, J.; Abad, J.-A.; Bergs, R.; Ramirez de Arellano, M. C.; MartinezViviente, E.; Jones, P. G. Organometallics 2000, 19, 5597.
(8) Vicente, J.; Abad, J. A.; Fernández-de-Bobadilla, R.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 1996, 15, 24.
(9) Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 1997, 16, 4557.
(10) Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Rink, B.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 2004, 23, 1292.
(11) Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C. Organometallics 1997, 16, 5269.
(12) Cross, R. J.; Tennent, N. H. J. Organomet. Chem. 1974, 72, 21. Cross, R. J.; Wardle, R. J. Chem. Soc. A 1970, 840.
(13) van der Ploeg, A. F. M. J.; van Koten, G.; Vrieze, K. J. Organomet. Chem. 1981, 222, 155. Anderson, G. K. Organometallics 1983, 2, 665. Constable, E. C.; Leese, T. A. J. Organomet. Chem. 1987, 335, 293. Wehman, E.; Van Koten, G.; Jastrzebski, J. T. B. H.; Ossor, H.; Pfeffer, M. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) 1988, 2975. Bennett, M. A.; Contel, M.; Hockless, D. C. R.; Welling, L. L.; Willis, A. C. Inorg. Chem. 2002, 41, 844. Djukic, J.-P.; Berger, A.; Duquenne, M.; Pfeffer, M.; de Cian, A.; Kyritsakas-Gruber, N.; Vachon, J.; Lacour, J. Organometallics 2004, 23, 5757. Soro, B.; Stoccoro, S.; Minghetti, G.; Zucca, A.; Cinellu, M. A.; Gladiali, S.; Manassero, M.; Sansoni, M. Organometallics 2005, 24, 53. Soro, B.; Stoccoro, S.; Minghetti, G.; Zucca, A.; Cinellu, M. A.; Manassero, M.; Gladiali, S. Inorg. Chim. Acta 2006, 359, 1879.
(14) Berger, A.; de Cian, A.; Djukic, J.-P.; Fischer, J.; Pfeffer, M. Organometallics 2001, 20, 3230. Berger, A.; Djukic, J.-P.; Pfeffer, M.; Lacour, J.; Vial, L.; De Cian, A.; Kyritsakas-Gruber, N. Organometallics 2003, 22, 5243.
(15) Vicente, J.; Chicote, M. T.; Martin, J.; Jones, P. G.; Fittschen, C.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1986, 2215.
(16) Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Jones, P. G. Organometallics 2004, 23, 3521.
(17) Segnitz, A.; Kelly, E.; Taylor, S. H.; Maitlis, P. M. J. Organomet. Chem. 1977, 124, 113.
(18) Anderson, G. K.; Cross, R. J. J. Chem. Soc., Dalton Trans. 1979, 1246. Anderson, G. K.; Cross, R. J. J. Chem. Soc., Dalton Trans. 1980, 712. Vicente, J.; Abad, J. A.; Teruel, F.; Garcia, J. J. Organomet. Chem. 1988, 345, 233.
(19) Vicente, J.; Arcas, A.; Chicote, M. T. J. Organomet. Chem. 1983, 252, 257. Vicente, J.; Chicote, M. T.; Arcas, A.; Artigao, M. Inorg. Chim. Acta 1982, 65, L251. Vicente, J.; Arcas, A.; Jones, P. G.; Lautner, J. J. Chem. Soc., Dalton Trans. 1990, 451. Vicente, J.;

Bermúdez, M. D.; Chicote, M. T.; Sánchez-Santano, M. J. J. Organomet. Chem. 1990, 381, 285.
Vicente, J.; Chicote, M. T.; González-Herrero, P.; Grünwald, C.; Jones, P. G. Organometallics 1997, 16, 3381.
(20) Vicente, J.; Martin, J.; Chicote, M. T.; Solans, X.; Miravitlles, C. J. Chem. Soc., Chem. Commun. 1985, 1004. Vicente, J.; Martin, J.; Solans, X.; Font-Altaba, M. Organometallics 1989, 8, 357. Vicente, J.; Abad, J. A.; Lahoz, F. J.; Plou, F. J. J. Chem. Soc., Dalton Trans. 1990, 1459.
(21) Parham, W. E.; Piccirilli, R. M. J. Org. Chem. 1976, 41, 1268. Buck, P.; Koebrich, G. Chem. Ber. 1970, 103, 1412.
(22) Stapp, B.; Schmidtberg, G.; Brune, H. A. Z. Naturforsch., B 1986, 41b, 541.
(23) Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Jones, P. G. Organometallics 2006, 25, 4247.
(24) Vicente, J.; Arcas, A.; Bautista, D.; Jones, P. G. Organometallics 1997, 16, 2127. Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Jones, P. G. J. Am. Chem. Soc. 2002, 124, 3848. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G. Organometallics 2002, 21, 4454.
(25) Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C. Chem. Eur. J. 1999, 5, 3066.
(26) Vicente, J.; Arcas, A.; Bautista, D.; Tiripicchio, A.; Tiripicchio-Camellini, M. New J. Chem. 1996, 20, 345.
(27) Vicente, J.; Abad, J. A.; López-Nicolás, R. M.; Jones, P. G. Organometallics 2004, 23, 4325.
(28) Lohner, P.; Pfeffer, M.; Fischer, J. J. Organomet. Chem. 2000, 607, 12. Crespo, M.; Granell, J.; Solans, X.; Fontbardia, M. J. Organomet. Chem. 2003, 681, 143. Fernandez, S.; Navarro, R.; Urriolabeitia, E. P. J. Organomet. Chem. 2000, 602, 151. Albert, J.; Cadena, J. M.;

Delgado, S.; Granell, J. J. Organomet. Chem. 2000, 603, 235. Marshall, W. J.; Grushin, V. V. Organometallics 2003, 22, 555. Jalil, M. A.; Fujinami, S.; Nishikawa, H. J. Chem. Soc., Dalton Trans. 2001, 1091. Carbayo, A.; Cuevas, J. Y.; Garcia Herbosa, G.; Garcia Granda, S.; Miguel, D. Eur. J. Inorg. Chem. 2001, 2361. Fernandez, A.; Vazquez Garcia, D.; Fernandez, J. J.; López Torres, M.; Suarez, A.; Castro Juiz, S.; Vila, J. M. Eur. J. Inorg. Chem. 2002, 2389. FernandezRivas, C.; Cardenas, D. J.; Martin-Matute, B.; Monge, A.; Gutierrez-Puebla, E.; Echavarren, A. M. Organometallics 2001, 20, 2998. Bartolome, C.; Espinet, P.; Vicente, L.; Villafañe, F.; Charmant, J. P. H.; Orpen, A. G. Organometallics 2002, 21, 3536. Amatore, C.; Bahsoun, A. A.; Jutand, A.; Meyer, G.; Ntepe, A. N.; Ricard, L. J. Am. Chem. Soc. 2003, 125, 4212. Ng, J. K. P.; Chen, S.; Li, Y.; Tan, G. K.; Koh, L. L.; Leung, P. H. Inorg. Chem. 2007, 46, 5100. Casas, J. M.; Fornies, J.; Fuertes, S.; Martin, A.; Sicilia, V. Organometallics 2007, 26, 1674.
(29) Cross, R. J.; Gemmill, J. J. Chem. Soc., Dalton Trans. 1984, 199.
(30) Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Jones, P. G. Organometallics 2004, 23, 3528.
(31) Vicente, J.; Arcas, A.; Fernandez-Hernandez, J. M.; Bautista, D. Organometallics 2006, 25, 4404.
(32) Sokolov, V. I.; Reutov, O. A. Coord. Chem. Rev. 1978, 27, 89. Suzaki, Y.; Yagyu, T.; Osakada, K. J. Organomet. Chem. 2007, 692, 326.
(33) Albeniz, A. C.; Espinet, P.; Lopez-Cimas, O.; Martin-Ruiz, B. Chem. Eur. J. 2004, 11, 242. Albeniz, A. C.; Espinet, P.; Martinruiz, B. Chem. Eur. J. 2001, 7, 2481. Usón, R.; Forniés, J.; Tomás, M.; Casas, J. M.; Navarro, R. J. Chem. Soc., Dalton Trans. 1989, 169.
(34) Vicente, J.; Arcas, A.; Fernández-Hernández, J. M.; Bautista, D.; Jones, P. G. Organometallics 2005, 24, 2516.
(35) Deacon, G. B.; Farquharson, G. J.; Miller, J. M. Aust. J. Chem. 1977, 30, 1013.
(36) Duff, J. M.; Mann, B. E.; Shaw, B. L.; Turtle, B. Journal of the Chemical Society,

Dalton Transactions: Inorganic Chemistry (1972-1999) 1974, 139. Cockburn, B. N.; Howe, D. V.; Keating, T.; Johnson, B. F. G.; Lewis, J. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) 1973, 404. Buey, J.; Diez, L.; Espinet, P.; Kitzerow, H.-S.; Miguel, J. A. Chemistry of Materials 1996, 8, 2375. Navarro-Ranniger, C.; Lopez-Solera, I.; Perez, J. M.; Rodriguez, J.; Garcia-Ruano, J. L.; Raithby, P. R.; Masaguez, J. R.; Alonso, C. Journal of Medicinal Chemistry 1993, 36, 3795. Navarro-Ranninger, C.; LopezSolera, I.; Alvarez-Valdes, A.; Rodriguez-Ramos, J. H.; Masaguer, J. R.; Garcia-Ruano, J. L.; Solans, X. Organometallics 1993, 12, 4104.
(37) Navarro-Ranninger, C.; López-Solera, I.; González, V. M.; Pérez, J. M.; AlvarezValdés, A.; Martín, A.; Raithby, P.; Masaguer, J. R.; Alonso, C. Inorg. Chem. 1996, 35, 5181.
(38) Aullon, G.; Ujaque, G.; Lledos, A.; Alvarez, S. Chem. Eur. J. 1999, 5, 1391. Aullon, G.; Ujaque, G.; Lledos, A.; Alvarez, S.; Alemany, P. Inorg. Chem. 1998, 37, 804.
(39) Appleton, T. G.; Mathieson, M.; Byriel, K. A.; Kennard, C. H. L. Z. Kristallogr. New Cryst. Struct. 1998, 213, 247.
(40) Sakai, K.; Takeshita, M.; Tanaka, Y.; Ue, T.; Yanagisawa, M.; Kosaka, M.; Tsubomura, T.; Ato, M.; Nakano, T. J. Am. Chem. Soc. 1998, 120, 11353.
(41) Eremenko, I. L.; Nefedov, S. E.; Sidorov, A. A.; Ponina, M. O.; Danilov, P. V.; Stromnova, T. A.; Stolarov, I. P.; Katser, S. B.; Orlova, S. T.; Vargaftik, M. N.; Moiseev, I.; Ustynyuk, Y. A. J. Organomet. Chem. 1998, 551, 171. Zaitsev, V. G.; Shabashov, D.; Daugulis, A. J. Am. Chem. Soc. 2005, 127, 13154. Navarro-Ranninger, C.; Zamora, F.; López-Solera, I.; Monge, A.; Masaguer, J. R. J. Organomet. Chem. 1996, 506, 149. Navarro-Ranninger, C.; Zamora, F.; Martinezcruz, L. A.; Isea, R.; Masaguer, J. R. J. Organomet. Chem. 1996, 518, 29. Ghedini, M.; Pucci, D.; De Munno, G.; Viterbo, D.; Neve, F.; Armentano, S. Chem. Mater. 1991, 438, 343. Zamora, F.; Luna, S.; Amoochoa, P.; Martinezcruz, L. A.; Vegas, A. J. Organomet. Chem. 1996, 522, 97. Calmuschi, B.; Englert, U. Acta Cristallogr., Sect. C 2002,

58, M545. Stasch, A. I.; Perepelkova, T. I.; Kravtsova, S. V.; Noskov, Y. G.; Romm, I. P. Koord. Khim. 1998, 24, 40.

Table 1. Crystallographic Data for Complexes 2a, 2b, 3 and 5

	$\mathbf{2 a} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$	2b	3	$\mathbf{5} \cdot 0.5 \mathrm{Me}_{2} \mathrm{CO}$
formula	$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O} 9.5 \mathrm{Pd}$	$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O} 9 \mathrm{Pd}$	$\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{Pd}$	$\mathrm{C}_{27.5} \mathrm{H}_{45} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{14.5} \mathrm{Pd}_{2}$
M_{r}	630.92	545.82	883.11	1046.30
cryst habit	colorless, block	colorless, prism	colorless, needle	orange, lath
cryst size (mm)	$0.20 \times 0.16 \times 0.08$	$0.24 \times 0.12 \times 0.0$	$0.13 \times 0.09 \times 0.0$. $17 \times 0.12 \times 0.07$
cryst syst	triclinic	monoclinic	monoclinic	triclinic
space group	$P \square$	$P 21 / n$	$P 21 / c$	$P \square$
cell constants				
a, \AA	10.0026(5)	16.322(2)	21.1560(9)	14.6377(6)
b, \AA	10.5211(5)	8.2938(11)	$11.2128(5)$	16.8923(7)
c, \AA	14.3597(7)	18.474(2)	16.2406(7)	18.0811(7)
α, deg	107.407(2)	90	90	73.573(2)
β, deg	103.434(2	112.011(2)	92.797(2)	88.311(2)
$\gamma, \operatorname{deg}$	91.700(2)	90	90	71.063(2)
$V\left(\AA^{3}\right)$	1394.50(12)	2318.5(5)	3848.0(3)	4046.6(3)
Z	2	4	4	4
$\lambda(\AA)$	0.71073	0.71073	0.71073	0.71073
ρ (calc) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.503	1.56	1.52	1.72
$\mu \mathrm{mm}^{-1}$	0.72	0.853	0.558	1.222
F(000)	646	1112	1808	2112
T (K)	100(2)	100(2)	100(2)	100(2)
$2 \theta_{\text {max }}(\mathrm{deg})$	56	56	56	56
no. of reflns meas	16229	24490	41574	47676
no. of indep reflns	6240	5320	7865	18222
transmissions	0.945, 0.869	0.935, 0.821	0.962, 0.931	0.919, 0.819
$R_{\text {int }}$	0.0232	0.0406	0.0511	0.0299
no. rest/params	40/377	6/296	$0 / 524$	$26 / 1007$
$R_{\mathrm{w}}\left(F^{2}\right.$, all reflns $)$	0.0775	0.0726	0.0844	0.1006
$\mathrm{R}(F,>4 \sigma(F))$	0.0296	0.0306	0.0368	0.0424
S	1.05	1.05	1.07	1.02
$\max \Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	0.97	0.82	0.64	1.22

Table 2. Crystallographic Data for Complexes 8, 9 and 11

	$\mathbf{8 \cdot 2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathbf{9} \cdot 1.28 \mathrm{CDCl}_{3} \cdot 0.72 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	11
formula	$\mathrm{C}_{58} \mathrm{H}_{56} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{Pt}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{52.7} \mathrm{Cl}_{5.3} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}_{2} \mathrm{Pt}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{Pd}_{2}$
M_{r}	1674.99	1677.04	845.25
cryst habit	pale yellow prism	yellow, irregular	red, needle
cryst size (mm)	$0.28 \times 0.22 \times 0.10$	$0.19 \times 0.18 \times 0.08$	$0.30 \times 0.05 \times 0.03$
cryst syst	triclinic	triclinic	triclinic
space group	$P \square$	$P \square$	$P \square$
cell constants			
a, \AA	13.2770(8)	14.1641(8)	10.2492(5)
b, \AA	13.5786(8)	14.3015(8)	11.6858(6)
c, \AA	18.7001(11)	18.3803(12)	14.5201(8)
α, deg	98.449(4)	68.708(4)	66.848(2)
β, deg	91.862(4)	74.876(4)	72.464(2)
$\gamma, \operatorname{deg}$	107.581(4)	63.103(4)	64.161(2)
$V\left(\AA^{3}\right)$	3168.4(3)	3072.8(3)	1421.30(13)
Z	2	2	2
$\lambda(\AA)$	0.71073	0.71073	0.71073
$\rho($ calc $)\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.76	1.81	1.98
$\mu \mathrm{mm}^{-1}$	4.701	4.90	1.358
$\mathrm{F}(000)$	1644	1641	840
T (K)	133(2)	133(2)	100(2)
$2 \theta_{\text {max }}$ (deg)	60	60	56
no. of reflns measd	64157	64443	15553
no. of indep reflns	18469	17889	5744
transmissions	0.746, 0.528	0.535, 0.746	0.960, 0.686
$R_{\text {int }}$	0.0333	0.0341	0.0355
no. rest/params	176 / 800	774 / 799	0 / 423
$R_{\mathrm{w}}\left(F^{2}\right.$, all reflns $)$	0.0639	0.0808	0.0756
$\mathrm{R}(F,>4 \sigma(F))$	0.0259	0.0294	0.0362
S	0.99	0.99	1.09
$\max \Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	1.57	1.47	0.616

