
Developing a Model-Driven Reengineering Approach for Migrating PL/SQL Triggers to
Java: A Practical Experience

Carlos Javier Fernández Candela, Jesús Garcı́a Molinaa, Francisco Javier Bermúdez Ruiza, Jose Ramón Hoyos Barcelóa, Diego
Sevilla Ruiza, Benito José Cuesta Vierab

aFaculty of Informatics, University of Murcia, Spain
bOpen Canarias S.L., Spain

Abstract

Model-driven software engineering (MDE) techniques are not only useful in forward engineering scenarios, but can also be suc-
cessfully applied to evolve existing systems. RAD (Rapid Application Development) platforms emerged in the nineties, but the
success of modern software technologies motivated that most of the RAD environments were discontinued. Enterprises then had
to tackle the migration of RAD applications, such as Oracle Forms. Our research group has collaborated with a software company
in developing a solution to migrate PL/SQL monolithic code on Forms triggers and program units to Java code separated in several
tiers.

Our research focused on the model-driven reengineering process applied to develop the migration tool for the conversion of
PL/SQL code to Java. Legacy code is represented in form of KDM (Knowledge-Discovery Metamodel) models. In this paper,
we propose a software process to implement a model-driven re-engineering. This process integrates a TDD-like approach to
incrementally develop model transformations with three kinds of validations for the generated code. The implementation and
validation of the re-engineering approach are explained in detail, as well as the evaluation of some issues related with the application
of MDE.

Keywords: Software Modernization, Reengineering, KDM, Oracle Forms, Model-driven Software Modernization, Model-driven
Development

1. Introduction

Model-driven software engineering (MDE) techniques are
not only useful in forward engineering scenarios, but can also
be successfully applied to evolve existing systems. Models are
very appropriate to represent information involved in evolution
tasks at a higher level of abstraction (e.g. information harvested
into a reverse engineering process). Moreover, model transfor-
mation technologies have been developed to facilitate the au-
tomation of such tasks.

RAD (Rapid Application Development) platforms emerged
in the nineties to offer an agile way of developing software.
Agility was the result of applying a GUI-centered paradigm in
which most application code was entangled in the event han-
dlers. Therefore, the gain of productivity was achieved at the
expense of software quality, and maintenance was negatively
affected. The success of the object-oriented paradigm and the
appearance of modern software technologies motivated most of
the RAD environments to be discontinued. Enterprises then
had to tackle the migration of RAD applications. Oracle Forms
has been one of the most widely used RAD technologies over

Email addresses: cjferna@um.es (Carlos Javier Fernández Candel),
jmolina@um.es (Jesús Garcı́a Molina), fjavier@um.es (Francisco Javier
Bermúdez Ruiz), jose.hoyos@um.es (Jose Ramón Hoyos Barceló),
dsevilla@um.es (Diego Sevilla Ruiz), bcuesta@opencanarias.es
(Benito José Cuesta Viera)

last three decades. Although the Oracle company continues
supporting and offering solutions to integrate Forms with new
technologies (e.g. Web and Java), many enterprises around the
world have migrated its Forms legacy code to modern platforms
in order to take advantage of new software technologies.

Open Canarias is a Spanish software company with years of
experience in software modernization, specially in the banking
area. In 2017, Open Canarias launched the Morpheus project1

to develop a tool able of achieving the highest degree of au-
tomation possible in the migration of Oracle Forms applications
to object-oriented platforms. An MVC architecture based on
Java frameworks was the selected target platform.

Our research group has collaborated with Open Canarias in
developing a solution to migrate PL/SQL code on triggers and
program units to Java code. These triggers mix concerns that
are separated in several tiers in modern applications. This sepa-
ration of concerns was one of the main challenges to be tackled.
This paper is focused on the model-driven re-engineering pro-
cess applied to develop this migration tool.

A software migration is a form of modernization in which
an existing application is moved to a new platform that offers
more benefits (e.g. better maintainability or new functionality.)
A re-engineering strategy is commonly applied to migrate sys-

1This project has been partially supported with funds of the Spanish Industry
Ministry through the CDTI project: IDI-20150952 (http://www.cdti.es/).

Preprint submitted to Journal of Systems and Software February 3, 2024

http://www.cdti.es/

tems in a systematic way [1, 2]. This strategy consists of three
stages. Firstly, a reverse engineering state is carried out to ob-
tain a representation of the legacy system at a higher level of
abstraction. This representation is mapped to the new archi-
tecture in a second stage. Finally, a forward engineering stage
generates the target artefacts of the new application from the
representation generated in the restructuring stage [2]. Models
and model transformations can be used to implement the trans-
formation processes involved in these three stages as illustrated
in [3, 4]. Actually, model-driven re-engineering and model-
driven reverse engineering are common application scenarios of
MDE techniques [5]. Some of the most significant efforts made
in model-driven software modernization can be found in a re-
cently published systematic literature review on model-driven
reverse engineering approaches [6].

In Morpheus, we have devised a model-driven reengineering
process for the conversion PL/SQL to Java. PL/SQL legacy
code is represented in form of KDM (Knowledge-Discovery
Metamodel) [7] models. To maintain the process at the high-
est level of abstraction possible, we have used the notion of
idiom, proposed in a previous work of our group [8]. Idioms
are primitive operations commonly used in writing event han-
dlers of RAD applications. In our case, idioms models have
been obtained from KDM models, and used to generate a model
that represents how legacy code is separated into the three tiers
of an MVC architecture. In turn, these target platform models
are transformed into Object-Oriented models before generating
Java code of the new application.

We have defined a development process that involves two
main stages. First, individual model transformations are in-
crementally implemented following a strategy based on unit
tests. Once all the transformations have been completed, sev-
eral kinds of testing are applied on the generated code. The mi-
gration tool has been validated by means of forms provided by
Open Canarias, which are part of real applications. In this pa-
per, we will describe in detail each stage of the re-engineering
solution proposed and the validation process carried out. For
each model transformation, we will discuss how it has been im-
plemented and tested. A trigger example will be used to il-
lustrate how each transformation works. Moreover, we evalu-
ate some key aspects of a MDE solution in the migration sce-
nario here considered such as (i) the adoption of KDM; (ii) the
choice of the language for writing model-to-model transforma-
tions; (iii) the difficulties encountered for testing transforma-
tions. Moreover, we will propose a model visualization tech-
nique based on the conversion of models into graph database
instances.

Contributions. Model-driven reengineering approaches for mi-
grating monolithic legacy code to 3-tier architectures have been
presented in [8] and [9]. These works are mainly focused on
the reverse engineering stage Moreover, they do not pay at-
tention to the development process applied to implement the
re-engineering strategy. In particular, how each model transfor-
mation and the final solution were validated is not addressed.

Writing model transformations is recognized as a challeng-
ing task in developing model transformations [10], and some

approaches to develop transformation chains [11] or individ-
ual transformations [12] have been proposed. However, experi-
ences on real projects are not published as far as we know. Test-
driven development is also an idea not yet sufficiently explored
for individual transformations, although it has been proposed
for incrementally developing transformation chains [11].

A limited number of industrial experiences of model-driven
modernization have been reported so far. This is evidenced
by the low number of model-driven reverse engineering works
obtained in the systematic literature review presented in [6].
Moreover, only three of the eleven papers considered in that
review used the standard KDM metamodel. To our knowledge,
no work on a source-source conversion based on KDM has been
published so far.

Several commercial and open source tools are available to
migrate PL/SQL triggers to the Java platform, such as Ispirer
MnMTK 2 and PLSQL2Java 3 These tools convert PL/SQL code
into Java, but the separation of tiers is not considered.

With these premises, we introduce the main research contri-
butions of this work:

• A development process for implementing a re-engineering
is defined and applied. All the stages of a re-engineering
are addressed.

• A test-driven strategy to incrementally develop model
transformations in a software migration is proposed.

• A comparison between Java and two widely used transfor-
mation languages (ATL [13] and QVT operational [14]) is
presented.

• A novel strategy for visualizing models in graph databases
to help with testing is shown.

• KDM is used and evaluated in a scenario of code migra-
tion.

It should also be noted that a valuable contribution of our
work is the ability to develop a model-driven migration solution
to be integrated in a tool developed by a company, which covers
the design, implementation, and validation stages as well and
evaluation of the practical experience.

Paper organization. Section 2 introduces the KDM meta-
model. Section 3 states the requirements and challenges in
building the Code Migrator Code. Section 4 outlines the de-
signed re-engineering strategy. Section 5 explains the devel-
opment process. A trigger example that is used to illustrate
how each model transformation works is presented in Section 6.
Section 7 explains how each stage of the re-engineering process
has been implemented and tested, and describes all the meta-
models involved. Section 8 explains how the tool has been val-
idated. Section 9 evaluates some MDE-related issues from the
experience gained in our work. Section 10 discusses how our
work is related to other proposals. Section 11 draws some con-
clusions and comments on future works.

2http://www.ispirer.com.
3https://pitss.com.

2

http://www.ispirer.com
https://pitss.com

2. KDM metamodel

In this Section, we shall introduce the basis of KDM needed
for understanding the injection process and the model transfor-
mations involved in the reverse engineering stage. First, we will
briefly describe how KDM is organized in packages and layers.
Next, the Action and Code packages will be explained in more
detail.

2.1. KDM overview

ADM is an OMG initiative to support model-driven mod-
ernization. ADM was launched in 2003 with the main pur-
pose of providing a set of metamodels aimed to represent the
information commonly used in software modernization tasks.
KDM is the core metamodel of ADM: it permits the represen-
tation of legacy software assets at different levels of abstrac-
tion, ranging from source code to higher-level abstractions such
as GUI events, platforms, or business rules. KDM models are
built from abstract syntax tree (AST) models which conform
to the ASTM (Abstract Syntax Tree Metamodel) [15] meta-
model. The rest of metamodels and specifications of ADM are
based on KDM, such as SMM [16] for representing metrics,
and AFP [17] for automating the function points counting.

KDM is a large metamodel, organized in twelve packages
which relate to each other. These packages are partitioned
in four layers that represent different domains of a software
system. The Infrastructure layer includes the Core, KDM and
Source packages, which provide the basic concepts that are
used in the rest of levels. The Program Elements layer defines
constructs for commonly used programming languages: organi-
zational and descriptive elements (e.g., types, modules, classes,
and procedures) in the Code package, and behavioral elements
(e.g., statements and control flow) in the Action package. The
Resource layer includes packages to describe resources man-
aged at runtime, in particular data, user interfaces, events, and
platforms. Finally, the Abstraction layer deals with the archi-
tectural view, the domain conceptual modeling, and the build
process of the system. Notice that the information related to
Infrastructure and Program Elements can be directly extracted
from the source code, but models for the other packages must
be inferred from such information.

The KDM specification also offers an extension mechanism,
where an extension is defined as a family of stereotypes. Each
stereotype has a name and aggregates a set of tags (pairs name-
type) that express the properties or attributes characterizing
it. KDM is a language-independent specification, but model-
ing source code requires to represent the precise semantic of
each statement. For this, KDM provides a set of micro-actions,
named Micro-KDM, which can be thought of as equivalent to an
intermediate representation. These micro-actions provide pre-
cise semantics for the basic operations in general programming
languages, or GPLs, such as comparison, control, and opera-
tions on primitive types. Instead of using Micro-KDM, a cre-
ator of KDM models for a particular GPL could define a stereo-
type family, but then these models could not be interchanged
with other KDM-based tools.

KDM emerged as a common interchange format to favor in-
teroperability and data exchange among modernization tools
developed by different vendors. Three levels of conformance
are defined in the KDM specification. Each level establishes
the packages that a tool should support to be compliant with
that level. A tool is L0 compliant if it supports packages in In-
frastructure and Program Elements layers. If a tool is L0 com-
pliant and also support a package included in the Resources and
Abstractions layers, then it is L1 compliant for the correspond-
ing package (e.g. Data or UI). Finally, L2 level requires to be
compliant with all the packages that are part of the Resources
and Abstractions layers.

2.2. Code and Action packages
The KDM injector developed by Open Canarias is L1 com-

pliant for the Data package, as will be indicated in Sec-
tion 7. Therefore, the KDM models extracted–to be reverse
engineered–will be expressed in terms of elements of the Code,
Action, and Data packages. Next, we will describe the essen-
tials of the Code and Action package, and the Data package
will be introduced in the following Section.

The Action package is defined by extending and referring to
elements in the Code package. Figure 1 shows how the Action
package is based on the Code package.

Figure 1: Relationship Between the Code and Action Packages in KDM.

An excerpt of the Code metamodel appears in Fig-
ure 2. CodeItem is the central element of this meta-
model. It represents any element of the source code.
Module is the root of the class hierarchy representing units
used to package programs (e.g. packages and components).
ComputationalObject is the root of the DataElement and
ControlElement hierarchies, that represent data and control
elements, respectively. ControlElements represent callable
elements (CallableUnit) such as procedures and methods,
and DataElement represents data items such as variables
(StorableUnit), parameters (ParameterUnit), and literal
values (Value). Finally, this metamodel also includes elements
to define data types (primitive, enumerated, composite, and de-
rived.)

The Action package represents behavior through statements,
conditions, code flows, exceptions, and data readings and writ-
ings. An excerpt of the Action metamodel appears in Figure 3.
ActionElement is the central element of this metamodel.
Both ActionElement and CodeItem inherit from the abstract
class AbstractCodeElement, included in the Code package.
ActionElement is provided to describe the basic unit of be-
haviour. An ActionElement aggregates instances of classes

3

Figure 2: Code package in KDM.

that define relationships whose source is an ActionElement.
AbstractActionRelationship is the root of the class hierar-
chy that represents relationships such as ControlFlow, Write,
and Read. An ActionElement object can aggregate instances
of these relationship classes, and each relationship instance
will have a reference to another ActionElement object that
describes the code block where the execution flow will con-
tinue. Some of the subclasses of ActionElement are the fol-
lowing: (i) BlockUnit represents a block of ActionElements,
for example a block of statements in a container as a method
or trigger; (ii) ExceptionUnit is the root of classes for el-
ements of an exception handler (TryUnit, CatchUnit, and
FinallyUnit.)

Figure 3: Action Package in KDM.

2.3. UI package

The UI package contains elements that represent several as-
pects of the user interface such as the view structure, the data
flow, and the events triggered from visual components. These
package depends on the Code and Action packages commented
above. Figure 4 shows the elements that represent UI resource:
screen, report, field, event, and action. Because the UI ele-
ments provided to represent a view structure (layout and kinds
of visual components) and event handling are limited, Open
Canarias created two family of stereotypes for this package.
The UI structure has been represented by means of stereotypes
based on the USIXML metamodel [18]. On the other hand,

UI interaction is modeled by defining stereotypes based on the
IFML metamodel [19].

Figure 4: UI Package in KDM.

3. Code Migrator tool: Requirements and Challenges

In Morpheus, Open Canarias organized the migration tool
into two main components that correspond to the two main arti-
facts of an Oracle Forms application: GUIs and event handlers.
We refer to these components as GUI Migrator tool and Code
Migrator tool, respectively. Our research group has collabo-
rated in the implementation of the Code Migrator tool, which
aims to automate the migration of program units and triggers
in Oracle Forms to an MVC Java platform. We have not only
considered the building of this tool as a research problem, but
also the process defined to develop it. In this section, we shall
precisely identify the requirements to be satisfied and the chal-
lenges to be addressed in building the tool. In the following
sections, the model reengineering strategy designed to carry out
the migration and the process defined to implement this strategy
will be presented.

As depicted in Figure 5, the input of the tool is the source
code and the database schema of the Forms application to be
migrated. The output is made up of artifacts generated for a
MVC architecture. In the current implementation, the MVC
architecture is based on Java frameworks: JSF [20] on the view
layer, Spring4 on the business logic layer, and JPA [21] on the
persistence layer.

Figure 5: A tool for migrating Oracle Forms applications to Java.

The requirements for the tool are:

4https://spring.io/.

4

https://spring.io/

• It should translate PL/SQL procedural code into Java code.
Because Forms PL/SQL triggers are monolithic, the code
generated must be divided into several methods according
to the tiers of the target platform.

• Platform-independence should be achieved in the design
of the tool. It should be designed to facilitate generating
code for any object-oriented target platform, e.g., C# for
.NET.

• A level of automation close to 100% should be achieved on
migrating PL/SQL triggers and program units to Java. The
level of automation will be measured by the percentage of
legacy PL/SQL code translated to Java.

• Those PL/SQL built-in functions/procedures that are not
provided in Java will be manually migrated as part of a
library available for all the migration projects.

• The code generated should be integrated into the compo-
nent that automates the GUI migration.

• The trigger code should not only be migrated, but also the
code dealing with database access, and the code of pro-
cedures and functions invoked from triggers as program
units.

Next, we will identify the main issues to be addressed to sat-
isfy the requirements above exposed.

PL/SQL-to-Java mapping. A mapping between the PL/SQL
and Java languages must be established. To achieve a level
of 100% automation on the PL/SQL code injected this mapping
should cover all the PL/SQL elements: statements, expressions,
data types, cursors, exceptions, and collections. Built-in func-
tions and predefined exceptions are two examples of PL/SQL
elements for which a direct translation is not possible. In the
case of built-in operations, it must be checked whether Java
provides equivalent operations or not. They should be manually
implemented if they do not exist in Java. Regarding exceptions,
Oracle Forms provides a high number of platform-specific ex-
ceptions that are not present in the Java platform. This problem
should be addressed by defining equivalent exceptions for the
target Java platform and omitting those not applicable.

Separation of concerns. As indicated above, event handlers of
RAD applications mix code of different aspects of an applica-
tion (data access, control logic, and business logic.) Conversely,
a separation of concerns is a key architectural element in mod-
ern paradigms. Disentangling the code of PL/SQL triggers is
undoubtedly the main challenge in implementing our tool. The
code must be analyzed to apply a separation according the tiers
or layers of the target platform, in our case, an MVC architec-
ture. The code is separated in fragments which must be catego-
rized as belonging to a particular tier of the target architecture.
Once categorized, the code fragments can be translated and in-
cluded in a method of a tier.

Sharing variables among generated methods. A local variable
of a PL/SQL function/procedure must be shared among the Java
methods generated for such a function/procedure. A possible
solution would be pass values as arguments in method invoca-
tions, but arguments are always passed by value in Java, so a
different solution must be devised.

Target platform independence. An Object-oriented metamodel
would facilitate adapting the solution to different languages. On
the other hand, an MVC architecture metamodel would provide
independence of a particular target platform.

Integrating GUI and event handler code generated. In our
case, we had to address the issue of integrating the code gen-
erated for PL/SQL triggers and unit programs with the code
previously generated by the GUI Migrator tool.

4. A model-driven reengineering process for the Code Mi-
grator tool

Software reengineering offers a disciplined way to migrate a
legacy system [1]. Three kind of activities are normally per-
formed in a reengineering: reverse engineering, forward engi-
neering, and restructuring [22]. Figure 6 shows the horseshoe
model [2] that is frequently used to illustrate how reengineering
approaches work. Reverse engineering is applied on the exist-
ing system in order to harvest knowledge in form of abstract
representations. Through a chain of vertical transformations,
descriptions of several system aspects are extracted and repre-
sented at different levels of abstraction. The new source code
is created by means of vertical transformations (forward engi-
neering) whose input are representations defined for aspects of
the target system. These representations are obtained through
horizontal transformations (restructuring) whose input is a rep-
resentation at the same level of abstraction produced in the re-
verse engineering process. Tasks in a reengineering process can
be automated, semi-automated, or manual. In particular, trans-
formations can be either manually carried out by developers, or
automatically executed by means of specific programs.

Figure 6: Horseshoe model for reengineering.

Creating abstract representations and writing transformations
between representations are, therefore, essential activities in

5

reengineering processes. This has motivated the emergence of
model-driven reengineering approaches, which take advantage
of MDE techniques, specially (meta)models and model trans-
formations, in order to automate such processes. Metamodels
are used to define the different representations, and vertical and
horizontal transformations are automated with model transfor-
mations: text-to-model transformations to inject code into mod-
els, model-to-text transformations to generate code from mod-
els, and model-to-model transformations when the input and
output are models.

Figure 7 shows the horseshoe model for the model-driven
reengineering process defined for the Code Migrator tool.
Forms PL/SQL triggers are moved to a MVC architecture based
on Java frameworks through a model transformation chain. A
reverse engineering based on the approach proposed in [8] has
been applied to harvest an architectural representation adequate
to migrate PL/SQL triggers to object-oriented languages. That
approach proposes to express behavior of event handlers in
terms of primitive operations (i.e. code patterns) commonly
used in RAD applications (e.g. read data from a database or
write data in GUI controls.) Such primitive operations are re-
ferred to as idioms. Our solution differs from [8] in two sig-
nificant aspects: (i) Code and data are abstracted in form of
KDM models, instead of using AST models for the event han-
dler code; and (ii) the strategy used to separate the legacy code
in several concerns in the final application, as explained in Sec-
tion 7. Benefits provided by KDM will be commented in Sec-
tion 9. In addition, we had to extend the set of idioms con-
sidered in [8] in order to be able to cover nearly 100% of the
PL/SQL statements. Figure 13 shows the metamodel defined to
describe the PL/SQL code in terms of idioms. As shown in Fig-
ure 7, an Idiom model is obtained in two steps. First, code is in-
jected into KDM models, i.e. using a text-to-model (t2m) trans-
formation. Next, a m2m transformation named kdm2idioms an-
alyzes the KDM model and creates the corresponding Idiom
model.

Figure 7: Code reengineering process in Morpheus.

An architectural transformation or restructuring stage con-
verts the Idiom model into a Platform model that represents
how the code is organized in the target platform required by
Open Canarias. For this, we have defined the MVC architec-

ture and Objectual metamodels and a chain of two a model-
to-model transformation. Both metamodels are complemen-
tary. How the monolithic legacy code is separated into tiers
is represented in a MVC architecture model, which has ref-
erences to elements of the Objectual model that abstract the
object-oriented code to be generated. First, a m2m transforma-
tion, named Idioms2Platform, generates a MVC architecture
model from the Idioms model. This transformation discovers
which classes and methods must be generated. A second m2m
transformation, named Idioms-Platform2Objectual, determines
which layer each class and method belongs to, and obtains a
object-oriented representation for each idiom. This partitioning
requires not only information provided by Idiom models but
also accessing to KDM elements that are referenced by idioms.

Finally, the MVC architecture and Objectual models are used
to apply a forward engineering stage that generates the code that
results from the migration. A m2t transformation implements
this stage and generates the Java code that corresponds to the
PL/SQL legacy code.

Noting that dotted lines have been included in Figure 7 to
indicate traceability relationships among models.

5. A development process for the Code Migrator tool

The Code Migrator tool enacts the model-driven reengineer-
ing process described in the previous section. The tool consists
on the model transformation chain that automates the reengi-
neering approach applied to move Forms PL/SQL code (trig-
gers and program units) to a Java platform. In this Section, we
will present the software process followed to develop the tool.

An iterative and incremental software development life cycle
has been applied, as shown in Figure 8.

Figure 8: Iterative and incremental life cycle for developing the migration tool.

We established three iterations, one for each stage of the
reengineering process, shown in Figure 7. Each iteration
involves requirement analysis, design, implementation of a
model-driven solution for the corresponding reengineering
stage, and testing. Requirements were elicited by the company
from their previous experience in manual Forms-to-Java migra-
tion.

The greatest effort has been devoted to the implementation
and testing of the three stages of the reengineering process. As

6

indicated in Section 4, the injector that converts PL/SQL code
into KDM models was developed by Open Canarias. Thus, we
tackled the implementation of 3 model-to-model (m2m) trans-
formations and 1 model-to-text (m2t) transformation. More-
over, we had to define the target metamodel for each of the
m2m transformations. Testing has been performed for each im-
plemented model transformation, and once the forward engi-
neering stage was completed, a validation of the solution was
performed, as shown in Figure 9.

Figure 9: Testing activities in implementing the reengineering process.

Model-to-model transformations are usually complex, spe-
cially when the involved metamodels are large and complex.
Therefore, both writing and testing m2m transformations are
challenging activities. Like GPL programs, m2m transforma-
tion definitions must be tested to detect defects in the imple-
mentation. A testing process must be applied to assure that each
transformation in an MDE solution (i.e. a model transformation
chain) properly works.

5.1. Writing model-to-model transformations in Java

As part of the reengineering process we used to develop the
tool, we factorized the Java code for model-to-model transfor-
mations as much as possible, resulting in the same high-level
design. The code was organized in the following components:

1. Iterator, that traverses the source model.
2. Analyzer, that analyzes the source current element to iden-

tify what target elements must be created to resolve a map-
ping.

3. Builder, that creates and initializes the instances of the tar-
get model and aggregates these instances to the object that
aggregate them.

4. Reference resolver, in charge of connecting a created el-
ement to existing elements according to the references in
the target metamodel.

In addition, a particular transformation can have additional
components to implement some specific functionality or utility.
The number of classes of a component, as well as its complex-
ity, depends on the characteristics of the transformation.

The Iterator component iterates on the set of root elements
of aggregation hierarchies in the source model, and for each
one of them traverses all its aggregation paths. For each visited

element, the Analyzer, Builder, and Reference resolver compo-
nents collaborate to create the corresponding target elements.
All the m2m transformations will be explained in detail in Sec-
tion 7. For each transformation, we shall describe how the com-
ponents works and how the testing has been applied.

5.2. Testing model-to-model transformations
Model-to-model transformation testing has been extensively

addressed in the literature. Three main challenges are com-
monly identified [23, 24, 11]: (i) creating a set of input models
(test models) to test the transformation under study, (ii) defin-
ing adequacy criteria for checking if test models are sufficient
for testing, (iii) checking that the result of a test is actually the
expected model. A discussion on these challenges can be found
in [23], where some emerging approaches to overcome them
are outlined. The source metamodel of a transformation can be
used to generate test models automatically. However, this gen-
eration is a complex problem because it is difficult to assure that
a set of models satisfies all the constraints required for a partic-
ular test. Because of this, test models are manually created by
using model editors; if there is no editor specially created for
a particular metamodel, model management frameworks, such
as Eclipse/EMF, offer tooling to automatically create a generic
editor for a metamodel. Model comparing tools can be used to
check if a transformation produces the expected result for a test
model. However, manually or automatically building expected
result models is again difficult, so model-to-model transforma-
tions are usually validated by checking a set of constraints on
the result model in order to determine if mappings have been
correctly applied.

Some test-driven development approaches have been pro-
posed to implement m2m transformations. Unit tests have been
considered in [25, 26, 27], and an incremental process to test
model transformation chains is described in [11], which pro-
poses four kinds of transformations. Actually, there is little
consensus in how to effectively test transformations, as it is a
very difficult task. Specially when source and target metamod-
els are large and complex, such as those in our project.

5.3. A test-driven development approach
On developing the Code Migrator tool, we have defined a

test-driven approach to write transformations in an incremental
way, which is shown in Figure 10. In each step, the methods
that resolve a particular mapping are written, and a small input
model that only contains instances of the classes involved in the
mapping is created. Then, the transformation is executed for
this input model. If errors are produced, the methods are fixed.
Otherwise, a new mapping is considered, and both the methods
implementing it and the test model are created, and the trans-
formation is again executed. Executed methods are also stored
in order to be executed again later, along with methods for new
mappings. The process continues until all the mappings are im-
plemented, and the transformation is completed. It should be
noted that the implementation of a particular mapping involves
to add methods to the Analyzer, Builder, and Reference resolver
components of the model transformation. Iterator usually does
not need to be modified.

7

Figure 10: Incremental process for model-to-model transformations.

Once a m2m transformation is completed following the in-
cremental strategy commented above, a test is applied to check
if generated models satisfy a set of constraints, which are of
two kinds: (i) a set of well-formedness rules for each meta-
model, and (ii) for each transformation, a set of rules to check
if each mapping has been correctly applied. Both kinds of rules
have been implemented in Java. Checking well-formedness and
mapping rules correspond, respectively, to the integrity and in-
variant tests considered in [11]. As described in more detail
in Section 8, we have tested each model-to-model transforma-
tions using three test models whose size is considered small,
medium, and large. It should be noted that no input model
had to be created by hand, as an injector is available to obtain
KDM models from PL/SQL code. This saved us a great effort.
We have manually checked that injected code for the small,
medium, and large test cases include all the PL/SQL statements.
Moreover, as it can be seen in Table 1, the high number of trig-
gers, program units and lines of code in these cases assure that
each transformation has been sufficiently tested.

Table 1: Triggers, Program Units and LoC of the tested forms
Forms #triggers triggers LoC #units units LoC Total LoC

small 5 807 25 442 1249
medium 42 2206 30 1302 3508
large 251 6563 68 4617 11180

Regarding validation of the automatically generated code,
three kinds of tests have been applied as shown in Figure 8.
First, unit tests were written for the generated code for each test
case. The output code was executed and it was checked that
there are not errors in runtime. A coverage testing is also ap-
plied. Metrics about number of triggers, program units and sen-
tences have been calculated, as well as metrics for the equiva-
lent software elements on the target platform. Then, it has been
checked that each previous Forms element is covered on the
Java platform. Finally, an acceptance test is applied, in which
we execute each Java event handler generated to check that it
has the same behavior as the corresponding PL/SQL trigger.
The checking is performed manually and Mocks have been pro-
vided to complete the testing.

6. An example of trigger migration

Here we shall present a example of trigger and a program unit
migration that will be used to illustrate how each of the model

transformations shown in the following Section work. First, we
briefly introduce the structure of a Forms application and show
the trigger example and the program unit. Then, we describe
the target architecture and show the Java code that should be
obtained for a migration to a platform based on the JSF (Java
ServerFaces) and Spring framework.

Form applications.

An Oracle Forms application is composed of one or more
forms. Each form contains the artifacts that implement both
the user interface and the business and application logic. A
form includes a set of visual components (i.e. widgets) that
belong to one or more windows. Most of the application code
is implemented as triggers that handle visual component events.
These triggers are written in PL/SQL, and can be viewed as
the typical event handler in similar RAD architectures. Apart
from triggers, another Form construct that uses PL/SQL code
is a Program Unit. A Program Unit is an auxiliary function or
procedure that provides support for implementing business and
application logic. They can be invoked from triggers.

A PL/SQL trigger example.

We have defined a simple trigger that includes database ac-
cess and operations that read or write information on the visual
components of a window. This trigger could be part of an appli-
cation intended to manage grants for companies. It supports the
functionality of applying a new grant when funds of a previous
grant have been spent. We suppose that this trigger manages the
“pressed” event of a button named “New Grant”. A new grant
can only be applied if the payments made under the previous
grant exceed the threshold indicated in the request. Therefore,
the trigger has to read the payments and the threshold value
from the database. Then all the payments are added to calculate
the paid money total. If this total amount is greater than the
threshold, then (i) the old grant is updated, (ii) a new grant is
created, and (iii) the result of the operation is shown in an appli-
cation window. Following, an excerpt of the code implemented
by the button trigger is shown:

1 BEGIN
2 BEGIN
3 company name := normal ize company name (:COMPANY

) ;
4 SELECT sum (PAYMENT) INTO money paid FROM GRANTS

. GRANTS PAYMENTS WHERE . . . ;
5 SELECT t h r e s h o l d , endowment INTO t h r e s h o l d ,

endowment FROM GRANTS.COMPANY GRANTS WHERE
. . . ;

6

7 t o t a l := 2 * endowment − money paid ;
8

9 IF money paid >= t h r e s h o l d THEN
10 UPDATE GRANTS.COMPANY GRANTS GRANTED SET

s t a t e = ’SUSPENDED ’ WHERE . . . ;
11 INSERT INTO GRANTS.COMPANY GRANTS GRANTED

(. . .) VALUES (: GRANT CODE, company name
. . .) ;

12 END IF ;
13 EXCEPTION WHEN OTHERS THEN
14 message (’ D a t a b a s e u n a c c e s i b l e ’) ;

8

15 RAISE FORM TRIGGER FAILURE ;
16 END ;
17

18 IF money paid >= t h r e s h o l d THEN
19 SET ITEM PROPERTY (’ . . . GRANT RENEWED’ , v i s i b l e ,

p r o p e r t y t r u e) ;
20 ELSE
21 SET ITEM PROPERTY (’ . . . THRESHOLD NOT EXCEEDED ’ ,

v i s i b l e , p r o p e r t y t r u e) ;
22 END IF ;
23

24 d i f e r e n c e := t h r e s h o l d − money paid ;
25 IF d i f e r e n c e > 0 THEN
26 :RENEW COMPANY GRANTS. THRESHOLD DIFERENCE :=

d i f e r e n c e ;
27 ELSE
28 :RENEW COMPANY GRANTS.TOTAL AMOUNT := 2 *

endowment − money paid ;
29 END IF ;
30 END ;

Note that the trigger code mixes application logic, database
access and GUI reading/writing operations. The trigger calls
the function normalize company name that would be part of
a Program Unit.

1 FUNCTION normal ize company name (company name IN
VARCHAR2) RETURN VARCHAR2 IS

2 BEGIN
3 IF l e n g t h (company name) > 256 THEN r e t u r n s u b s t r (

company name , 1 , 256) ; END IF ;
4 r e t u r n company name ;
5 END ;

In addition, two PL/SQL built-in functions are used:
length() returns the size of a Varchar variable, and
substr() returns a substring of a Varchar variable.

A MVC architecture based on Java technologies.

Next, we will explain the target architecture and show the
code generated for the example. This information will help
to understand the metamodels and model transformations ex-
plained in the following Section.

According to the requirements of the Open Canarias com-
pany, the Java application to be generated from the legacy code
should be organized in accordance with a MVC architecture
based on Java technologies. In particular, the company requires
three Java frameworks to be stacked to form the MVC archi-
tecture: JSF (Java ServerFaces) for the view layer, Spring for
organizing the code of the application logic and supporting the
Controller layer, and JPA (Java Persistence API) for providing
persistence/access to business entities.

In Spring MVC each controller is annotated by the @Con-
troller tag. The navigation among views is given by the use of
controllers and their methods annotated as @RequestMapping.
The application logic is implemented in services classes (also
annotated as @Service) and they are declared in controllers by
the injection dependency technique through the @Autowired
declaration.

JSF allows declaring the view. It enables programmers to
implements the view in two separated artefacts: (i) a view that
is composed of UI widgets, which is implemented as a JSP or

Facelets file, and (ii) a Managed Bean that provides view back-
ing for the UI widgets, which is implemented as a Java class.
Accessing widget values is achieved through attribute decla-
rations and their corresponding getter/setter methods. Widget
events are handled through Java methods of the Managed Bean
class. These event handler methods usually contains UI logic
that manipulates the widgets in the view, and they delegate the
application logic and data access on the application controllers.
This separation was required by the Open Canarias company
for the applications resulting of the migration process here con-
sidered. These applications therefore contain the following ele-
ments:

• A JSF Managed Bean class for each window in the input
form. This class contains a method for each trigger asso-
ciated to visual components in the window.

• A Spring service class that implements an application con-
troller. The class contains the methods in which the code
of a legacy trigger is divided. These methods implement
the business logic, which contains data access and appli-
cation logic. In addition, this class contains methods for
some database operations, such as insert and update.

• A Spring service class is created to hold the methods re-
sulting of the Program Unit migration. There will be
one Spring service class for each Forms which will be in
charge of providing all the Java methods resulting of the
Program Unit migration.

Variables that are present in a trigger must be shared among
the methods that result of its migration: a method in the man-
aged bean class and one or more methods in the service class.
To achieve this sharing, we have defined a Java map to store
the values associated to each GUI attribute. This map contains
pairs whose key is the GUI attribute name and the value is the
widget value. A managed bean method pass this map to the in-
voked service methods. Given the lousy semantics of variable
scope in PL/SQL, this map is also used to share variable values
among methods.

Managed Bean class skeletons are generated by the GUI Mi-
grator component developed by Open Canarias. These skele-
tons contain method headers and the JSF attributes (declara-
tions and getter/setter methods), but the body is empty. The
implementation of these methods must therefore be completed
by the Code Migrator tool here addressed. This conveys a inte-
gration problem to be tackled in our reengineering-based solu-
tion. The service class with the methods corresponding to the
Program Unit procedures/functions must also be generated.

Generated managed bean and services classes.

Next, we show the Managed Bean and Ser-
vice classes created for the trigger example. The
class RenewGrantsManagedBean contains the field
RenewGrantsService that registers the only Spring ser-
vice used, which is annotated as @Autowired. This class
also contains the newGrantButtonWhenButtonPressed

9

method for the only event handler defined in the form. As
noted, this method manipulates GUI elements in order to
read the values introduced by users or showing values which
are calculated or read from database. It calls methods of the
RenewGrantsService service in order to perform database
operations and calculate new UI data.

p u b l i c c l a s s RenewGrantsManagedBean {

@Autowired p r i v a t e RenewGran t sSe rv i ce
r e n e w G r a n t s S e r v i c e ;

p u b l i c vo id newGran tBut tonWhenBut tonPressed () {
Map<S t r i n g , Objec t > map = new HashMap<S t r i n g ,

Objec t > () ;
map . p u t (” y e a r ” , renewCompanyGrants . g e t Y e a r ()) ;
map . p u t (” g ran tCode ” , renewCompanyGrants .

ge tGran tCode ()) ;
r e n e w G r a n t s S e r v i c e .

newGran tBut tonWhenBut tonPressed1 (map) ;
i f ((Double) map . g e t (” moneyPaid ”) >= (Double) map

. g e t (” t h r e s h o l d ”)) {
se tRenewCompanyGran tsGran tRenewedVis ib le (t rue

) ; / / G e n e r a t e d by UI M i g r a t o r component
} e l s e {

se tRenewCompanyGran t sThre sho ldNo tExceededVis ib l e
(t rue) ; / / G e n e r a t e d by UI M i g r a t o r
component

}

r e n e w G r a n t s S e r v i c e .
newGran tBut tonWhenBut tonPressed2 (map) ;

renewCompanyGrants . s e t T h r e s h o l d D i f e r e n c e ((
S t r i n g) map . g e t (” t h r e s h o l d D i f e r e n c e ”)) ; / /
G e n e r a t e d by UI M i g r a t o r component

renewCompanyGrants . s e t T o t a l A m o u n t ((S t r i n g) map .
g e t (” t o t a l A m o u n t ”)) ; / / G e n e r a t e d by UI
M i g r a t o r component

}

/ / . . . Methods g e n e r a t e d by UI M i g r a t o r component

}

The RenewGrantsService class implements the Spring ser-
vice corresponding to the controller. As shown below, this
service class contains the two methods in which the trigger
code has been divided. The first one accesses the database,
performs a computation, and updates the variable map. Then
the second one completes the computation of the values that
lately are shown on the user interface. To support the database
access, two methods have been injected: writeToDB() and
readFromDB(). These methods allow to execute arbitrary SQL
sentences defined in the source application. The execution is
independent of the quantity of arguments through the JPA tech-
nology.

@Service
p u b l i c c l a s s RenewGran t sSe rv i ce {

@Autowired p r i v a t e RenewGrantsAppService
r e n e w G ra n t s A p p S e r v i c e ;

p r i v a t e E n t i t y M a n a g e r F a c t o r y emf ;

p u b l i c vo id newGran tBut tonWhenBut tonPressed1 (Map<
S t r i n g , Objec t > map) {

t r y {

S t r i n g companyName = r e n e w Gr a n t s A p p S e r v i c e .
normalizeCompanyName (map) ;

map . p u t (” moneyPaid ” , readFromDB (”SELECT sum (
PAYMENT) FROM GRANTS. GRANTS PAYMENTS
WHERE . . . ”) ;

map . p u t (” endowment ” , readFromDB (”SELECT
endowment FROM GRANTS.COMPANY GRANTS . . . ”
)) ;

map . p u t (” t h r e s h o l d ” , readFromDB (”SELECT
t h r e s h o l d FROM GRANTS.COMPANY GRANTS . . . ”
)) ;

Double t o t a l = ((2 * (Double) map . g e t (”
endowment ”)) − (Double) map . g e t (” moneyPaid
”)) ;

i f ((Double) map . g e t (” moneyPaid ”) >= (Double)
map . g e t (” t h r e s h o l d ”)) {

writeToDB (”UPDATE GRANTS.
COMPANY GRANTS GRANTED SET s t a t e = ’
SUSPENDED ’ WHERE . . . ”) ;

writeToDB (”INSERT INTO GRANTS.
COMPANY GRANTS GRANTED (. . . .) VALUES (
? , ? , ? , ? , ?) ” , . . .) ;

}

} ca tch (E x c e p t i o n e) {
message (” D a t a b a s e u n a c c e s i b l e ”) /* TODO: PL /

SQL L i b r a r y C a l l * / ;
throw new F o r m T r i g g e r F a i l u r e () ;

}

}

p u b l i c vo id newGran tBut tonWhenBut tonPressed2 (Map<
S t r i n g , Objec t > map) {

Double d i f e r e n c e = ((Double) map . g e t (” t h r e s h o l d ”
) − (Double) map . g e t (” moneyPaid ”)) ;

i f (d i f e r e n c e > 0) {
map . p u t (” t h r e s h o l d D i f e r e n c e ” , d i f e r e n c e) ;

} e l s e {

map . p u t (” t o t a l A m o u n t ” , ((2 * (Double) map . g e t (
” endowment ”)) − (Double) map . g e t (”
moneyPaid ”))) ;

}

}

}

Below, it is shown the Service class that implements the
normalizeCompanyName() method that is part of the Program
Unit. The generated code is similar to the PL/SQL code. Those
functions which could not be mapped are annotated as man-
ual task to be performed. In the example, these functions are
length and substr.

@Service
p u b l i c c l a s s RenewGrantsAppServ ice {

p u b l i c S t r i n g normalizeCompanyName (Map<S t r i n g ,
Objec t > map) {

i f (l e n g t h ((S t r i n g) map . g e t (”companyName”)) /*
TODO: PL /SQL L i b r a r y C a l l * / > 256) {

re turn s u b s t r ((S t r i n g) map . g e t (”companyName”) ,
1 , 256) /* TODO: PL /SQL L i b r a r y C a l l * / ;

}

re turn (S t r i n g) map . g e t (”companyName”) ;
}

}

7. Developing the Trigger Migrator tool

This section will explain how each stage of the reengineer-
ing process has been implemented. As depicted in Figure 11,
the proposed reengineering approach consists of a chain of five
model transformations.

10

• (Rev. Eng.) The t2m transformation code2kdm injects the
legacy source code into the KDM models.

• (Rev. Eng.) The m2m transformation kdm2idioms obtains
idioms models from KDM models.

• (Rest.) The m2m transformation idioms2platform sepa-
rates monolithic code in the three tiers of the target MVC
architecture.

• (Rest.) The m2m transformation platform2oo uses the
Platform, Idioms, and KDM models to generate an Object-
oriented model of the code to be generated.

• (Forw. Eng.) The m2t transformation objectual2java
generates code of the final application from the Object-
oriented model.

Figure 11: Migration process of the tool.

For each transformation, we will describe how it has been
implemented and tested, and the result of being applied to the
trigger example. The metamodels involved will be described
as they are required. When describing the implementation and
testing of the transformations, we will focus on specificities
with respect to the explanation given in Section 5.

7.1. Reverse engineering: KDM injection

Open Canarias has developed an injector that obtains KDM
models from PL/SQL code. As explained in Section 2, ASTM
models can be used to generate KDM models. An ASTM model
represents source code as an abstract syntax tree. Therefore, a
KDM injection process consists of two stages. Firstly, source
code is transformed in an ASTM model, and then a model-to-
model transformation takes as input the ASTM model and out-
puts the KDM model. A detailed explanation of this process
can be found in [28] for a KDM injector of PL/SQL code.

In order to reuse assets in building KDM injectors for dif-
ferent languages, Open Canarias has also developed the Mod-
elSET Parser Generator framework. This frameworks provides
support for the tasks involved in implementing a KDM injec-
tor: (i) generation of the parser that creates a concrete syntax
tree, (ii) transforming the concrete syntax tree into an ASTM
model, and (iii) transforming ASTM models into KDM mod-
els.

This KDM injector developed by Open Canarias is L1 com-
pliant for the Data package. As explained in 2.3, USIXML and
IFML stereotypes have been defined to model UI visual com-
ponents and interaction, respectively. Therefore, the injection
is not L1 compliant for UI. Moreover, the injector has not used
Micro-KDM, but a family of stereotypes (e.g. SELECT, IF,
CALL, THROW) has been defined to establish the kind of PL-
SQL statement represented by an ActionElement, as indicated
in Section 2. The kind and name attributes of ActionElement
are used to indicate the type and name of the stereotype repre-
sented, respectively.

7.1.1. Application to the Trigger Example
Figure 12 shows the KDM model injected for the trig-

ger example. An instance of BlockUnit represents the
only trigger of our example. This instance aggregates (i) a
SourceRef instance that stores the text of source code, (ii) sev-
eral StorableUnit instances that represent local variables,
and (iii) TryUnit and CatchUnit instances that, in turn, ag-
gregate the stereotyped ActionElement elements representing
statements in the trigger code. Depending on the kind of sen-
tence, the injector establishes the value to be recorded in the
field name of an ActionElement element as stereotype. In the
example, we can see that ActionElements with the ASSIGN,
SELECT, IF, CALL, and THROW stereotypes have been created.

Figure 12: KDM model injected for the trigger example.

This model will be the input of the transformation that
complete the reverse engineering stage by obtaining an Idiom
model.

7.2. Reverse engineering: Generation of the Idiom model

As indicated in Section 4, our inference process is based on
the approach presented in a previous work [8]. The notion of
idiom was there proposed to achieve a highest level of abstrac-
tion. An idiom is a code pattern commonly used by developers
of RAD platforms, in our case Forms applications. A Forms

11

Figure 13: An excerpt of the Idioms metamodel.

trigger and program unit code is represented in terms of idioms
to facilitate the migration to the target platform. Table 2 shows
some of the idioms defined for PL/SQL.

Next, we will first present the Idioms metamodel, then de-
scribe the kdm2Idioms transformation that converts KDM in-
jected models into Idioms models, and finally show the idioms
model obtained for the trigger example.

7.2.1. Idioms metamodel
Figure 13 shows an excerpt of the Idioms metamodel,

in which the hierarchy of classes that represent primi-
tive operations is omitted. The root class of the meta-
model is IdiomsRoot, which aggregates three kinds of ele-
ments: (i) Code that represent the code of an event handler, (ii) a
set of Variables that can have global or local scope, and (iii) a
set of Exceptions that can be thrown by the application.
Idiom is the root class of the hierarchy of classes repre-

senting all the idioms defined in our metamodel. Idioms are
classified into three categories: Variable, Primitive, and
Expression. These classes inherit of Idiom and have a refer-
ence to the KDM elements from which an idiom was generated.
Primitive, in turn, is the root of the classes that represent the
idioms defined in Table 2.

A Code is composed of a set of local Variables, and a set
of Primitives. A Primitive aggregates a set of zero or more
Readables as input, and it can reference to a Variable as out-
put. EachReadable provides an input value, and the result is
stored into a Variable. A Readable can be a primitive, a vari-
able reference (VariableRef), or a value returned by a func-
tion call (ReturnValue). An Expression represents a condi-
tional expression, and they can be nested. Below, the classes
that represent expressions are commented.

Figure 14 shows the hierarchy of Primitive classes in the
Idioms metamodel. Loop, SelectionFlow and Try repre-
sent the three more common primitives. They are character-
ized for being composed of other primitives. A Loop aggre-
gates the Expression that represents the iteration control con-
dition, and a set of primitives that correspond to the iteration
body. SelectionFlow represents the selection of an execution
flow, either with if or switch semantics. A SelectionFlow is
composed of a set of Case elements, which are primitives hav-
ing associated a condition (Expression element) and a set of
primitives representing the code block to be executed when the
expression is evaluated as true.

Figure 14: Primitive hierarchy in the Idioms metamodel.

For the sake of simplicity, the classes that represents ex-
pression elements have not been shown in the Figures 14
and 13, such as (i) operators (e.g. And, Or, and Less), (ii) the
value of a variable (VariableRef), (iii) the return value of a
function (ReturnValue), (iv) kinds of variables: UI widget
variable (UIVar), local variable (LocalVar), global variable
(GlobalVar), and (v) constant values (Constant).

Table 2: Some idioms defined for PL/SQL.
PL/SQL Code Idiom/Meaning

Variable name ReadFrom
Read value from a local variable

Variable name := (Assignment) WriteTo
Write value to a local variable

UI Variable ReadFromUI
Read value from a UI variable

UI Variable := (Assignment) WriteToUI
Write value to a UI variable

Select ReadFromDB
Database operation that reads data

Insert/Update/Delete WriteToDB
Database operation that insert/update/delete data

Operators (+, -, /, *) ManipulateData
Arithmetical operation

Expressions (<, >, ...) Expression (Less, Greater, ...)
Boolean expression

Builtin function e.g. clear item ModifyUI
Modify an UI property

IF / Switch SelectionFlow
Execution flow according to conditions

Then / When / Else / Elsif Case
Execution flow for an specific condition

While, For, Loop Loop
Repeatable code

Break Break
Ends a loop

Procedure/function call CallProcedure
Procedure call

Return Return
Returning value for a funtion/procedure

Try Try
Code block to execute

Catch Catch
Code block executed after an exception raised

Throw or Raise Throw
Raise an exception

12

7.2.2. Implementation
As indicated in Section 5, we have organized the model-to-

model transformations in four components: Iterator, Analyzer,
Builder, and Reference Resolver. In the case of the kdm2idioms
transformation, these four components have been implemented
to perform the following actions: (i) to iterate over the input
KDM model, (ii) to analyze KDM model to discover the id-
ioms, (iii) to create elements that form the Idiom model and
build the aggregation hierarchies, and (iv) to establish refer-
ences between the idioms newly created and the existing id-
ioms.

For each element in the Idiom model, the Iterator invokes
the Analyzer which is in charge of discovering idioms in the
code. The Analyzer use the PL/SQL to Idioms mappings (see
Table 2) to decompose code in terms of idioms. Once a new
idiom is identified, the Analyzer invokes the Builder to create
the corresponding model elements. The KDM elements from
which a new idiom instance will be created are passed as ar-
gument in such an invocation because they provide the infor-
mation needed to initialize the elements. Finally, the Reference
Resolver connects the idiom created to one or more previously
created idioms. It should be noted that idioms elements main-
tain a reference to the source KDM elements in order to keep a
traceability to the code that forms a particular usage of a idiom.

7.2.3. Testing
The transformation has been implemented in an incremental

way, as explained in Section 4. In this case, the process was
organized in two phases. In the first phase, we injected 43 input
KDM models for simple triggers that have only one sentence.
With these triggers, we checked expressions, assignments, and
statements (e.g. IF, CASE, and LOOP) which only includes
code blocks formed for an assignment. In the second phase, we
inject 24 KDM models for triggers containing nested statements
that involves one or more idioms (e.g. IF or LOOP nested, and
TRY-CATCH).

In both phases, for each KDM model injected, we first write
the methods that implement the corresponding KDM-to-Idioms
mapping. Then, the transformation is executed for the input
model, and the output model is visually analyzed to validate it.
For this checking, we have to navigate through the input KDM
model and explore the trigger code. The tree editor provided by
EMF is used to navigate through the models.

KDM models contain a large set of elements, even for simple
code fragments. This in mainly due to the high number of read
and write elements. For this reason, we decided to use the trig-
ger code to validate the transformation, additionally to KDM
models. Because the high level of abstraction of Idioms mod-
els, it is easy to check if a source code is correctly represented
in terms of idioms.

7.2.4. Application to the Trigger Example
Figure 15 shown the Idioms model obtained for the ex-

ample. A Code instance has been created which aggregates
the six local variables of the trigger example and the four id-
ioms identified: a Try (block from line 2 to line 16), two

SelectionFlow (lines 18 and 25), and a Write (write to a
variable in line 24). In turn, the Try element includes the fol-
lowing idioms: two WriteTo (write to a variable in lines 3
and 7), two ReadFromDB (SELECT operations in lines 4 and 5),
a SelectionFlow (IF sentence in line 9), and a Catch that in-
cludes a CallProcedure (call in line 14) and a Throw (excep-
tion triggered in line 15). Idioms elements that are part of those
mentioned above are not shown for the sake of simplicity.

Figure 15: Idioms model example.

7.3. Restructuring: Generation of the Target Platform model
The monolithic code of PL/SQL trigger and program units

has to be separated into the methods and classes that corre-
spond to the tiers of the desired MVC architecture: JSF man-
aged beans and Spring services in our case. This is achieved
through the two model-to-model transformations that restruc-
ture the legacy code in several tiers. First, the idioms2platform
transformation generates a Target Platform model that repre-
sent the classes and method in View and Controller tiers. The
model obtained has references to Method objects that are part
of a model that represent the object-oriented code to be gener-
ated. This model is generated in a second m2m transformation,
named platform2oo, that takes as input the Platform model and
the Idiom model. Therefore, this second transformation will
first translate PL/SQL code into object-oriented code for each
method in the Platform model.

We will here describe the first transformation, and the second
one in the following section. We will begin by presenting the
Target Platform metamodel that represents the MVC architec-
ture defined in Section 6, more specifically the JSF and Spring
elements involved in the implementation. It should be noted
that although this transformation is platform-specific, the sec-
ond one generates language-independent object-oriented code.

7.3.1. Target Platform metamodel
Figure 16 shows the Target Platform metamodel.

TargetPlatformModel is the root class of the meta-
model. A TargetPlatformModel aggregates three elements:
a Service, a UserInterfaceView, and a ManagedBean. A
Service represents a Spring controller composed of a set of

13

ServiceMethod methods that are invoked from event han-
dlers or unit programs procedures. A UserInterfaceView

represents an application window and it is made up of a
set of UserInterfacesComponent (GUI widgets). A
ManagedBean represents JSF managed bean. This class
is the central element of this metamodel because it is
connected to the rest of the elements. A ManagedBean

aggregates (i) the set of event handlers (EventHandler) of
the UserInterfaceView to which it is associated, and (ii) a
set of attributes (ManagedBeanAttributes) that denote
what UI fields the managed bean manipulates. Moreover,
a ManagedBean references zero or more Services that
includes the methods ServiceMethod that it calls. It is
worth recalling that EventHandler references a Code ele-
ment (i.e. the PL/SQL code of the event handler in form of
Idioms) and a Method element (i.e. the Java code obtained
when translating the PL/SQL code). Finally, two kinds of
ServiceMethod have been defined: HelperServiceMethod

for methods created for an operation enclosed in a program
unit, and EventHandlerServiceMethod for methods cre-
ated from the trigger code. Like an EventHandler, an
EventHandlerServiceMethod contains references to Code

and Method elements. Instead, a HelperServiceMethod

only references a Method. The need of this distinction will be
evidenced in explaining the implementation of the following
two transformations.

7.3.2. Implementation
We have built the four components in which have orga-

nized our m2m transformations. When iterating the input Id-
iom model, it is required to also navigate over the KDM model
because the Idiom elements do not contain references to the
windows of the application. For this, we take advantage of the
existing traceability from Code elements to the KDM elements
that form it. A specific KDMNavigator class has been created
to navigate over the KDM elements, which is used by the Iter-
ator component.

For each Code element in the Idioms model, the
CallableUnit KDM element that references it is accessed.
From this element, a bottom-up navigation is performed
from the GUI component to which the trigger is associated
(UIResource KDM element) to the parent application window
(Screen KDM element). Then, a UserInterfaceComponent
is instantiated, which references to the UIResource that
is source of the event handled by the trigger. When
instantiating the first UserInterfaceComponent, a
UserInterfaceView, ManagedBean, and Service object
are then created. Each created UserInterfaceComponent is
added to the UserInterfaceView and is referenced from the
ManagedBean. Whenever a UserInterfaceComponent is in-
stantiated, an EventHandler and a ManagedBeanAttribute

are also created, which references it. The attribute code of
EventHandler is initialized with a reference to the current
Code. As indicated above, each EventHandler object has a
reference to the Method object that represent its object-oriented
code. These references will be void when the idiomsp2Platform
transformation is completed, and they will be initialized during

the execution of the platform2oo that has as input the Platform
model.

When the visited Code element refers to a Program Unit,
only a Service is created (not a ManagedBean). A Program
Unit is identified if the CallableUnit accessed from the Code
element does not contain a reference to an UIResource but it
contains a CodeFragment stereotype.

Finally, it should be noted that ServiceMethods for a
Service generated for a UserInterfaceComponent can not
be created in this transformation, because they are created de-
pending on the structure of the trigger code. The analysis of this
structure is performed in the following transformation, when
idioms are translated into object-oriented constructs. Instead,
only ServiceMethods for a Service that are originated from
a Program Unit are generated. This explains the existence of
two kinds of ServiceMethods.

7.3.3. Testing
The transformation has been implemented incrementally in

two phases. First, we have injected a KDM model for different
program units in an input form. We checked that the target plat-
form had a service and as many methods as program units. Sec-
ond, we created more complex forms by adding different kinds
of widgets, nesting windows, and having more than one win-
dow, in all the cases having a trigger associated to each visual
component contained in the form. Then, we checked that (i) the
platform model generated included a UserInterfaceView for
each window and a UserInterfaceComponent for each wid-
get, (ii) a ManagedBean and a Service for each window,
and (iii) a ManagedBeanAttribute and EventHandler for
each visual component.

7.3.4. Application to the Trigger Example
Figure 17 shows the main elements of the target

platform model generated for the example: (i) one
ManagedBean, (ii) one UserInterfaceView,
and (iii) two Services. The ManagedBean con-
tains one ManagedBeanAttribute that refers to the
UserInterfaceComponent representing the button
and an EventHandler that contains a reference to the
event handler method. The GrantsService has not
EventHandlerServiceMethods because them are generated
in the following transformation, while the GrantsAppService
service contains a HelperServiceMethod that corresponds
to the function normalizeCompanyName that is part of
the program unit. This service method has a null value
for the attribute method as the Method instance will be
created in the following transformation as explained above.
Finally, the UserInterfaceView element aggregates an
UserInterfaceComponent element which correspond to the
only widget that it contains (i.e. a button). Note that only
those visual components that have a trigger associated are
aggregated.

7.4. Restructuring: Generation of the Object model
We shall describe the platform2oo transformation that, tak-

ing the Idioms and target platform models as input, is able to

14

Figure 16: Target Platform Metamodel.

Figure 17: Target Platform Model example.

generate the Object-Oriented model. While the target platform
model specifies which classes and methods must be generated
for each tier of the MVC architecture, the Idioms model pro-
vides an abstract representation of the legacy code. Therefore,
the target Platform model directs the transformation, and the
Idioms model is needed to generate the object-oriented repre-
sentation of the code to be included in each method. First of all,
we will present the Object-Oriented metamodel.

7.4.1. Object-Oriented metamodel
Figure 18 shows the Object-Oriented metamodel. To define

this metamodel, we reused the Java metamodel provided by
the Modisco project [29], modified in order to convert it to a
language-independent metamodel. Next, we will comment the
main elements of this metamodel.

An Object-Oriented model consists of a set of Types
and Moduless. A Class contains a set of Attributes
and Methods. A Method is composed of a header
(MethodDeclaration), a body (MethodBody), and local
variables (Variable). The statements of a method body
are represented as a set of Statements. Statement is
the root of a hierarchy representing the kinds of sentences.
StatementContainer inherits from Statement and, in turn,
is the root of statements that can include a code block

as: conditional (If and Switch) loops (For, While, and
ForEach), and exception handlers (Try and Catch). Other
kinds of statements are expressions (Expression), assign-
ments (VariableAssign) method calls (MethodCall), and
variable declarations (VariableDeclaration).

7.4.2. Implementation
The Iterator component traverses the ManagedBean and

Service elements contained in the Platform model. For each
ManagedBean and Service, the Builder component creates a
Class whose name is formed by a window identifier followed
by “ManagedBean” or “Service”, respectively. The window
identifier results of concatenating the window name with the
value of a counter used to accumulate the number of windows
found in a form. Once these classes are created, the transforma-
tion must generate Methods and Attributes for each of these
classes. This generation is done differently for ManagedBean
and Service as explained below. Note that the process per-
formed involved the components Analyzer, Builder and Refer-
ence Resolver.

Services processing. As explained above, the Platform model
contains a Service that aggregates a HelperServiceMethod
for each operation that is part of a program unit. For these ser-
vices, a Method is generated for each HelperServiceMethod.
The code attribute of a service method is used to access the set
of idioms that represent the corresponding program unit opera-
tion. These idioms are translated into the object-oriented state-
ments that form the created method body. In this way, we have
a Service class with a method for each operation included in
a program unit.

ManagedBean processing. Algorithm 1 depicts the process-
ing of the event handlers of a managed bean. The set of
EventHandlers that aggregates a ManagedBean are traversed
in order to apply the code processing (line 1) on each of them.

15

Figure 18: An Object-Oriented metamodel.

First of all, a new Method is created containing the state-
ments of the event handler code in the managed bean (line 6).
Given the set of idioms describing a trigger (the Code in-
stance referenced by the code attribute of the event handler)
and the created method (the method attribute), the algorithm
first creates another method that is added to the service class
(line 10), and a method call that is added to the managed
bean method (line 11). When the service method is created,
a EventHandlerServiceMethod is also created and aggre-
gated to the Service instance of the Platform model. Then,
the idioms that form an event handler are traversed in order to
separate code manipulating view elements from the rest of the
code (line 13). Figure 19 graphically illustrates how this code
separation is done. Each idiom is processed to check whether it
is a ModifyUI idiom (line 27). This processing first translates
each idiom into a set of object-oriented statements, which are
added to a list of statements (line 29), and after it is checked if
the current idiom is a ModifyUI (line 35) or either it has other
nested idioms. When nested idioms are found, they are recur-
sively processed (line 33). Whenever a ModifyUI is found four
actions are sequentially executed: the last idioms processed are
translated into OO statements and moved to the current service
method (line 15), a new service method is created (line 16), a
method call to this method is created and added to the managed
bean method (line 17), and shared variables are also moved to
the new service method (line 18).

The problem of identifying what variables are being shared
among methods that result of code separation is not trivial.
The previous algorithm also declares and shares variables by
means of storing data about accesses to variables. These in-

Figure 19: Separating trigger code into managed bean and services.

formation allow us to discover those variables which are being
used in several methods and therefore which of them are be-
ing shared. When the algorithm detects one read/write (in the
processPrimitive function), the primitive is processed as a
local variable access and all the information is stored: the vari-
able, the variable access, and the method where the variable is
being used. The method can be a service or a managed bean.
Special consideration must be taken into account when the vari-
able access is done inside a complex primitive that contains a
ModifyUI idiom. Then, the code of the complex primitive is
moved from the service to the managed bean. In addition, the
method associated to the variable access is updated. Once all
the idioms of the code trigger have been processed, the variable
accesses contained in a method are compared to all the vari-
able accesses of the rest of methods. When a variable access is
present in two or more methods then it is required to change the

16

local accesses of the variable by the use of a map. The map is
in charge of sharing variable values between different methods
by sharing the same map instance among all of them.

When the variable is only accessed by one method, then a
local variable declaration inside the method is produced. Be-
cause in PL/SQL code variables are declared at the beginning
of the trigger procedure, the algorithm requires to calculate the
adequate place where to introduce the variable declaration.

In the following, we describe a new part of the algorithm
for discovering the code blocks where a variable declaration
must be introduced (see Algorithm 2). The first variable ac-
cess is set as the variable declaration. Then, the algorithm it-
erates over all the variable accesses, and it compares each one
to the initial variable declaration to check in what code block
the variable declaration must be implemented. For each pair
of initial variable declaration and variable access, the block
where both are included is compared. If both blocks are to the
same, the first variable access is chosen as the variable dec-
laration (line 4). For instance, a source code as age := 18

will produce the next target code: int age = 18;. If blocks
are different, then it is checked if one block is containing the
other one. In that case, the outer block will contain the variable
declaration (lines 6 and 8). If blocks are different and there is
not a containment relation, then the first block containing both
blocks is chosen to implement the variable declaration (line 10).
For example, the next source code if (age >= 18) adult

= true; else adult = false will determine that declara-
tion must be in the block immediately containing the block if

(boolean) ... else Finally, if the first variable ac-
cess corresponds to a read, a code comment is introduced in
order to inform that a variable is being used and could not have
been initialized. It is worth recalling that the Java compiler ini-
tializes to 0 all int variables not initialized explicitly in the
code. However, in PL/SQL the meaning of an initialization
absence would be the assignment of a NULL as initial value,
whichever the variable type was.

7.4.3. Testing
The part of the transformation that concerns to the

procedural-to-object translation has been incrementally built by
reusing the idioms models that were generated during the im-
plementation of the kdm2idioms transformation. Recall that
we injected 67 KDM models which covered the set of defined
idioms. Therefore, we have checked that the Object-oriented
model generated for each of the idioms model is correct. For
this, we have manually explored each Idiom model and checked
that the expected object-oriented statements have been gener-
ated for each idiom. Each of the object-oriented models has
been easily validated, because the mapping between idioms and
object-oriented elements is simple.

Regarding the implementation of the separation of code, the
transformation has been validated through the code generated
by the objectual2java transformation. The direct correspon-
dence between the object-oriented model and the generated
Java code justifies this decision. We found that the manual val-
idation of the code separation was easier on Java code editors
than using modelling editors. In addition, the Java compiler

Algorithm 1 Separation of Managed bean and Service code.
1: for eventHandler ∈ managedBean.eventHandlers do
2: processCode(eventHandler)
3: end for
4:

5: procedure processCode(eventHandler)
6: eventHandler.method ← createMethod()
7: method ← eventHandler.method
8: code← eventHandler.code
9:

10: serviceMethod ← createS erviceMethod()
11: method.createS erviceCall(serviceMethod)
12: for idiom ∈ code.primitives do
13: moveToUi← processIdiom(idiom, serviceMethod.statements)
14: if moveToUi then
15: serviceMethod.moveLastS tatementToMethod(method)
16: serviceMethod ← createS erviceMethod()
17: method.createS erviceCall(serviceMethod)
18: method.moveVariablesToMethod(serviceMethod)
19: end if
20: end for
21: if service.statement.isEmpty() then
22: method.removeLastS erviceCall()
23: deleteserviceMethod
24: end if
25: end procedure
26:

27: function processIdiom(idiom, statements)
28: OOstatement ← doMapping(idiom)
29: statements.add(OOstatement)
30: moveUI ← f alse
31: if isComplexIdiom(idiom) then
32: for nestedIdiom ∈ idiom.primitives do
33: moveToUI ∨ processIdiom(nestedidiom,OOstatement.statements)
34: end for
35: else if isModi f yUIIdiom(idiom) then
36: moveUI ← true
37: end if
38: return moveUI
39: end function

Algorithm 2 Declaring variables in the right code block.
1: variableDeclaration← f irstVariableAccess
2: for access ∈ restO f VariableAccesses do
3: declarationBlock ← empty
4: if variableDeclaration.block == access.block then
5: declarationBlock ← variableDeclaration.block
6: else if variableDeclaration.block , access.block ∧

access.block ∈ variableDeclaration.block then
7: declarationBlock ← variableDeclaration.block
8: else if variableDeclaration.block! = access.block ∧

variableDeclaration.block ∈ access.block then
9: declarationBlock ← access.block

10: else
11: declarationBlock ← allBlocks.selectFirst(block|

block.contains(variableDeclaration.block) ∧
block.contains(access.block))

12: end if
13: if isOnlyRead(f irstVariableAccess) then
14: declarationBlock.addComment(”//Variablenotexplicitlyinitialized”)
15: end if
16: end for

17

Figure 20: An excerpt of the Object-Oriented model for the example.

checks automatically if a variable was declared in the right code
block.

7.4.4. Application to the Trigger Example
Figure 20 shows an excerpt of the Object-Oriented

model obtained for the example. Specifically, the method
newGrantButtonWhenButtonPressed1 included in the class
RenewGrantsService. The method contains the elements that
corresponds to the code shown in Section 6. It starts with a
Try and several calls to methods (in this case, first the call
to normalizeCompanyName, then the different readFromDB).
Then, after the assignment of the variable, the If, and finally
the corresponding Catch, with its body.

7.5. Forward engineering: Code generation
This Section describes the model-to-text transformation

named objectual2java that generates the final application code
from the Objectual model. This transformation has been imple-
mented in Acceleo [30]. Acceleo is an implementation of the
Mof2Text standard proposed by OMG to write M2T transfor-
mations [31].

The transformation consists of three modules:
ClassTemplate, ClassParts, and Statements.
ClassTemplate only contains a template that generates
the structure of a class by invoking the templates defined in
Statements, which generates import declarations, attributes
declarations, and method declarations. The statements form
the body of the methods. The Statements module has a
template for each kind of statement, and all these templates are
overloaded, that is, they have the same name and parameter
type. Because all the statements are instances of classes
inheriting from the Statement class, a precondition can be
established in each template to indicate the kind of statement
for which is applied.

This transformation had to be integrated with the UI2Java
m2t transformation created by Open Canarias as part of the
GUI Migration tool in order to generate code for the user in-
terfaces. ManagedBean class skeletons are generated by the

UI2Java transformation. Therefore, our objectual2java trans-
formation must generate all the code for service classes and
code for the method body of the ManagedBean classes. The
strategy agreed with the company to integrate both transfor-
mations is the following: UI2Java templates invoke to objec-
tual2java templates passing a CallableUnit KDM element as
argument. Then, we traverse the Platform model to find the
EventHandler whose Code references this CallableUnit,
and we generate Java code for the Method element referenced
from that EventHandler. Therefore, the objectual2java trans-
formation has the Object-Oriented and Platform models as in-
put.

7.5.1. Testing
Because the object-oriented models are representations that

are very close to the Java code, the Acceleo templates are sim-
ple and they are therefore easy to test. They have been validated
as follows. First, the ClassTemplate and ClassParts mod-
ules have been created. Then, the Statement module has been
incrementally developed. We have followed the same strategy
used to validate Object-oriented models. That is, we have used
the models object-oriented generated from the 67 KDM mod-
els injected. In fact, object-oriented models and Java code are
validated at the same time. Therefore, this model-to-text trans-
formation is written the same as the platform2objectual trans-
formation is written. Generated code was compiled for syntac-
tic and semantic validation. Moreover, a manual validation was
carried out to check if indentation was correct for each line of
code, and statements follow the correct order.

Once the objectual2java transformation has been completed,
we checked that the ManagedBean and Service classes have
been correctly generated, which implies to perform five kinds
of checks: (i) a managed bean class and a service class has been
generated for each trigger in a form; (ii) a service class has been
created for all the program units of a form, and (iii) the methods
of each class have been generated, and they have the expected
code. This validation has been carried out for the three forms
presented in the following section.

7.5.2. Application to the Trigger Example
The code generated for the trigger example is shown in Sec-

tion 6. As can be observed there, the following artifacts were
generated:

• A managed bean class RenewGrantsManagedBean

with a event handler method
newGrantButtonWhenButtonPressed.

• A service class RenewGrantsService with the two
methods that are invoked from the event handler
method: newGrantButtonWhenButtonPressed1 and
newGrantButtonWhenButtonPressed2. The first one
corresponds to the excerpt of Object-oriented model
shown in Figure 20.

• A service class RenewGrantsAppService for the pro-
gram unit included in the form, which contains the method
normalizeCompanyName.

18

It is worth noting that the service class
RenewGrantsService has two methods because the trigger
example has only a modify idiom whose code is shown below.

IF money paid >= t h r e s h o l d THEN
SET ITEM PROPERTY (’RENEW COMPANY GRANTS.

GRANT RENEWED’ , v i s i b l e , p r o p e r t y t r u e) ;
ELSE

SET ITEM PROPERTY (’RENEW COMPANY GRANTS.
THRESHOLD NOT EXCEEDED ’ , v i s i b l e ,
p r o p e r t y t r u e) ;

END IF ;

The Java code generated for this Modify idiom would be:

i f ((Double) map . g e t (” moneyPaid ”) >= (Double) map . g e t
(” t h r e s h o l d ”)) {

se tRenewCompanyGran tsGran tRenewedVis ib le (t rue) ;
} e l s e {

se tRenewCompanyGran t sThre sho ldNo tExceededVis ib l e (
t rue) ;

}

8. Validation of the tool

This Section is devoted to describe the validation of the final
code generated by the tool (i.e. the output of the transformation
chain that implements the reengineering process). We first es-
tablish the scope of the validation by providing a definition of
all those testings involved in the validation. Then, a description
of the instrumentation and methodology applied on is given.
Finally, we present and comment the result of the validation.
In addition, the threats to validity that should be considered in
order to accept the result, are identified.

8.1. Definition

Validating a model transformation chain entails to test each
transformation as well as to check whether the final software
artifacts generated meet the initial requirements. In the case of
a code migration, these requirements establish how the legacy
code must be translated into target code.

In the previous Section, we have explained the black-box
testing approach applied to validate each of the transformations
in the chain. Here, we will explain the tests performed to vali-
date that the tool produces the expected code. As indicated in
Section 5, three kinds of black-box tests have been considered
to verify how accurate the obtained results are, and how they
conform to source-target mapping.

• Unit tests for generated Java code. Unit tests have been
written and executed for all the generated classes.

• Coverage tests. Some software metrics have been used to
measure the migration coverage. Coverage tests are ex-
ecuted to know how much code constructs in the legacy
application have been migrated. These measurements are
useful to verify that all the legacy code has been processed
during the migration process.

• Acceptance tests. Functional requirements have been fi-
nally validated by means of acceptance tests. For this, the

company has checked that legacy PL/SQL code and gener-
ated Java code have the same behavior for the three forms
described later.

8.2. Instrumentation

JUnit has been used to write and run the unit tests for the
generated Managed Bean and service classes. Additionally, we
have used a Java compiler for checking the syntax and some
semantic aspects as method invocations.

The coverage testing has involved the use of tools for soft-
ware inspection. Concretely, we have used the ClearSQL7 and
Eclipse Metrics 3 tools for obtaining metrics from Oracle Forms
applications and Java code, respectively. The metrics measure
the number of triggers, program units, and SQL sentences for
the source application, and the number of methods and SQL
sentences for the target application. It is worth recalling that
triggers and program units are migrated to methods in the tar-
get platform. In order to validate the intermediate models, we
have implemented short Java/EMF programs for counting ele-
ments in the Ecore models.

Acceptance tests have been manually performed by testers
from the company. They have executed the legacy and target
applications to check whether UI event handlers have the same
behavior.

The three kinds of testing have been carried on three
legacy forms provided by the company, which have different
size: (i) a small size form containing 55 triggers and 25 pro-
gram units; (ii) a medium size form with a total of 44 triggers
and 39 program units; and (iii) a large size form with 260 trig-
gers and 71 program units.

8.3. Methodology

For each metamodel, we have built a short Java program
whose purpose is to calculate the metrics defined for cover-
age testing. At the end of the implementation of each model
transformation, we measure the metrics by executing the Java
programs that corresponds to the target metamodel. In addition,
we have also manually calculated the metrics by inspecting the
target model with the EMF tree editor. In the case of the Idiom
model, we make sure that the model elements are also present
in the KDM model and the source code. Platform models have
been validated by checking if each UI widget, event handler,
window, trigger and program unit has been correctly injected.
Object-oriented models are validated in a similar way as Id-
ioms models. Moreover, these models are indirectly validated
through testing on the generated code, because there are a direct
correspondence between them.

Once the model transformation chain was developed, unit
tests were first tackled. Before writing the unit tests, the gener-
ated code was modified to include some mocks to simulate the
built-in functions and the data access methods invoked. Then,
unit tests were written for the managed bean and the service
classes. The unit tests were performed following a bottom-up
strategy according to the dependencies among classes. First, the
unit tests for the unit programs service class were performed,
then for the service class implementing the data access and the

19

application logic, and finally for the managed bean class that
includes the event handler methods that invoke the methods of
the service classes.

After running the unit tests, we measured the metrics that we
mentioned before. The results are shown in Table 3, and are
commented below.

We performed integration tests on the services, without con-
sidering the calling methods to mocks. Then we proceed in a
similar way on the managed beans.

Finally, company testers executed the generated code inter-
acting with the generated JSF views for the three tested forms.
As explained in Section 7.5, the methods generated by the Ob-
jectual2Java transformation, are invoked from the templates
generated by the UI Migration tool. Therefore, the managed
bean and service classes are automatically integrated in the
views classes generated by the UI Migration tool. Prior to per-
form the acceptance tests, company members developed the in-
tegration tests for the data access services to validate the inte-
gration of the managed bean classes with the service classes. As
a result of the acceptance tests, some errors were reported, for
example, identifiers that were declared as local variable and pa-
rameter in the same method, missing import sentences, the i++
sentence was generated as i=+, or some primitive type vari-
ables with a NULL value. These errors were fixed in the model
transformation chain.

8.4. Results

The results obtained for the three tested forms are shown in
Table 3. The column #elements indicates the measured metrics.
As depicted in the table, the metrics count the number of legacy
artifacts of a certain type and the artifacts generated in their mi-
gration. These artifacts are the following: (i) Forms Triggers
and methods in the generated managed bean class; (ii) Program
Units and methods in the service classes that where generated to
implement program units, and finally (iii) SQL sentences, that
are present in both source and target code. The second column
of the table indicates the size of the tested form from which the
metrics were obtained: small, medium, and large. The rest of
columns indicate the value of the metrics of the first column
for a particular artifact involved in the transformation chain:
(column 3) Oracle Forms; (column 4) KDM and Idioms mod-
els; (column 5) Platform and Objectual models; and (column 6)
Java application.

We have used ClearSQL for counting the triggers, program
units, and SQL sentences. We have also used this tool to find
which triggers are empty. Then we have subtracted these empty
triggers from the total number of triggers. Note that the exis-
tence of empty triggers is common in Oracle Forms applications
(mostly derived from human errors). The Metrics tool has been
used for counting the number of methods in Java classes.

With regard to the methods generated from the triggers mi-
gration, it is worth noting that there are less methods than trig-
gers. We have detected that some triggers were missing during
the injection because they were not associated to an UI widget
but they correspond to data block triggers. Concretely, 1, 12,
and 5 triggers were not generated for the small, medium and

Table 3: Results
#elements Forms KDM/Idioms Platform/OO Java

Triggers
/ Methods

small 5 5 4 4
medium 42 42 30 30
large 251 251 246 246

Prog. Units
/ Methods

small 25 25 25 25
medium 30 30 30 30
large 68 68 68 68

SQL sent.
small 13 13 13 13
medium 59 59 70 70
large 169 169 200 200

large forms, respectively. In the case of program units, no meth-
ods were missed.

The number of SQL sentences in Java code (and Object-
oriented models) is bigger than in Forms code and KDM/Idioms
models. This is due to the strategy adopted for migrating some
SQL sentences. When a query sentence includes a SELECT ...

INTO structure for assigning two or more columns into two or
more variables, our solution splits the original sentence in two
or more new sentences where only one column is projected into
one variable.

8.5. Limitations of the validation

In this section we will enumerate some limitations of the car-
ried out validation.

1. There are no unit tests for some of the generated
Java code (some methods have not been tested) but
coverage is of 46% (222 LOC) for the small size
form, 49% (687 LOC) for the medium size form, and 23%
(1065 LOC) for the large size form.

2. The three validated forms migth not cover all the elements
of the PL/SQL grammar or all the potential artifacts in the
Oracle Forms architecture.

3. Potential mistakes when contrasting behavior of the gen-
erated code against the requirements of the legacy applica-
tion.

4. Potential mistakes in counting elements when a visual in-
spection is used for the EMF tree editor.

5. Potential errors can be found when counting triggers in Or-
acle Forms by using ClearSQL7 because an empty trigger
is counted by the tool but not considered in our solution.

9. Evaluation

Metamodels and model transformations are the two essen-
tial elements in developing a MDE solution. In this Section,
we will analyze the main issues related to them in the context
of our migration work. Regarding the metamodels used, we
focus on the KDM metamodel. On the other hand, we will dis-
cuss how model transformations have been written and tested.
In this discussion, we will address issues as the visualization
of the output models, and the feasibility of applying a test-first

20

programming approach. Additionally, we will present a com-
parison carried between Java, ATL, and QVTo as m2m trans-
formation languages. Finally, we will comment two issues of
great interest in migration scenarios: how the horseshoe model
has been implemented and how the model traceability has been
managed.

9.1. Using KDM

When OMG launched KDM 1.0 in 2007, the company Open
Canarias decided to adopt this metamodel, as it provided the
level of abstraction appropriate to represent source code of
legacy applications, as an alternative to use AST models or
other existing metamodels, such as EGL proposed by IBM.
Since then, this company has used KDM to represent GPL code
in all its model-driven modernization projects. KDM has pro-
vided two main benefits to this company: (i) flexibility to model
statements written in an ambiguous way, (ii) ability to reuse vi-
sualization and code analysis tooling for different GPLs. It is
worth noting that Open Canarias contributed to the implemen-
tation of the ASTM metamodel in Modisco [32]. This company
has developed infrastructure to create KDM injectors for GPLs,
as explained in Section 7.1. This infrastructure has been applied
to create injectors for COBOL, ABAP, and PL/SQL.

Below, we detail the knowledge gained when using KDM to
develop the tool presented in this paper.

KDM compliance.
The cost of creating the PL/SQL injector was 3 months/man.
The injector is L1 compliant KDM for Data domain but not for
Micro-KDM. A family of stereotypes was defined to represent
PL/SQL statements instead of using Micro-KDM, as explained
in Section 7.1. This has not negatively influenced the migration
implementation. Whenever an ActionElement is processed,
the name attribute must be used to check if it represents a sen-
tence of the expected type. KDM models could then be used as
input of a tool [33] developed to implement the AFP specifica-
tion [17]. This tool was developed during the migration project
to calculate the function points of Oracle Forms applications,
but could be applied to other languages.

KDM limitations to manage Data from Code.
According to the KDM specification, the elements of a package
can have references to elements in packages of a lower level
but not vice versa, as the models are constructed from the code
to the more abstract viewpoints. This lack of navigability can
make writing model transformation difficult. The injector used
created references from Action elements to UI elements, but
not to Data elements. This caused problems in writing model
transformations that required access to the database schema.
We solved this issue by directly moving the PL/SQL sentences
to the Java code. References to UI elements are really needed as
observed in the Idioms2Platform transformation. They allowed
us to access to UI elements from CallableUnit in order to
know to which visual component an idiom is associated, as de-
scribed in Section 7.3.1.

Benefits and limitations of KDM to model software concerns.
Infrastructure and Program Elements layers are very useful to
represent legacy code. L0 compliant KDM models are more
convenient than AST or CST models to perform a reverse en-
gineering process, and L1 compliant Micro-KDM models pro-
mote the interoperability. We have been able to experiment with
these benefits in the work here presented. Data managed by
legacy applications can also be adequately represented by us-
ing the Data package. However, we have not used this package
in our work, as explained above.

From our experience, the rest of level 1 KDM packages are
too generic to be useful as-is. The UI package is very lim-
ited to represent the UI information required in software mod-
ernization tasks. For example, this package only includes the
generic UIField and UILayout classes to represent informa-
tion on widgets and layouts, respectively. KDM should there-
fore be extended in order to represent different kinds of widgets
and layouts. However, the KDM extension mechanism is very
limited in practice as described in Section 2, and when using
stereotypes the interoperability among tools (one of the main
benefits of KDM) is lost.

Therefore, our understanding is that defining (or reusing a
existing metamodel) tailored to the domain of interest is a bet-
ter alternative to KDM extensions as also noted in [34]. In fact,
Open Canarias decided to use IFML and UsiXML metamodels
to represent the legacy UI, as indicated above. In short, KDM
models are an appropriate representation to start a model-driven
reverse engineering process, but other metamodels must be de-
fined (or reused) to abstract the information managed through-
out a re-enginering process. In the project described here, we
have devised the Idioms, Platform, and Object-Oriented meta-
models. It is worth noting that we have not used the metamodel
defined in [8] to represent the execution flow of idioms since
this flow is represented in KDM models.

The size of the KDM models for the large case study is
nearly 60Mb, while the sum of the sizes of the other three mod-
els is 5Mb. This evidences that KDM models compliant L0 or
L1 level represent code at a very low level of abstraction.

Learning of KDM.
Two of the members of our team learned KDM, in particular
the Infrastructure and Program Elements layers and the
Data and UI packages. They had a solid background in MDE
and were able to acquire required KDM knowledge in 50 hours.
This number of hours includes the time devoted to prepare
a report about the injection process developed by Open Ca-
narias. Writing this report required understanding on how each
PL/SQL statement was represented by means of stereotypes. A
tutorial previously elaborated by our group facilitated the learn-
ing of KDM. It is worth noting the lack of publicly available
KDM tutorials.

9.2. Writing model-to-model transformations in Java
Software migration is a MDE usage scenario which involves

complex model-to-model transformations. In Morpheus, Java
(and EMF API) was considered a better option than using
model-to-model transformation languages such as ATL [13],

21

ETL [35], or QVT operational [14]. This choice was moti-
vated by two main reasons: (i) immaturity and lack of stability
of tooling existing for most popular m2m transformation lan-
guages, and (ii) the high complexity of the transformations in-
volved would demand to write a large amount of imperative
code. In fact, we had already used Java instead of ATL or
RubyTL [36] in some recent reverse engineering projects [34].
Moreover, Open Canarias had performed an internal survey
on m2m transformation languages, and the staff concluded the
convenience of using GPL or domain specific languages em-
bedded into GPL.

Once the construction of the Code Migrator tool finished,
we conducted a study to compare Java with two common m2m
transformation languages: ATL as hybrid language, and QVT
operational as imperative language. We used one of the m2m
transformations implemented as a case study. Since 2007, the
Model Transformation Contest is held to compare m2m tools
through a case study raised in advance. This workshop has orig-
inated the publication of some valuable comparative studies of
m2m languages [37, 38]. Our comparison contrasts with these
studies as follows: (i) the case studies are more complex and are
taken from a real project; (ii) KDM is the source metamodel;
and (iii) the same developer has written the transformations.

The three m2m transformations implemented have the fol-
lowing size measured in lines of code (LOC): 1926 for
kdm2dioms, 535 for idioms2platform, and 4568 for plat-
form2oo. We therefore chose the kdm2idioms transformation
as case study because had a medium size and complexity. Writ-
ing the ATL and QVTo transformations, we considered the fea-
tures of each language. ATL is a hybrid language that allows to
express the mapping between the source and target metamod-
els in a declarative way, and provides imperative constructs to
express more complex parts of a transformation. QVT Oper-
ational is an imperative language that is part of the QVT hy-
brid specification [14], but that can be used separately from the
QVT relational language. Both ATL and QVTo provide rules
and helpers to express transformations. Helpers are used to fac-
torize code and achieve short and legible rules. The ATL rules
have a special clause to write imperative code that is executed
after applying mappings. Whereas ATL helpers can only in-
clude OCL expressions, QVTo helpers can include any kind of
statement and the state of the transformation can be changed.
In addition, QVTo allows to declare intermediate data by means
of attributes. In ATL, the order in which rules are executed
is implicitly determined, whereas this order must be explicitly
expressed in QVTo code. Regarding the creation of target ele-
ments, this is implicit in ATL but explicit in QVTo.

As explained in Section 5, we have organized the model-to-
model transformations in four components: Iterator, Analyzer,
Builder, and Reference Resolver. How these components have
been implemented for the kdm2idioms transformation was de-
scribed in detail in Section 7.2.

The ATL and QVTo transformations have been organized as
follows. In both cases, a rule has been defined for each map-
ping kdm-idioms. Intermediate data are required to record sym-
bol tables for local and global variables and exceptions. These
tables have been declared as properties (dictionary type),

whereas the dynamic map pattern5 has been applied in ATL.
In ATL, we have encountered difficulties in writing the filters
needed to discriminate the kind of statement represented by an
ActionElement source element, and sometimes we had to ex-
plicitly invoke rules. Using QVT properties to store intermedi-
ate data instead of query helpers allowed us to reduce the exe-
cution time.

In ATL, the transformation has 37 declarative
rules (444 LOC), 5 rules embedding imperative code (85 LOC),
and 14 helpers (50 LOC). In QVTo, the transformation
has 41 rules (316 LOC), 11 helpers (76 LOC), and 8 prop-
erties. The Java transformation has 1926 LOC distributed
among the four components as follows: Iterator (325 LOC),
Analyzer (148 LOC), Builder (1077 LOC), and Reference
Resolver (376 LOC). It is worth noting that streams and
lambda expressions in Java 8 provide an expressiveness similar
to the OCL language to navigate models. Therefore, the
effort devoted to write model navigation expressions could be
considered equivalent in the three languages. Table 21 shows
the code to count the number of exceptions in a KDM model
for OCL, Java 8, QVTo and ATL. However, the creation of
target elements is tedious in Java because factory classes and
getter/setter methods must be used.

Figure 21: Code comparison example of OCL, Java 8, QVTo and ATL.

The size and development time for each transformation has
been the following: 579 LOC and 88 hours for ATL, 392 LOC
and 48 hours for QVTo, and 1926 LOC and 160 hours for Java.
It should be noted that writing the Java transformation required
understanding the problem and designing the solution, which
approximately involved half of the time spent in the implemen-
tation.

We have measured the performance of each transformation.
Each transformation has been executed five times for two dif-
ferent inputs: a medium (87 elements) and large (190 elements)
KDM model. The transformations have been executed under a
Core i5 CPU at 2.7Ghz, 8Gb of RAM and 3Mb of cache, a SSD
hard disk, MacOS Sierra 10.13.3, ATL 3.8, QVTo Eclipse 3.7
and Java 8. For each run, the execution time is calculated as
the sum of the completion times for three tasks: load the input
model, execute the transformation, and write the target model.

Figure 22 shows the average execution times for each input
to the transformations. The variance obtained has been low in
all the cases with values in the range between 0.01 and 0.06.

5Unofficial ATL Tutorial: https://github.com/jesusc/

atl-tutorial.

22

https://github.com/jesusc/atl-tutorial
https://github.com/jesusc/atl-tutorial

Figure 22: Average execution times for the Java, ATL, and QVTo transforma-
tions.

The transformations have scaled out better for Java and QVT
than for ATL. The lowest execution time were for Java in the
case of the large-size model, and ATL for the medium-size
model. It is worth noting that performance of model transfor-
mations can significantly be reduced by applying patterns for
a particular language. For example, in the case of ATL for the
large-size model, we reduced the running time by half by using
the dynamic map pattern previously cited to store the symbol
table for variables and exceptions, instead of using Dict type
attributes in ATL, which are accessed from imperative code sec-
tions. ATL supports parallel execution of transformations, and
parallel streams of Java 8 can be used to improve the perfor-
mance of model transformations, but these mechanism have not
been explored.

Therefore, the results obtained for development effort and
performance would support the use of QVTo against Java or
ATL. However, the tools existing for QVTo lack of the maturity
offered by commonly used tooling for software development.
Software companies might prefer to implement m2m transfor-
mation in Java to avoid using immature tools which could be
discontinued in the short term. While mature tools are not avail-
able for m2m transformation languages, we think that the use
of an internal DSL (fluent-API or embedded DSL) could be the
more appropriate solution to write model-to-model transforma-
tions. In the case of Java, a fluent-API to manage models could
be useful. In fact, some tools have been presented with this
purpose [39, 40], although these projects were discontinued. A
tooling aimed to automate the creation of fluent-API for the
APIs that EMF generates could be very valuable to developers
writing m2m transformations in Java.

9.3. Developing and testing model transformations

Two essential aspects of the development process here ap-
plied are: (i) to write transformations in a incremental way,
and (ii) to apply different kinds of tests for validating the trans-
formation chain.

Writing complex transformations for large metamodels re-
quires a systematic approach. The transformations should be
created and tested incrementally. For this, we have defined a
strategy similar to the test-first programming as explained in
Section 5 and illustrated in Figure 8. The transformations are
incrementally developed, and a set of input models are cre-
ated to test each step of its development. That is, the mod-
els establish the order in which mappings are implemented
and tested. However, tests were not written to validate the

transformations. This decision was taken after writing some
tests for the kdm2idioms transformation. We observe that test
code would be very similar to the transformation code to be
tested. Below we show the code of the test written to validate
if the kdm2idioms transformation generates as many “CASE”
SelectionFlows that have as many CASE idioms as IF ELSIF

ELSE elements there are in the KDM model for the correspond-
ing PL/SQL sentence. JUnit was used to write and run the tests.
Although Java 8 facilitates the writing of the transformations
and significantly reduces the number of lines of code because
the use of streams and lambda expressions, writing tests still
requires a considerable effort.

f o r (S e l e c t i o n F l o w s e l e c t i o n F l o w :
s e l e c t i o n F l o w L i s t) {

Act ionE lemen t a c t i o n E l e m e n t = s e l e c t i o n F l o w .
g e t A c t i o n E l e m e n t () ;

/ / Get ELSE
O p t i o n a l <Act ionElement > p o s i b l e E l s e A c t i o n E l e m e n t

=

a c t i o n E l e m e n t . ge tCodeElement () . s t r e a m ()
. f i l t e r (c −> ”ELSE” . e q u a l s (c . getName ()))
. map (Ac t ionE lemen t . c l a s s : : c a s t)
. f i n d F i r s t () ;

i f (p o s i b l e E l s e A c t i o n E l e m e n t . i s P r e s e n t ()) {
Act ionE lemen t e l s e A c t i o n E l e m e n t =

p o s i b l e E l s e A c t i o n E l e m e n t . g e t () ;
/ / Counts ELSIFs
long e l s e I f s = e l s e A c t i o n E l e m e n t . ge tCodeElement

() . s t r e a m ()
. f i l t e r (c −> ” IF ” . e q u a l s (c . getName ()))
. f i l t e r (Ac t ionE lemen t . c l a s s : : i s I n s t a n c e)
. map (Ac t ionE lemen t . c l a s s : : c a s t)
. f i l t e r (a −> a . g e t S t e r e o t y p e ()

. s t r e a m ()

. f i l t e r (e −>” e l s i f ” .
e q u a l s (e . getName () .
toLowerCase ()))

. c o u n t () > 0)
. c o u n t () ;

/ / Check i f ELSE has code
long e l s e P r e s e n t = e l s e A c t i o n E l e m e n t .

ge tCodeElement () . s t r e a m ()
. f i l t e r (c −> ! ” IF ” . e q u a l s (c . getName ()))
. c o u n t () > 0 ? 1 : 0 ;

/ / IF + ELSE + ELSIFs
a s s e r t E q u a l s (1 + e l s e P r e s e n t + e l s e I f s ,

s e l e c t i o n F l o w . g e t C a s e () . s i z e ()) ;
} e l s e {

/ / IF
a s s e r t E q u a l s (1 , s e l e c t i o n F l o w . g e t C a s e () . s i z e ())

;
}

}

The creation of transformation-specific asserts could facili-
tate writing tests. However, the implementation of these asserts
is a challenging problem since they should be applicable on any
metamodel. We consider that the solution proposed in [41] is
not practical because XMI format models must be navigated
by means of XPath expressions [42]. Therefore, writing unit
tests before the transformation code, following the test-first pro-
gramming of agile methods, seems a practice not suitable in the
context of m2m transformations with the existing technology.

With regard to writing unit tests for m2t transformations, we
consider interesting the work of Tiso et al. [43]. We could not

23

use their tool, as it is intended to be used on UML with pro-
files. However, the approach can be adapted writing parameter-
ized regular expressions specific to our models, and the genera-
tion of Java code is also suitable for their “sub-transformation”
approach following the containment relationships in the target
platform model.

We have combined unit tests for a particular model transfor-
mation with tests aimed to validate the model transformation
chain. As indicated in Section 8, coverage and acceptance tests
have been applied along with syntactic and semantic tests on
the transformation chain output through out compiler tools.

In model-driven migration scenarios, test models can directly
be obtained from source code by using the injector. This is a
clear advantage with respect to other model-driven scenarios.
Test models can be injected for legacy code or either they can
be injected from code specially written for testing. In our case,
we have used legacy forms provided by the company to val-
idate the model transformation chain, and have created small
code fragments to inject the input models used to validate the
first m2m transformation in the chain. The rest of m2m trans-
formations were validated by using the models generated in the
precedence transformation according the chain.

9.4. Visualizing output models for testing model transforma-
tions

Checking the correctness of the output model of a model
transformation is a complicated task due to the complexity of
the metamodels involved. Either creating oracles to be used
with model comparison tools or performing manual checking
are really tedious and time-consuming tasks. Because the diffi-
culty of automatically or manually creating the expected output
models, a manual checking is usually performed. Input and out-
put models are examined to verify whether mappings between
them are correct. This labor can be facilitated by graphically
visualizing output models, but the generation of graphical edi-
tors tailored to each metamodel requires a considerable effort.
EMF provides a generic tree editor which shows a list of all the
model elements and allows navigating over the aggregation hi-
erarchy of each element, but references between objects are not
visualized. Examining models with this editor is really difficult.

Because the models are graphs, we have studied how data
visualization capabilities offered by some graph databases can
be used for visualizing output models. We built a m2t transfor-
mation that generates Neo4J insertion script from models rep-
resenting the execution flow of idioms. These models were fi-
nally not used because the execution flow is already represented
in the KDM models. The m2t transformation was easy to im-
plement because the execution flow models are graphs whose
nodes are statements and the arcs denote all the possible paths
that might be traversed during the code execution. Figure 23
shows the execution flow graph for the PL/SQL code below:

t h r e s h o l d := 1000 ;
IF s a l a r y > t h r e s h o l d THEN

bonus := s a l a r y − t h r e s h o l d ;
ELSE

bonus := 100 + t h r e s h o l d − s a l a r y ;
END IF ;
s a l a r y := s a l a r y + bonus ;

As observed in Figure 23, the node color is used to differenti-
ate the executed trigger (pink), the statement fragment (green),
the initial node (blue), and the final node (purple). This val-
idation would have been very difficult by using the EMF tree
editor. However, it was easily performed through the graph vi-
sualization. Moreover, the effort to write the transformation
was only of about 4 hours.

This approach of converting models in graph database ob-
jects is applicable to many metamodels. It would require to
establish a mapping between the model information to be vi-
sualized and graph elements. In our case, the only visualiza-
tion carried out was for the execution flow models, which were
used in the final implementation. It might also have been used
to show references among the platform model elements. It al-
lows us to check if trigger code has been correctly spread in
services (only one method service or more). Another scenario
could be to graphically represent the use of variables for each
method. In case two or more methods were referring the same
variable, then that variable will be tagged as shared. Therefore,
it would allow us to visually verify if the algorithm for sharing
variables worked. However, the fact of managing many small
test models influenced in no implementing more Neo4J-based
visualizations.

Figure 23: Neo4J graph for a model representing an execution flow.

9.5. Model traceability

Model traceability facilitates the implementation of unit tests
in JUnit by taking advantage of the existence of references from
Idioms to KDM model elements. It allows us to integrate the
developed tool into the one provided by the company (UI2Java).
These references enable backward navigation from model ele-
ments resulting of transformations involved in the restructuring
stage. Therefore, both tools can be connected by means of the
generated models.

Model traceability also avoids having to decorate the gener-
ated models after each transformation of the tool chain. When
the Idioms model was implemented, we decided to keep the
back references in order not to add new attributes on the ele-
ments for identifying the corresponding element type in KDM.

24

For instance, in a SelectionFlow element on the Idiom model,
the reference to the corresponding KDM element provides the
needed information about if it was generated by an If or an
Switch KDM element. A specific attribute to identify the cor-
responding provenance would have been included, but then the
Idiom metamodel would had been extremely overloaded until
the fact that all the KDM metamodel could be included inside
it. It is worth noting that the Idiom metamodel was devised to
describe the data at a higher level of abstraction than the KDM
metamodel.

10. Related Work

In this work we have presented a practical experience in de-
veloping a model-driven reengineering approach for migrating
legacy Oracle Forms code to MVC platforms. We have defined
a development process that integrated several kind of valida-
tion, and present a strategy to implement model transforma-
tions in a incremental way. Moreover, an assessment of ap-
plying modeling techniques in this scenario is given. In this
setting, the works more closely related to our approach would
belong to the following categories: (i) model-driven approaches
for migrating legacy code, (ii) development processes for MDE
solutions, and (iii) model-driven migration experiences. In ad-
dition, we also consider studies on the use of KDM, given this
OMG metamodel is a key element in our solution.

Before of addressing related works in the above categories,
it is worth noting that the state of the art in model-driven re-
verse engineering has recently been analyzed in [6]. The au-
thors present a systematic literature review in which they de-
scribe the more relevant approaches and perform and analysis
conducted by some research questions related to the used meta-
models and tools, and the level of automation achieved. A total
of fifteen proposals are detailed and some hints on choosing a
model-driven reverse engineering approach are pointed out.

Model-driven approaches for migrating legacy code.

A model-driven reverse engineering approach to migrate
RAD event handlers to modern platforms is proposed in [8].
An AST model is injected from legacy code, and a reverse engi-
neering process is applied to obtain a more abstract representa-
tion. Idioms models are firstly extracted, and then an execution
flow model is generated. This model represents a graph whose
nodes are idioms fragments and the arcs denotes the execution
flow. Additionally, each fragment is annotated to indicate which
concerns it belongs to: UI, Control or Business Logic. As
proof of concept, Ajax code was generated from execution flow
graphs. Concretely, PL/SQL event handlers were migrated to a
two tier architecture: a HTML/Javascript user interface invokes
a REST service that implements business logic fragments. As
noted in Section 7, we have used abstracted code into Idiom
models, but the reverse engineering here presented differs in
two significant aspects from the previous work: (i) KDM is used
for representing legacy code, and the execution flow model is
not necessary because that information is part of KDM mod-
els, (ii) separation of concerns is achieved through a Plaform

model, which is used to conduct the object-oriented code gen-
eration, and (iii) new idioms have been identified aims to model
in KDM all the PL/SQL statements.

In [9] a strategy for reengineering legacy systems to SOA
(Service Oriented Architecture) is described. The authors con-
sider the decomposition of a monolithic application into sev-
eral concerns as the main problem to be addressed. They pro-
pose manually annotating legacy code to indicate which tier
each statement belongs to: logic, data, and user interface. The
reengineering process is defined according to the horseshoe
model. An AST model is injected from the legacy code, and
then a graph-based transformation language is used to redesign
the code for the new platform. The authors outline two strate-
gies that they are considering to generate code from the graph
model obtained.

Unlike the works of Sanchez et al. [8] and Heckel et al. [9],
we have tackled all the stages of a reengineering process. Be-
yond presenting a reengineering approach, we have defined and
applied a development process, which allowed us to explore
some key aspects of MDE solutions, such as writing and test-
ing model transformations, and the visualization of models with
the purpose of testing. Our reengineering solution has been ap-
plied to legacy code from real applications, and have carried out
several kinds of testing for validating the result.

Development processes for MDE solutions.

In [11], the authors propose an approach for providing in-
cremental development of model transformation chains based
on automated testing. The approach includes four test design
techniques along with a framework architecture in order to test
transformation chains. The paper also includes a validation of
the approach by developing a transformation chain for model
version management (for the IBM WebSphere Business Mod-
eler). As it is indicated, doing testing in an isolated way is not
sufficient, and the software quality should be assured by means
of a development process. They introduce the requirements to
ensure the quality of a transformation chain: (i) an iterative and
incremental development, (ii) testing processes for the trans-
formation chain, and (iii) a fully automated test environment.
The incremental development is based on automated testing, so
its approach is supported by a test framework which follows
the TDD (test-driven development) principle. The three testing
design techniques that the proposal distinguishes are: integrity
tests on generated model, comparing the result of a model trans-
formation with inspected reference outcomes, invariant valida-
tion, and deviation testing that consists on calculating and stor-
ing some data on output models with the purpose of be com-
paring them with the data obtained when the transformation is
again executed.

We have applied an incremental development process similar
to that proposed by Küster et al. [11] to develop a reengineer-
ing based on the horseshoe model. However, while that process
is focused on transformation chains, we have considered how
unit tests can facilitate the implementation of individual model
transformations. Small input models, which cover one or a few
statements of the source language, are used as test models. We

25

have shown how this technique has been applied in our reengi-
neering. Instead, an incremental approach is proposed in [11]
but its application is not illustrated with a case study. Con-
versely, we have performed acceptance tests and unit testing
on the generated code. Therefore, we have combined manual
and automated testing. An automated test framework for model
transformations is desirable but its development is beyond the
scope of our work. As far we know, there are no automated
testing frameworks for model transformations publicly avail-
able today.

A notion similar to the unit tests proposed in our approach
was proposed by D. Varró in [12], where the model transfor-
mation by example technique is presented. This technique aims
to semi-automatically generate model-to-model transformation
rules from a collection of interrelated input and output mod-
els. Each pair of this collection acts as prototypical instance
that describes a critical case to be addressed by the transforma-
tion. Therefore, our unit test strategy puts into practice a MBTE
process. Varró et al. consider that “the majority of model trans-
formations has a very simple structure,” and transformations
could therefore be partially synthesized. However, we managed
a very large metamodel as KDM, and complex transformations,
and it is not clear that the statement holds for our case, so and a
manual writing and testing has been carried out.

As commented in Section 9, the work by Tiso et al. [43] is
applicable to our work as a way of testing model-to-test trans-
formations. In their work, they divide the transformation in sub-
transformations, following the containment relationships of the
source metamodel. For each transformation, they build param-
eterized regular expressions that capture the results–in form of
text outputs–of this transformation, but ignore the results of the
sub-transformations. This allows to effectively associate a reg-
ular expression to the production of each of the transformations,
allowing a systematic test of the output text. The approach can
be used in our development, but their tool could not be used, as
it is based on UML and profiles, while we use EMF/Ecore, but
a similar approach could be considered in future refinements of
the process.

A test-driven development (TDD) approach for model trans-
formation is considered in [26]. Concretely, the JUnit frame-
work is extended in order to facilitate the application of TDD
in developing model transformations. Some examples of unit
tests are shown for the built prototype. From our experience,
writing these unit tests requires a significant effort because they
have a large amount of code, and even the correctness of this
code should be validated. Therefore, we have not written such
unit tests. An interesting future work would be the development
of a unit test framework for implementing model transforma-
tion in Java. EUnit [27] is an integrated unit test framework
for model management tasks that is based on the Epsilon plat-
form. Unit tests are written in the EOL language provided by
Epsilon. Writing EOL unit tests was not considered because
our transformations were written in Java.

A model-driven software migration methodology is proposed
in [44]. This proposal has been validated by means of a case
study based on a refactoring of a control software for wind tun-
nels programmed in C/C++. In the reverse engineering stage

a parser is used to generate an annotated parse tree which is
translated into XML format. This format is imported into the
jABC modeling tool to create customized process graphs to
obtain a code model (the control flow graphs of the applica-
tion). To validate the code models they use a back-to-back test.
Firstly, the original source code is restored from the code mod-
els by using a code generator, then it is compiled. Thereafter,
the restored code undergoes a second reengineering step that
includes to restore the source code again from the new code
model, and comparing both source codes. In the forward engi-
neering stage, the GUI is analyzed to identify all possible ac-
tions of the application. An abstraction model is created with
the graphical elements linked to their implementation. The mi-
gration and remodeling of the application is a manual task.
With the help of the abstraction model, the developer exam-
ines the source code to identify and migrate the necessary ob-
jects to a new process model. Finally, target code is generated
from the process model, but some code is also manually writ-
ten. The application is validated against the original one by
comparing their outputs. The two main differences with our ap-
proach are: (i) KDM is not used to represent the legacy code,
but control flow graphs obtained by importing the XML code
generated by the parser, (ii) the reverse engineering stage is
a manual task: The developer examine the code model (con-
trol flow graphs) to identify and migrate the necessary objects.
At the forward engineering stage some code must be manually
written as well, (iii) the process of construction and testing of
model transformations is not addressed, and (iv) only a kind of
validation is applied: code generated is injected and compared
with the refactored source code.

10.1. Model-driven reeengineering experiences
In [45], one of the first model-driven reengineering experi-

ences is reported. The work presents the migration of a large
scale bank system to the J2EE platform. The three stages of
the process are commented and some conclusions are drawn.
The model-driven approach is compared to a manual process
and some benefits and limitations are provided. However, no
details are provided on the development process followed, and
the transformation chain is not explained in detail. The models
are injected in form of an AST tree.

A model-driven approach for applying a white-box modern-
ization approach has recently been presented in [46]. First, a
technology agnostic model is obtained from the sources. Then,
this model is edited by the developer to configure the target ar-
chitecture, and finally a transformation from the model into the
new technology is performed. They used an Oracle Forms mi-
gration to Java technology case study, and were able to gener-
ate the graphical interface (but without layout), the logic related
to database operations (e.g. read, update), and the scaffolding
code to call the PL/SQL logic that are embedded in the triggers.
In contrast to our work, the PL/SQL logic is not transformed
and must be manually migrated.

10.2. Use of KDM
As can be noted in [6], a few experiences on the use of KDM

have been reported. Below, we comment two of those described

26

in that survey.
Pérez Castillo et al. [47] propose a method for recover-

ing business processes from legacy information systems using
MARBLE (Modernization Approach for Recovering Business
processes from LEgacy Systems). This method considers (i) a
static analysis to extract knowledge from the legacy source
code, (ii) a model transformation based on QVT to obtain a
KDM model from that knowledge, and (iii) another QVT trans-
formation to create a business process model from the KDM
model. MARBLE keeps traceability because it identifies which
pieces of legacy code were used to obtain the elements of the
business process.

Normantas and Vasilecas [48] present an approach to facili-
tate business logic extraction from the knowledge about a exist-
ing software system. They use various KDM models at different
abstraction levels to represent the information extracted from
the system in three steps: (i) a preliminary study, to gather infor-
mation about the system, (ii) knowledge extraction into various
KDM representation models, and (iii) separation of the KDM
model parts of the business logic from the infrastructure ones.
The authors apply source code analysis techniques to identify
the business logic and represent it with the KDM Conceptual
model.

How ASTM and KDM models can be used to automate
a modernization task was addressed in [28]. Some lessons
learned on the application of KDM for calculating metrics for
PL/SQL code were exposed.

Here, we have detailed discussed complex model transfor-
mations involving KDM models, and have discussed some ben-
efits and limitations of KDM from our experience. Moreover,
we have experienced the use of stereotypes instead of injecting
Micro-KDM compliant models. Both [47] and [48] are not fo-
cused on the Action and Code packages, but business process
models are considered. Finally, it is worth noting that we have
here addressed a real source-source migration process, while a
simpler modernization problem was considered in [28].

11. Conclusions and Future Work

Model-driven techniques emerged early this century as the
new software engineering paradigm to achieve levels of pro-
ductivity and quality similar to other engineering areas. Much
attention has been devoted to the application of MDE in en-
gineering scenarios, both in the industry and in the academy.
As recently noted in [6], the literature on the application of
MDE techniques in model-driven reverse engineering and re-
engineering is very limited. Practical experiences such as the
one described here can be useful to know the benefits and lim-
itations of model-driven techniques in such scenarios. More-
over, they can contribute defining new processes, techniques,
and practices, or just experimenting with the existing ones.

In this paper, we have presented a practical experience in de-
signing and implementing a re-engineering approach for a mi-
gration of Oracle Forms code to a MVC architecture based on
Java frameworks. For this aim, we have defined a systematic
process aimed to the development of the model transformation

chain implementing the reengineering. This process involved
several kinds of tests for validating the model transformations
and the generated code. The definition of this process and the
description of its applications is a contribution with respect to
previously published model-driven reengineering approaches.
Specially, we would remark the strategy applied to incremen-
tally develop model transformations.

Regarding the benefits of applying MDE in a software mod-
ernization scenario, it is well known that (i) metamodels pro-
vide a formalism more appropriate than other metadata formats
(e.g. XML, JSON) to represent information harvested in ap-
plying reverse engineering, and (ii) transformations allow mi-
gration tasks to be automated [4, 6]. In this work, we also
contribute with knowledge about some specific concerns in a
software migration. The main contributions would be the fol-
lowing.

Use of KDM. Experimenting with KDM in a real project, and
showing that L1 compliant KDM models for data and Micro-
KDM are very convenient to represent code from a structural
and behavioral viewpoint. Thanks to the usage of KDM, we did
not need to define a PL/SQL, Data or execution flow metamod-
els. In addition, KDM provides a code and data representation
devised by experts in migration. This a clear example on the
advantages of asset reusing.

Writing model transformations. We have compared Java with
two of the most widely used languages for writing model-
to-model transformations. This comparison was performed
for one of the transformations of our work. We have con-
cluded that a fluent-API for Java (backed by EMF/Eclipse as
the more widespread modeling framework) is the more appro-
priate choice until mature and robust environments for model-
to-model transformation languages are available.

Models for testing. Creating input and expected output models
for validating model transformations is very difficult as noted
in [23]. We have shown that software migration makes it eas-
ier to have input models as they can be achieved from source
code by using the model injector. On the other hand, the model
transformation chain generates code. Checking the correctness
of this code, and its correspondence with the original code to be
modernized, is again a very difficult task. The usage of a test-
first, incremental transformation development helped in check-
ing each of the mappings from models to text. Other approaches
were also considered and left as future work [43]. It is worth
noting that we have investigated the transformation of models
into instances of graph databases in order to take advantage of
viewers and query languages offered by these database systems.
This would provide a simple strategy to visualize output models
of a transformation, which would facilitate the manual valida-
tion.

The practical experience here presented has served to de-
fine some research works for some issues here raised, such
as: (i) extend JUnit to develop a automated unit test frame-
work for model transformations, (ii) explore test-driven de-
velopment for model transformations, (iii) complete the com-

27

parison among transformation languages, (iv) integrate Mod-
els4Migration [49] with the model management platform of
Open Canarias, and (v) to define a systematic approach to vi-
sualize models as graph databases and explore the benefits of
this representation for automating different kinds of testing (e.g.
coverage testing).

12. References

[1] S. R. Tilley, D. B. Smith, Perspectives on legacy system reengineering,
Tech. rep., Software Engineering Institute, Carnegie Mellon University
(1995).

[2] R. Kazman, S. S. Woods, S. J. Carrière, Requirements for integrating soft-
ware architecture and reengineering models: CORUM II, in: 5th Working
Conference on Reverse Engineering, WCRE ’98, Honolulu, Hawai, USA,
October 12-14, 1998, 1998, pp. 154–163. doi:10.1109/WCRE.1998.

723185.
URL https://doi.org/10.1109/WCRE.1998.723185

[3] F. J. Bermudez, J. G. Molina, O. Dı́az, On the application of model-driven
engineering in data reengineering, Inf. Syst. 72 (2017) 136–160.

[4] O. Sánchez Ramón, J. Sánchez Cuadrado, J. Garcı́a Molina, Model-driven
reverse engineering of legacy graphical user interfaces, in: Proceedings
of the IEEE/ACM international conference on Automated software en-
gineering, ASE ’10, ACM, New York, NY, USA, 2010, pp. 147–150.
doi:http://doi.acm.org/10.1145/1858996.1859023.
URL http://doi.acm.org/10.1145/1858996.1859023

[5] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineer-
ing in Practice, Synthesis Lectures on Soft. Eng., Morgan & Claypool
Publishers, 2012.

[6] C. Raibulet, F. A. Fontana, M. Zanoni, Model-driven reverse engineer-
ing approaches: A systematic literature review, IEEE Access 5 (2017)
14516–14542. doi:10.1109/ACCESS.2017.2733518.
URL https://doi.org/10.1109/ACCESS.2017.2733518

[7] O. M. Group, Knowledge Discovery Meta-Model (KDM), document
formal/2011-08-04. (2011).
URL http://www.omg.org/spec/KDM/1.3

[8] O. Sánchez Ramón, et al., Reverse engineering of event handlers of
rad-based applications., in: M. Pinzger, D. Poshyvanyk, J. Buckley
(Eds.), WCRE, IEEE Computer Society, 2011, pp. 293–302.
URL http://dblp.uni-trier.de/db/conf/wcre/wcre2011.

html

[9] R. Heckel, R. Correia, C. M. P. Matos, M. El-Ramly, G. Koutsoukos,
L. F. Andrade, Architectural transformations: From legacy to three-tier
and services, in: Software Evolution, 2008, pp. 139–170. doi:10.1007/
978-3-540-76440-3_7.
URL https://doi.org/10.1007/978-3-540-76440-3_7

[10] B. Baudry, T. Dinh-Trong, J.-M. Mottu, D. Simmonds, R. France,
S. Ghosh, F. Fleurey, Y. Le Traon, Model transformation testing chal-
lenges, in: Proceedings of the IMDDMDT workshop at ECMDA’06,
Bilbao, Spain, 2006.
URL http://www.irisa.fr/triskell/publis/2006/

baudry06b.pdf

[11] J. M. Küster, T. Gschwind, O. Zimmermann, Incremental development
of model transformation chains using automated testing, in: Model
Driven Engineering Languages and Systems, 12th International Confer-
ence, MODELS 2009, Denver, CO, USA, October 4-9, 2009. Proceed-
ings, 2009, pp. 733–747. doi:10.1007/978-3-642-04425-0_60.
URL https://doi.org/10.1007/978-3-642-04425-0_60

[12] D. Varró, Model transformation by example, in: International Conference
on Model Driven Engineering Languages and Systems, Springer, 2006,
pp. 410–424.

[13] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, Atl: A model transformation
tool, Sci. Comput. Program. 72 (1-2) (2008) 31–39. doi:10.1016/j.

scico.2007.08.002.
[14] OMG, Query/View/Transformation. Object Management Group (OMG)

(2011).
[15] O. M. Group, Abstract Syntax Tree Meta-Model (ASTM) (2011).

URL https://www.omg.org/spec/ASTM/

[16] O. M. Group, Structured Metric Meta-Model (SMM) (2016).
URL https://www.omg.org/spec/SMM/

[17] OMG, Automated function points specification (afp) (2014).
[18] AToms, Página de la especificación de User Interface Extended

Markup Language, http://www.usixml.org/en/what-is-usixml.
html?IDC=236, Último acceso: 23-06-2017.

[19] O. M. Group, Página de la especificación de Interaction Flow Modeling
Language, http://www.omg.org/spec/IFML/1.0/, Último acceso:
23-06-2017.

[20] JCP, JSR-000344 JavaServer Faces 2.2 Final Release,
https://jcp.org/aboutJava/communityprocess/final/jsr344 (2013).

[21] JCP, JSR-000338 Java Persistence 2.1 Final Release,
https://jcp.org/aboutJava/communityprocess/final/jsr338 (2013).

[22] E. J. Chikofsky, J. H. C. II, Reverse engineering and design recovery: A
taxonomy, IEEE Software 7 (1990) 13–17.

[23] B. Baudry, S. Ghosh, F. Fleurey, R. B. France, Y. L. Traon, J. Mottu, Bar-
riers to systematic model transformation testing, Commun. ACM 53 (6)
(2010) 139–143. doi:10.1145/1743546.1743583.
URL http://doi.acm.org/10.1145/1743546.1743583

[24] F. Fleurey, J. Steel, B. Baudry, Validation in model-driven engineering:
testing model transformations, in: Model, Design and Validation, 2004.
Proceedings. 2004 first international workshop on, IEEE, 2004, pp. 29–
40.

[25] A. Ciancone, A. Filieri, R. Mirandola, Mantra: Towards model transfor-
mation testing, in: Quality of Information and Communications Technol-
ogy, 7th International Conference on the Quality of Information and Com-
munications Technology, QUATIC 2010, Porto, Portugal, 29 Septem-
ber - 2 October, 2010, Proceedings, 2010, pp. 97–105. doi:10.1109/

QUATIC.2010.15.
URL https://doi.org/10.1109/QUATIC.2010.15

[26] M. J. McGill, B. H. Cheng, Test-driven development of a model transfor-
mation with jemtte.

[27] A. Garcı́a-Domı́nguez, D. S. Kolovos, L. M. Rose, R. F. Paige, I. Medina-
Bulo, Eunit: A unit testing framework for model management tasks,
in: Model Driven Engineering Languages and Systems, 14th Interna-
tional Conference, MODELS 2011, Wellington, New Zealand, Octo-
ber 16-21, 2011. Proceedings, 2011, pp. 395–409. doi:10.1007/

978-3-642-24485-8_29.
URL https://doi.org/10.1007/978-3-642-24485-8_29

[28] J. L. C. Izquierdo, J. G. Molina, An architecture-driven modernization
tool for calculating metrics, IEEE Software 27 (4) (2010) 37–43. doi:

10.1109/MS.2010.61.
[29] H. Bruneliere, J. Cabot, G. Dupé, F. Madiot, Modisco: a model driven

reverse engineering framework 56 (2014) 1012–1032.
[30] Eclipse, Acceleo (2012).

URL http://www.eclipse.org/acceleo/

[31] OMG, MOF Model to Text Transformation Language (MOFM2T), 1.0,
http://www.omg.org/spec/MOFM2T/1.0/ (2008).

[32] M. U. Guide, Gastm overview, https://help.eclipse.org/neon/index.jsp?topic=
accessed: April 2018.

[33] C. J. Fernández, J. R. Hoyos, J. Garcı́a-Molina, F. J. Bermúdez, B. J.
Cuesta, Una experiencia en la implementación del método afp, in: Pro-
ceedings of the XVII JISBD, 2017.

[34] Ó. Sánchez, J. S. Cuadrado, J. G. Molina, J. Vanderdonckt, A layout in-
ference algorithm for graphical user interfaces, Information & Software
Technology 70 (2016) 155–175.

[35] D. Kolovos, R. Paige, F. Polack, The epsilon transformation language,
in: A. Vallecillo, J. Gray, A. Pierantonio (Eds.), Theory and Practice of
Model Transformations, Vol. 5063 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2008, pp. 46–60. doi:10.1007/

978-3-540-69927-9_4.
[36] J. Sánchez Cuadrado, J. Garcı́a Molina, M. Menárguez Tortosa, RubyTL:

A Practical, Extensible Transformation Language, 2006.
[37] E. Jakumeit, et al., A survey and comparison of transformation tools based

on the transformation tool contest, Sci. Comput. Program. 85 (2014) 41–
99.

[38] L. M. Rose, et al., Graph and model transformation tools for model mi-
gration - empirical results from the transformation tool contest, Software
and System Modeling 13 (1) (2014) 323–359.

[39] M. Garcia, dsl2jdt, http://www.eclipse.org/articles/

Article-AutomatingDSLEmbeddings/.

28

https://doi.org/10.1109/WCRE.1998.723185
https://doi.org/10.1109/WCRE.1998.723185
http://dx.doi.org/10.1109/WCRE.1998.723185
http://dx.doi.org/10.1109/WCRE.1998.723185
https://doi.org/10.1109/WCRE.1998.723185
http://doi.acm.org/10.1145/1858996.1859023
http://doi.acm.org/10.1145/1858996.1859023
http://dx.doi.org/http://doi.acm.org/10.1145/1858996.1859023
http://doi.acm.org/10.1145/1858996.1859023
https://doi.org/10.1109/ACCESS.2017.2733518
https://doi.org/10.1109/ACCESS.2017.2733518
http://dx.doi.org/10.1109/ACCESS.2017.2733518
https://doi.org/10.1109/ACCESS.2017.2733518
http://www.omg.org/spec/KDM/1.3
http://www.omg.org/spec/KDM/1.3
http://dblp.uni-trier.de/db/conf/wcre/wcre2011.html
http://dblp.uni-trier.de/db/conf/wcre/wcre2011.html
http://dblp.uni-trier.de/db/conf/wcre/wcre2011.html
http://dblp.uni-trier.de/db/conf/wcre/wcre2011.html
https://doi.org/10.1007/978-3-540-76440-3_7
https://doi.org/10.1007/978-3-540-76440-3_7
http://dx.doi.org/10.1007/978-3-540-76440-3_7
http://dx.doi.org/10.1007/978-3-540-76440-3_7
https://doi.org/10.1007/978-3-540-76440-3_7
http://www.irisa.fr/triskell/publis/2006/baudry06b.pdf
http://www.irisa.fr/triskell/publis/2006/baudry06b.pdf
http://www.irisa.fr/triskell/publis/2006/baudry06b.pdf
http://www.irisa.fr/triskell/publis/2006/baudry06b.pdf
https://doi.org/10.1007/978-3-642-04425-0_60
https://doi.org/10.1007/978-3-642-04425-0_60
http://dx.doi.org/10.1007/978-3-642-04425-0_60
https://doi.org/10.1007/978-3-642-04425-0_60
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.scico.2007.08.002
https://www.omg.org/spec/ASTM/
https://www.omg.org/spec/ASTM/
https://www.omg.org/spec/SMM/
https://www.omg.org/spec/SMM/
http://www.usixml.org/en/what-is-usixml.html?IDC=236
http://www.usixml.org/en/what-is-usixml.html?IDC=236
http://www.omg.org/spec/IFML/1.0/
http://doi.acm.org/10.1145/1743546.1743583
http://doi.acm.org/10.1145/1743546.1743583
http://dx.doi.org/10.1145/1743546.1743583
http://doi.acm.org/10.1145/1743546.1743583
https://doi.org/10.1109/QUATIC.2010.15
https://doi.org/10.1109/QUATIC.2010.15
http://dx.doi.org/10.1109/QUATIC.2010.15
http://dx.doi.org/10.1109/QUATIC.2010.15
https://doi.org/10.1109/QUATIC.2010.15
https://doi.org/10.1007/978-3-642-24485-8_29
http://dx.doi.org/10.1007/978-3-642-24485-8_29
http://dx.doi.org/10.1007/978-3-642-24485-8_29
https://doi.org/10.1007/978-3-642-24485-8_29
http://dx.doi.org/10.1109/MS.2010.61
http://dx.doi.org/10.1109/MS.2010.61
http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://www.eclipse.org/articles/Article-AutomatingDSLEmbeddings/
http://www.eclipse.org/articles/Article-AutomatingDSLEmbeddings/

[40] B. Fagin, Flapi, https://github.com/UnquietCode/Flapi, visited
2018, April.

[41] M. J. McGill, B. H. Cheng, Test-driven development of a model transfor-
mation with jemtte, Tech. rep., Michigan State University (2007).

[42] W3C, XPath XML Path Language 3.1 (W3C) (2017).
[43] A. Tiso, G. Reggio, M. Leotta, Unit testing of model to text transforma-

tions, in: Proceedings of 3rd Workshop on the Analysis of Model Trans-
formations (AMT 2014 co-located with MoDELS 2014), Vol. 1277, 2014.

[44] C. Wagner, Model-Driven Software Migration: A Methodology: Reengi-
neering, Recovery and Modernization of Legacy Systems, Springer Sci-
ence & Business Media, 2014.

[45] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, J. Jézéquel, Model-
driven engineering for software migration in a large industrial context,
in: Model Driven Engineering Languages and Systems, 10th Interna-
tional Conference, MoDELS 2007, Nashville, USA, September 30 -
October 5, 2007, Proceedings, 2007, pp. 482–497. doi:10.1007/

978-3-540-75209-7_33.
URL https://doi.org/10.1007/978-3-540-75209-7_33

[46] K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Salamanca, F. Viera,
F. Melo, J. M. Soto, White-box modernization of legacy applications: The
oracle forms case study, Computer Standards & Interfaces.

[47] R. Pérez-Castillo, I. G. R. de Guzmán, M. Piattini, Business process
archeology using MARBLE, Information & Software Technology 53 (10)
(2011) 1023–1044. doi:10.1016/j.infsof.2011.05.006.
URL https://doi.org/10.1016/j.infsof.2011.05.006

[48] K. Normantas, O. Vasilecas, Extracting business rules from existing en-
terprise software system, in: Information and Software Technologies -
18th International Conference, ICIST 2012, Kaunas, Lithuania, Septem-
ber 13-14, 2012. Proceedings, 2012, pp. 482–496. doi:10.1007/

978-3-642-33308-8_40.
URL https://doi.org/10.1007/978-3-642-33308-8_40

[49] F. J. B. Ruiz, Ó. S. Ramón, J. G. Molina, A tool to support the definition
and enactment of model-driven migration processes, Journal of Systems
and Software 128 (2017) 106–129. doi:10.1016/j.jss.2017.03.

009.
URL https://doi.org/10.1016/j.jss.2017.03.009

29

https://github.com/UnquietCode/Flapi
https://doi.org/10.1007/978-3-540-75209-7_33
https://doi.org/10.1007/978-3-540-75209-7_33
http://dx.doi.org/10.1007/978-3-540-75209-7_33
http://dx.doi.org/10.1007/978-3-540-75209-7_33
https://doi.org/10.1007/978-3-540-75209-7_33
https://doi.org/10.1016/j.infsof.2011.05.006
https://doi.org/10.1016/j.infsof.2011.05.006
http://dx.doi.org/10.1016/j.infsof.2011.05.006
https://doi.org/10.1016/j.infsof.2011.05.006
https://doi.org/10.1007/978-3-642-33308-8_40
https://doi.org/10.1007/978-3-642-33308-8_40
http://dx.doi.org/10.1007/978-3-642-33308-8_40
http://dx.doi.org/10.1007/978-3-642-33308-8_40
https://doi.org/10.1007/978-3-642-33308-8_40
https://doi.org/10.1016/j.jss.2017.03.009
https://doi.org/10.1016/j.jss.2017.03.009
http://dx.doi.org/10.1016/j.jss.2017.03.009
http://dx.doi.org/10.1016/j.jss.2017.03.009
https://doi.org/10.1016/j.jss.2017.03.009

	1 Introduction
	2 KDM metamodel
	2.1 KDM overview
	2.2 Code and Action packages
	2.3 UI package

	3 Code Migrator tool: Requirements and Challenges
	4 A model-driven reengineering process for the Code Migrator tool
	5 A development process for the Code Migrator tool
	5.1 Writing model-to-model transformations in Java
	5.2 Testing model-to-model transformations
	5.3 A test-driven development approach

	6 An example of trigger migration
	7 Developing the Trigger Migrator tool
	7.1 Reverse engineering: KDM injection
	7.1.1 Application to the Trigger Example

	7.2 Reverse engineering: Generation of the Idiom model
	7.2.1 Idioms metamodel
	7.2.2 Implementation
	7.2.3 Testing
	7.2.4 Application to the Trigger Example

	7.3 Restructuring: Generation of the Target Platform model
	7.3.1 Target Platform metamodel
	7.3.2 Implementation
	7.3.3 Testing
	7.3.4 Application to the Trigger Example

	7.4 Restructuring: Generation of the Object model
	7.4.1 Object-Oriented metamodel
	7.4.2 Implementation
	7.4.3 Testing
	7.4.4 Application to the Trigger Example

	7.5 Forward engineering: Code generation
	7.5.1 Testing
	7.5.2 Application to the Trigger Example

	8 Validation of the tool
	8.1 Definition
	8.2 Instrumentation
	8.3 Methodology
	8.4 Results
	8.5 Limitations of the validation

	9 Evaluation
	9.1 Using KDM
	9.2 Writing model-to-model transformations in Java
	9.3 Developing and testing model transformations
	9.4 Visualizing output models for testing model transformations
	9.5 Model traceability

	10 Related Work
	10.1 Model-driven reeengineering experiences
	10.2 Use of KDM

	11 Conclusions and Future Work
	12 References

