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Abstract This study illustrates the sensitivity of regional

climate change projections to the model physics. A single-

model (MM5) multi-physics ensemble of regional climate

simulations over the Iberian Peninsula for present

(1970–1999) and future (2070–2099 under the A2 sce-

nario) periods is assessed. The ensemble comprises eight

members resulting from the combination of two options of

parameterization schemes for the planetary boundary layer,

cumulus and microphysics. All the considered combina-

tions were previously evaluated by comparing hindcasted

simulations to observations, none of them providing clearly

outlying climates. Thus, the differences among the various

ensemble members (spread) in the future projections could

be considered as a matter of uncertainty in the change

signals (as similarly assumed in multi-model studies). The

results highlight the great dependence of the spread on the

synoptic conditions driving the regional model. In partic-

ular, the spread generally amplifies under the future sce-

nario leading to a large spread accompanying the mean

change signals, as large as the magnitude of the mean

projected changes and analogous to the spread obtained in

multi-model ensembles. Moreover, the sign of the pro-

jected change varies depending on the choice of the model

physics in many cases. This, together with the fact that the

key mechanisms identified for the simulation of the cli-

matology of a given period (either present or future) and

those introducing the largest spread in the projected

changes differ significantly, make further claims for efforts

to better understand and model the parameterized subgrid

processes.

Keywords Parameterization schemes � Physics ensemble �
Regional climate change projections � Iberian Peninsula

1 Introduction

The western sector of the Mediterranean basin has been

highlighted as a major climate change ‘‘hot-spot‘‘ (Giorgi

2006). In particular, the Iberian Peninsula (IP) shows sig-

nificant changes at the end of this century in many climatic

diagnostics, namely increased mean temperature and tem-

perature variability, more frequent and intense heat waves

and dry spells, and enhanced uneven heavy precipitation

events (Perez et al. 2010; Gomez-Navarro et al. 2010;

Jerez et al. 2012a). These climate change-related assess-

ments for the IP are usually based on Regional Climate

Models (RCMs) simulations shaping the large-scale signals

according to the regional and local characteristics by
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dynamically downscaling coarser databases obtained with

Global Circulation Models (GCMs). Although the resolu-

tion of the GCMs has increased impressively in recent

years, they are still hard able to capture accurately the large

heterogeneity of the IP, where the added value of the

RCMs is essential (Herrera et al. 2010; Argüeso et al.

2011; Gomez-Navarro et al. 2011; Soares et al. 2012).

A cascade of uncertainties befalls inevitably during such

a downscaling process. The first and likely the most

important source of uncertainty when projecting future

changes derives from the assumptions about the future

radiative scenario (IPCC 2007). The second is the fact that

different GCMs, or different setups of the same GCM,

provide different primary databases to be downscaled by

RCMs (Gomez-Navarro et al. 2012). Last, the fact that

different RCMs, or different setups of the same RCM,

provide as well different results (Deque et al. 2007). In

order to characterize, understand and reduce uncertainties,

many research projects deal with ensembles of simulations

obtained from different models and/or for different future

scenarios, from which common signals and the accompa-

nying spread, namely uncertainty (Tebaldi and Knutti

2007), can be identified (e.g. Deque et al. 2007; Haugen and

Iversen 2008; Gomez-Navarro et al. 2010; Joshi et al.

2011). However, to the best of our knowledge there is a lack

of studies focusing explicitly on the differences associated

with the setup of RCMs regarding climate change projec-

tions (Knutson and Tuleya 2004; Seneviratne et al. 2006;

Jerez et al. 2012a constitute the few distant precedents).

The setup of a RCM involves several aspects: the

domains design, the nesting and nudging options, the

execution strategy and, in some cases, the election of the

parameterization schemes that model the subgrid pro-

cesses. The later aspect provides the focus of this study.

The parameterization schemes contain the so-called model

physics and have been identified as the most important

components of the numerical prediction models (Stensrud

2007). Currently, there is a vast spectrum of parameteri-

zation schemes accounting for the same features available

to be incorporated in the RCMs. They differ in the level of

complexity, the assumptions and approximations made to

reduce the huge dimension of the related physics problem,

the approach followed to solve it, and the areas and

applications for which they were primarily developed.

Several works are devoted to assess the performance of

diverse parameterization schemes aimed at identifying the

best options to be employed in subsequent work as well as

the features of the schemes that either have yet to be

improved or add clear accuracy (e.g. Ratnam and Kumar

2005; Fernandez et al. 2007; Han et al. 2008; Jerez et al.

2010; Argüeso et al. 2011; Evans et al. 2012; Gianotti

et al. 2012). In a previous work, we explored the sensitivity

of present-day regional climate simulations to the model

physics when reproducing the climatology of the IP,

mainly mean values and interannual variability of tem-

perature and precipitation (Jerez et al. 2012b). For that we

assessed an ensemble of hindcast simulations, each one

performed with different parameterization schemes for

modeling the Planetary Boundary Layer (PBL), the

cumulus (CML) and the microphysical (MIC) processes

(two parameterization options were considered for each)

within the mesoscale model MM5 (Grell et al. 1994). The

results displayed spreads among the various simulations of

alike magnitude as the spreads obtained in similar multi-

model ensembles of hindcasts (Jacob et al. 2007), hence

proving the huge role played by the model physics. An

original methodology was applied in order to isolate the

best options, and, although some schemes showed a priori

better performances, the analysis also revealed important

exceptions supporting a better job of their counterparts.

Moreover, none of the simulations provided clearly out-

lying climates. Therefore, the question about the most

appropriate model physics still remains strictly unan-

swered, which is in agreement with the recent study by

Argüeso et al. (2011).

Furthermore, although it is commonly assumed that the

most accurate models and parameterization schemes for

simulating the present-day climate will still constitute the

best tools for simulating future climates (e.g. Sanchez et al.

2004; Leung and Gustafson 2005), it could happen that

under different conditions (as they may be in the future)

other approximations and modeling approaches to those

performing best in present conditions hold better. This

concern adds uncertainty in the last stage of the afore-

mentioned process aimed at obtaining regional climate

change projections. However it could occur that errors

cancel when subtracting future minus present simulated

climatologies (Liang et al. 2008). If this hypothesis works,

the uncertainty derived from the a priori ignorance of the

best tools to simulate the unknown future conditions would

not be as relevant.

Under this umbrella, the main objective of this study is

to extend the previous assessment by exploring the role of

the model physics for regional climate change applications

over the IP. There are several aspects addressed in this

work, like the analysis of the dependence of the spread

among simulations on the driving conditions of the RCM.

The question of its change under future conditions is of

special concern. This contribution also tries to define the

mean change signals, the associated spread (checking

whether it is comparable to the spread obtained in multi-

model ensembles) and the processes determining it. Last

we describe the relationships (if any) between present-day

biases and future projections within the multi-physics

ensemble. Sections 2 and 3 summarize the experiments

performed and the methodology utilized, and Sects. 4, 5
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and 6 present the results. Summary and conclusions are

provided in Sect. 7.

2 Experimental design

This work assesses two sets of simulations spanning the

periods 1970–1999, as a control reference period (CTRL),

and 2070–2099, as a future enhanced green house gas and

aerosol concentrations scenario (SCEN), respectively. The

simulations were performed using a climate version of the

regional model MM5 (Grell et al. 1994) driven by the

ECHAM5-Run1 simulation (Roeckner et al. 2003) forced

by the SRES-A2 scenario in the future period (Nakicenovic

et al. 2000). MM5 has been used in many research works

(e.g. Jung and Kunstmann 2007; Evans 2008, 2010; Koo

et al. 2009; Gomez-Navarro et al. 2010; Jerez et al. 2010,

2012a) and its ability to reproduce regional circulations and

mesoscale climatological features has been widely proved

(Kanamitsu et al. 2002; Evans et al. 2004; Gomez-Navarro

et al. 2011). This, together with the fact that it has a wide

spectrum of physics options, makes MM5 a suitable tool

for assessing the role of the parameterization schemes

when projecting future climate changes at regional scales.

Each set of simulations consists of a multi-physics

ensemble comprising eight members resulting from varying

the physical configuration of MM5 as follows. For the PBL

scheme, we use either the MRF (Hong and Pan 1996) or the

Eta (Janjic 1994) model; for the CML scheme, we use either

the Grell (GR; Grell 1993) or the Kain-Fritsch (KF; Kain and

Fritsch 1990) model; and for the MIC scheme, we use either

the Simple Ice (SI; Dudhia 1989) or the Mixed Phase (MP;

Reisner et al. 1998) model. Table 1 shows the configuration

of schemes used in each member of the ensemble. A detailed

description of the formulations and performances of these

schemes can be found in Jerez et al. (2012b). Both schemes in

each case meet two criteria: (1) both have proven skill and are,

therefore, commonly used, and (2) both are based on very

different physical approaches. This motivated our election.

The rest of the MM5 physics options were fixed and are

common in all the simulations. For the radiation processes we

use the RRTM option (Mlawer et al. 1997); particularly a

home-adapted version of it that permits the inclusion of the

same radiative forcings in the regional simulation as those

employed in the GCM run driving MM5. For the land-surface

processes and land-atmosphere interactions we use the Noah

Land-Surface Model (Chen and Dudhia 2001) which clearly

enlarges the accuracy of the simulations in comparison to

other options as it takes into account soil moisture-atmosphere

interactions (Jerez et al. 2010).

The spatial configuration for the model runs consists of

two two-way nested domains with resolutions of 90 km in

the outer domain (D1) and 30 km in the inner domain (D2),

as described in Jerez et al. (2012b). The latter covers the

whole IP even after removing the blending area (first five

cells from the borders). The outer domain was elongated

eastward in order to take into account the strong influence

that the Mediterranean Sea exerts over the IP (Font-Tullot

2000). Vertically, 24 unevenly spaced sigma-levels up to

100 hPa were considered.

The simulations were performed by splitting the whole

30-year long periods into subperiods of 5-year length that

were then integrated by continuous runs with a spin-up

period of 4 months that prevents both noisy outputs during

the model stabilization (Giorgi and Bi 2000) and errors

from a possible poor initialization of, specially, soil vari-

ables (Christensen 1999). All the runs were initialized

using the ECHAM5 simulation providing the boundary

conditions except for the soil moisture variable. Soil

moisture was initialized, and not updated at the boundaries

afterward, in in each re-initialization, either of the present

or the future period, using a summer climatology (all the

runs start on September the 1st) obtained from reanalysis

data. This provides not extreme but ’realistic’ initialization

of this strongly inertial variable that the model can easily

adjust during the spin-up period. Every 6 h (at 00, 06, 12

and 18 h of each day) the MM5 outputs were recorded and

the boundary conditions from the GCM simulation were

updated (without nudging). This experimental design

optimizes our computational resources (Jerez et al. 2009),

prevents that the regional model drifts so much from the

driving conditions during the course of long integrations

(Lo et al. 2008) and has been used in several previous

works (e.g. Gomez-Navarro et al. 2010; Jerez et al. 2012a).

The non-existence of artificial 5-years cycles in our simu-

lations has been specifically checked.

3 Methodology

The analysis focuses on seasonal averages of 2-m tem-

perature (T) and precipitation (P). Both mean values and

Table 1 Combination of the PBL, CML and MIC schemes used in

each simulation of the multi-physics ensemble

Sim. PBL CML MIC

1 Eta GR SI

2 MRF GR SI

3 Eta KF SI

4 MRF KF SI

5 Eta GR MP

6 MRF GR MP

7 Eta KF MP

8 MRF KF MP
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interannual variability are assessed; the latter defined as the

standard deviation (sdev) of the detrended seasonal series.

Seasonal averages of daily maximum and minimum tem-

peratures (TX and TN, respectively) have been also

eventually investigated, as well as the intensity and fre-

quency of the precipitation events (PI and PF, respec-

tively). We define PF as the mean number of days within

each season with precipitation above 1 mm, expressed in

percentage, and PI as the mean precipitation amount in

those rainy days.

We analyze the role of the model physics in both (1)

present and future periods separately, and (2) projected

changes (i.e. future-minus-present). For that we use a

similar approach to that proposed in Jerez et al. (2012b),

i.e. using the following statistics and concepts [which are

explicitly described in Jerez et al (2012b)]:

• Ensemble mean (EM): mean value computed from all

the values provided by every single member of the

ensemble.

• Ensemble spread (ES): maximum difference among the

various ensemble members.

• Mean ensemble spread (MES): sum of the PBLspread,

the CMLspread and the MICspread. These latter are called

schemes-induced spreads and are defined as the differ-

ence, in absolute value, between the two ensemble

means corresponding to the two 4-members subensem-

bles that result from fixing each one of the two options

for each parameterized process.

• Spread-controlling scheme or leading parameterized

process (LP): the scheme whose change provokes the

largest differences among simulations, i.e. the largest

scheme-induced spread.

A statistical significance test is applied to the calculation

of differences (in particular in Figs. 1, 9, 10, 11) so that

they will be considered only if significant above the 95 %

level. We apply a two-tailed T test to check the significance

of differences in mean values and a two-tailed F test to

check the significance of differences in sdev (Snedecor and

Cochran 1989).

In order to account for the relative importance of

spreads we compute the signal-to-noise ratio, defined as the

ratio between the ES and the standard deviation of the EM

series, as in Jerez et al. (2012b). A signal-to-noise ratio

over 1 regarding mean values indicates that the ES in mean

values exceeds one standard deviation of the EM series. A

signal-to-noise ratio over 0.2 regarding sdev means that the

ES in sdev represents over a 20 % of the sdev of the EM

series. Both features have been highlighted in Figs. 3, 4, 6

and 7. Further, the ES in the projected changes is shown in

percentage with respect to the mean change signals in

Fig. 10 in order to measure its actual relevance.

4 Validation of the present-day simulations: GCM

induced errors

In order to validate present-day regional climate simulations

driven by GCMs runs aimed at being a reference when

projecting future changes, a common procedure consists of

contrasting them with analogous simulations driven by

reanalysis data (Galos et al. 2007; Leander and Buishand

2007; Gomez-Navarro et al. 2011). Since large-scale climate

errors in the global models are retained by the higher-spa-

tial-resolution regional models (Rummukainen 2010), and

given that reanalysis data can be considered as a surrogate of

reality (Christensen et al. 1997; Salzmann et al. 2007), this

procedure allows direct evaluation of the GCM induced

errors. The RCM (MM5)-induced errors were already

evaluated by direct comparison between hindcasted simu-

lations and observations in the precedent paper by Jerez

et al. (2012b). In such assessment the highlighted MM5-

weaknesses were mainly related to a systematic underesti-

mation of Tmean, poor reproduction of the Tsdev patterns,

and overprediction (underprediction) of the light (heavy)

rainfall; being Pmean and Psdev closely related.

This section describes the comparison between the CTRL

EM and the HNDC EM. CTRL refers to the ensemble of

control ECHAM5-driven simulations, while HNDC refers to

an analogous ensemble of hindcast simulations reported in

Jerez et al. (2012b). Both ensembles consist of the same

members, have identical model setups, and span the same

period, with the only difference being the driving conditions.

Figure 1 shows the CTRL EM climatologies and their differ-

ence with respect to the HNDC EM climatologies. Both pat-

terns (from the CTRL EM and from the HNDC EM) for each

magnitude (Tmean, Tsdev, Pmean and Psdev) and for every

season are also compared in the Taylor diagrams of Fig. 2.

CTRL simulations are colder than the HNDC simulations

in most of the IP, which adds inaccuracy to the MM5-related

cold bias already detected in Jerez et al. (2012b), except for

the area around the Strait of Gibraltar where the CTRL

simulations are warmer than the hindcasts in summer and

autumn (Fig. 1a–d). The largest differences appear in these

seasons, being up to 3 K. In spite of that, the spatial distri-

bution and the spatial variability of the Tmean patterns is

quite similar in both experiments, as the spatial correlation

between the CTRL and the HNDC patterns is over 0.9 and the

standard deviation ratio is just slightly over 1 (Fig. 2a).

The agreement between CTRL and HNDC simulations

regarding Tsdev is smaller but still acceptable: the spatial

correlation between the CTRL and the HNDC patterns is

almost 0.6 in spring and around 0.8 in the rest of seasons,

and the spatial variability is underestimated mainly in

summer and autumn, with the standard deviation ratio

around 0.6 and 0.8 respectively (Fig. 2b). Tsdev is

S. Jerez et al.
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generally underestimated in the CTRL simulations when

compared to the HNDC simulations, up to 0.4 K in the

summer season (around 40 %), although a converse

behavior appears in spring in the Pyrenees and over the

Mediterranean Sea (Fig. 1e–h). It should be stressed that

the agreement between CTRL and HNDC simulations is

better than between HNDC and observations (Jerez et al.

2012b), and thus the main problem when simulating Tsdev

should be attributed to the MM5 performance rather than to

GCM inaccuracies.

The comparison of the Pmean patterns reveals that the

CTRL simulations tend to overestimate the heavy amounts

of precipitation (in winter and transitional seasons in

western and northern areas, by up to 80 mm/month, i.e.

around 60 %) and to underestimate the light rainfall (in

summer in almost the whole IP, by up to 40 mm/month, i.e.

also around 60 %) in comparison to the HNDC simulations

(Fig. 1i–l). These differences show an opposite sign to the

biases obtained when comparing the HNDC simulations

with observations (Jerez et al. 2012b), but are around twice

in magnitude. Therefore, where the hindcasted simulations

were found to overestimate precipitation, the CTRL sim-

ulations underestimate it, and vice versa. The spatial cor-

relation between the CTRL and the HNDC patterns of

Pmean is above 0.7, increasing to 0.95 in the winter season.

The spatial variability of the patterns is overestimated in

the CTRL simulations, except in the summer season when

it is well captured (Fig. 2c).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 1 CTRL ensemble mean (contour) and the difference with the

HNDC ensemble mean (CTRL minus HNDC; shaded) for Tmean

(first row), Tsdev (second row), Pmean (third row) and Psdev (fourth
row). Differences are displayed only if they are statistically significant

at the 95 % confidence level. Each column, from left to right,
represents the winter, spring, summer and autumn seasons. Units: K

for temperature (except contours in panels a–d which are in �C), and

mm/month for precipitation
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Regarding the standard deviation of the precipitation series

(Fig. 1m–p), an overestimation/underestimation is generally

found coinciding with the areas/seasons with overestimated/

underestimated Pmean. However, although the CTRL simu-

lations tend to produce more precipitation than the HNDC

simulations over western areas in winter, the simulated

interannual variability of precipitation is lower in the CTRL

simulations than in the HNDC simulations there. This striking

feature breaks the expected monotonous relationship between

Pmean and Psdev. The largest errors are above 20 mm/month,

which represents in some cases almost the 100 % of the

HNDC simulated values. The Taylor diagram (Fig. 2d) shows

that the spatial correlation between the CTRL and the HNDC

patterns of Psdev is around 0.6–0.7 (growing to 0.9 in winter)

and the spatial variability of the CTRL Psdev patterns is

overall overestimated in comparison to the HNDC experiment

(except in winter when it is underestimated).

Summarizing, the ECHAM5-Run1 conditions fosters the

cold bias already detected in the hindcasted simulations and

reduce the simulated interannual variability of the tempera-

ture series, but provides quite reliable boundary conditions

for simulating the spatial patterns of both Tmean and Tsdev.

Regarding the simulation of precipitation, meanwhile MM5

(in the hindcast mode) tends to overpredict/underpredict the

light/heavy rainfall, the opposite is the case when it is driven

by the ECHAM5-Run1. This implies an overall overesti-

mation of the spatial variability of the Psdev and Pmean

patterns, while a still acceptable reproduction of their spatial

distribution. In general, the mean values are less dependent

on the driving conditions than the interannual variability of

the temperature and precipitation series.

This objective assessment provides enough confidence

on the CTRL simulations, while highlights specific defi-

ciencies that should be kept in mind. Moreover, these

results constitute a valuable reference for future works.

5 Spreads dependence on the driving conditions

In the previous work by Jerez et al. (2012b) a thorough

assessment of the spreads derived from the various model

physics setups in the HNDC experiments was presented.

(a) (b)

(c) (d)

Fig. 2 Taylor diagrams comparing the CTRL ensemble mean seasonal patterns of a Tmean, b Tsdev, c Pmean and d Psdev with those

corresponding to the HNDC ensemble mean

S. Jerez et al.

123



In this section we explore how spreads change depending

on the large-scale features driving the regional model.

First, we assess the spreads in the CTRL ensemble and

compare them to the spreads in the HNDC ensemble (Sect.

5.1). This analysis will allow evaluation of whether the

spreads and the associated leading parameterized processes

change just because of the different synoptic conditions.

Second, we compare the spreads in the SCEN ensemble to

the spreads in the CTRL ensemble (Sect. 5.2) in order to

investigate how the spreads and LPs change under the

future scenario, thus anticipating the impact of the model

physics in the future projections, which will be assessed in

the last Section.

5.1 CTRL versus HNDC

Figure 3 shows the ES patterns obtained in the CTRL

ensemble, as well as the differences with the analogous ES

patterns from the HNDC ensemble.

The CTRL ES in mean temperature shows the highest

values in winter and summer, up to 3 K inland, with a clear

continental shape in the summer season, and ranges

between 1 and 2 K in spring and autumn showing a very

homogeneous distribution (Fig. 3a–d). In all cases these

values exceed one standard deviation of the temperature

series. Small differences with the ES in the HNDC

ensemble are observed, mainly concentrated in the summer

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 3 CTRL ensemble spread (shaded; with the gray dots blurring

the areas where the signal-to-noise ratio is below 1 in the case of

Tmean and Pmean, and below 0.2, i.e. 20 %, in the case of Tsdev and

Psdev) and the difference with the HNDC ensemble spread (CTRL

minus HNDC; contours) for Tmean (first row), Tsdev (second row),

Pmean (third row) and Psdev (fourth row). Each column, from left to

right, represents the winter, spring, summer and autumn seasons.

Units: K for temperature, and mm/month for precipitation
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season when the CTRL ES is larger in the inner Iberia

while smaller in the Mediterranean coast than the HNDC

ES (differences are about 0.5 K).

The CTRL ES in Tsdev evolves from winter, with sig-

nificant values mainly in southwestern Iberia (about

0.2–0.4 K, above the 20 % threshold in the signal-to-noise

ratio), to summer, with differences up to 0.8 K among the

various CTRL simulations in the inner eastern Iberia

(which represents up to 80 % of the EM Tsdev values),

exhibiting an intermediate pattern in spring and negligible

ES values (below the 20 % threshold) in autumn in most of

the IP (Fig. 3e–h). Differences with the HNDC ES are

negative in winter and autumn (around -0.1 K), while

positive and higher (up to 0.3 K) in spring and summer.

In the case of Pmean (Fig. 3i–l), the largest spreads,

reaching above 50 mm/month, appear over the sea, being

in general larger than in the HNDC ensemble (note the

striking spread in the areas around the strait of Gibraltar)

except for some areas in the Mediterranean shore. Inland,

spreads implying a signal-to-noise ratio above 1 emerge

only in the summer season, being up to 30 mm/month,

depicting quite an orographic pattern and exhibiting

smaller values (about half) than in the HNDC ensemble.

Large spreads appear in the assessment of Psdev, around

5–10 mm/month inland and 10–20 mm/month offshore,

mainly in Mediterranean areas in summer and autumn, in

most cases representing over 20 % of the EM Psdev values

(Fig. 3m–p). In spite of that, they are still smaller than in

the HNDC ensemble, with the exception of the areas

around the strait of Gibraltar where, as for Pmean, huge

spreads appear in the CTRL ensemble.

Therefore, the large spreads in the CTRL ensemble show a

similar pattern but also important differences with the HNDC

ES patterns provided by Jerez et al. (2012b), highlighting the

dependence of the spreads on the driving conditions, i.e. the

different performance of the various parameterization

schemes under different synoptic conditions. On the other

hand, it is worth noting that most of the outstanding areas in

the error patterns of Fig. 1 show also large spreads (Fig. 3).

Although nothing similar to a linear relationship between the

error and the spread can be established, it is perceivable that

there are areas showing a strong response to changes in both

the synoptic forcing and the physical configuration of the

model. This overlap suggests that the parameterized processes

could be able to modify the synoptic conditions, which further

emphasizes their crucial role. Hence, we would have both: the

synoptic forcing determining the performance of the para-

meterization schemes and, at the same time, the parameterized

processes modifying the synoptic circulation.

Next we explore which are the so-called leading

parameterized processes (LPs) in the CTRL ensemble in

order to elucidate if they also change with respect to the

HNDC ensemble. Figure 4 depicts the LPs for each

analyzed variable/statistic in the CTRL simulations, as well

as its contribution to the mean ensemble spread (MES). We

observe that (1) the PBL scheme determines the spread

patterns for Tmean at every point and for Pmean over the

sea, where the MRF scheme produces warmer and wetter

conditions than the Eta model; (2) the CML scheme widely

prevails in the Tsdev MES patterns of spring and summer,

with the GR scheme providing larger values of Tsdev than

the KF model, and in the Pmean MES pattern of summer

(over land), where GR is drier than KF; and (3) the MIC

scheme plays the major role regarding the simulated Tsdev

in winter, with MP promoting larger values than SI. In the

case of Psdev, there is no clear LPs over a wide region.

These features appeared similarly in the HNDC ensemble

(Jerez et al. 2012b). Thus, although the spread patterns

look different in both ensembles, the leading parameterized

processes are quite independent of the driving conditions.

Not only the leading parameterized processes and their

comparative performances (i.e. the warmer, wetter, etc.

schemes) are common in both ensembles, but also the relative

performances of the individual ensemble members, ones with

respect to the others. Figure 5 shows the deviations of the

spatially averaged fields provided by each ensemble member

of the CTRL ensemble with respect to the member 1, versus

the same magnitude corresponding to the HNDC ensemble.

Almost all the points in Fig. 5a, c, d concentrate close to the

diagonal line, which means that differences in Tmean, Pmean

and Psdev between the ensemble members are nearly constant

in both ensembles. This result further reinforces the idea that

the driving conditions provide the primary control over the

forecasted magnitudes, while the physical configuration of the

model mainly contributes to shape them. However, a striking

feature arises in Fig. 5b: for Tsdev, the interactions between

the parameterization schemes and the various synoptic forc-

ings lead to a quite mixed diagram. This issue will be recalled

and discussed later.

5.2 SCEN versus CTRL

This section further assesses the dependence of spreads on

the driving conditions, now focusing particularly on how

they show up under a future green house gases enhanced

scenario. This study is primary based on Fig. 6 displaying

the SCEN ES and its differences with the CTRL ES. The

results show that, albeit the ES patterns show in both cases

very similar structures, spreads are generally greater in the

SCEN ensemble, up to twice in some cases. However, the

ES in Tsdev diminishes in the future scenario, dropping

below the 20 % threshold in all seasons but in summer.

In spite of the differences in the ES between both

ensembles, the LPs do not change significantly in the

SCEN ensemble but for Tsdev (Fig. 7). In this case, the

CML predominance in spring and summer observed in the
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CTRL ensemble disappears in the SCEN ensemble in favor

of the PBL (Figs. 4f, g vs. 7f, g). But in general, the rel-

ative importance of some processes over the others remains

also under the SCEN synoptic forcing. Moreover, Fig. 8

reveals that the relative response of the various ensemble

members is similar in both the SCEN and the CTRL

ensemble. Note that the case of Tsdev is also an exception

here, as no order can be appreciated in Fig. 8b. In addition,

Fig. 8b further shows that the range of variation among the

diverse experiments in the simulated Tsdev is smaller in

the SCEN than in the CTRL ensemble.

The results obtained for Tsdev suggest that an upper limit

for the simulated Tsdev would be achieved in the future

scenario, since all the simulations tend to converge within a

small range in the SCEN ensemble while they disagree more

widely in the CTRL ensemble. On the other hand, the change

found for the LPs in the simulated Tsdev indicates that the

processes controlling Tsdev in the present-period simula-

tions lose relevance in the future scenario. After these find-

ings, we recall the works by Seneviratne et al (2006), Jerez

et al. (2010, 2012a) showing: (1) the main role played by the

soil moisture for the simulation of Tsdev in the so-called

transitional climate zones, i.e. those with intermediate

regimes between dry and wet, as most of the IP can be cur-

rently classified, and (2) the severe drop in the soil moisture

content projected for most of the IP at the end of this century

Fig. 4 Leading parameterized processes (LPs) for the simulated

Tmean (first row), Tsdev (second row), Pmean (third row) and Psdev

(fourth row) in the CTRL ensemble. The color indicates the LP: PBL

(green), CML (blue) or MIC (orange). The intensity of the color

represents the percentage of the mean ensemble spread (MES) due to

the change of the LP scheme (units: %). The gray dots blur the areas

where the signal-to-noise ratio is below 1 in the case of Tmean and

Pmean, and below 0.2 (20 %) in the case of Tsdev and Psdev. Each

column, from left to right, represents the winter, spring, summer and

autumn seasons
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causing a strong northward shift of such a transitional cli-

mate zones and turning most of the IP into a dry regime. In

those severe dry conditions, the role of the soil moisture in

terms of variability becomes less relevant, implying a quasi-

constant boundary condition for the simulation of Tsdev.

These results would fit to some extent with our findings as

follows: (1) the soil moisture content would control the

simulation of Tsdev in the present period, when the different

soil moisture content simulated by the various CTRL

experiments is the primary reason that Tsdev differs among

them, and (2) the severe drop in the soil moisture content in

the future would give no space to the simulations to provide

different results for Tsdev. However, since Pmean is the

main contribution to the soil moisture content, this argument

would require that the LPs for Tsdev and Pmean coincide in

Fig. 4, but they do not. Hence, this hypothesis may work only

partially and needs more research to be confirmed.

6 Change projections

6.1 Ensemble mean and spread

The role of the model physics in climate change projections

is investigated in this section, supported by the results of

the preceding section. Figures 9 and 10 display the EM

signals of change and the spread associated. These results

are computed in two ways, either from the absolute values

of change (Fig. 9) or from the percentage values of change

with respect to the CTRL climatologies (except for

DTmean, Fig. 10). The black dots in these figures, in case,

indicate that some ensemble members project increases

while others decreases in the assessed magnitudes.

Based on the projections of the ensemble mean, both

mean temperature and temperature variability are projected

to increase, although the areas most affected in each case

do not match. The EM-projections for mean temperature

(Fig. 9a–d) show a clear annual cycle, with maxima in the

summer season (up to 6 K in the south-west), minima in

winter (around 3 K everywhere), and intermediate patterns

in spring and autumn. Spreads follow a similar cycle being

up to 3 K in summer, which represents up to 50 % of the

ensemble mean-projected change, and decreasing to around

30–40 % in the rest of the seasons (Fig. 10a–d).

Regarding temperature variability (Figs. 9, 10e–h), the

EM-projected changes are around 0.5 K (around 60–70 %)

mainly affecting north-eastern areas in winter and summer

and wide western regions in spring and autumn. Spreads

are minimal in winter and autumn (0.2 K, 20 %, in small

areas), grow in spring (0.2 K, 60 %) and soar in summer

(up to 0.8 K, above 100 %), when they involve even dis-

agreement in the sign of the change among the ensemble

members over wide areas.

Projections for averaged maximum and minimum tem-

perature (TX and TN) exhibit in both cases similar distri-

bution and spreads as the projections for Tmean (not

shown). Differences occur mainly in the intensity of the

change signals, being in general higher for TX than for TN

for both mean values and the standard deviation of the

temperature series. However, the EM-projected change for

TXsdev is smaller than for TNsdev in summer. This is

because there is a great discrepancy regarding DTXsdev in

summer among the ensemble members, with some pro-

jecting large increases while others considerable decreases

that are canceled when averaging. This issue will be

recalled below.

The ensemble mean projections foresees a general

decrease in the amount of precipitation (Figs. 9, 10i–l) in

spring and autumn (around 20–30 mm/month, around 30–

40 % with a 10 % of spread) and in north-western Iberia in

summer (around 10 mm/month, 30–50 % with a 20 % of

spread). Conversely, small coastal areas of the Mediterra-

nean and the region around the strait of Gibraltar show

increases in mean precipitation in summer. Finally, no

significant signals appear neither anywhere in winter nor in

summer in the wide south-east. However, in summer, some

of the areas with no significant signals exhibit large spreads

(involving even disagreement in the sign of the change

(a) (b)

(c) (d)

Fig. 5 CTRL versus HNDC comparison of spatially averaged fields

from the seasonal patterns of a Tmean, b Tsdev, c Pmean and d Psdev

obtained in each individual experiment of both ensembles. Each

season is represented by one symbol and color (see legend). There are

eight symbols per season corresponding to the eight ensemble

members listed in Table 1. It is represented the difference between

each experiment and the experiment 1 of Table 1
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among the ensemble members) such that nothing can be

concluded. On the contrary, the spreads in winter are just

around 10 %, which, albeit also involves disagreement in

the sign of the change among the ensemble members, still

allows to conclude that no important changes are to be

expected from these projections since all the ensemble

members projects very slight changes.

Two facts contribute to the projected changes in Pmean:

changes in the number of rainy days (DPF), and changes in

the intensity of the precipitation in those rainy days (DPI).

Figure 11 depicts their sign and their contribution. While

the percentage of rainy days per season is projected to

decrease in many sites in all seasons, droping 5–10 %, the

intensity of the daily precipitation events is projected to

increase. As seen above, the final result is a decrease in

Pmean, but it is worth highlighting the opposite signs of

these two contributions as it would indicate a tendency

towards a precipitation regime with more uneven and

intense events. Nonetheless, it should be stressed that

spreads around 50 % of the EM projected changes emerge

as well in these projections for PF and PI.

Contrary to the patterns of change for Pmean, the pat-

terns of the ensemble mean-projected changes for precip-

itation variability (Figs. 9, 10m–p) depict the clearest

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6 (Analogous to Fig. 3). SCEN ensemble spread (shaded; with

the gray dots blurring the areas where the signal-to-noise ratio is

below 1 in the case of Tmean and Pmean, and below 0.2, i.e. 20 %, in

the case of Tsdev and Psdev) and the difference with the CTRL

ensemble spread (SCEN minus CTRL; contours) for Tmean (first

row), Tsdev (second row), Pmean (third row) and Psdev (fourth row).

Each column, from left to right, represents the winter, spring, summer

and autumn seasons. Units: K for temperature, and mm/month for

precipitation
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signals in the winter season. These signals are over-

whelmingly positive (30 mm/month, 70 %) with small

discrepancies among the ensemble members. Thus, if

Pmean is not projected to change severely but Psdev is

clearly projected to increase, the conclusion arising is that

the winter precipitation is projected to be more irregular in

the future (i.e. dry winters followed by wet winters and

vice versa). The EM change signals for Psdev in the rest of

seasons are not statistically significant and the associated

spread (20 % in spring, 40 % in autumn and 60 % in

summer; with disagreement in the sign of the change in the

great majority of cases) prevents from extracting clear

conclusions.

This assessment further reveals the great sensitivity of

the IP to future climate changes, yet highlighting the cru-

cial role played by the model physics in the regional

climate change projections supporting that statement. So

much so that the reported spreads are of the same order as

those obtained in multi-model ensembles (Table 2). In

Table 2 the ensemble mean-projected changes and the

associated spread after averaging for the whole IP for mean

temperature and precipitation in the winter and summer

seasons can be directly compared with those reported in

Deque et al. (2007) based on a multi-model ensemble of

similar projections for the same area and considering the

same periods and emission scenario. Note that in the multi-

model ensemble there is a mix of domain configurations

and resolutions, nesting strategies, dynamic cores and

physical configurations, all these factors contributing to the

ensemble spread, while in our multi-physics single-model

ensemble the spread is only attributable to the physical

configuration of the regional model. Hence, the similar

Fig. 7 As Fig. 4 but for the SCEN ensemble
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magnitude of the spreads obtained in both cases suggests

that a large part of the multi-model spread could derive

from the fact that the different models employ different

physics.

6.2 Leading parameterized processes

This Section focuses on the leading parameterized pro-

cesses for the projected changes. Previous Sections dealt

with the LPs in the simulation of the climatology of the

present or future periods, showing a great agreement in

both cases except for Tsdev. However, Fig. 12 shows that

the LPs for the future projections change. The unques-

tionable decisive role played by the PBL scheme for the

simulation of the Tmean patterns in both present and future

periods is dwarfed for the Tmean projections, while the

negligible role of the MIC scheme pointed out in the pre-

vious Sections prevails now over the water mass areas

(where, however, small spread appears) and everywhere in

autumn (Fig. 12a–d). Changes in the LPs for the spread in

DPmean compared to the LPs for the spread in Pmean are

also observed. The CML scheme gains importance off-

shore, while in summer, inland, we now obtain a mixture of

LPs in contrast with the clear signals of the previous

assessments (Fig. 12i–l). The mixture remains in the case

of DPsdev, but also depicting a different picture than

before (Fig. 12m–p). Therefore, although some parame-

terized processes might not seem to be relevant when

simulating the climatologies of a given period, they largely

influence the result of future projections.

These changes of the LPs further implies that the order

observed in Figs. 5, 8a, c, d disappears now when com-

paring the CTRL spatially averaged climatologies to the

spatially averaged projected changes (Fig. 13a, c, d). In

other words, there is no relationship between present-per-

iod biases and future projections within our ensemble.

Therefore, although the warmest (for instance) configura-

tions in the present period are still the warmest configu-

rations in the future period, they are not those projecting

the largest warming, likely because of the partial cancel-

lation of errors when subtracting future minus present cli-

matologies [the reader is here referred to an interesting

dissertation about errors propagation and cancellation by

Liang et al. (2008)]. However, given the important spreads

accompanying the change signals, the cancellation of errors

works only partially, mainly contributing to the change in

the LPs aforementioned and to the disorder of Fig. 13a, c,

d, being not enough to cancel the spread.

A different picture arises again in the case of DTsdev,

which hence deserves a more detailed description. First we

observe that the LPs for DTsdev (Fig. 12e–h) do resemble

those for the simulated Tsdev in the present period

(Fig. 4e–h). Second, that the magnitude of the projected

changes depends on the simulated Tsdev in the present

period, i.e. the larger Tsdev in the present period is, the

smaller DTsdev is (Fig. 13b). Both features were actually

expected since small spreads appeared in the SCEN

ensemble regarding Tsdev, with all the simulations given

similar results. Therefore, (1) discrepancies in the change

signals derive from the discrepancies in the simulated

Tsdev in the present period rather than from the discrep-

ancies in the simulated Tsdev in the future period, and (2)

the LPs for the spread in DTsdev are the LPs for the spread

in the simulated Tsdev in the present period.

As discussed above, a possible explanation underlying

this latter feature could be that the extremely dry condi-

tions (in terms of soil moisture) dominating in the future

scenario and constituting a constant boundary condition in

terms of temperature variability, would force all the sim-

ulations to provide similar values of Tsdev in the SCEN

ensemble, leaving them no space to develop distinct cli-

matologies. The results in Jerez et al. (2012a) could indi-

cate that the soil moisture availability acts as an upper

limiting factor for the temperature variability over very dry

soils (as occurring in the SCEN simulations). On the con-

trary, the soil moisture regime in the present period oscil-

lating between wet and dry conditions allows for more

freedom, namely spread, since depending on how the

various physical parameterizations influence the simulation

of the soil moisture content and handle its contribution, the

result would vary dramatically. It is known that the role of

the soil moisture is most important in summer, when the

local circulation gains relevance in comparison to the

(a) (b)

(c) (d)

Fig. 8 As Fig. 5 but comparing CTRL and SCEN simulations
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large-scale advective phenomena in the IP (Jerez et al.

2010). Hence, the most important spreads in DTsdev

appear in the summer season (Fig. 12e–h), when, more-

over, the LPs for the spread in both Tsdev and Pmean (the

main source of soil moisture) in the present period are very

coincident (Fig. 4g, k). Furthermore, it was previously

mentioned that the disagreement in DTXsdev for the

summer season among the various experiments is larger

than in DTNsdev, and the larger influence of the soil

moisture on the simulation of TX than of TN is also known

(Jerez et al. 2012a). These features, although not strongly

conclusive, reflect the plausibility of the proposed

explanation.

More straightforward and expectable from previous works

(Jerez et al. 2012a), soil moisture was found to underlay also

regarding the obtained results forDTmean. The reasoning is as

follows. The drier the soil is, the warmer the near-surface air

temperature is, at least in the southern half of the IP in summer

(Jerez et al. 2010, 2012a). In our ensemble both features also

concur: the driest and warmest simulations coincide within

both present and future periods along the ensemble (not

shown), and are the same in both periods (Fig. 8a; not shown

regarding soil moisture). Hence, the larger the projected

depletion in soil moisture is, the higher the projected warming

should be. This relationship is effectively observed in our

experiments. Further, no proportionality has been found

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 9 Ensemble mean (EM) projected changes (SCEN minus CTRL

climatologies; shaded) and the corresponding ensemble spread (ES)

(contours) for Tmean (first row), Tsdev (second row), Pmean (third
row) and Psdev (fourth row). Changes (from the EM) are displayed

only if they are statistically significant at the 95 % confidence level.

Each column, from left to right, represents the winter, spring, summer

and autumn seasons. The black dots denote disagreement in the

change sign between the various ensemble members. Units: K for

temperature, and mm/month for precipitation
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between the soil moisture content in the present period and the

projected depletion of soil moisture, as no proportionality was

found between present-day biases in mean temperature and the

projected warming (Fig. 13a). Thus, these results reassert the

close relationship between soil moisture and near-surface air

temperature already established in the above referred studies.

7 Summary and conclusions

This work provides an assessment of the role of the model

physics for regional climate change projections as a

continuation of the previous work by Jerez et al. (2012b)

highlighting the role of the model physics for regional

present-day climate simulations. It reports on a multi-

physics single-model ensemble of 30-year long simulations

for the Iberian Peninsula (IP), a region that has been

identified as a hot-spot area regarding climate change

(Giorgi 2006), spanning both, a control (CTRL) reference

period (1970–1999) and a future A2-scenario (SCEN)

period (2070–2099). All the simulations were identically

performed with a climate version of the mesoscale model

MM5, just varying the physical options for modeling the

planetary boundary layer (PBL), cumulus (CML) and

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10 Ensemble mean (EM) projected changes expressed in per-

centage with respect to the CTRL climatologies (i.e. [SCEN-CTRL/

CTRL]�100) (shaded) and the corresponding ensemble spread (ES)

obtained when changes are computed in percentage for each ensemble

member (contours). Units: %. However, in the case of DTmean (first
row) the EM projected change is given in K (as in Fig. 9) and the ES is

given in percentage with respect to the ensemble mean projected change

(i.e. ½ES=EM� � 100). Changes (from the EM) are displayed only if they

are statistically significant at the 95 % confidence level. Each column,

from left to right, represents the winter, spring, summer and autumn

seasons. The black dots denote disagreement in the change sign between

the various ensemble members
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microphysic (MIC) processes. Two options, among those

offered by MM5, were considered in each case, resulting in

an eight-member ensemble of CTRL simulations, SCEN

simulations, and, thereby, climate change projections (i.e.

SCEN minus CTRL). As in Jerez et al. (2012b), the anal-

ysis mainly focuses on mean values and standard devia-

tions of the 2-m temperature (T) and precipitation

(P) seasonal series; and uses typical estimates in the

framework of ensembles (e.g. Deque et al. 2007; Jacob

et al. 2007), such as the ensemble mean (EM) and the

ensemble spread (ES).

The simulations were driven by the ECHAM5-Run1

global simulation. First, we provided a validation of this

global database for the concrete purpose of simulating the

IP climate at regional scales by comparison of the CTRL

simulations with analogous hincasted (HNDC) simulations

(Jerez et al. 2012b). Obtained GCM-induced errors mainly

involve cold bias and underestimation of the interannual

variability of the temperature series, and overprediction/

underprediction of the heavy/light rainfall, yet providing an

acceptable frame for the purpose of this study.

The comparison between the CTRL and the HNDC

simulations also reveals that there are many areas showing

both large biases and large spreads. This overlap suggests

(1) the ability of the parameterized processes to modify the

synoptic circulation, and (2) the dependence of the per-

formance of the various parameterization schemes on the

synoptic forcing. With respect to this latter, it has been

explicitly shown that the ES patterns are notably different

when comparing the CTRL and the HNDC ensembles or

the CTRL and the SCEN ensembles. In particular, there is

an overall intensification of the spreads under the future

scenario.

Regardless of the driving conditions used, some

invariant behaviors within the three ensembles (HNDC,

CTRL and SCEN) have been identified. The so-called

leading parameterized processes (LPs) for each variable,

site and season are almost always the same. The PBL is the

LP for simulating Tmean as the change of the PBL scheme

contributes most to the ES in comparison to the changes of

either the CML or the MIC scheme within our experi-

mental design. As well, the CML is the LP mainly for

simulating Pmean in the summer season. Although in other

cases, the patterns displaying the LPs are quite mixed, such

a mixture persists also similarly in the three ensembles.

Furthermore, focusing on the individual ensemble mem-

bers instead of on the averaged performance of the various

schemes, we also obtain that the warmest (for instance)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 Ensemble mean (EM) projected changes (SCEN minus

CTRL climatologies; shaded) and the corresponding ensemble spread

(ES) (contours) for frequency (PF, first row) and intensity (PI, second
row) of the precipitation events. Changes (from the EM) are displayed

only if they are statistically significant at the 95 % confidence level.

Each column, from left to right, represents the winter, spring, summer

and autumn seasons. The black dots denote disagreement in the

change sign between the various ensemble members. Units: % for PF,

and mm/day for PI

Table 2 Ensemble mean-projected changes (EM) and associated

spread (ES) after averaging for the whole IP (land points) for mean

temperature (T) and precipitation (P) in winter (DJF) and summer

(JJA). MS denotes the multi-model spread reported in Deque et al

(2007) for the same area and considering the same periods and

emission scenario. Units: K for T and mm/month for P

DTmean DJF DTmean JJA DPmean DJF DPmean JJA

EM 3.0 4.6 -7.8 -5.6

ES 1.0 1.8 9.2 3.7

MS 1.7 3.5 0.9 20.1
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configurations in the HNDC ensemble are still the warmest

in the CTRL and the SCEN ensembles. This holds also for

the rainiest configurations or those simulating the highest

values of Psdev.

However, there is an overall exception regarding Tsdev:

spreads diminish in the future scenario, the LPs change

from one ensemble to another (i.e. from CTRL to SCEN),

and there is not a persistent order among the various

ensemble members. This indicates that the processes con-

trolling the simulated Tsdev in the present climate become

irrelevant in the future, when all the simulations converge

within a small range. An open hypothesis exposed in the

text, recalling the results of Seneviratne et al. (2006), Jerez

et al. (2010, 2012a), invokes the role of the soil moisture as

the controlling factor under the present conditions and the

limiting factor under the future scenario.

The EM future projections roughly agree with previous

reports (Perez et al. 2010; Gomez-Navarro et al. 2010;

Jerez et al. 2012a), although they seem somewhat conser-

vative especially for mean temperature. Temperature and

temperature variability are projected to increase (up to 6 K

and 70 %, respectively). Precipitation is projected to

decrease (by up to 40 %), mainly due to the decrease in the

frequency of the rainy days (while an overall increase in

the intensity of the precipitation in those rainy days is

projected), although some (quite uncertain) positive signals

Fig. 12 Leading parameterized processes (LPs) for the simulated

DTmean (first row), DTsdev (second row), DPmean (third row) and

DPsdev (fourth row). The color indicate the LP: PBL (green), CML

(blue) or MIC (orange). The intensity of the color represents the

percentage of the mean ensemble spread (MES) attributed to the LP
(units: %). The gray dots blur the areas where the ES expressed in

percentage (as in Fig. 10) is below 20 %. Each column, from left to

right, represents the winter, spring, summer and autumn seasons
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are found for small coastal areas of the eastern and

southern IP. Precipitation variability is projected to

increase (up to 70 %), pointing to qualitative changes in

the precipitation regime towards more irregular and intense

seasonal precipitation.

Large spreads accompany these EM signals of change.

Spreads appear much more in the summer season, when

they represent up to 50 % of the ensemble mean-projected

change for mean temperature, up to 80 % in the case of

mean precipitation, and above 100 % in the case of tem-

perature and precipitation variability. They even involve

disagreement between the ensemble members in the sign of

the change except for mean temperature. The magnitude of

these spreads is of the same order as the magnitude of the

spreads obtained in multi-model ensembles (Deque et al.

2007), where not only the parameterization schemes but

also a mixture of domain configurations, nesting strategies,

resolutions, dynamic cores, etc. contributes to the obtained

differences between the ensemble members. This may be

an argument for stating that a large part of the inter-model

spreads are related to the different physical parameteriza-

tions employed by the various models.

Finally, it has been shown that the LPs for simulating

the climatology of a given period are not the same as the

LPs when projecting future changes. While some processes

could deserve little attention in the former case (at least the

way in which they are modeled), their influence grows in

the latter case, and vice versa. Hence, the cancellation of

errors (Liang et al. 2008) works, although only partially

(otherwise no spreads would appear in the ensemble of

climate change projections), as it is further demonstrated

by the fact that there is no proportionality between the

climatologies in the present period and the projected

changes (i.e. the warmest configurations are not those

projecting the largest warming, for instance). However, the

physical configurations reproducing the highest values of

Tsdev in the present period do project the lowest increases

(even decreases) of Tsdev for the future, i.e. all the simu-

lations disagreeing under the present conditions tend, in the

future, to the same aforementioned ’limit’.

These results deepen our knowledge about the key role

of the parameterization schemes, particularly within

regional climate models and for climate change applica-

tions. We feel that at the current state-of-the-science and in

view of the results of works such as Fernandez et al.

(2007), Argüeso et al. (2011), Jerez et al. (2012b) the

reported spreads could be considered as a matter of

uncertainty in the mean signals of change displayed here.

Hence, further efforts to better understand and model the

related sub-grid processes and their interactions with the

large-scale phenomena are strongly encouraged.
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Deque M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B,

Jacob D, Kjellstrm E, Castro MD, van den Hurk B (2007) An

intercomparison of regional climate simulations for Europe:

assessing uncertainties in model projections. Clim Change

81:53–70

Dudhia J (1989) Numerical study of convection observed during the

winter monsoon experiment using a mesoscale two-dimensional

model. J Atmos Sci 46(20):3077–3107

(a) (b)

(c) (d)

Fig. 13 As Figs. 5 and 8 but comparing CTRL simulations and

changes (i.e. CTRL versus SCEN minus CTRL)

S. Jerez et al.

123



Evans JP (2008) Changes in water vapor transport and the production

of precipitation in the eastern fertile crescent as a result of global

warming. J Hydrometeorol 9(6):1390–1401

Evans JP (2010) Global warming impact on the dominant precipi-

tation processes in the Middle East. Theoret Appl Climatol

99(3–4):389–402

Evans JP, Smith RB, Oglesby RJ (2004) Middle East climate

simulation and dominant precipitation processes. Int J Climatol

24(13):1671–1694

Evans JP, Ekström M, Ji F (2012) Evaluating the performance of a

WRF physics ensemble over South-East Australia. Clim Dyn.

doi:10.1007/s00382-011-1244-5

Fernandez J, Montavez JP, Saenz J, Gonzalez-Rouco JF, Zorita E

(2007) Sensitivity of the MM5 mesoscale model to physical

parameterizations for regional climate studies: annual cycle.

J Geophys Res 112:D04,101

Font-Tullot I (2000) Climatologı́a de España y Portugal. Ed

Universidad de Salamanca

Galos B, Lorenz P, Jacob D (2007) Will dry events occur more often

in Hungary in the future? Environ Res Lett 2(3):034,006

Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the

regional climate model version 3 over the maritime continent

using different cumulus parameterization and land surface

schemes. J Clim 25(2):638–656

Giorgi F (2006) Climate change hot-spots. Geophys Res Lett

33:L08,707

Giorgi F, Bi X (2000) A study of internal variability of a regional

climate model. J Geophys Res 105(D24):29503–29529

Gomez-Navarro JJ, Montavez JP, Jimenez-Guerrero P, Jerez S,

Garcia-Valero JA, Gonzalez-Rouco JF (2010) Warming patterns

in regional climate change projections over the Iberian Penin-

sula. Meteorol Z 19(3):275–285

Gomez-Navarro JJ, Montavez JP, Jerez S, Jimenez-Guerrero P,

Lorente-Plazas R, Gonzalez-Rouco JF, Zorita E (2011) A

regional simulation over the Iberian Peninsula for the last

millenium. Clim Past 7(2):451–472

Gomez-Navarro JJ, Montavez JP, Jimenez-Guerrero P, Jerez S,

Lorente-Plazas R, Gonzalez-Rouco JF, Zorita E (2012) Internal

and external variability in regional simulations of the Iberian

Peninsula climate over the last millennium. Clim Past 8:25–36

Grell GA (1993) Prognostic evaluation of assumptions used by

cumulus parameterizations. Mon Weather Rev 121(3):764–787

Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-

generation Penn State/NCAR Mesoscale Model (MM5). NCAR

Tech Note 398?STR, Natl Cent for Atmos Res, Boulder, CO

Han Z, Hiromasa U, An J (2008) Evaluation and intercomparison of

meteorological predictions by five MM5-PBL parameterizations

in combination with three land-surface models. Atmos Environ

42(2):233–249

Haugen JE, Iversen T (2008) Response in extremes of daily

precipitation and wind from a downscaled multi-model ensemble

of anthropogenic global climate change scenarios. Tellus A

60(3):411–426

Herrera S, Fita L, Fernandez J, Gutierrez JM (2010) Evaluation of the

mean and extreme precipitation regimes from the ENSEMBLES

regional climate multimodel simulations over Spain. J Geophys

Res 115:D21

Hong SY, Pan HL (1996) Nonlocal Boundary Layer vertical diffusion in

a medium-range forecast model. Mon Weat Rev 124:2322–2339

IPCC (2007) Summary for policymakers. In: Solomon S, Qin D,

Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller

HL (eds) Climate change 2007: the physical science basis.

Contribution of working group I to the fourth assessment report

of the intergovernmental panel on climate change, Cambridge

University Press, Cambridge, UK

Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M,

Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B,

Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van

denHurk B (2007) An inter-comparison of regional climate

models for Europe: model performance in present-day climate.

Clim Change 81:31–52

Janjic ZI (1994) The step-mountain eta coordinate model: further

developments of the convection, viscous sublayer, and turbu-

lence closure schemes. Mon Weather Rev 122(5):927–945

Jerez S, Montavez JP, Gimenez D (2009) Optimizing the execution of

a parallel meteorology simulation code. IEEE international

symposium on parallel and distributed processing (Rome, 2009)

pp 1–6

Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez-Guerrero P,

Jimenez J, Gonzalez-Rouco JF (2010) Temperature sensitivity to

the land-surface model in MM5 climate simulations over the

Iberian Peninsula. Meteorol Z 19(4):363–374

Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez PA, Jimenez-

Guerrero P, Lorente-Plazas R, Gonzalez-Rouco JF (2012a) The

role of the land-surface model for climate change projections

over the Iberian Peninsula. J Geophys Res 117:D01,109

Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ,

Lorente-Plazas R, Zorita E (2012b) A multi-physics ensemble of

present-day climate regional simulations over the Iberian

Peninsula. Clim Dyn. doi:10.1007/s00382-012-1539-1

Joshi M, Hawkins E, Sutton R, Lowe J, Frame D (2011) Projections

of when temperature change will exceed 2 C above pre-industrial

levels. Nature Clim Change 1(8):407–412

Jung G, Kunstmann H (2007) High-resolution regional climate

modeling for the Volta region of West Africa. J Geophys Res

(Atmospheres) 112(11):D23,108

Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining

plume model and its application in convective parameterization.

J Atmos Sci 47(23):2784–2802

Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino

M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull

Am Meteorol Soc 83:1631–1643

Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on

simulated hurricane intensity and precipitation: sensitivity to the

choice of climate model and convective parameterization. J Clim

17(18):3477–3495

Koo GS, Boo KO, Kwon WT (2009) Projection of temperature over

Korea using an MM5 regional climate simulation. Clim Res

40(2–3):241–248

Leander R, Buishand TA (2007) Resampling of regional climate

model output for the simulation of extreme river flows. J Hydrol

332(3–4):487–496

Leung LR, Gustafson WI (2005) Potential regional climate change

and implications to US air quality. Geophys Res Lett 32:L16,711

Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008)

Regional climate models downscaling analysis of general

circulation models present climate biases propagation into future

change projections. Geophys Res Lett 35(8):L08,709

Lo JCF, Yang ZL, Pielke RA (2008) Assessment of three dynamical

climate downscaling methods using the Weather Research and

Forecasting (WRF) model. J Geophys Res 113:D09,112

Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997)

Radiative transfer for inhomogeneous atmospheres: RRTM, a

validated correlated-k model for the longwave. J Geophys Res

102:16663–16682

Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S,

Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL,

Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L,

Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M,

Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z

A multi-physics ensemble of regional climate change

123

http://dx.doi.org/10.1007/s00382-011-1244-5
http://dx.doi.org/10.1007/s00382-012-1539-1


(2000) IPCC special report on emissions scenarios, Cambridge

University Press, Cambridge

Perez FF, Boscolo R, Blade I, Cacho I, Castro-Diez Y, Gomis D,

Samperiz G, Miguez-Macho G, Rodriguez-Fonseca B, Rodri-

guez-Puebla C, et al. (2010) Clima en España: pasado, presente

y futuro. Informe de Evaluacion del Cambio Climatico Regional

Ratnam JV, Kumar KK (2005) Sensitivity of the simulated monsoons

of 1987 and 1988 to convective parameterization schemes in

MM5. J Clim 18(14):2724–2743

Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting

of supercooled liquid water in winter storms using the MM5

mesoscale model. Quart J R Meteorol Soc 124(548):1071–1107
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