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Summary

Our understanding of the mechanisms by which aging is

produced is still very limited. Here, we have determined the sera

metabolite profile of 117 wild-type mice of different genetic

backgrounds ranging from 8 to 129 weeks of age. This has

allowed us to define a robust metabolomic signature and a

derived metabolomic score that reliably/accurately predicts the

age of wild-type mice. In the case of telomerase-deficient mice,

which have a shortened lifespan, their metabolomic score

predicts older ages than expected. Conversely, in the case of

mice that overexpress telomerase, their metabolic score corre-

sponded to younger ages than expected. Importantly, telomerase

reactivation late in life by using a TERT-based gene therapy

recently described by us significantly reverted the metabolic

profile of old mice to that of younger mice, further confirming an

anti-aging role for telomerase. Thus, the metabolomic signature

associated with natural mouse aging accurately predicts aging

produced by telomere shortening, suggesting that natural mouse

aging is in part produced by presence of short telomeres. These

results indicate that the metabolomic signature is associated with

the biological age rather than with the chronological age. This

constitutes one of the first aging-associated metabolomic signa-

tures in a mammalian organism.
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High-throughput metabolite profiling technologies can be used to

determine the metabolic status of whole organisms under conditions of

interest, as well as to systematically define phenotypic patterns associ-

ated with mutant genotypes (Raamsdonk et al., 2001; Allen et al., 2003;

Nicholson & Wilson, 2003; Lewis et al., 2010). Here, we set to determine

the metabolic profile of wild-type mice at different ages with the goal of

obtaining a metabolomic signature of natural mouse aging, which could

serve as a predictive model to estimate the biological age, as well as that

could allow to identify new biomarkers of aging. Furthermore, we

reasoned that analysis of this age-related metabolomic signature in

short-lived, telomerase-deficient (Terc�/�), and long-lived TERT trans-

genics mice could serve to assess the contribution of telomere

shortening and telomerase status to the metabolomic changes associ-

ated with natural mouse aging (Blasco et al., 1997; Lee et al., 1998;

Herrera et al., 1999; Garcia-Cao et al., 2006; Tomas-Loba et al., 2008).

A liquid chromatography–mass spectrometry (UPLC-MS) platform–based

metabolomics approach was used to explore the relative levels of serum

metabolites during mouse aging. To circumvent the potential influence

of genetic background and gender in the metabolomic profile associated

with mouse aging, 117 serum samples were analyzed from wild-type

mice of different genetic backgrounds (see Materials and methods), and

these samples included sera from both male (51) and female (66) mice

with ages ranging from 8 to 129 weeks. Furthermore, we also

determined the metabolomic profiles of middle-aged (1 year) and old

(2 years) control wild-type mice compared with that of 2-year-old mice

treated with a TERT-based gene therapy recently shown by us to

reactivate telomerase and delay aging (see Materials and methods)

(Bernardes de Jesus et al., 2012). The only phenotypic distinction we

have analyzed in this manuscript is age. This could be viewed as one

limitation of this study as co-founding effects (such as disease or obesity)

were not taken into account.

The global metabolite profile was processed to create a multivariate

model correlating the spectral data with the age of the wild-type

samples. A predictive PLS model (Projection to Latent Structure; see

Materials and methods) was built and validated (Figure S1), obtaining a

robust metabolomic model of aging for wild-type mice, which fits well a

linear model (r2 = 0.944) (closed black diamonds in Fig. 1A). Variable

influence on projection (VIP) parameters and Spearman’s rank correla-

tion coefficients (q) were examined for each metabolite, identifying the

most influential biomarkers in the PLS model and aging – correlative.

Table 1 highlights selection of 48 biomarkers for which there is a

significant correlation of wild-type samples with age (Spearman′s rank

correlation test P-values < 0.05). These biomarkers include phospholip-

ids, fatty acids, and organic acids, in agreement with the fact that the

extraction methodology provides a maximum coverage over those

families of compounds.

We then used this wild-type mouse metabolomic signature of aging

to predict the ages of first-generation (G1) mice deficient in telomerase

activity due to deletion of the telomerase RNA component or Terc (G1

Terc�/� mice). These mice show premature aging and decreased median

and maximum longevity already at the first generation (Blasco et al.,

1997; Lee et al., 1998; Herrera et al., 1999; Garcia-Cao et al., 2006).

Interestingly, G1 Terc�/� mice showed a significantly older

(P-value = 1.011 e�8) metabolic age when compared with wild-type

mice of the same chronological age (red circles in Fig. 1A). Thus, the

metabolomic signature associated with physiological wild-type mouse

aging accurately predicts aging produced by short telomeres owing to

telomerase deficiency. These results suggest that physiological mouse

aging is largely associated with the presence of short telomeres or to

cellular conditions favoring telomere protection, such an increased load

of tumor suppressors (Tomas-Loba et al., 2008). Indeed, the increase in

the rate of increase of short telomeres was recently shown to be

correlated with the realized lifespan in mice (Vera et al., 2012). Next, we

used our wild-type mouse aging metabolomic signature to predict the

ages of transgenic mice overexpressing the telomerase reverse-trans-

criptase subunit or TERT in various stratified epithelia (K5-TERT mice). We

have previously shown that K5-TERT mice have increased tissue fitness

and a delayed aging (Gonzalez-Suarez et al., 2001, 2005). Serum

metabolomic profiles were not significantly different when comparing
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wild-type and TERT overexpressing mice of all age groups (5–140 weeks;

P-value = 0.534) (blue circles, Fig. 1B). However, when we compared

metabolic profiles of only adult/old mice (ages ranging from 60–

140 weeks old), mice overexpressing TERT showed a significantly

younger (P-value = 3.051 e�5) metabolic age than wild-type animals

(Fig. 1B). To circumvent the cancer-promoting activity of telomerase, we

also determined the metabolomic profile of our recently generated TERT

overexpressing mice with enhanced cancer resistance owing to increased

expression of the tumor suppressors p53, p16, and p19ARF (Sp53/Sp16/

SARF/TgTERT). Sp53/Sp16/SARF/TgTERT mice show a delayed aging and

a 40% extension of the median lifespan (Tomas-Loba et al., 2008).

Serum metabolomic profiles of Sp53/Sp16/SARF/TgTERT mice identified

significant differences in metabolic age compared with wild-type mice of

the same chronological age, although the differences were not very

robust (P-value = 0.031) when the complete range of ages (8–

140 weeks old) was evaluated (green circles in Fig. 1C). Again, when

we compared the metabolic profile of adult/old Sp53/Sp16/SARF/TgTERT

mice ranging in age from 60 to 140 weeks old, Sp53/Sp16/SARF/TgTERT

mice showed a significantly younger (P-value = 0.012) metabolic age

compared with wild-type mice of the same chronological age (green

circles in Fig. 1C). Delayed organismal aging and extended lifespan have

also been demonstrated through improved damage protection by

increasing the activity of the p53/ARF pathway in Sp53/Sp16/SARF mice

(Matheu et al., 2007). Comparison of serum metabolomic profiles from

Sp53/Sp16/SARF and wild-type mice identified modest but significant

differences (P-value = 0.045) when the complete range of ages (8–

140 weeks old) was evaluated (purple circles, Fig. 1D). These differences

became more significant (P-value = 0.004) when only adult/old mice

(ages ranging between 60 and 140 weeks old) were compared (purple

circles, Fig. 1D), indicating that old Sp53/Sp16/SARF mice have signif-

icantly younger metabolic ages than age-matched wild-type mice.

Together, these results support an impact of telomerase activity and

telomere length, as well as of the p53/p16/p19ARF tumor suppressors,

on the metabolomic profile associated with natural mouse aging.

Next, we followed the behavior of different metabolites associated

wth mouse aging. Figure 2 shows representative examples of selected

biomarkers in sera from wild-type, G1 Terc�/�, and TERT transgenic mice

at various ages. Figure 2A,C,D, corresponding to a not determined

metabolite (Rt = 7.4 min; m/z = 776.5798), sphingomyelin SM(d18:1/

16:1), and glycerophosphoethanolamine PE(P-16:0/22:6), respectively,

(A) (B)

(C) (D)

Fig. 1 Age predictions with respect to the wild-type mice metabolomic signature. The wild-type mice metabolomic aging changes (black diamonds) fit a linear model:

predicted age = 0.934·Actual Age + 3.971 (r2 = 0.944). (A) G1 Terc�/� samples (red circles); (B) K5-Tert samples (blue circles); (C) Sp53/Sp16/Sp19Arf/K5-Tert samples

(green circles); (D) Sp53/Sp16/Sp19Arf samples (purple circles). P-values for Figure B–D correspond only to mice over 60 months of age.
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exemplify the metabolic discrimination of G1 Terc�/� mice from the

other sample groups. In particular, the relative decrease in abundance of

these biomarkers occurs on a much faster timescale for the G1 Terc�/�

mutants than for wild-type mice or TERT transgenics. Figure 2B illus

trates a biomarker, lysoglicerophosphocholine [LysoPC(18:3)], showing

distinct temporal evolutions in the 3 sample groups. In particular, its

relative intensity remains more or less constant over time for the TERT

transgenics, while a marked decrease with age is observed for wild-type

and G1 Terc�/� mice, the relative change once more occurring much

quicker in the latter group. Opposite trends (increased rather than

decreased relative intensities) are shown in Fig. 2E,F, corresponding to

glycerophosphoethanolamines PE(16:0/18:2) and PE(16:0/22:6), respec-

Table 1 Selection of aging serum metabolic biomarkers

Rt (min) m/z (Da/e) Ion ID Spearman′s rho P-value VIP

7.11 774.5646 [M+H]+ ND �0.64987 5.23 9 10�11 3.335

6.90 719.5687 [M+H]+ ND �0.54365 1.56 9 10�7 2.999

3.67 378.2400 [M-H]� Sphingosine 1 – phosphate �0.50817 1.28 9 10�6 0.917

6.52 608.4578 ND ND �0.49980 2.03 9 10�6 1.264

6.54 717.5526 ND ND �0.47733 6.62 9 10�6 2.166

6.78 745.5492 [M+FA]� SM(d18:1/16:1) �0.46557 1.19 9 10�5 1.492

7.40 776.5789 [M+H]+ ND �0.39461 2.67 9 10�4 3.393

4.74 480.3082 [M-H]� LysoPE(18:0) �0.38019 4.64 9 10�4 0.944

3.81 542.3239 [M+H]+ LysoPC(20:5) 0.37572 5.47 9 10�4 1.460

0.62 160.1316 [M+H]+ 2-aminooctanoic acid 0.36586 7.83 9 10�4 1.896

0.82 204.1236 [M+H]+ L-Acetylcarnitine �0.32805 2.79 9 10�3 1.161

0.60 147.0769 [M+H]+ Glutamine �0.31736 3.89 9 10�3 1.445

7.50 826.5595 [M+FA]� PC(18:2/18:2) �0.31388 4.32 9 10�3 0.929

2.98 481.2043 ND ND �0.31254 4.50 9 10�3 1.044

4.25 502.2935 [M+FA-MFA]� LysoPE(20:3) �0.29817 6.86 9 10�3 1.738

6.02 305.2474 [M-H]� Eicosatrienoic acid 0.29803 6.89 9 10�3 0.916

7.88 722.5129 [M-H]� PE(P-16:0/20:4) �0.29592 7.31 9 10�3 1.221

7.31 774.5367 [M+FA]� PE(14:0/18:2) �0.29171 8.23 9 10�3 1.528

0.84 150.0588 [M+H]+ L-Methionine �0.28323 0.0104 0.857

5.38 269.2268 ND ND 0.28115 0.0110 1.054

7.17 747.5637 [M+FA]� SM(d18:1/16:0) �0.27966 0.0115 1.060

4.17 452.2764 [M-H]� LysoPE(16:0) �0.27951 0.0115 1.134

6.76 721.5845 [M+H]+ ND �0.27871 0.0118 0.877

7.70 768.5907 [M+H]+ ND �0.27472 0.0131 0.970

6.61 447.3831 ND ND �0.26165 0.0183 1.231

7.29 773.5794 [M+FA]� SM(36:2) �0.25655 0.0208 1.373

0.60 132.0771 [M+H]+ Creatine �0.25449 0.0219 1.383

7.91 778.5623 [M+FA]� PC(16:0/16:0) �0.24690 0.0263 1.108

7.74 772.5875 [M+H]+ PC(17:0/18:2) �0.24509 0.0274 1.162

6.97 778.5341 ND ND 0.24449 0.0278 1.136

0.61 116.0710 [M+H]+ Proline �0.24321 0.0287 1.263

4.63 536.3651 ND ND 0.24095 0.0302 1.096

7.38 744.5543 [M+H]+ PC(15:0/18:2) �0.24050 0.0306 1.347

7.60 716.5233 [M+H]+ PE(16:0/18:2) �0.23397 0.0355 1.164

7.60 748.5272 [M+H]+ PE(P-16:0/22:6) �0.22895 0.0398 1.203

0.55 167.0198 [M-H]� Uric acid 0.22832 0.0404 1.605

7.46 764.5225 [M+H]+ PE(16:0/22:6) �0.22750 0.0411 1.109

5.84 325.3203 ND ND 0.22342 0.0450 1.125

7.42 800.5449 [M+FA]� PC(34:3) �0.22217 0.0462 0.964

5.39 296.2590 [M+ACN+H]+ Palmitoleic acid 0.21926 0.0492 0.944

0.57 124.0079 [M+H]+ Taurine 0.25912 0.0195 0.718

4.22 279.2307 [M+H]+ Linolenic acid 0.27863 0.0118 0.717

5.99 283.2627 [M+H]+ Oleic acid 0.24274 0.0290 0.739

6.61 652.4550 ND ND �0.33682 2.11 9 10�3 0.797

7.47 850.5606 [M+H]+ PC(16:0/22:6) �0.24003 0.0309 1.090

7.50 832.5889 [M+H]+ PC(40:7) 0.27525 0.0129 0.604

7.99 808.5871 [M+H]+ PC(38:5) 0.27729 0.0122 0.860

8.11 766.5396 [M+H]+ PE(38:4) �0.38345 4.10 9 10�4 1.135

Peaks are listed for which there is significant correlation of wild-type samples with age [Spearman′s rank correlation test P-values < 0.05]. Rt (min), chromatographic

retention time; m/z (Da/e) [m is the neutral molecular mass value, e is the elemental charge], mass-to-charge ratio of ion detected; Ion, most intense species observed; ID,

metabolite name (lipid names follow the LIPID MAPS classification system for lipids www.lipidmaps.org); Spearman′s rho, Spearman′s rank correlation coefficient; P-value, P-

value derived from the Spearman′s rank correlation coefficient; VIP, variable influence on projection parameter. ND, not determined.
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tively. Both of these biomarkers increase rapidly with age in the Terc�/�

cohorts, while a less pronounced change is observed in WT mice. The

intensities of these biomarkers do not show significant changes over

time in the TERT transgenic group. Interestingly, some of the metabolites

identified here (i.e., sphingomyelin, glycerophosphoethanolamines) have

been previously linked to neurodegenerative disorders and various

aspects of aging and disease (Klunk et al., 1997; Cutler & Mattson,

2001).

Recently, we reported that telomerase expression late in life by using

a TERT-based gene therapy strategy was sufficient to delay age-

associated decay and to significantly extend mouse longevity (Bernardes

de Jesus et al., 2012). Among other beneficial effects of TERT treatment,

we observed that mice treated with AAV9-TERT showed improved

metabolic parameters including a better performance in glucose and

insulin tolerance tests. To dissect the effects of TERT treatment on

metabolism, here, we studied the metabolomics profiles of 1- and 2-

year-old mice treated with TERT (AAV9-mTERT) or with a control vector

(AAV9-eGFP). To this end, we first compared the metabolomics profile

of 1-year-old and 2-year-old control mice treated with AAV9-eGFP,

which allowed to establish a set of metabolites that changed associated

with aging (Table 2). Interestingly, we found that 2 months after TERT

treatment, old mice (2 years old) showed a reversal of the metabolic

signature associated with aging (Fig. 3). In particular, 2-year-old mice

treated with AAV9-mTERT showed a metabolic signature, which

resembled the signature presented by the 1-year-old control mice.

Therefore, expression of telomerase in aged mice partially rescues the

(A) (B)

(C) (D)

(E) (F)

Fig. 2 Metabolite profile plots (mean � 1 standard error of the mean). (A) Rt = 7.4 min, m/z = 776.5789 (not determined); (B) LysoPE(20:3); (C) SM(d18:1/16:1); (D) PE(P-

16:0/22:6); (E) PE(16:0/18:2); (F) PE(16:0/22:6). WT samples (black); K5-Tert samples (blue); Terc�/� samples (red).
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age-associated metabolic decline (Figures 3 and 4). These results suggest

metabolic changes related to the aging process that can be reverted

after treatment with AAV9-mTERT. Interestingly, some of the metabo-

lites identified in the gene therapy with AAV9-mTERT, were similar to

those identified in the metabolic signature of aging. When we

specifically studied some of these metabolites in the different exper-

Table 2 Selection of biomarkers distinguishing 1- and 2-year old AAV9-GFP and comparison of 2-year-old AAV9-GFP- and AAV9-TERT-treated mice

Rt (min) m/z (Da/e) Ion ID

AAV9-eGFP 2-year-old/1-year-old

2-year-old AAV9-mTERT/2-year-

old AAV9-eGFP

Fold change P-value Fold change P-value

6.15 717.5180 [M+FA]� SM32:2 0.36 1.12 9 10�6 2.63 1.30 9 10�6

3.88 564.3295 [M+FA]� LysoPC(18:2) 0.60 1.62 9 10�6 1.52 1.34 9 10�4

6.42 283.2631 [M-H]� (18/0) Stearic acid 0.48 1.86 9 10�6 1.84 4.96 9 10�6

4.41 528.3083 ND ND 0.26 2.01 9 10�6 3.26 2.50 9 10�6

3.62 512.2981 [M+FA]� LysoPC(14:0) 0.50 3.01 9 10�6 1.90 3.71 9 10�6

5.81 255.2321 [M-H] (16/0) Palmitic acid 0.44 3.62 9 10�6 1.75 1.21 9 10�5

4.10 540.3247 [M+FA]� LysoPC(16:0) 0.77 3.75 9 10�6 1.32 1.98 9 10�5

5.20 277.2150 [M-H]� (18/3n-6) Gamma-

Linolenic acid

0.41 4.15 9 10�6 1.85 7.34 9 10�5

4.37 297.2425 ND ND 0.39 4.35 9 10�6 1.91 7.04 9 10�4

5.80 305.2474 [M-H]� (20/3n-9) 5,8,11-

Eicosatrienoic acid

0.28 6.07 9 10�6 2.07 5.61 9 10�3

5.20 301.2155 [M-H]� (20/5n-3) 5,8,11,14,17-

Eicosapentaenoic acid

0.32 7.38 9 10�6 2.23 2.33 9 10�4

4.00 500.2761 [M-H]� LysoPE(20:4) 0.51 1.08 9 10�5 1.79 1.42 9 10�4

3.02 423.1231 ND ND 0.21 1.42 9 10�5 4.53 4.72 9 10�5

2.59 300.2017 ND ND 0.47 1.50 9 10�5 2.11 2.30 9 10�4

3.68 586.3120 [M+FA]� LysoPC(20:5) 0.30 1.77 9 10�5 2.28 1.98 9 10�4

5.37 321.2028 ND ND 0.25 1.81 9 10�5 2.65 7.38 9 10�4

3.94 552.3198 [M+FA-MFA]� LysoPC(22:6) 0.53 1.86 9 10�5 1.80 1.34 9 10�5

5.03 277.2156 [M-H]� (18/3n-3) Alpha-Linolenic

acid

0.32 3.78 9 10�5 2.27 6.49 9 10�5

7.57 944.5649 ND ND 1.61 3.82 9 10�5 0.57 1.79 9 10�4

2.66 326.7101 ND ND 0.41 4.14 9 10�5 2.70 1.51 9 10�4

3.93 588.3280 [M+FA]� LysoPC(20:4) 0.53 4.26 9 10�5 1.96 3.45 9 10�6

5.99 603.2928 ND ND 0.35 4.38 9 10�5 1.57 2.31 9 10�5

4.30 566.3456 [M+FA]� LysoPC(18:1) 0.61 4.68 9 10�5 2.95 3.04 9 10�5

2.58 195.1178 ND ND 0.36 5.15 9 10�5 2.35 1.51 9 10�4

2.66 652.4113 ND ND 0.47 5.71 9 10�5 2.02 8.87 9 10�6

4.00 524.2758 [M-H]� LysoPE(22:6) 0.53 5.76 9 10�5 1.98 1.11 9 10�4

2.60 388.2538 ND ND 0.53 5.95 9 10�5 2.46 7.18 9 10�5

5.67 329.2474 [M-H]� (22/5n-3) 7,10,13,16,19-

Docosapentaenoic acid

0.33 6.06 9 10�5 1.50 3.44 9 10�3

5.99 281.2479 [M-H]� (18/1n-9) Oleic acid 0.49 6.09 9 10�5 1.82 2.49 9 10�6

4.02 612.3282 [M+FA]� LysoPC(22:6) 0.58 6.12 9 10�5 1.31 4.63 9 10�4

3.97 564.3266 [M+FA]� LysoPC(18:2) 0.71 9.93 9 10�5 1.74 5.97 9 10�5

6.01 331.2632 [M-H]� (22/4n-6) 7,10,13,16-

Docosatetraenoic acid

0.47 1.03 9 10�4 1.68 8.65 9 10�6

4.02 588.3294 [M+FA]� LysoPC(20:4) 0.60 1.08 9 10�4 1.35 4.59 9 10�2

3.93 476.2758 [M-H]� LysoPE(18:2) 0.59 1.22 9 10�4 2.03 2.96 9 10�4

6.11 281.2470 [M-H]� (18/1n-x) 0.40 2.88 9 10�4 2.33 9.40 9 10�5

5.99 621.3031 ND ND 0.36 3.01 9 10�4 1.83 3.35 9 10�5

6.66 638.4756 [M+FA]� PC(O-24:0/0:0) 0.52 4.04 9 10�4 2.31 9.07 9 10�5

6.80 733.5489 [M+FA]� SM(d18:1/15:0) 0.57 4.23 9 10�4 2.02 1.01 9 10�7

5.83 329.2474 [M-H]� (22/5n-6) 4,7,10,13,16-

Docosapentaenoic acid

0.42 4.35 9 10�5 1.92 5.42 9 10�5

5.49 327.2314 [M-H]� (22/6n-3) 4,7,10,13,16,19-

Docosahexaenoic acid

0.48 6.43 9 10�4 1.88 6.99 9 10�6

4.39 494.3241 [M+FA-MFA]� LysoPC(17:0) 0.62 7.43 9 10�4 2.63 1.30 9 10�6

5.55 303.2318 [M-H]� (20/4n-6) Arachidonic acid 0.50 1.04 9 10�3 1.52 1.34 9 10�4

Peaks are listed for which there is significant correlation of wild-type samples with age [test P-values < 0.05]. Rt (min), chromatographic retention time; m/z (Da/e) [m is the

neutral molecular mass value, e is the elemental charge], mass-to-charge ratio of ion detected; Ion, most intense species observed; ID, metabolite name (lipid names follow

the LIPID MAPS classification system for lipids www.lipidmaps.org); ND, not determined.
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imental groups (Fig. 4), we confirmed that their decrease associated

with aging and that this decline was significantly reversed by TERT

treatment.

The existence of a metabolomic signature suggests that aging is

accompanied by predictable metabolomic changes. This is akin to other

aging-associated features that reflect on the appearance of tissues or on

the performance of physiological systems. It is conceivable that

physiological decline in important metabolic organs, such as liver,

muscle, pancreas, or adipose tissue, will reflect on the serum metabolite

pattern. The identification of this signature is a first step to understand

the metabolic alterations associated with aging and guides anti-aging

interventions targeting metabolism. Recently, a study in humans

demonstrated that metabolic profiles are age dependent and might

reflect different aging processes, such as incomplete mitochondrial fatty

acid oxidation (Yu et al., 2012), demonstrating the importance of age-

related metabolomic profiles.

The age biomarkers identified here include lipids and other small

molecules such as creatine, methionine, and uric acid. Whether these

biomarkers play a role in aging or are due to secondary phenomena will

require further investigation. Aberrant lipid homeostasis has been linked

to a number of age-related diseases, including cardiovascular disease,

inflammation, metabolic syndrome, and type II diabetes (Maxfield &

Tabas, 2005). Creatine deficiency is associated with muscle loss

(sarcopenia), a common condition in the elderly (Pearlman & Fielding,

2006; Brosnan & Brosnan, 2007). Moreover, creatine synthesis makes

major demands of methionine (Brosnan & Brosnan, 2007), another

biomarker identified in this study whose levels decrease with age. Uric

acid, which was found to increase with age, correlates with several risk

factors, including renal dysfunction, hypertension, insulin resistance, and

cardiovascular disease (Feig et al., 2008). A recent study using three

different long-lived mouse models (caloric restriction, insulin receptor

substrate 1 knockout, and Ames dwarf) has identified several plasma

biomarkers of aging using 1H NMR spectroscopy (Wijeyesekera et al.,

2012). In this study, a panel of metabolic differences was generated for

each model relative to their controls, and then, the three models were

compared with one another. Although the age biomarkers identified by

this approach differed between the three models, they also included

lipids, such as phosphatidylcholine, and small molecules (methionine,

choline, and creatinine) that are coincident with our present findings.

Taken together, these results suggest that changes in lipid homeostasis

and one-carbon metabolism may be associated with the aging process.

Finally, the fact that metabolomic changes associated with natural

mouse aging can also predict aging provoked by accelerated telomere

shortening owing to telomerase deficiency provides strong evidence that

telomere loss significantly contributes to natural mouse aging. This is

further substantiated by our findings that TERT treatment is able to

reverse some of the metabolic changes associated with aging. In a similar

manner, the metabolomic signature described here can be used to

enquire the contribution of other molecular pathways (i.e., tumor

suppression) to natural mouse aging, as well as to estimate the impact of

genetic modifications or treatments on mouse aging.

Materials and methods

Mice and samples

Mice were generated and housed at the Spanish National Cancer

Research Center barrier area, where pathogen-free procedures are

employed in all mouse rooms [specific pathogen-free (SPF), and health

status is assured through a comprehensive health surveillance program].

Mice were under controlled room temperature and fed ad libitum with

an irradiated diet (n° 2018, Harlan). All genetic backgrounds were kept

Fig. 3 PCA score plot discriminating 2-year-old AAV9-GFP from 2-year-old AAV9-

GFP and 2-year-old AAV9-mTERT-treated mice. Duplicate sample injection data are

shown (duplicate sample extracts were injected in each ionization mode as quality

controls).

(A) (B)

(C)

Fig. 4 Profile plot of biomarkers. Raw intensity data, including average group

intensities, number of samples and P-values, corresponding to the highlighted

biomarkers: (A) Eicosatrienoic acid; (B) Oleic acid; (C) LysoPC (20:5).
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under the same conditions. Wild-type mice used to establish a

metabolomic signature of aging were from the following mouse lines

maintained at the CNIO: AZD (SuperSIRT+/+; 100% C57BL/6 back-

ground) (Pfluger et al., 2008), AIU (ATM+/+; mixed C57BL/6-129sv

background) (Barlow et al., 1996), RFC (Terc+/+; 100% C57BL/6

background) (Blasco et al., 1997), RSZ (wild-type controls for Sp53/

Sp16/SARF/TgTert and Sp53/Sp16/SARF transgenics both of a mixed

75% C57BL/6-25% DBA/2 background) (Tomas-Loba et al., 2008), RPR

(wild-type controls for K5-TRF2/K5-TERT; mixed 75% C57BL/6-25%

DBA/2 background) (Munoz et al., 2005), RPP (wild-type controls for K5-

TRF2/G1Terc�/�; 100% C57BL/6 background) (Munoz et al., 2005), RPT

(XPF+/+; mixed C57BL/6-129sv background) (Tian et al., 2004), and RXS

(wild-type controls for K5-TERT both mixed 75% C57BL/6-25% DBA/2

and 100% C57BL/6 backgrounds) (Gonzalez-Suarez et al., 2001).

Mutant mouse lines used for comparative purposes were Sp53/Sp16/

SARF and Sp53/Sp16/SARF/TgTert (mixed 75% C57BL/6-25% DBA/2

background), K5-TERT (mixed 75% C57BL/6-25% DBA/2 background),

and G1 Terc�/� (pure C57BL/6 background) (Gonzalez-Suarez et al.,

2001; Matheu et al., 2007; Tomas-Loba et al., 2008).

Mice studied for TERT-based gene therapy have been previously

described (Bernardes de Jesus et al., 2012). Separate groups of mice

were tail-vein-injected with 2 9 1012 vg (viral genomes)/animal of either

AAV9-GFP at 1 year old (AAV9-GFP, n = 15 [47% males]) or AAV9-GFP

and AAV9-mTERT at 2 years old (AAV9-GFP, n = 11 [36% males];

AAV9-mTERT, n = 19 [58% males]. Sera were collected between 1 to

2 months post-telomerase treatment.

Samples were extracted from facial vein before 12 AM after overnight

fasting and collected in tubes without any anticoagulant. The samples

were collected in a SPF area of CNIO and kept at room temperature until

leaving this area (15–20 min). Samples were maintained in ice for 10

additional minutes and centrifuged at 4°C. The serum supernatant was

then aliquoted and frozen at �80°C, to minimize freeze–thaw degra-

dation, until they were analyzed. For all the samples, the procedure was

the same. Procedures for sample extraction and storage were similar to

those employed in other wide-coverage metabolomics approaches

(Dunn et al., 2011).

Housed mice followed the recommendations of the Federation of

European Laboratory Animal Science Associations.

Metabolic profiling

A global metabolite profiling UPLC®-MS methodology was employed

where all endogenous metabolite-related features, characterized by their

mass-to-charge ratio m/z and retention time Rt, are included in a

subsequent multivariate analysis procedure used to study metabolic

correlation between spectral data and age in the WT samples. Using the

model built, age predictions of transgenic samples were obtained. Where

possible, Rt-m/z features corresponding to putative biomarkers were later

identified. Sample preparation and LC/MS analysis were performed as

described in detail previously (Barr et al., 2010). Briefly, liquid–liquid

extraction of the metabolites was performed by protein precipitation of

50 lL defrosted serum with four volumes of methanol. After brief vortex

mixing, the samples were incubated overnight at �20°C. Supernatants

were collected after centrifugation at 13 000 rpm for 10 min and

transferred to vials for UPLC®-MS analysis. Chromatography was per-

formed on a 1-mm i.d. 9 100 mm ACQUITY 1.7 lm C8 BEH column

(Waters Corp., Milford, CT, USA) using an ACQUITY UPLC® system

(Waters Corp.). The volume of sample injected onto the columnwas 2 lL.
The eluent was introduced into the mass spectrometer (QTOF Premier,

Waters Corp.) by electrospray ionization, with capillary and cone voltages

set in the positive and negative ion modes to 3200, 30, 2800, and 50 V,

respectively. Thenebulizationgaswas set to600 L h�1 at a temperature of

350°C. The cone gaswas set to 30 L h�1, and the source temperaturewas

set to 150°C. All spectra were mass corrected in real time by reference to

leucine enkephalin, infused at 50 lL/min through an independent

reference electrospray, sampled every 10 s. An appropriate test mixture

of standard compounds was analyzed before and after the entire set of

randomized, duplicated sample injections to examine the retention time

stability (generally < 6 s variation, injection-to-injection), mass accuracy

(generally < 3 ppm form/z 400–1000, and < 1.2 mDa form/z 50–400),

and sensitivity of the system throughout the courseof the run,which lasted

a maximum of 26 h per batch of samples injected.

The analytical methodology was designed to provide maximum

coverage over phospholipids, fatty acids, and organic acids, while

offering relatively high-throughput with minimum injection-to-injection

carryover effects.

Data analysis

All data were processed using the MarkerLynx application manager for

MassLynx 4.1 software (Waters Corp.). The LC/MS data are peak-

detected and noise-reduced in both the LC and MS domains such that

only true analytical peaks are further processed by the software (e.g.,

noise spikes are rejected). A list of intensities (chromatographic peak

areas) of the peaks detected is then generated for the first chromato-

gram, using the Rt-m/z data pairs as identifiers. This process is repeated

for each LC-MS analysis and the data sorted such that the correct peak

intensity data for each Rt-m/z pair are aligned in the final data table. The

ion intensities for each peak detected are then normalized, within each

sample, to the sum of the peak intensities in that sample. There were no

significant differences (F < Fcrit) between the total intensities used for

normalization and the sample groups being compared in the study. The

resulting normalized peak intensities form a single matrix with Rt-m/z

pairs for each file in the data set. All processed data, positive and

negative ion modes, were mean centered and unit variance scaled

during multivariate data analysis.

Multivariate data analysis

The first objective in the data analysis process was to create a

multivariate model able to correlate the spectral data and WT samples’

age. The predictive multivariate modeling was carried out using the

SIMCA – P+ (version 12.0.1; Umetrics, Sweden) software. Projection to

latent structure (PLS) is a very useful statistical technique when there are

more highly correlated prediction variables (multicollinearity). This

supervised pattern recognition method relates the two data matrices,

for example, Rt-m/z pair data (X matrix) and age (Y matrix), extracting

the limited number of latent factors (which are linear combinations of

the original prediction variables) that explain as much as possible the

covariance matrices and allowing that the response variable Y could be

predicted from X. The performance of the PLS model was evaluated

using the R2Y and Q2 parameters. R2Y provides an indication of how

much of the variation within the data set can be explained by the model.

Q2 parameter describes the predictive ability of model to estimate the Y

data (a Q2 score between 0.6–1.0 is indicative of a reliable classifier).

Validation of PLS models

The best validation of a model is the analysis of an independent and

representative set of samples that does not form part of the model-

building population. However, the reduced sample size of wild-type mice
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over 100 weeks old, necessary for the prediction of the long-lived TERT

transgenic mice, limited the splitting of the samples into a test and a

validation group. As recommended by Wold et al., 2001, we followed

two ways of PLS model validation: cross-validation and model re-

estimation. Component-wise cross-validation was carried out, calculat-

ing R2Y and Q2 parameters by iteratively leaving out one-seventh of the

samples from the model and predicting their group classification. Paired-

sample injections were randomly distributed over the cross-validation

groups (7-fold), minimizing the risk of calculating falsely predictive

components. Additionally, 200 parallel PLS models permuting randomly

the Y data with respect to their related X data set were generated. The

comparison of the estimated values of R2Y and Q2 of the parallels and

original model gives an indication of the statistical significance of the

predictive power of the PLS model. If the original model is valid,

randomization of the Y data would be expected to considerably reduce

Q2. As can be seen in Supplementary Figure 1, most of the models

obtained through this randomization were nonpredictive (negative Q2).

Predictions of transgenic samples

PLS model from WT samples was used to predict ages of mice lacking

telomerase activity (G1 Terc�/�), overexpressing telomerase reverse

transcriptase (K5-Tert), simultaneously overexpressing K5-Tert, p53, and

p19ARF, and overexpressing p53 and p19ARF.

Differences between transgenic and WT-predicted ages were evalu-

ated by calculating the unpaired student’s t-test P-values after data

normalization with respect the real age.

Metabolite biomarker selection according to the age correlation

Variable influence on projection in PLS model statistic represents the

value of each X variable in fitting the PLS model, measuring the

importance of those variables with respect to its correlation to the Y

data. In the present work, Rt-m/z pair data with a larger VIP value are the

most influential for the model, and those with VIP values lower than 0.7

are considered to have small contribution to the prediction.

Additionally, Spearman’s rank correlation coefficient (q) for each

selected metabolite biomarker was calculated. The Spearman correlation

coefficient is a nonparametric measure of correlation between two

variables, indicating with the sign the direction of association between

the independent variable (Rt-m/z pair) and the dependent variable (Age),

for example, if age variable tends to increase when Rt-m/z pair increases,

the Spearman correlation coefficient is positive. Only P-values derived

from the Spearman’s rank correlation coefficient lower than 0.05 were

considered in the metabolite biomarker selection.

Multivariate analysis of AAV9-eGFP and AAV9-mTERT mice

Principal components analysis (PCA) of the data set was performed to

enable easy visualization of any metabolic clustering of the different

groups of samples (Fig. 3). In PCA, the data matrix is reduced to a

series of principal components (PCs), each with a linear combination of

the original Rt-m/z pair peak areas. Each successive PC explains the

maximum amount of variance possible, not accounted for by the

previous PCs.

The orthogonal partial least squares to latent structures discriminant

analysis (OPLS-DA) method were used for the identification of metab-

olites contributing to the clustering observed in the PCA plots. The

performance of the OPLS-DA model was evaluated using Q2Y param-

eter, which describes the predictive ability of model to estimate the Y

data, and calculated by iteratively leaving out samples from the model

and predicting their group classification. Paired-sample injections were

randomly distributed over the cross-validation groups (7-fold), minimiz-

ing the risk of calculating falsely predictive components. Appropriate

filtration of the loading profile associated with the OPLS-DA predictive

components resulted in a set of candidate biomarkers that were further

evaluated by calculating group percentage changes and unpaired

Student’s t-test P-values.

One-way ANOVA with Tukey’s multiple comparison test has been

used for statistical comparisons of Fig. 4.

Metabolite biomarker identification

Exact molecular mass data from redundant m/z peaks corresponding to

the formation of different parent (e.g., cations in the positive ion mode,

anions in the negative ion mode, adducts, multiple charges) and product

(formed by spontaneous ‘in-source’ CID) ions were first used to help

confirm the metabolite molecular mass. This information was then

submitted for database searching, either in-house or using the online

ChemSpider database (www.chemspider.com) where the Kegg, Human

Metabolome Database, and Lipid Maps data source options were

selected. MS/MS data analysis highlights neutral losses or product ions,

which are characteristic of metabolite groups and can serve to

discriminate between database hits.
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Figure S1. Validation of WT aging – PLS model by permuting randomly the

Age data with respect to the X data set. These re-estimations of the model

evaluate the probability to obtain a good fit with random response data. R2

parameter (green triangles) estimates how well the model fits the data, and

Q2 parameter (blue squares) provides an estimate of how well the model

predicts the age data. Permutation of age data reduces considerably Q2,

being negative or nonpredictive for most of the re-estimated models.
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