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Abstract

Ontologies and terminologies have been identified as key resources for the achieve-

ment of semantic interoperability in biomedical domains. The development of

ontologies is performed as a joint work by domain experts and knowledge en-

gineers. The maintenance and auditing of these resources is also the respon-

sibility of such experts, and this is usually a time-consuming, mostly manual

task. Manual auditing is impractical and ineffective for most biomedical ontolo-

gies, especially for larger ones. An example is SNOMED CT, a key resource

in many countries for codifying medical information. SNOMED CT contains

more than 300 000 concepts. Consequently its auditing requires the support

of automatic methods. Many biomedical ontologies contain natural language

content for humans and logical axioms for machines. The ‘lexically suggest,

logically define’ principle means that there should be a relation between what

is expressed in natural language and as logical axioms, and that such a relation

should be useful for auditing and quality assurance. Besides, the meaning of

this principle is that the natural language content for humans could be used
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to generate the logical axioms for the machines. In this work, we propose a

method that combines lexical analysis and clustering techniques to (1) identify

regularities in the natural language content of ontologies; (2) cluster, by simi-

larity, labels exhibiting a regularity; (3) extract relevant information from those

clusters; and (4) propose logical axioms for each cluster with the support of

axiom templates. These logical axioms can then be evaluated with the existing

axioms in the ontology to check their correctness and completeness, which are

two fundamental objectives in auditing and quality assurance. In this paper, we

describe the application of the method to two SNOMED CT modules, a ‘con-

genital’ module, obtained using concepts exhibiting the attribute Occurrence

- Congenital, and a ‘chronic’ module, using concepts exhibiting the attribute

Clinical course - Chronic. We obtained a precision and a recall of respec-

tively 75% and 28% for the ‘congenital’ module, and 64% and 40% for the

‘chronic’ one. We consider these results to be promising, so our method can

contribute to the support of content editors by using automatic methods for

assuring the quality of biomedical ontologies and terminologies.

Keywords: ontology quality assurance, lexical regularities,

axiomatic patterns, SNOMED CT
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1. Introduction

In recent years, biomedical ontologies and terminologies have been recognised

as playing an important role in the achievement of semantic interoperability of

clinical information, as reflected in the recommendations of international ini-

tiatives such as the FP7 Network of Excellence SemanticHealthNet [1]. The5

increasing importance of such semantic resources has also stimulated their de-

velopment and organisation in publicly available repositories. BioPortal [2],

which is likely to be the most popular repository of biomedical semantic re-

sources, contains about 700 biomedical ontologies, terminologies and controlled

vocabularies.10

Ontologies are defined as formal, explicit specifications of shared conceptu-

alisations [3]. The development of semantic resources is usually the result of

cooperation between two types of users: domain experts, who provide the do-

main knowledge, and knowledge engineers, who provide the expertise for the

use of semantic formalisms. Ontologies are meant to be useful and processable15

by both humans and machines. This objective has the implication that the on-

tology has to include content for both types of intended users. On the one hand,

ontologies contain natural language descriptions of their concepts and properties

for human consumption. On the other hand, ontologies contain logical axioms,

which provide a precise meaning to their concepts and properties when they are20

expressed in a formal language, for machine consumption.

Generally speaking, the quality of a given product is measured by the degree

of fulfilment of the design requirements for such product. The objective of

Quality Assurance (QA) processes is to ensure that those requirements are met.

This not only includes the identification of errors and making corrections, but25

also preventing them. The increasing popularity of semantic resources means

that more applications are using them, so QA becomes a critical task.

There has actually been an increasing interest in QA and auditing initia-

tives in recent years [4]. The methodological review presented in [5] proposes

a classification based on four criteria: the type of knowledge utilised in the30

auditing process, the type of techniques used (manual, automated systematic
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or automated heuristic), the terminology on which the method is focused, the

attributes being audited and five quality factors: Concept-orientation; Consis-

tency; Non-redundancy; Soundness; and Comprehensive coverage.

In our current research, we focus on automated systematic methodologies to35

audit the completeness of concept definitions, which contributes to comprehen-

sive coverage. We propose auditing ontologies by utilising the natural language

descriptions associated with concepts, in line with previous studies [6]. Those

studies have found that ontologies are richer in natural language content than

in logical axioms. The domain knowledge expressed only in natural language is40

called hidden semantics [7]. Concepts in resources such as Gene Ontology (GO)

or SNOMED CT have expressive natural language labels because developers

tend to use a systematic naming convention for the labels of taxonomically re-

lated concepts. The use of naming conventions is a principle recommended by

the Open Biological and Biomedical Ontology (OBO) Foundry for the construc-45

tion of ontologies and terminologies. The lexical component of ontologies has

already been used for ontology QA in [8], which exploits the semantics associ-

ated with the lexical component in ontologies to homogenise the structure of

the labels in ontologies. This is done by identifying and transforming labels

semantically related but expressed using a different linguistic structure. Hence,50

the actions taken involve the labels, not the formal concept definitions.

The comparison of what is expressed both logically and in natural language

could serve the purpose of QA of biomedical ontologies and terminologies. There

should be a correspondence (ideally, an equivalence) between the content ex-

pressed in natural language for humans and the content expressed in the form55

of logical axioms for machines. The lexical content of ontologies such as the

GO has been the source of knowledge for natural language processing [9] and

has driven the analysis of the compositional structure of GO concepts [10]. In

terms of tooling, OBOL [11] facilitates the integration of language and meaning

in bio-ontologies, by providing a grammar which permits associating axiomatic60

patterns with linguistic structures. It was developed for the OBO community

and was used for the creation of the GO cross-products [12], and can also be
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applied for ontology maintenance. In [13], six main types of quality issues in

SNOMED CT (see Table 1) were identified. Such issues should be targeted

by QA methods. In relation to the incomplete modelling issue, previous works65

on SNOMED CT [14, 15] have identified and illustrated situations where the

formal relations are not representing the meaning associated with the natural

language content.

Our work is inspired by the ‘lexically suggest, logically define’ (LSLD) prin-

ciple [14], which states that the knowledge reflected as natural language in labels70

should also be represented as logical axioms. Our aim is to design an effective

QA method for biomedical semantic resources, which uses resources of natural

language content to propose logical axioms. This means that we will mainly

address the quality issue of incomplete modelling described in Table 1.

In this paper, modules extracted from SNOMED CT, which is the second75

most audited terminology [5], are used as resources for evaluating the results

of the method. Our proposal applies lexical regularities (LRs) (further defined

in section 2.1), which are groups of one or more (consecutive) tokens that ap-

pear in several concept labels in an ontology [15, 16]. The assumption is that

those regularities embed domain knowledge, which should be available as logical80

axioms. LRs function as seeds for capturing different kinds of issues, which are

often concentrated on a group of concepts shared by their textual description.

This can be assimilated to the idea of exploiting a ‘focus concept’ and its neigh-

bourhoods presented in [17]. For example, the SNOMED CT concepts Pseudo-

coarctation of aorta and Parallel course of aorta and pulmonary artery, among85

others, exhibit the LR ‘of aorta’. This LR can be used as seed for defining the

axiomatic template like X findingSite some aorta, which could be applied

for all those concepts exhibiting it. The axioms resulting from this process can

then be compared with existing axioms to identify missing or incomplete axioms

in the ontology. This work contributes to the QA of biomedical ontologies and90

terminologies by 1) proposing a pattern-based approach, which automatically

analyses its lexical content and 2) proposes lexical patterns convertible into

axiomatic patterns which can potentially enrich the ontology.
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Table 1: Quality issues in SNOMED CT found in [13].

Issue Description Example

Incorrect schemas
Concepts that are incorrectly classified,

regarding the domain knowledge

A problem in the leg

is not only classified as a disorder of the

lower extremity, but also as a disorder of

the abdomen

Misunderstanding

of semantics of attributes

Incorrect direct subclass axioms

between named concepts

Hypertension is classified as both a

Finding and a Disorder of Soft Tissue

Incomplete modelling
Incomplete logical model, no complete

definition or missing conditions

Heart disease is partially defined as

Disease with some site heart instead of

Disease with only site heart

Over-literal definitions

Terms being interpreted too literal,

while they have a more specialised

meaning

The literal origin of “Neuropathy” can be

Disorder of Nerve, but the meaning is

closer to “dysfunction” of nerves

Not tracing errors to

their roots

Finding an error and not tracing the

root upwards in the hierarchy

Finding that Hypertension is a

Disorder of Soft Tissue: tracing upwards

in the hierarchy shows that the site of

Hypertensive disorder is some Artery

and that arteries are Soft Tissues,

which explains the error

Lack of normalisation
Separating and recombining concepts

with appropriate definitions

Using many different aspects to describe

related concepts in a branch, for example:

‘’‘site”, ‘’‘stage”, “severity”, and “symptom”

of a disease process

2. Methods

Our QA framework for the extraction of axiomatic patterns from the lexical95

content in ontologies is graphically described in Figure 1. The ontology to be

analysed is provided as input for the method. The output of the method is a

set of axioms extracted from this ontology. The method consists of four main

parts:

1. Extraction of LRs from the ontology (section 2.1).100

2. Clustering similar labels from concepts associated with each LR (section

2.2).

3. Calculation of relevant metrics of the clusters (section 2.3).

4. Obtaining general axiomatic patterns for each cluster (section 2.4).

Besides, we also describe the use case (section 2.5) and propose how to evaluate105

the effectiveness of the method (section 2.6).
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Figure 1: Visual model of the method. The box on the left shows the input. The method

is divided into four sequential steps: extraction of LRs (section 2.1), clustering (section 2.2),

cluster analysis (section 2.3), and creation of axioms using templates (section 2.4).

2.1. Extraction of LRs

The objective of this step is to find and extract the LRs existing in an ontol-

ogy θ. An ontology θ contains a set of ontology concepts OC = {OC1, ..., OCn},

where n is the number of concepts. For each OCi, we tokenise and lemmatise110

[18] its labels obtaining an ordered list of tokens [T1, ..., Tm], where m is the

number of tokens obtained. Conceptually, a label refers to a natural language

description associated with a concept in the ontology, which can be represented

in the Web Ontology Language (OWL) using the rdfs:label annotation pro-

perty (see the example in Figure 2). In the case of SNOMED CT, concepts are115

described in natural language by means of a number of synonyms and one fully

specified name, which provides an unambiguous description for a concept by

concatenating a description with the name of the semantic tag in brackets, e.g.,

Burn scar (morphologic abnormality) or Burn scar (disorder). In the OWL rep-

resentation of SNOMED CT, this fully specified name is used for rdfs:label120

annotations. In this paper we use the term ‘labels’ to refer to the fully specified
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name of SNOMED CT concepts, without the bracketed name of the semantic

tag. In the previous example, both concepts will have the ‘label’ Burn scar.

Figure 2: Example of the three annotations associated with the SNOMED CT concept Aortic

structure (body structure).

Conceptually, an LR is a single token (individual word) or a consecutive

group of them (multiple words), which appear in several labels of an ontology.125

The formal definition of an LR is described as:

Definition 2.1. Lexical regularity (LR). An ordered sublist of tokens LRT =

[T1, ..., Ti], where i ∈ [1,max(m)], which is repeated in a subset of concepts

OCLR ⊂ OC. Example: ‘of aorta’, ‘of’, and ‘aorta’ are LRs found in the labels

Rupture of aorta and Finding of aorta.130

The lexical analysis has been performed using the OntoEnrich framework

[19]. OntoEnrich is implemented in Java and uses the OWL API [20] for pro-

cessing the ontology and manipulating labels. The Stanford Java NLP API [18]

is used for tokenisation and lemmatisation purposes. OntoEnrich has an input

parameter, the coverage threshold, which enables discarding LRs with the size of135

OCLR below a certain threshold. Given an ontology θ and a coverage threshold,

OntoEnrich returns a set of LRs = LR1, ..., LRj . Each LRk is defined by: its

LRT (the tokens in the regularity), its subset of concepts LROC (the labels

and the concepts which exhibit the regularity).

It should be pointed out that a concept could exhibit more than one LR.140

Following our running example, ‘of aorta’ is an LR being exhibited in 41 concepts

from a module of SNOMED CT, which contains a total of 18 440 concepts
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(further details about the module are given in Section 2.5). Figure 3 (left)

shows 9 out of 19 774 LRs found in such a module. Figure 3 (right) shows 15

concepts which exhibit ‘of aorta’, including the two concepts mentioned in the145

introduction. Moreover, LRs of just one token (m = 1) are relevant because

such repeated fragments in labels could also represent shared domain meaning.

Figure 3: Screenshots of the OntoEnrich LRs browser.

2.2. Clustering LRs

The second step involves processing the labels associated with LRs to obtain

clusters of lexically similar labels. For example, we could cluster the 41 concepts150

which exhibit ‘of aorta’.

Definition 2.2. Cluster. A cluster is a group of lexically similar labels, based

on an LR. In this work, the lexical similarity of two labels depends on the
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number of LRs that are exhibited by both labels. Example: Rupture of aorta

and Finding of aorta belong to the same cluster based on the LR ‘of aorta’.155

This analysis is performed at the level of LR, so one or more clusters can be

proposed for one LR. For this purpose we perform agglomerative hierarchical

clustering on the list of labels of one LR, using the group-average linkage algo-

rithm. We apply the Jaccard distance [21] for calculating the distance between

two labels (see Formula 1).160

d(X,Y ) = 1− |LR(X) ∩ LR(Y )|
|LR(X) ∪ LR(Y )|

(1)

Where LR(X) is the set of LRs that exhibits the label X, and LR(Y ) is the

set of LRs that exhibits the label Y . Then, d(X,Y ) is the distance between the

labels X and Y , and it is calculated by using the LRs exhibited by X and Y .

The distance d(X,Y ) is a number between 0 and 1, where 0 means that the

labels X and Y exhibit the same LRs and 1 that the labels do not have any LR165

in common. The distance matrix contains the distances between all label-pairs.

For example, the distance between Injury of aorta and Finding of aorta is zero

if all tokens are found as LRs except ‘injury’ and ‘finding’. In such case both

labels exhibit three LRs: ‘of aorta’, ‘of’ and ‘aorta’.

The result of the clustering is a dendrogram, in which similar labels are lo-170

cated close to each other. Its tree structure enables cutting it at different points,

so generating multiple possibilities for the selection of clusters. The R-package

pvclust [22, 23] has been used for the hierarchical clustering. This method

calculates probability values (p-values) for each cluster applying bootstrap re-

sampling techniques. Multiscale bootstrap resampling is used for the calculation175

of the approximately unbiased (AU) p-value and the bootstrap probability (BP)

value. The AU p-values and the BP values are shown in Figure 4 in red (left) and

green (right) respectively. We have used 1000 bootstrap replicates, obtaining

the corresponding AU p-values and BP values for each cluster. The AU p-value

is a better approximation to unbiased p-value than the BP value because it is180

obtained by multiscale bootstrap resampling and BP is calculated by normal

10



bootstrap resampling.

A cluster AU p-value equal to 0.95 means that this cluster should ‘exist’ with

a significance level of 0.05. Our method selects clusters with an AU p-value equal

or greater than 0.95 for further analysis. We actually select the smallest number185

of clusters with AU p-value >= 0.95 that cover the largest number of labels.

The labels in clusters with AU p-value lower than the threshold and the non-

clustered labels are clustered again once with the objective of obtaining clusters

with higher AU p-value by a rearrangement of those labels.

This step can be explained using our running example. Figure 4 shows190

the dendrogram associated with clustering sixteen labels exhibiting the LR ‘of

aorta’. The selected clusters in this example are highlighted by the rectangles

(p > 0.95), which in this case both share a p-value of 0.98.
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2.3. Cluster analysis

A cluster consists of a set of labels that are grouped together according to the195

number of LRs they share. For example, Figure 4 shows two clusters consisting

of labels exhibiting the LR ‘of aorta’. The objective of this step is to provide

information about the clusters that could be used for the extraction of axiomatic

patterns. For this purpose, two actions are performed on each selected cluster:

(1) extraction of a regular expression that represents the labels in the cluster;200

(2) semantic analysis of the variable part of the regular expression.

2.3.1. Extraction of the cluster alignment

The extraction of the cluster alignment is done by obtaining a lexical align-

ment of all the labels in a cluster.

Definition 2.3. Cluster alignment. A cluster alignment is a generalisation205

that represents the labels in the cluster. This generalisation is based on the

lexical similarity between the tokens of the labels. Example: * of aorta can

be the generalisation of the cluster containing Rupture of aorta and Finding of

aorta.

We have developed an algorithm by adapting the multiple sequence align-210

ment (MSA) of biological sequences [24] to work with our labels. The MSA

algorithm is an instance of general edit distance algorithms. The result of the

alignment shows how the labels in the cluster can be aligned using their tokens.

The result of the alignment is a vector Vi of tokens; each component of the

vector contains a set of tokens from different labels which are lexically aligned.215

For example, the labels Preductal coarctation of aorta and Muscular subvalvar

artresia of aorta contain four and five tokens respectively. Their alignment

produces a vector of these five components:

• V1=(Preductal, Muscular)

• V2=(-, subvalvar)220

• V3=(coarctation, artresia)
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• V4=(of, of)

• V5=(aorta, aorta).

We say that there is consensus in Vi when all its tokens are equal as in V4

and V5. Otherwise, Vi is undetermined (*) or optional (+). Vi is undetermined225

(*) if it contains at least two different tokens (V1 and V3). Vi is optional (+) if

it contains at least one gap - (V2).

The algorithm makes the alignment decision for each position that max-

imises the global consensus between the labels; the best decision for a given

position may be to align two different tokens as happens for V1 and V3. This230

does not mean that tokens in V1 or V3 are similar, so this position is consid-

ered undetermined. Likewise, gaps are inserted in the position that maximises

the alignment score, since they are used for facilitating the consensus between

non-consecutive tokens. In this case, the - has been inserted in the first po-

sition of V2, but it would have been inserted in the first position of V3 if that235

decision would have produced an alignment with a higher score. In that case,

‘coarctation’ would have been aligned with ‘subvalvar’, and ‘artresia’ with a

gap. For more details, we recommend [25]. This algorithm is implemented by

adapting MSA algorithms of the BioJava [25] library, and has been included in

OntoEnrich.240

2.3.2. Semantic analysis of the alignment

A consensus score is calculated for each cluster alignment by obtaining the

ratio of tokens with consensus in the alignment. This describes how tokens

are aligned between labels, where the identical tokens are associated with the

same Vi. Figure 5 shows the alignment and consensus for one out of six clusters245

obtained from the LR ‘of aorta’ shown in Figure 4.

The alignment has common and variable parts. Following our example, the

alignment * hypoplasia of aorta has a variable with four different instances:

congenital, preductal, postductal and tubular.

The objective of the semantic analysis is to find whether the content of the250
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Figure 5: Example of the group alignment and least common subsumer. Results obtained

using the LR ‘of aorta’ for the example shown in Figure 4.

variable part is semantically related, in this case, whether the four instances are

related. The first step is to search for concepts in the ontology being analysed

whose label is equal to an instance. In our example, congenital and tubular

are found as concepts in SNOMED CT, so having a coverage of 50% (two out

of four). There could be alignments with two consecutive variables. In this255

case the two instances associated with the two variables are joined in a single

instance. For example, if ‘preductal’ and ‘coarctation’ are instances of two

consecutive variables, ‘preductal coarctation’ would be the instance searched in

the ontology.

The second step is to find the Least Common Subsumer (LCS) of the con-260

cepts associated with the variable instances. The LCS is calculated using the

taxonomic relationships defined in the ontology. Figure 6 shows the LCS and

other common ancestors of the instantiations found for the * hypoplasia of aorta

cluster. In this figure, the LCS Descriptor (qualifier value) shows the re-

lationship between the concepts ‘tubular’ and ‘congenital’. It should be noted265

that one or more LCSs can be found. This method has been implemented in

Java and included in OntoEnrich.
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Figure 6: SNOMED-CT based figure showing the LCS found for the cluster * hypoplasia of

aorta from the LR ‘of aorta’.

2.4. Creation of axioms using templates

The last step of the method is the extraction of the axiomatic templates and

the creation of axioms for the concepts. This step uses the cluster alignments to270

create axiomatic patterns for each cluster, and requires two actions: (1) creation

of templates; and (2) creation of the axiomatic patterns. The implementation

of the methods described in this section has been done in Java and R.

OWL ontologies can be seen as consisting of a set of logical axioms that

provide the description of concepts, properties and constraints. There are two275

basic types of axioms in OWL: (1) subClassOf, which permits definition of hier-

archical relations between concepts, establishing necessary conditions for class

membership; and (2) equivalentClass, which allows definition of equivalence rela-

tions between concepts, establishing sufficient conditions for class membership.
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Figure 7: Representation of the concept Congenital hypoplasia of aorta in the official

SNOMED CT browser, and using OWL axioms in Protégé.

Let us illustrate OWL modelling with SNOMED CT concepts and attributes.280

Figure 7 shows the definition of the concept Congenital hypoplasia of aorta
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both in the SNOMED CT browser [26] and in the Protégé ontology tool1. The

relationship between the concepts Congenital hypoplasia of aorta and Aortic

structure is represented by the attribute Finding site (see the left square of

the upper part of Figure 7, number 1), which is represented in OWL as part of285

an equivalentClass axiom.

OWL ontologies have two different models: asserted and inferred. The as-

serted model includes all the axioms that have been explicitly defined in the

ontology. The asserted axioms (see content inside the dotted squares in Fig-

ure 7) are used by a reasoner to deduce new axioms, so obtaining the inferred290

model. The role of these models is similar to the stated and inferred ones in

SNOMED CT. Examples of inferred axioms are shown in Figure 7: Congenital

hypoplasia of aorta is a subclass of Hypoplasia of aorta and a subclass of Con-

genital anomaly of aorta. The inferred model of the ontology contains all the

knowledge, so this is the model used by our method to obtain the LCS.295

2.4.1. Creation of the templates

A training set of cluster alignments is used to define the templates. The

templates are defined by examining the alignments manually. It should be

noted that a template can be matched with the alignment of many clusters and

that we aim at designing general, reusable templates.300

For example, let us consider the alignment * of aorta. By representing ‘*’ as

[variable(s)], ‘of’ as [preposition] and ‘aorta’ as [something], the result-

ing template would be [variable(s)] [preposition] [something]. More-

over, during the definition of the templates, they are associated with an OWL

axiomatic pattern. For instance, the template [variable(s)] [preposition]305

[something] may be associated with the OWL pattern [something] AND

hasProperty(preposition) SOME [variable(s)]. This represents an axiom

stating that [something] is associated with the [variables(s)] through a pro-

perty which depends on the preposition. For example, considering the axioms

1http://protege.stanford.edu/
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already defined in SNOMED CT (see Figure 7), the preposition ‘of’ may be310

linked with the property Finding site (attribute) so this axiomatic pattern

would create the axiom Finding site (attribute) some Aortic structure

(body structure) for all concepts included in a cluster matching this template.

2.4.2. Creation of axioms

The templates are used for creating general axioms, which can be applied315

to a group of lexically similar concepts. The method needs to use a set of

preposition-property associations to complete the axiomatic patterns.

Let us consider the LR ‘of aorta’. Labels exhibiting this regularity are clas-

sified in clusters like * * of aorta, * hypoplasia of aorta, * + atresia of aorta and

so on. The cluster * * of aorta matches our running template [variable(s)]320

[preposition] [something]. If our template links the preposition ‘of’ with

the property Finding site (attribute), the axiomatic pattern created for

this cluster would be * * AND ‘Finding site (attribute)’ SOME aorta.

It should be noted that the ‘property value’ (e.g. ’Finding site’) included in

the pattern is associated with the matched string using our lexical alignment325

algorithms. For example, when the cluster * * of aorta is found, the template

matches the preposition of the pattern, so the algorithm can deal with the

variables ‘* *’ stated before ‘of’ and the consensus ‘aorta’ after it. According

to Figure 7, there is no direct relation between ‘aorta’ and the concept Aortic

structure (body structure) through rdfs:label. As we mentioned in section 2.1,330

the rdfs:label property of SNOMED CT concepts is the fully specified name,

which includes the bracketed name of the semantic tag. However, our lexical

alignment algorithm does not use the name of the semantic tag. Moreover,

SNOMED CT concepts are also associated with synonyms, which are also taken

into account by our lexical alignment method. This algorithm is based on lexical335

techniques such as tokenisation and lemmatisation, which allow us to align the

string ‘duct’ and ‘ducts’ (singular-plural), or to detect that the string ‘aorta’ is

semantically represented by the concept Aortic structure (body structure).

Finally, if 100% of the variable instances are concepts in the ontology, the
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LCS would replace the variables in the general axiomatic pattern (for one group340

of clustered labels). Otherwise, the LCS information of the instances found can

be shown to domain experts for their manual inspection to help them to define

more and better templates. In our running example, the cluster * hypoplasia

of aorta (see Figures 5 and 6) provides the following insight to domain experts.

On the one hand, the LCS of 50% of the concepts are classified in this cluster345

as ‘Descriptor (qualifier value)’, concretely ‘congenital’ and ‘tubular’. On the

other hand, ‘preductal’ (related to the part of the aorta proximal to the aortic

opening of the arterial canal) and ‘postductal’ (related to that part of the aorta

distal to the aortic opening of the arterial canal) were not found as concepts in

SNOMED CT. In case they were included as qualifier values, the LCS could be350

automatically applied in the template.

2.5. The case study

We have applied the method to two modules in the SNOMED CT Inter-

national Release of January 2015. As this release of SNOMED CT contains

311 532 concepts and the validation will require manual effort, we have applied355

our method to smaller subsets of SNOMED CT.

In order to obtain such subsets, we used mechanisms for the automatic

extraction of ontology modules [27, 28]. In particular, we used locality-based

modules [29]. A locality-based moduleM is a subset of the axioms in an ontology

θ, which is extracted from θ for a set S of concepts (concept or property names).360

The set S is called a seed signature of M . Informally, everything the ontology

θ can infer about the topic consisting of the concepts in S and M , is already

known by its module M . Further information about how the extraction of the

module is operationalised can be found in [29] (section ‘How do locality-based

modules work?’). Here, we used the following modules:365

• Module congenital : This module is based on a potential modelling issue

identified by SNOMED International in the SNOMED CT January 2015

release and linked to the axiomatic representation of concepts: ‘artf229197:
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Congenital Occurrence vs. congenital Morphology’2. This was the main

reason for working with the January 2015 release. We generated a seed370

signature that contained all the concepts which are asserted descendants

of Disease (disorder) and which also exhibit the attribute Occurrence

- Congenital. In order to achieve this, we developed an algorithm which

was implemented in Java using the OWL API. This algorithm analyses the

axioms in the asserted model of the ontology. As a result, our obtained375

seed signature contains 6 600 disorders. Figure 8 shows a fragment of

the first five concepts of this seed signature including an example of one

concept in SNOMED CT. Afterwards we used the module extractor [29]

using this signature as input, and we obtained a module which contains a

total of 18 440 SNOMED CT concepts.380

• Module chronic: This module is based on previous work that focused on

the analysis of syntactic regularities and irregularities in SNOMED CT

[30]. This work analysed concepts which have the word ‘chronic’ expressed

in their labels. We used this as a reference for creating a seed signature

containing all the asserted descendant concepts of Disease (disorder)385

which exhibit the Clinical course - Chronic attribute, using the al-

gorithm mentioned above. As a result, the seed signature contained 165

diseases. The extracted module contains a total of 3 262 SNOMED CT

concepts.

We consider these two modules of interest for several reasons. Firstly, they390

allow us to apply and validate our method with two simplified versions of

SNOMED CT, and in particular contexts already mentioned in earlier works re-

garding the QA of SNOMED CT. Secondly, we combine ideas used in [27, 28, 31]

for keeping all the logical axioms in the module related to the seed signature.

Thus, the modules represent the whole version from a logical point of view.395

2http://sele.inf.um.es/ontoenrich/projects/axiomatic_patterns/cluster_lrs_

2017/files/artfl229197.png
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http://snomed.info/id/192008 
http://snomed.info/id/208008 
http://snomed.info/id/290006 
http://snomed.info/id/378007 
http://snomed.info/id/407000  

Figure 8: Fragment of the first five concepts of the seed signature used for obtaining the

congenital module. The seed signature consists of a list of SNOMED CT concepts, which

in this case are descendants of Disease (disorder) and exhibit the attribute Occurrence -

Congenital.

Moreover, use of smaller modules is especially relevant for our method because

it involves manual evaluation of the created axioms.

In this experiment, the LRs have been extracted by processing the fully spec-

ified names (without the bracketed name of the semantic tag) of SNOMED CT

concepts. Figure 3 shows part of the information offered by OntoEnrich for the400

LRs found in the SNOMED CT congenital module. The length and number of

labels that exhibit the LR and whether the regularity is a concept in SNOMED

CT is shown for each regularity. Some labels exhibiting the regularity ‘struc-

ture of left’ are shown on the right side. Only LRs with frequency (or coverage)

equal to or greater than 0.01% of the number of concepts in the modules and405

exhibited by at least six labels have been further processed. Both parameters

are thresholds. The first one is set based on an experimental decision. The

higher the frequency value, the more specific the regularities we obtain. In this

experiment, we are interested in obtaining as many LRs as possible, so we use a

low coverage value. The threshold of six labels is a limitation of the clustering410

library used. No additional filters have been applied. Twenty LRs have been

randomly selected in each module for performing the evaluation.
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2.6. Evaluation

The main goal of the evaluation is to analyse the relation between the

axioms proposed by our method and the axioms included in the OWL ver-415

sion of SNOMED CT. This will permit to study to what extent the method

is able to reconstruct existing axioms and to propose potentially missing ones.

The evaluation results will be analysed using four categories:

• True positive (TP): The axiomatic pattern created by the method is also

codified in the ontology by axioms.420

• False positive (FP): The axiomatic pattern created by the method is not

codified in the ontology by axioms. From a QA perspective, FPs represent

potentially missing axioms.

• True negative (TN): The method did not create an axiomatic pattern, and

no axioms representing the pattern were found in the ontology either.425

• False negative (FN): A set of axioms representing the axiomatic pattern

was found in the ontology, but the method did not create them.

The axioms of the inferred model of SNOMED CT, which are obtained

using the Snorocket reasoner [32], are the gold standard for the evaluation. The

classification of the axioms suggested by our method in TP or FP is the result430

of the manual comparison of these axioms with the axioms associated with

the SNOMED CT concepts in the gold standard. To facilitate this evaluation,

the properties used for creating our axioms were selected from the ones used

in SNOMED CT. Thus, we imposed the condition of equality to consider our

axioms as TP. Using the asserted model instead of the inferred one could lead435

to suboptimal evaluation results. The asserted model has fewer axioms than

the inferred one, which means that some TPs in the inferred model could be FP

with the asserted model. Finally, precision (Formula 2), recall (Formula 3) and

F-measure (Formula 4) have been calculated.

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F -measure =
2

1
precision + 1

recall

(4)

Table 2: The axiom templates defined in this experiment

Template Axiomatic pattern Example

1. [VARIABLE(S)] [PREPOSITION]

[something]

[VARIABLE(S)] [PROPERTY VALUE]

some [something]

Alignment:

* of aorta

Axiom:

* AND Finding site SOME aorta

2. [something] [PREPOSITION]

[VARIABLE(S)]

[something] [PROPERTY VALUE]

some [VARIABLE(S)]

Alignment:

rupture of aorta due to *

Axiom:

rupture of aorta Due to SOME *

3. [VARIABLE(S)] [something]

[VARIABLE(S)] subClassOf

[something]

(only if ’something’ is found as a

concept)

Alignment:

+ dilatation of aorta

Axiom:

+ subClassOf dilatation of aorta

3. Results440

In this section we present a summary of the results obtained in our case

study. The full seed signatures, lexical analysis and method output files of both

modules can be found at our website3.

3.1. Axiom templates

A training set of cluster alignments has been used to define the axiom tem-445

plates for this validation. The defined templates are shown in Table 2, includ-

ing the matching axiomatic patterns and examples. Templates 1 and 2 include

prepositions, which are associated with specific properties as follows:

• Preposition ‘of’ - Property Finding site (attribute)

• Preposition ‘due to’ - Property Due to (attribute)450

3http://sele.inf.um.es/ontoenrich/projects/axiomatic_patterns/cluster_lrs_2017
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Table 3: Results of the application of the method to the 20 LRs of the congenital module

LR
Is a

concept?
# Labels # Clusters

Not-

clustered

labels (%)

Cluster

p-value

average

Alignment

consensus

(clusters

median %)

Variable

instances found

in SNOMED CT

(clusters median

%)

# Axiomatic

patterns created

- baby No 10 2 40% 0.9819 54% 0% 0

bronchopulmonary No 6 1 67% 0.9999 67% 0% 0

chromosomal No 15 2 0% 0.9671 29% 86% 0

disease due No 23 2 0% 0.9724 51% 62% 1

divide left atrium with all pulmonary vein No 7 2 0% 0.9785 61% 0% 0

duct No 233 26 9% 0.9779 31% 25% 7

ectropion Yes 7 2 0% 0.9793 33% 50% 0

Epidermolysis bullosa Yes 8 3 0% 0.9926 67% 33% 0

mixed No 12 1 33% 0.9622 8% 50% 0

of aorta No 41 8 29% 0.9886 68% 50% 5

of cervix No 34 2 0% 0.9639 20% 100% 0

of subclavian No 7 2 0% 0.9792 78% 67% 1

operative procedure No 49 3 37% 0.9823 63% 50% 1

posterior segment of eye No 6 2 0% 0.9776 79% 50% 2

recessive muscular No 6 0 100% - - - 0

red blood No 14 4 21% 0.9790 67% 50% 1

segment of eye No 10 2 0% 0.9836 51% 50% 1

sensorineural No 6 2 0% 0.9866 41% 83% 1

sensory No 15 3 60% 0.9789 50% 0% 0

septum with No 6 2 0% 0.9814 81% 25% 0

Total: 20

3.2. Results on the SNOMED CT congenital module

3.2.1. General description

We determined 19 774 LRs for the congenital module. Table 3 shows the

results of processing the 20 randomly selected LRs and their properties. For

each regularity the table shows whether it is a concept in the module (two455

are concepts), the number of labels in which the regularity is exhibited (the

mean is 26), the number of clusters created by the method, 71 in total, and the

percentage of labels not included in the selected clusters based on the p-value

threshold (0.95). All the labels of 11 LRs are included in a selected cluster. For

nine LRs a percentage of labels between 21% and 100% are not included in a460

selected cluster. No cluster has been selected for the LR ‘recessive muscular’.

The average cluster p-value, the median alignment consensus and the median

percentage of variable instances found as a SNOMED CT concept are provided
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for the clusters of a regularity. The last column shows the number of axiomatic

patterns created for each regularity (one pattern is created for a cluster), 20 in465

total (out of 71 clusters).

We illustrate part of the output generated by the method for the LR ‘of

aorta’ (see Figure 9). The left and right parts of the figure show the two clusters

obtained for this LR, whose p-values exceed the threshold 0.95. Both clusters

correspond to the clusters shown earlier in the dendrogram of Figure 4. The470

cluster on the left includes five labels, whose alignment is * hypoplasia of aorta.

The axiomatic pattern * ‘subClassOf’ hypoplasia of aorta was created. The

cluster on the right includes 11 labels whose alignment is * * of aorta. The

axiomatic pattern created is: * * ‘Finding site (attribute)’ some aorta.

 
Congenital hypoplasia of aorta 
Preductal hypoplasia of aorta 
Postductal hypoplasia of aorta 
Tubular hypoplasia of aorta 
Hypoplasia of aorta 
 
Alignment:  * hypoplasia of aorta 
Consensus:  0.75 
 
Cluster p-value:  0.9875081837857781 
 
General axiomatic pattern:  
* 'subClassOf' hypoplasia of aorta 
 
Variable values: 
congenital 
preductal 
postductal 
tubular 
 
Matched: (http://snomed.info/id/255399007) congenital 
Matched: (http://snomed.info/id/13336003) tubular 
 
LCS (50% instances found):  
"Descriptor (qualifier value)"@en 

Finding of aorta 
Rupture of aorta 
Dextrotransposition of aorta 
Stricture of aorta 
Injury of aorta 
Pseudocoarctation of aorta 
Aplasia of aorta 
Transposition of aorta 
Disorder of aorta 
Vascular ring of aorta 
Dextroposition of aorta 
 
Alignment:  * * of aorta 
Consensus:  0.5 
 
Cluster p-value:  0.9724284991827247 
 
General axiomatic pattern:  
* * ‘Finding site (attribute)’ some aorta 
 
Variable values: 
transposition 
… 
rupture 
 
Matched: (http://snomed.info/id/56591001) transposition 
… 
Matched: (http://snomed.info/id/263862003) rupture 
 
LCS (72% instances found): no LCS found 

 

Figure 9: Partial output of the LR ‘of aorta’. Two clusters are shown (left and right),

corresponding to the cluster dendrogram of Figure 4.
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3.2.2. Results by axiomatic patterns475

Table 4 shows the results of the evaluation of the axiomatic patterns ex-

tracted for the clusters. The table contains the TP, TN, FP and FN for each

LR at both the level of clusters and the level of labels. The results at the level of

cluster reveal a precision of 75% and a recall of 28%. Similar results are obtained

at the level of labels: precision of 72% and a recall of 29%. The F-measure for480

both levels is, respectively, 0.41 and 0.41. Out of the 20 axiomatic patterns cre-

ated 15 are also present in SNOMED CT (TP) and five are not (FP). There is

also no axiomatic pattern present in SNOMED CT for 13 clusters for which the

method has not extracted any (TN). Thirty-eight clusters for which the method

has not extracted any axiomatic pattern have axiomatic patterns in SNOMED485

CT (FN).

3.2.3. Results by templates

Table 5 shows the results per template. Template 1 is matched by nine

axiomatic patterns: seven TP and two FP; template 2 is matched by three

axiomatic patterns: one TP and two FP; template 3 is matched eight times:490

seven TP. In Figure 9, the left and right hand side show cases of respectively

FN and TP clusters of our running example. As an example, Figure 10 shows

the axioms used by the concept Finding of aorta and its relationship with the

axiomatic pattern proposed by our method; no LCS has been included in the

axiom because not all variable instances were found as SNOMED CT concepts.495

Figure 11 shows an example of a TP cluster found for the LR ‘duct’, the align-

ment and the axiomatic pattern (blue rectangle) generated by the method. The

axiom information from Protégé is shown for the red marked label. The axiom-

atic pattern created matches the actual SNOMED CT axiom for all four labels.

The LCS is included in the axiom, and all variable instances are SNOMED500

CT concepts. Figure 12 shows an FP cluster found for the LR ‘disease due’,

the alignment of the cluster, the axiomatic pattern and the LCS of 54% of the

variable instances. The axiom information from Protégé for the red marked

label is shown. It is a false positive because the used property value Due to
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Table 4: Results of the evaluation of the axiomatic patterns for the congenital module

LR Per cluster Per label

# TP # TN # FP # FN # TP # TN # FP # FN

- baby 0 0 0 2 0 0 0 6

bronchopulmonary 0 0 0 1 0 0 0 2

chromosomal 0 1 0 1 0 8 0 7

disease due 0 1 1 0 0 10 13 0

divide left atrium with all pulmonary vein 0 0 0 2 0 0 0 7

duct 6 7 1 12 40 149 3 33

ectropion 0 0 0 2 0 0 0 7

Epidermolysis bullosa 0 0 0 3 0 0 0 8

mixed 0 1 0 0 0 8 0 0

of aorta 4 0 1 3 18 0 5 6

of cervix 0 0 0 2 0 0 0 34

of subclavian 0 0 1 1 0 0 3 4

operative procedure 0 0 1 2 0 0 2 29

posterior segment of eye 2 0 0 0 6 0 0 0

recessive muscular 0 0 0 0 0 0 0 0

red blood 1 2 0 1 2 6 0 3

segment of eye 1 0 0 1 4 0 0 6

sensorineural 1 0 0 1 4 0 0 2

sensory 0 1 0 2 0 2 0 4

septum with 0 0 0 2 0 0 0 6

Total: 15 13 5 38 68 183 26 164

Precision: 75% Recall: 28% Precision: 72% Recall: 29%

(attribute) is not the correct one. The correct property value is Causative505

agent (attribute), a sibling of Due to (attribute).

Table 5: Results per template obtained for the congenital module

Template
# Total

matches
# TP # FP

1. [VARIABLE(S)] [PREPOSITION] [something] 9 7 2

2. [something] [PREPOSITION] [VARIABLE(S)] 3 1 2

3. [VARIABLE(S)] [something] 8 7 1
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Figure 10: True positive example for the LR ‘of aorta’. The least common subsumer has not

been included because not all variable instances has been found as a concept in SNOMED

CT. The label Aortic structure (body structure) is also defined by the synonym “Aorta”,

which has been used by our algorithm in the general axiom.

Figure 11: True positive example for the LR ‘duct’. Here the least common subsumer has

been automatically included in the axiomatic pattern.

3.3. Results for the SNOMED CT chronic module

3.3.1. General description

We found 2 783 LRs for the chronic module. Table 6 shows the results of

20 randomly selected LRs for the chronic module. Four LRs were found as510

concepts in this module. The mean number of labels per LR is 19. For 16

LRs a percentage between 9% and 63% of the labels has not been included in

any cluster. Eighty-six clusters were generated by our method, and a general
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Figure 12: False positive example for the LR ‘disease due’.

Table 6: Results of the application of the method to 20 LRs of the chronic module

LR
Is a

concept?
# Labels # Clusters

Not-

clustered

labels (%)

Cluster

p-value

average

Alignment

consensus

(clusters

median %)

Variable

instances found

in SNOMED CT

(clusters median

%)

# Axiomatic

patterns created

aneurysm of No 11 3 45% 0.9674 60% 50% 2

arterial No 15 5 33% 0.9735 67% 100% 4

chronic kidney disease stage No 10 3 40% 0.9839 63% 0% 0

colon No 17 3 29% 0.9906 67% 100% 3

deep venous thrombosis of No 13 4 0% 0.9732 74% 92% 3

enterovirus No 6 1 17% 0.9766 17% 67% 0

hereditary No 21 3 24% 0.9764 33% 0% 1

infection of the central Yes 8 1 63% 0.9993 75% 67% 0

insufficiency Yes 8 3 13% 0.9972 80% 50% 2

obstruction No 33 8 36% 0.9696 58% 50% 4

of substance No 6 2 0% 0.9899 37% 33% 0

operation on No 77 14 21% 0.9839 46% 74% 0

operative No 24 4 50% 0.9864 53% 56% 1

pneumonitis Yes 8 3 0% 0.9760 43% 50% 2

purpura Yes 11 2 9% 0.9620 25% 63% 1

streptococcal No 10 2 40% 0.9986 54% 100% 1

tissue sample No 10 3 30% 0.9786 67% 67% 0

tree No 6 2 0% 0.9937 58% 50% 1

vascular structure No 17 4 35% 0.9802 63% 65% 3

vein No 72 16 22% 0.9810 71% 25% 8

Total: 36

axiomatic pattern was created for 36 clusters. At least one cluster has been

created for every selected LR.515
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3.3.2. Results by axiomatic patterns

Table 7 shows the results of the evaluation of the axiomatic patterns created

for the chronic module. At the cluster level, a precision of 64% and a recall

of 40% have been obtained. At the label level, the precision and recall are

respectively 50% and 30%. The method resulted in 36 axiomatic patterns,520

of which 23 were present in SNOMED CT (TP) and 13 were not (FP). No

axiomatic pattern was created for six clusters by the method, and for those

clusters there was no axiomatic pattern present in SNOMED CT either (TN). No

axiomatic pattern was created for 35 clusters while there was an actual axiomatic

pattern present in SNOMED CT (FN). The F-measure for respectively the525

cluster and label levels is 0.49 and 0.38.

3.3.3. Results by templates

Table 8 shows the results per template. Template 1 is matched by five

axiomatic patterns: two TP and three FP; template 2 is matched by eight

axiomatic patterns: four TP and four FP; template 3 is matched 24 times:530

seventeen TP and seven FP.

3.4. Precision and recall per template

Table 9 shows the precision and recall results per module when systematically

removing one template, as well as the results with only a single template. The

first row contains the overall precision and recall for both modules as shown535

before.

4. Discussion

4.1. The method

The QA of biomedical ontologies and terminologies is a fundamental task to

ensure that the semantic artefacts used in biomedical applications are not the540

cause of unexpected, wrong behaviours and results. In this work, QA has been

approached from the perspective of analysing the relation between the content
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Table 7: Results of the evaluation of the axiomatic patterns for the chronic module

LR Per cluster Per label

# TP # TN # FP # FN # TP # TN # FP # FN

aneurysm of 1 0 1 1 2 0 2 2

arterial 3 0 1 1 6 0 2 2

chronic kidney disease stage 0 0 0 3 0 0 0 6

colon 2 0 1 0 4 0 8 0

deep venous thrombosis of 3 0 0 1 10 0 0 3

enterovirus 0 0 0 1 0 0 0 5

hereditary 0 1 1 1 0 3 8 5

infection of the central 0 0 0 1 0 0 0 3

insufficiency 1 0 1 1 2 0 3 2

obstruction 3 0 1 4 7 0 4 10

of substance 0 1 0 1 0 3 0 3

operation on 0 0 0 8 0 0 0 61

operative 0 0 1 2 0 0 2 10

pneumonitis 2 0 0 1 6 0 0 2

purpura 1 1 0 0 6 4 0 0

streptococcal 1 0 0 1 2 0 0 4

tissue sample 0 0 0 3 0 0 0 7

tree 1 1 0 0 3 3 0 0

vascular structure 1 0 2 1 5 0 4 2

vein 4 2 4 4 8 4 29 15

Total: 23 6 13 35 61 17 62 142

Precision: 64% Recall: 40% Precision: 50% Recall: 30%

Table 8: Results per template obtained for the chronic module

Template
# Total

matches
# TP # FP

1. [VARIABLE(S)] [PREPOSITION] [something] 5 2 3

2. [something] [PREPOSITION] [VARIABLE(S)] 8 4 4

3. [VARIABLE(S)] [something] 24 17 7
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Table 9: Precision and recall when systematically removing one template, including the results

with only a single of the three defined templates.

Template number(s) Congenital Chronic

Precision Recall Precision Recall

1 + 2 + 3 75% 28% 64% 40%

1 + 2 67% 17% 46% 14%

1 + 3 82% 27% 66% 35%

2 + 3 73% 17% 66% 38%

1 78% 15% 40% 5%

2 33% 2% 50% 10%

3 88% 16% 71% 33%

expressed in natural language for humans and the content expressed in the form

of logical axioms for the machines.

Our method pursues to create axioms from the existing LRs in ontologies,545

and our working hypothesis has been that lexically similar labels should also

be axiomatically similar by the application of the LSLD principle. This work

demonstrates that the development of semi-automatic methods for supporting

ontology and terminology content editors in the auditing of the ontology is

possible. For this purpose, we have been able to use existing tools such as550

OntoEnrich to extract and obtain relevant information about the LRs in the

semantic resources and hierarchical clustering techniques have contributed to

analyse, group and select which regularities are more suitable for the generation

of axiomatic patterns.

The content of LRs could correspond to the full label of concepts or object555

properties in the ontology. Correspondence of an LR with a concept could make

the method assume that all the concepts exhibiting the LR should be linked to

that concept. If the LR corresponds to the full label of an object property, then

the method could assume that all the concepts exhibiting the LR should use

such property.560
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The method has been applied to two modules extracted from SNOMED

CT. Semantic resources usually group related concepts in modules. One way

of implementing modularity in ontologies is by using subhierarchies, one per

module. For example, SNOMED CT is organised in 19 modules such as body

structure, finding, event, observable entity, and qualifier value. Nevertheless,565

there are other ways for defining modules in ontologies, such as the locality-

based approach applied in this work. Our two modules do not correspond to

any of the 19 SNOMED CT modules, and they cover around 7% of the concepts

included in SNOMED CT. The locality-based approach is a flexible way to define

semantically-related modules over a large ontology such as SNOMED CT.570

In this work we have used hierarchical clustering to analyse the LRs to iden-

tify the ones suitable for the creation of axiomatic patterns. This unsupervised

technique has been used to require no prior knowledge about the labels and the

number of clusters. The quality and usefulness of the clusters obtained can be

evaluated by the classification of the axiomatic patterns associated with them575

as TP, FN, FP or TN. Clusters with TP and FN are the most useful ones be-

cause the concepts associated with the labels in the cluster share axioms. An

FP cluster might be useful if further examination reveals that the axiomatic

pattern created by the method should be included in the semantic resource.

The TN classification of a cluster may be due to the lack of templates, so a580

TN cluster might be turned into FP if more templates are available. Accord-

ing to our results, the clustering technique has demonstrated its usefulness for

supporting the process of obtaining the axiomatic patterns. In the SNOMED

CT congenital module, 75% (53 out of 71) of the clusters contain labels whose

concepts have axioms in common (15 TP and 38 FN). No axioms in common585

were found for the remaining 18 clusters (13 TN and 5 FP) in SNOMED CT.

In the SNOMED CT chronic module 67% (58 out of 86) of the clusters contain

labels whose concepts have axioms in common (23 TP and 35 FN).

FN clusters are of interest for QA because they contain labels which share

at least one logical axiom, which was not created by our method. The reason590

could be: (1) a lexical suggestion for this axiom was not detected due to the
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lack of templates, or (2) the shared axiom was not lexically suggested by the

labels. The first case would be solved by providing an appropriate template.

The second one is out of the scope of this work.

The quality and usefulness of the patterns can then be evaluated in terms595

of precision and recall for each module. The results for the SNOMED CT

congenital module reveal a precision of 75% and a recall of 28% (Table 4, cluster

level). There is an axiomatic pattern in SNOMED CT for 38 clusters that was

not created by the method (FN, Table 4). The results for the SNOMED CT

’chronic’ module reveal a precision of 64% and a recall of 40% (Table 7, cluster600

level).

FN rates have an impact on recall. A low recall in our method means that

it is not able to propose axioms already existing in SNOMED CT. Our method

creates the axioms based on the templates used, so the number and quality

of the templates play a fundamental role in the recall score. In the validation605

experiment we have used three different templates (Table 2), including two types

of property values from SNOMED CT linked to prepositions. The results of our

experiments (see Tables 5 and 8) show that the axiomatic patterns of each

template were at least one or more times found as actual axiomatic patterns

in SNOMED CT (TP). Table 9 shows that the recall is in general lower when610

fewer templates are used.

The results are promising, taking into account the number of templates

used in the experiments. The quality of the results obtained is influenced by

the number and types of templates created. Having more templates available

would help to reduce the FN rate and, therefore, to increase the TP rate and615

recall. However, recall will also be limited by the axioms that might not be

learnt by just analysing the content of the labels.

4.2. Practical impact and application to other ontologies

Among the SNOMED CT quality issues shown in Table 1, our method con-

tributes especially to incomplete modelling since the natural QA application of620

our method is to propose a set of axioms that should exist in the ontology. We
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believe that the more complete and precise modelling resulting from the appli-

cation of our method can also contribute to detecting schematic incorrectness

and semantic misunderstandings by means of automated reasoning. Ontology

modellers, of SNOMED CT in this case, should pay special attention to false625

positives, because these are axioms proposed by our method that are not in

SNOMED CT. With only three templates, our method suggests that 26 con-

cepts (5%) in the congenital module and 62 concepts (15%) in the chronic mod-

ule miss at least one axiom. These concepts should be analysed by SNOMED

CT content editors to decide whether axioms are missing and if the ones sug-630

gested by our method are appropriate.

Our method is general, so it can be applied to other ontologies. We have

performed a preliminary experiment with the Gene Ontology (GO) to analyse

the potential reusability of the templates defined in this work. We have down-

loaded the February 2018 GO in OWL format, which contains 49 397 concepts,635

107 736 logical axioms and 428 610 annotation assertions. GO is rich in LRs

as a consequence of the use of naming conventions. We found 1277 LRs, of

which 237 LRs (exhibited by 25 250 concepts) contain at least one preposition

as token, and 144 LRs (exhibited by 16 714 concepts) of which are concepts in

GO. Our templates 1 and 2 could be applied to the clusters whose LRs contain640

prepositions if the content around the preposition is a concept in the ontology,

and template 3 could be applied to those whose LRs are concepts.

It should be noted that the domains of SNOMED CT and GO are different,

so the property associated with, for example, the preposition ‘of’ may differ

for both ontologies. This would mean that the template can be reused but the645

axiomatic pattern has to be adapted. One of the most frequent LRs in GO is

related to regulation. The four most frequent LRs are: ‘of’ (13 928 concepts),

‘regulation of’ (10 966 concepts), ‘positive regulation of’ (3 483 concepts) and

‘negative regulation of’ (3 414 concepts). Moreover, GO provides modellers with

eight types of properties (attributes in SNOMED CT terminology) including650

regulates, positive regulates and negative regulates. These could be

used to adapt the axiomatic patterns associated with our template 2 shown in
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Table 8. A further analysis of the cluster alignments of these four LRs and their

sub-regularities is needed. The analysis of how to use the other seven properties

to define the templates for roughly 3 000 concepts that exhibit ‘of’ but not the655

regulation would also be needed. This analysis could provide insights about the

relation of the templates and the new relations created in the go-plus edition of

GO [33].

4.3. Related work

In this paper we have presented a QA method based on the extraction of660

the semantics hidden in the content of the labels of concepts in biomedical on-

tologies and terminologies. Different approaches for the exploitation of hidden

semantics can be found in the literature [8, 10, 12, 34], including the application

of the LSLD principle [14]. The analysis of term transformations is an ontology

QA task in [8]. The definition of GO cross-products [12] exploited the compo-665

sitional structure of GO concepts [10]. Later, unsupervised machine learning

algorithms for combining lexical, syntactical and semantic regularities to define

QA workflows for SNOMED CT were proposed [35]. Recently, inconsistencies

in the logical definition of the concepts by contrasting lexical similarity and

formal definitions in SNOMED CT were identified [34, 36]. Missing hierarchi-670

cal relations in SNOMED CT were identified from logical definitions based on

the lexical features of concept names [37]. This method was recently expanded

through the mining of non-lattice subgraphs [38]. The related work shows the

importance of the lexical component for the QA of semantic resources, to which

we want to contribute. Our approach can also be assimilated to the idea of675

exploiting a ‘focus concept’ and its neighbourhood presented in [17], but as

novelty we propose the use of LRs as ‘focus concepts’.

The enrichment of an ontology based on patterns was successfully applied

with GO cross-products. GO cross-products were defined from the combination

of automated tools and human curation for specified logical definitions for a680

large number of concepts. Our method innovates in how it automatically learns

and extracts the lexical structure of labels in ontologies, obtains clusters of
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lexically similar labels and selects clusters based on statistical criteria. The

alignment of the automatically selected clusters brings us closer to the automatic

definition of the templates. This supposes an improvement with respect to685

the application of clustering techniques performed in [35], whose aim was to

inform about unexpected situations. Similarly, the objective of the algorithms

proposed in [34, 36] is to detect inconsistencies in formal definitions of SNOMED

CT concepts, but they cannot be considered pattern-based approaches. Other

work [37, 38] focused on detecting missing hierarchical relations based on lexical690

features of concepts. For example, they identify potential missing hierarchical

relations: (1) ‘Basal cell carcinoma of skin of lip’ and ‘Carcinoma of lip’ or

(2) ‘Congenital vascular anomaly of eyelid’ and ‘Vascular anomaly of eyelid’.

Our method would not be able to detect this first example, as LRs are defined

considering consecutive tokens. However, the second example would be captured695

and solved using template 3 from Table 2.

4.4. Limitations and further work

The number of templates used in this paper has been limited by the need

for their manual creation. This is the primary bottleneck of our method, which

also makes the process not completely automatic, but has served to validate the700

applicability and usefulness of the method.

Despite this current limit of the applicability of the method on complete,

large ontologies, this shortcoming can be overcome in the short term as indicated

by the following evidence:

• Our clusters contain information for the automatic application of tem-705

plates.

• Our clusters contain information useful for the definition of templates (see

for instance the example in subsection 2.3.1). We think that it is possible

to automatically extract the templates, so further research will primarily

focus on this issue. We think that implementing aspects such as part-of-710

speech tagging on the labels would be helpful for this purpose.
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• The templates defined in this work have been useful for the two modules

extracted from SNOMED CT, which has to be interpreted in terms of

reusability. The preliminary inspection of GO described in Section 4.2

also reinforces this idea. Therefore, the effort needed to create templates715

will decrease with the use of the method, especially if a library of axiomatic

patterns is set and efficiently managed. We will also do research on their

contextualisation as Ontology Design Patterns [39]. There are also two

potential limitations concerning reusability: (1) as described in Section

4.2, some adaptations might be needed when reusing a template; (2) the720

capability of reusing templates in large ontologies collaboratively built by

several experts may be reduced if the experts apply different modelling

patterns.

We also think that using additional metrics for describing the LRs and the

clusters such as the ones defined in [40] would help to select LRs which are725

potentially interesting and, therefore, would help to improve the results of the

method.

We have developed another QA related method that we plan to combine

with the present one to guide the developer in the actions to take to improve the

ontology. In [41] we described a method for detecting potentially wrong axioms730

in ontologies by analysing whether the concepts that are lexically connected are

also logically connected. If this method finds quality issues in a certain concept,

the axiom proposed by the method presented in this paper should be helpful to

improve the logical definition of such concept.

Finally, it would be necessary to develop a usable user interface to facili-735

tate ontology developers to process the results of our methods and from which

actions on the ontology could be implemented. We plan to include such an

interface in OntoEnrich, through which this method will be made available to

the community.
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5. Conclusion740

The large size and increasing importance of biomedical ontologies and ter-

minologies such as SNOMED CT requires the development of QA methods that

support the activity of content editors. We have presented a method for the

extraction of axiomatic patterns from the content of the labels of concepts in

biomedical ontologies and terminologies. The results are promising and shed745

light on how the lexical content can be used for the assurance of the quality

of the ontology by following the LSLD principle. This work has benefited from

the added value of techniques such as clustering. The semi-automatic method

requires templates to be manually defined, so further work is needed to increase

the degree of automation of the method.750
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