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Abstract This work assesses the influence of the model

physics in present-day regional climate simulations. It is

based on a multi-phyiscs ensemble of 30-year long MM5

hindcasted simulations performed over a complex and

climatically heterogeneous domain as the Iberian Penin-

sula. The ensemble consists of eight members that results

from combining different parametrization schemes for

modeling the Planetary Boundary Layer, the cumulus and

the microphysics processes. The analysis is made at the

seasonal time scale and focuses on mean values and

interannual variability of temperature and precipitation.

The objectives are (1) to evaluate and characterize differ-

ences among the simulations attributable to changes in the

physical options of the regional model, and (2) to identify

the most suitable parametrization schemes and understand

the underlying mechanisms causing that some schemes

perform better than others. The results confirm the para-

mount importance of the model physics, showing that the

spread among the various simulations is of comparable

magnitude to the spread obtained in similar multi-model

ensembles. This suggests that most of the spread obtained

in multi-model ensembles could be attributable to the dif-

ferent physical configurations employed in the various

models. Second, we obtain that no single ensemble mem-

ber outperforms the others in every situation. Nevertheless,

some particular schemes display a better performance. On

the one hand, the non-local MRF PBL scheme reduces the

cold bias of the simulations throughout the year compared

to the local Eta model. The reason is that the former sim-

ulates deeper mixing layers. On the other hand, the Grell

parametrization scheme for cumulus produces smaller

amount of precipitation in the summer season compared to

the more complex Kain-Fritsch scheme by reducing the

overestimation in the simulated frequency of the convec-

tive precipitation events. Consequently, the interannual

variability of precipitation (temperature) diminishes (increa-

ses), which implies a better agreement with the observations in

both cases. Although these features improve in general the

accuracy of the simulations, controversial nuances are also

highlighted.

Keywords Parameterization schemes �
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1 Introduction

Regional Climate Models (RCMs) have become an

extensively used tool in climate research thanks to the fast
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growth of computational power, free access to the source

codes, and their multiple applications, which include cli-

mate change projections (Gao and Giorgi 2008; Koo et al.

2009; Gomez-Navarro et al. 2010), air quality studies

(Leung and Gustafson 2005; Forkel and Knoche 2006;

Jimenez-Guerrero et al. 2011) and the evaluation of the

renewable energy resources (Frank and Landberg 1997;

Pan et al. 2004; Pryor et al. 2005) among many others.

The main purpose of RCMs is to obtain climate infor-

mation at a high resolution by dynamically downscaling

coarser databases used as driving conditions at the

boundaries of the domains, mainly from General Circula-

tion Models (GCMs). This comes at the expense of limiting

the model domain size, i.e. by focusing over a limited area.

The higher spatial resolution of RCMs allows a more

detailed representation of land-sea contrasts, vegetation

cover and topography, as well as a more detailed simula-

tion of ’small-scale’ physical processes. Consequently,

their use leads to a better representation of mesoscale

atmospheric circulations while preserving the large scale

features of the driving conditions (Rummukainen 2010).

The reliance placed on RCM simulations is rooted on

two very different factors. On the one hand, the need of

high resolution, quality and comprehensive climate infor-

mation over long periods, which, unfortunately, can not be

supplied by direct observations or field measurements. On

the other hand, the robustness of the RCMs performance,

their good skill to reproduce observed climatologies, and

their added value in comparison to GCMs simulations,

which has been widely reported (e.g. Castro et al. 2005;

Gomez-Navarro et al. 2011). However, many aspects cause

considerable uncertainty affecting regional simulations still

exists. For instance, different RCMs produce different

results even when driven by the same boundary conditions.

Therefore, sensitivity studies and ensemble approaches are

necessary (and commonly conducted) to further improve

our understanding of the behavior of regional climate

models and ultimately reduce this uncertainty.

Stensrud (2007) states that the most important components

of any numerical weather prediction model are the parame-

trization schemes representing the subgrid-scale physical

processes. Indeed, many studies deal with the sensitivity of

meteorological forecasts to the physical parametrizations

employed within RCMs (e.g. Grubii et al. 2005; Rakesh

et al. 2007; Han et al. 2008). However, their role in regional

simulations at climatic scales is still poorly assessed. While

multi-model ensembles of regional climate simulations have

been widely performed and investigated in an attempt to

evaluate and overcome intermodel-related uncertainties or

discrepancies (e.g. Jacob et al. 2007; Herrera et al. 2010),

fewer studies deal with similar multi-physics ensembles

aimed at elucidating associated intramodel discrepancies

(e.g. Fernandez et al. 2007; Argüeso et al. 2011).

Therefore, the aim of this work is to conduct a com-

parative numerical modeling study of limited area climate

simulations which have been performed with different

physical set-ups within the same RCM. We use the

mesoscale model MM5 (Grell et al. 1994), whose perfor-

mance for reproducing local circulations has been pro-

fusely tested (Kanamitsu et al. 2002; Leung et al. 2003;

Solman et al. 2008; Gomez-Navarro et al. 2011). In addi-

tion, MM5 has a large spectrum of physics options

allowing a single-model multi-physics ensemble aimed at

identifying the effects produced by changes in the physical

set-up of the model, as pursued here. In particular, we focus

on the simulated climatologies of temperature and precip-

itation, obtained by using different physical configurations

of the same RCM, over the Iberian Peninsula (IP).

It should be stressed that the performance of a given

parametrization scheme is usually dependent on the area,

variable and application of interest. However, whereas

parametrization schemes are developed and tested over

(for) concrete areas (applications), they are later used for

other areas or other applications on the basis of the evi-

dences in the previous cases. In this sense, where and how

we focus and drive our study is not a minus point and the

results presented here may help in the design of new

modeling systems focused on the IP climate.

The IP is located at the Northern Hemisphere mid-lati-

tudes, surrounded by the Atlantic ocean to the west and by

the Mediterranean Sea to the east. It has a complex orog-

raphy. Though it is a small region, it exhibits an hetero-

geneous climate ranging from the Mediterranean climate,

characterized by warm and dry summers with convective-

predominant precipitation and cold and humid winters with

large-scale induced precipitation, to milder winters and

wetter summers toward the north and west (Font-Tullot

2000). These characteristics pose a strict test for climate

models, making, therefore, the IP a suitable scenario for

this kind of sensitivity studies, even beyond the particular

interest as a single-case study.

This study is closely preceded by the work of Fernandez

et al. (2007), who already dealt with a multi-physics

ensemble of 5-year long MM5 regional simulations

focusing on the reproduction of annual cycles of temper-

ature and precipitation over the IP. The results showed a

great seasonal and regional dependence of the most suit-

able physical set-ups of the model, with no single param-

etrization combination being optimal for all cases. Here we

(1) extend the analysis to the evaluation of not only annual

cycles but also interannual variability of the temperature

and precipitation series, taking advantage of the length of

our simulations that span three decades of the recent past,

(2) propose an objective methodology to identify the most

influential parametrization schemes and thereby the best (in

case) and, from there, the best (or most advisable) physical
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configuration of the model for reproducing the IP climate,

and (3) have a closer look at the underlying mechanisms

that make some of the parametrization schemes included in

this study more suitable than others. This may provide

useful information for improving the assumptions made in

the formulation of different parametrization schemes (Kain

2004). Furthermore, we have employed a more sophisti-

cated land-surface model than the one used by Fernandez

et al. (2007) that largely reduces some of the biases

detected previously (Jerez et al. 2010) which may masked

interesting features.

This paper is structured as follows. Section 2 describes

the simulations and the parametrization schemes included

in the multi-physics ensemble. Section 3 describes the

methodology and the observational database used as a

reference for the validation of the simulated fields. Sections

4, 5, 6 and 7 present the results. Discussion and conclusions

are provided in Sect. 8.

2 Experimental design

An ensemble of hindcasted simulations (HNDC) spanning

the period 1970–1999 has been carried out using a climate

version of the mesoscale model MM5 (Grell et al. 1994)

which has been already used in other studies (e.g. Gomez-

Navarro et al. 2010; Jerez et al. 2010, 2012; Gomez-Nav-

arro et al. 2011; Rodrigo et al. 2012). The multi-physics

ensemble consists of eight members that result from

combining two planetary boundary layer (PBL) schemes,

two cumulus (CML) schemes and two microphysics (MIC)

schemes (Table 1). The processes represented by these

schemes and how they work are described in detail below.

For each case, the two schemes were chosen following two

criteria: (1) both should have proven skill and should be,

therefore, commonly used, and (2) both should follow,

however, very different physical approaches. The remain-

der of the physical set-up of MM5 is common in all the

experiments and includes the RRTM longwave radiation

scheme (Mlawer et al. 1997) and the Noah Land-Surface

Model (Chen and Dudhia 2001).

The spatial configuration of the model consists of two

two-way nested domains with resolutions of 90 km in the

outer domain (D1) and 30 km in the inner domain (D2)

(Fig. 1). This latter domain covers the whole IP, even after

removing the blending area (five cells from the borders).

The outer domain is extended to the east in order to capture

the strong influence that the Mediterranean Sea exerts over

the IP (Font-Tullot 2000). Vertically, 24 sigma-levels up to

100 hPa, unevenly spaced (more closely spaced near the

surface), were included.

The initial and boundary conditions (updated every 6 h)

were obtained from the ERA40 reanalysis (Uppala et al.

2005). It should be acknowledged that, since RCMs are

limited to the quality of the driving conditions, the evalu-

ation of the ability of a RCM to reproduce observed cli-

mates must be carried out by providing reanalysis data, as a

surrogate of reality, to the model. Otherwise, it would be

too difficult to discern whether the obtained biases are

mainly consequence of weaknesses in the RCM perfor-

mance or in the boundary conditions. The simulations were

performed by splitting the whole period (30 years) into

subperiods of 5-years length that were then integrated by

continuous runs with a spin-up period of 4 months in order

to prevent noisy outputs during the model stabilization

(Giorgi and Bi 2000) and errors from a possible poor ini-

tialization of, specially, soil variables (Christensen 1999).

Since all simulations were identically performed and

their set-ups only differ in the physical configuration of the

model, differences among them are directly attributable to

the choice of the physical parametrizations. However, as

we focus only on the inner domain, and given that the

physical configuration of the model is the same for both

domains and thus different climatologies are developed in

the outer domain in the various simulations, it should be

acknowledged that, actually, the boundary conditions for

the inner domain do also differ among the various simu-

lations. Differences in the inner domain are therefore due

to both: (1) the different physical parametrization in the

inner domain, and (2) the different physical parametriza-

tion in the outer domain leading to different conditions for

the nesting with the inner domain. This latter may amplify

the differences observed in the inner domain, while pre-

serving the very nature of them. On the other hand, it

should also be noted that the domains configuration could

not be optimal for the driven conditions used as the ERA40

resolution (1.125� 9 1.125�) is not so far from the D1

resolution. However, for climate change experiments (dri-

ven by coarser GCM runs), as we will be assessing in a

future work, this configuration is quite appropriate as it is

coherent with the typical GCM resolutions and optimizes

the computational cost of the simulations in comparison

Table 1 Combination of the PBL, CML and MIC schemes employed

in each simulation of the multi-physics ensemble

Sim. PBL CML MIC

1 Eta GR SI

2 MRF GR SI

3 Eta KF SI

4 MRF KF SI

5 Eta GR MP

6 MRF GR MP

7 Eta KF MP

8 MRF KF MP
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with the use of only one but bigger domain at the pursued

resolution (i.e. 30 km in our case). These experiments

consist of present and future period simulations and, as a

first step, it is a mandatory to validate the skill of the model

under the GCM-simulated present conditions. For accom-

plishing this task, we will follow the common procedure of

contrasting them with analogous hindcasted simulations

(Galos et al. 2007; Gomez-Navarro et al. 2011), that are

the ones presented here. This comparison would lack of

fairness if the simulations compared were performed with

different model set-ups. Therefore, we employed this

domains configuration also in the hindcasted simulations

presented here.

2.1 PBL schemes

The evolution of the PBL is primarily governed by surface

heat, moisture and momentum fluxes. The PBL schemes

handle the latent and sensible heat fluxes into the atmo-

sphere, the frictional effects with the surface and the strong

subgrid-scale mixing which takes place in the lower levels

because of these processes. Once the wind, moisture and

temperature are known at a point within the PBL, simple

bulk PBL models (i.e. half-order closure models) diagnose

their values at all heights without including effects of

processes internal to the PBL, such as turbulent eddies. The

more complex first-order closure schemes already include

turbulent fluxes that flow downgradient. If these fluxes are

proportional to the local vertical gradient of the quantity

being transferred, the scheme is called ‘‘local‘‘; if they are a

function of predicted quantities at several heights through

the depth of the PBL, the scheme is called ‘‘non-local‘‘.

Non-local schemes treat turbulence as a superposition of

eddies of various sizes. Local schemes have been extended

to higher order closure schemes. These higher order closure

schemes, in addition to prognostic equations for the mean

quantities, retain prognostic equations for turbulent fluxes.

For further details, the reader is referred to Stensrud

(2007).

In this work we have used the MRF and Eta PBL

schemes. MRF (Hong and Pan 1996) is a first-order non-

local scheme, in which the countergradient transport of

temperature and moisture under unstable conditions are

added to local gradient transport. Under stable conditions,

the local approach is employed for all prognostic variables.

Eta (Janjic 1994) is a 1.5-order local closure scheme that

computes eddy diffusivity based on local vertical wind

shear, static stability, turbulence length scale, and turbulent

kinetic energy, which is also predicted by a prognostic

equation.

Based on MM5 simulations, some authors showed that

the non-local first-order closure PBL schemes that take into

account large eddies, such as the MRF scheme, lead to

warmer, dryer, better mixed and higher boundary layers,

which are closer to observations than those simulated by

the more sophisticated 1.5-order local closure schemes

available, such as the Eta model, which tend to be too cool,

moist and shallow over mid-latitudes semi-arid regions (de

Arellano et al. 2001; Bright and Mullen 2002; Zhang and

Zheng 2004; Berg and Zhong 2005; Han et al. 2008).

2.2 CML schemes

Cumulus parametrization schemes determine how con-

vection is triggered and how convection modifies moisture

and temperature in the atmospheric column and interacts

with grid-scale dynamics using the grid-scale information

of the host model. This is, CML parametrizations account

Fig. 1 Domains configuration used in the MM5 simulations. Shaded colors depict the orography (height above the sea level, in m) seen by the

model at the corresponding spatial resolutions: 30 km in D2, and 90 km in D1. Water masses (sea and ocean) are plotted in light blue
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for unresolved cloud formation. Therefore, they play an

important role in influencing the dynamic and thermody-

namic state of the atmosphere. Basic features that differen-

tiate CML schemes are the closure assumptions upon which

they are based, and the trigger mechanisms that activate them.

The Kain-Fritsch (KF) and the Grell (GR) schemes are

used in this work. KF (Kain and Fritsch 1990) explicitly

represents the effects of moist updrafts and downdrafts and

the detraiment and subsequent evaporation/sublimation of

cloud condensate into the downdraft. Convection is initi-

ated when there is net column instability and sufficient

grid-resolved upward vertical velocity to overcome any

negative buoyancy in the lower atmospheric layers. The

CAPE on the resolved scale governs the quantity of the

convective mass flux required to consume the grid-resolved

CAPE over a convective time step. The closure assumption

is that convection is proportional to the available buoyant

energy. GR (Kain and Fritsch 1990) is a simpler one-

dimensional mass flux scheme of a single updraft-down-

draft couplet. Unlike in the KF scheme, there is no direct

mixing between the updraft and downdraft or with the

surrounding atmosphere, except at the top and bottom of

the clouds. Thus, the convective mass fluxes are constant

with height. Closure is achieved by assuming that the rate

at which instability is produced at the resolved grid scale is

equal to the rate at which instability is removed at the sub-

grid cloud scale. The scheme removes all the available

buoyant energy immediately, and converts all liquid water

into precipitation, leaving no portion for cloud water. The

GR trigger function depends on the rate of destabilization

based on the change in the available buoyant energy due to

large scale or subgrid effects. In contrast to KF, GR does

not need a rising motion to be activated, and a weak

advection of wet air, for instance, is able to trigger it.

Nevertheless, while KF remains active until the complete

CAPE is removed, GR checks for its activation at every

time step. Thus, once KF is activated, it may lead to longer-

lasting clouds and more moist convection.

Within MM5, Wang and Seaman (1997); Ferretti et al.

(2000); Gochis et al. (2002); Yang and Tung (2003); Liang

et al. (2004); Mapes et al. (2004); Ratnam and Kumar

(2005) agree that schemes with closure assumption based

on convective available potential energy (CAPE), such as

the KF scheme, perform slightly more consistently, while

simpler cumulus parametrizations, such as the GR scheme,

tend to underestimate moisture, temperature and convec-

tive precipitation. Nevertheless, they also point out that the

latter shows a higher accuracy in specific cases, mainly

during light rainfall events. Moreover, other authors report

the better performance of the GR scheme for most of the

cases assessed (Kerkhoven et al. 2006; Rakesh et al. 2007).

Therefore, it is still unclear if any single cumulus param-

etrization scheme consistently outperforms all others.

2.3 MIC schemes

Cloud formation is accomplished primarily by upward

vertical air movement in cloud-free regions, leading to

patches of air that have relative humidity in excess of

100 %. Once the relative humidity is above 100 %, cloud

droplets can form, producing clouds. The MIC parametri-

zation scheme accounts for the microphysical processes

that govern the formation, growth and dissipation of cloud

particles, i.e. water condensation, freezing, sublimation,

evaporation, melting and deposition. Many aspects of these

processes are still not completely understood. However, it

is well known that they play an important role in how moist

convection develops and evolves, as well as in the radiative

energy budget of the earth-atmosphere system through both

their albedo and greenhouse effects.

The schemes selected in this work are the Simple Ice

model (SI) and the Mixed Phase scheme (MP). SI (Dudhia

1989) does not model mixed phase processes and does not

allow for supercooled water. Snow and cloud ice are

assumed to melt immediately at the melting point (above

0 �C), and vice versa, liquid water or vapor water condenses

or sublimates immediately below that freezing threshold.

The prognostic variables are the mass content of precipi-

tation water and the cloud water. The more complex MP

scheme (Reisner et al. 1998) does allow for supercooled

water in liquid phase below 0 �C and ice does not imme-

diately melt above 0 �C. It has mass contents for liquid

water cloud, ice cloud, rain, snow, graupel and ice number

concentrations as prognostic variables.

Previous works showed that the scheme for rainwater

and cloud water with simple ice, with no mixed-phase

processes, tends to simulate more snow at the expense of

rainfall compared with more complex schemes, such as the

MP scheme, which seem to perform slightly better (Kotroni

and Lagouvardos 2001; Grubii et al. 2005). However, the

inclusion of supercooled water by the latter reduces

sometimes the amount of precipitation, leading to an

overall worse performance (Colle and Mass 2000). In

general, the representation of cloud microphysical pro-

cesses in MM5 simulations is more controversial (Chiriaco

et al. 2006) but less influential (McFarquhar et al. 2006)

than other parametrized processes.

3 Methodology

The analysis focuses on seasonal averages of 2-m tem-

perature (T) and precipitation (P). Both mean values and

interannual variability are assessed, the latter defined as the

standard deviation (sdev) of the detrended series. Three

typical skill scores are used to quantify the ability of the

simulations to reproduce the observed climatological
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patterns of these magnitudes: the spatial correlation index

(r), the Mean Absolute Error (MAE) and the Mean Bias

Error (MBE). r allows to evaluate the spatial distribution of

the simulated magnitudes independently of biases, MAE

gives an unambiguous measure of the average error, and

MBE provides information on the average error sign and,

together with MAE, on the homogeneity of the error sign

across the domain (Willmott and Matsuura 2005). In

addition, the temporal correlation between the simulated

and the observed seasonal series (q) is also explored.

The observational E-OBS database (Haylock et al.

2008) is used as a reference to evaluate the accuracy of the

simulations in order to (1) elucidate deficiencies and (2)

establish possible better configurations or more accurate

schemes. E-OBS is a reconstruction of the evolution of the

near surface air temperature and precipitation for the recent

past (spanning from 1950 to 2006). It is the result of an

interpolation of observational data to a high resolution

regular grid (0.25 9 0.25) that homogeneously covers

Europe over land grid points. E-OBS was initiated by the

European Climate Support Network (ECSN) and supported

by the Network of European Meteorological Services

(EUMETNET). It was originally developed as part of

the EU-FP6 project ENSEMBLES (http://ensembles-eu.

metoffice.com), and is now maintained and elaborated as

part of the EURO4M project (EU-FP7). We have used the

third version of this data set. Although some problems

regarding precipitation have been reported (Hofstra et al.

2009), we use this database because it is commonly used

for model validation purposes in large projects such as

ENSEMBLES (van der Linden and Mitchell 2009), and the

daily temporal resolution of this data base allows the study

of extreme events, which will be assessed in future studies

complementing this work.

For the comparison of the simulations and the E-OBS

database, a spatial interpolation is performed from the

MM5 grid onto the observational E-OBS grid (therefore,

the evaluation is constrained to land points). Such inter-

polation consists of distance-weighted means involving

those points of the MM5 grid that fall inside a circle cen-

tered at every point of the observational grid with a radius

equal to twice the minimum distance between the corre-

sponding E-OBS grid point and the closest MM5 grid

point.

In order to characterize the mean model skill and the

intramodel discrepancies, we use the following estimates:

• The ensemble mean (EM), defined as:

EM ¼ 1

N

XN

i¼1

mi ð1Þ

where mi denotes a given magnitude (Tmean, Tsdev,

Pmean or Pdsdev in our case) as simulated by the i-th

ensemble member, and N denotes the number of ensemble

members (8 in our case).

• The ensemble spread (ES), defined as the maximum

difference (in absolute value) in a given magnitude

between any pair of simulations of the ensemble:

ES ¼ maxfjmi � mjjg 8i; j i; j ¼ 1; . . .;N ð2Þ

In order to asses the relative importance of the ES, the

signal-to-noise ratio, defined as the ratio between the ES

and the standard deviation of the EM series, will be used

along this work. Higher values of this ratio indicate that it

is more unlikely that the internal variability could mask the

influence of the physical configuration of the model. In the

case of mean values, we impose a somehow subjective

threshold of one (which means that the ES exceeds one

standard deviation of the EM series). In the case of the

standard deviation of the series (sdev), this signal-to-noise

ratio actually depicts the ES in percentage with respect to

the EM sdev values and, as such, it will be considered.

Finally, we propose a methodology aimed at isolating

the effect of changing a particular parametrization scheme

and, thereby, identifying the most accurate parametrization

schemes for the case studies. This methodology is based on

the analysis of subgroups of simulations within the

ensemble (called subensembles), which are obtained by

considering the experiments sharing the same PBL or CML

or MIC scheme. Thus, these subensembles consist of four

members. For example, the Eta-subensemble is composed

of the four simulations performed with the Eta PBL scheme

(i.e. the simulations 1, 3, 5 and 7 in Table 1). The suben-

semble mean is analogous to the ensemble mean but

includes just these four members. Then, the mean ability of

the model when using the Eta PBL scheme is assessed

through the Eta-subensemble mean (note that, in this way,

it is expected that the contribution of the interaction

between the Eta PBL scheme and the various CML and

MIC schemes was filtered out by averaging). The differ-

ences between the mean performances of the Eta-suben-

semble and the MRF-subensemble will display an amount

that can be interpreted as the ’spread’ attributable to the

change of the PBL scheme. Hence, it is here denoted as the

PBLspread (Eq. 3). Identical procedures are applied for the

CML and MIC schemes.

PBLspread ¼
1

4

X

i¼2;4;6;8

mi �
1

4

X

j¼1;3;5;7

mj

�����

����� ð3Þ

We define the mean ensemble spread (MES) as the sum

of the PBLspread, the CMLspread and the MICspread (Eq. 4):

MES ¼ PBLspread þ CMLspread þMICspread ð4Þ

This provides a framework for evaluating the relative

importance of changing either the PBL, the CML or the
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MIC scheme, since the contribution of the PBLspread,

following with the former example, to the MES can be

expressed as a percentage (through Eq. 5) and compared to

contributions of the CMLspread and the MICspread computed

in the same way. In this context, we will say that the PBL is

the leading parametrized process (LP) if the PBLspread has

the greatest contribution to the MES.

PBLspread

MES
� 100 ð5Þ

4 Ensemble mean and ensemble spread

In this section we evaluate the mean ability of the ensemble

to reproduce the observed climatology by focusing on the

EM, as well as how this mean skill varies across the

ensemble members by focusing on the ES. The analysis is

based on Figs. 2, 4 depicting the EM values and its bias

errors with respect to the E-OBS database, and Figs. 3, 5,

which depict the ES for all the variables/statistics. Table 2

summarizes the skill scores of the ensemble mean (EM), as

well as the magnitude of their variations among the

ensemble members (i.e. the ES in these skill scores). The

spread in MBE can be directly compared to the intermodel

spread (called MS) obtained in a multi-model ensemble of

similar hindcasts reported in Jacob et al. (2007).

4.1 Temperature

4.1.1 Mean values

The model is able to accurately reproduce the spatial dis-

tribution of the mean temperature (Tmean) patterns, being

r around 0.95 without much variations between the

ensemble members (Table 2). Nevertheless, large errors

and spreads appear regarding other estimators. Tmean is

overall underestimated (Fig. 2, first row), with the largest

biases appearing in the warmest south-western areas in

winter (about -2 �C) while in the north-east in summer (up

to -3 �C); being intermediate in spring and autumn. In

spatial average, MAE (MBE) is around or slightly above 1

(-1) (Table 2). In spite of the large spread in Tmean

within the multi-physics ensemble (Fig. 3, first row), par-

ticularly large in winter and summer (up to 3 �C) and well

above one standard deviation of the EM series (i.e. the

signal-to-noise ratio is amply above the unit in most of the

cases), the observations remain in most of the cases below

the simulated range (see dots in Fig. 3, first row). Such a

large spread involves variations over 2 �C in the MBE.

Beyond details, there are two features worth stressing.

On the one hand, that the ES in the MBE in the multi-

physics single-model ensemble is similar to the multi-

model spread MS (Table 2). On the other hand, that it is

appreciable some similarity in the spatial distribution of

both the bias patterns and the ES patterns. These two facts

would indicate that an appropriate physical configuration

of the models could largely reduce biases and still improve

the spatial distribution of the simulated patterns.

4.1.2 Interannual variability

The ability of the simulations to reproduce the spatial

distribution of the Tsdev patterns is generally poor (r,

between the EM patterns and the observations, is below 0.5

in winter and spring and just slightly above 0.6 in summer

and autumn) and largely experiment-dependent, as the ES

in r is over 0.3 (Table 2). Spatially, errors are as follows.

Where the observations show the lowest (highest) values of

Tsdev, which is in winter (spring), the EM mostly over-

estimates (underestimates) it, up to 0.4 (0.5) �C, which

represents around the 50 % of the observed values. In

summer and autumn errors are smaller but still important,

being Tsdev underestimated up to 0.2–0.3 �C (up to 30 %).

Again, a large spread (around 20 % of the EM values

except for summer, when it grows above 60 %) appears

over some of the areas showing the largest errors. Thus,

although nothing similar to a linear relationship between

bias and spread can be established, the particularly

important role of the physical configuration of the model

over the areas worst represented can be anew recognized.

Again, variations in the MBE are similar to the MS values

(Table 2).

In spite of the errors in the simulated magnitude of the

variability of the temperature series, there is a fairly good

agreement between the temporal evolution of the simulated

and the observed temperature series, with q being above

0.8 almost everywhere (Fig. 2, third row), and above 0.9

when it is computed for the spatially averaged series of the

EM (Table 2). Moreover, variations of q among the

ensemble members are not important but for the summer

season, when, however, the ES in q is up to 0.3–0.4 in the

southern half of the IP (Fig. 3, third row).

4.2 Precipitation

4.2.1 Mean values

As for mean temperature, the agreement between simulated

and observed patterns of the mean amount of precipitation

(Pmean) is quite satisfactory, with r around 0.75–0.8 in all

seasons. However, a larger ES in r appears in this case, up

to 0.15–0.2 in summer and autumn (Table 2). The main

biases in the simulated Pmean are up to 50 mm/month,

representing up to 50 % of the observed values, and briefly

consist of underestimation (overestimation) in the wettest

(driest) areas/seasons, e.g. the western IP in winter, spring
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and autumn (the whole IP in summer). It is worth stressing

that the overall mixture of positive and negative biases

throughout the entire domain leads to notable differences

between the absolute values of the MAE and the MBE

(Table 2), highlighting that the analysis of spatial averages

of precipitation must be considered with great care in the

case of the IP.

The ES in Pmean (Fig. 5, first row) is very localized in

northern areas in winter, spring and autumn, where it

represents about 30 % of the EM values, while it is likely

negligible in the rest of the IP in comparison to the natural

variability of the precipitation series (i.e. the signal-to-

noise ratio is below one). However, in summer, the signal-

to-noise ratio is clearly larger than one everywhere, with

the ES depicting an orographic pattern with maxima over

the main mountain systems (*40 mm/month, which is

*100 % of the EM values) (Fig. 5c). This orographic

distribution of the spread resembles the appearance of the

corresponding bias pattern (Fig. 4c), although the obser-

vations still remain above the range of simulated values.

Albeit the values of the spread in Pmean are large, the ES

in the MBE is in this case about the half than the MS values

even in summer (Table 2). This feature further highlights

the strong dependence of precipitation on the large-scale

advective phenomena and on the synoptic configuration

(Koster and Suarez 1995), which is actually expected to

show a wider spectrum in a multi-model ensemble of

simulations than in this multi-physics single-model

ensemble of simulations, since the latter are all performed

with the same dynamic modeling system (Sanchez-Gomez

et al. 2009).

Finally, the large spread in Pmean over the water mass

areas (up to 100 % of the EM mean precipitation over the

Mediterranean Sea) is noteworthy. This feature does not

appear in the ES patterns of temperature, likely because the

sea surface temperature, provided by ERA40, is the same

in all the simulations. This boundary condition is not as

determinant for precipitation as for temperature, which

would explain this asymmetry.

4.2.2 Interannual variability

The model skill regarding the spatial distribution of the

Psdev patterns shows a marked seasonality, with r being

Fig. 2 Mean ability of the ensemble of hindcasts to reproduce the

observed climatology: ensemble mean (EM, contours) and EM-bias

(shaded colors) for Tmean (first row) and Tsdev (second row). Units

in �C. Third row depicts the temporal correlation (q) between the

simulated series (from the EM) and their analogs from the E-OBS

database. Each column represents one season: winter (DJF), spring

(MAM), summer (JJA) and autumn (SON)
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0.8 and showing a small spread in winter, while dropping

below 0.5 with increased spread (up to 0.3 in summer) in

the rest of seasons (Table 2). The EM patterns of errors,

which are up to 40 mm/month or up to 50 % of the

observed values (Fig. 4, second row), resemble the EM

patterns of errors in Pmean. Therefore, the precipitation

variability is underestimated in the same regions where the

precipitation amount is underestimated, and vice versa.

Indeed, the EM patterns for both mean precipitation and

precipitation variability have similar distributions, i.e., the

larger the amount of precipitation is, the larger the inter-

annual variability of the precipitation series is. Moreover,

the ES patterns for both magnitudes, Pmean and Psdev, exhibit

also similar structures, although in percentage terms the ES is

larger in Psdev than in Pmean, up to 60 % in every season and

even above 100 % in summer. However, the ES for the MBE

index is again just half of the MS (Table 2).

Regarding the temporal correlation of the simulated

series with observations, lower skill and larger spread are

found for precipitation than for temperature. Albeit q is

over 0.8 if we compare the spatially averaged series of the

EM with the corresponding observational series, except for

the summer season when q = 0.5 (Table 2), there are wide

areas where q drops below 0.5 in all seasons (Fig. 4, third

row). The largest ES (over 0.5) appears in summer in the

northern half of the IP, being also quite considerable in

spring and autumn (Fig. 5, third row). In general, a large

ES appears in region where the skill of the EM is poor,

which again suggests that large improvements may be

achieved with a proper physical configuration of the

regional model.

5 A single best physical configuration?

The large spread obtained (often over the areas where

simulations and observations do not show a good agree-

ment) highlights the major role played by the physical

configuration of the regional model for accurately simu-

lating temperature and precipitation over the IP. The

question immediately arising is whether a single ensemble

member consistently outperforms the others. In this section

Fig. 3 Ensemble spread (ES) in the simulated Tmean (first row, units

in �C), Tsdev (second row, units in �C by shaded colors; contours

depict the ES in percentage with respect to the EM values) and in q
(third row). Black dots mean that the observed values are out of the

range of simulated values, except in the third row where they mean

that q remains below 0.8 in all the simulations. Gray dots in the first

row mean that the signal-to-noise ratio is below the unit. Each column

represents one season: winter (DJF), spring (MAM), summer (JJA)

and autumn (SON)
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we perform a very simple analysis aimed at detecting the

most accurate ensemble member for each site and season,

and for each variable and statistic. Figures 6, 7 depict

which ensemble member is closest to the observations in

terms of the lowest error or highest q in each case (from

now on we will call it ‘‘the best member’’ of the ensemble)

through a color code assigning one color to each simulation

of the ensemble (the reader should refer to Table 1 for

identifying the simulations). The dots in these plots indi-

cate that the EM reproduces the observation better than any

single ensemble member.

First, the mixture of colors within any of these patterns

reveals that which of the ensemble members is closest to

the observations depends on the region. Second, these

patterns do not look similar for any of the magnitudes

throughout the year, neither for any season throughout the

various magnitudes. Therefore, there also exists a depen-

dence on the season and on the magnitude of interest.

Hence, this analysis prevents to pin down a best single

ensemble member for all the cases. Moreover, the EM only

stands out regarding the temporal evolution of the tem-

perature series, but in the rest of the cases there is always

one experiment that performs better than the EM.

This analysis has additionally revealed a worth men-

tioning feature. If we consider in each case (each site,

season, variable and statistic) the value given by the best

member and compare it with the observations (thus

obtaining the patterns of the minimum errors within the

ensemble; not shown), the resulting error patterns have the

same spatial distribution as those corresponding to the EM

shown in Figs. 2, 4, although they are obviously less

intense. This indicates that the location of the areas

showing the largest disagreement between the simulations

and the observations (such as the eastern IP in summer

regarding Tmean and the north-western IP in winter

regarding Pmean, for instance) are hardly dependent of the

physical configuration of the model. However, we found

that these areas are largely sensitive to the choice of the

parametrization schemes since they display a large model

spread. The strong heterogeneity of these regions could be

a plausible explanation for both features. On the one hand,

a large ES over heterogeneous areas is actually expected.

On the other hand, in heterogeneous regions, single mea-

surements are not representative of the surrounding areas

(i.e. of the area at the resolution employed in the regional

model). Therefore, at the model resolution, it can not be

expected that the simulations can capture a measured sin-

gularity. In our opinion, this does not imply a poor per-

formance of the model but rather an inherent limitation of

the simulations due to the spatial resolution employed.

Fig. 4 As Fig. 2 for precipitation. Units in mm/month instead of �C
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6 Insights from the subensemble methodology

Based on the simple approach presented before, one should

either reject the existence of a single best physical configu-

ration of the model for all the case studies or, better, propose

alternative methodologies aimed at providing effective

insights regarding the role of the various parametrization

schemes. In this section we apply an alternative method

focused not on the individual ensemble members but on the

performance of the various parametrization schemes (see

Sect. 3). First (Sect. 6.1), we identify the most influential

parametrized processes. Second (Sect. 6.2), we identify the

most accurate parametrization schemes, considering the IP as

a whole and taking into account the relative importance of the

physical configuration of the model across the domain.

6.1 Most influential parametrization schemes

Figures 8, 9 depict the mean ensemble spread (MES, with

contours), the leading parametrized processes (LP, by the

color) and the contribution to the MES of the scheme-

induced spread associated to the identified LP (by the

intensity of the color shading).

First, it is worth noting that the MES patterns resemble

the ES patterns shown in Figs. 3, 5. This feature further

supports our analysis by confirming that the spread obtained in

the ensemble is not due to singularities arising from a single

experiment, but to the systematic differences between the

various experiments that remains even after averaging.

Regarding the influence of each parametrized process,

some clear signals can be recognized in Figs. 8, 9, although

most of these patterns still look quite heterogeneous. The

PBLspread greatly prevails over the CMLspread and the

MICspread in the case of Tmean everywhere and every

season. On the other hand, the CMLspread dominates in the

case of Pmean (inland), Psdev and Tsdev in summer. The

MICspread shows the greatest contribution to the MES in

sparse occasions mainly related to the temperature vari-

ability. Do these signals indicate a better performance of

one of the two schemes considered in each case?

6.2 Most accurate parametrization schemes

Motivated by the clear signals provided in the above

evaluation regarding the ’leading parametrized processes’,

below we investigate the existence of most accurate/

appropriate parametrization schemes for the cases studies.

Figure 10 (left) illustrates the percentage of land points

within the domain where each scheme performs better than

its counterpart, i.e. MRF vs. Eta, GR vs. KF, and SI vs. MP.

Fig. 5 As Fig. 3 for precipitation. Units in mm/month instead of �C
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The analysis is based on the subensemble approach, i.e. by

comparing the corresponding subensemble means with the

observations. Such a percentage does not remain always

above the 50 %-line for any of the parametrization options.

The darker bars (corresponding to the MRF PBL scheme,

the GR CML scheme and the SI MIC scheme in each plot)

seem to prevail over the gray ones, but it is difficult to

discern any conclusive result. Instead, these plots further

highlight that the accuracy of the schemes depends on the

variable, statistic, site and season.

However, the aforementioned results do not take into

account that there are areas with small spread and areas

with large spread, where, thus, which parametrization

scheme performs best should be prioritized. So far, we

have just counted the number of grid points where each

parametrization scheme performs better than the other

option considered without pondering how much, i.e.

regardless the value of the spread. However, from a holistic

perspective, the use of a particular parametrization option

could result advantageous, although eventually it is not (i.e.

if it is not in the cases exhibiting small differences between

the two options). Actually, Fig. 10 (right) reveals a clearer

predominance of one schemes over the others when dif-

ferences between the various subensemble means are

considered only if they exceed some subjective thresholds.

These are that the signal-to-noise ratio (as described in Sect. 3)

computed for the particular scheme-induced spreads must be

higher than 1 (0.1) in the case of mean (sdev) values, and that,

in the case of the temporal correlations, the difference between

the two subensemble means must be larger than 0.1. This

procedure filters the cases where the role of the schemes is less

relevant focusing on those where the schemes performances

differ most. This way, Fig. 10b shows that the MRF PBL

scheme overwhelmingly outperforms the Eta model, Fig. 10d

shows that the GR CML scheme moderately outperforms the

KF model, and Fig. 10f shows that the SI MIC scheme slightly

outperforms the MP model.

In order to deepen into the identification of better perfor-

mances of the individual schemes, we quantify the differences

in the skill scores (r, MAE and q) of the corresponding su-

bensemble means. Table 3 shows the values of the skill scores

corresponding to each subensemble mean. Based on these

values, we identify improvements of at least 10 % by imposing

systematically the following thresholds (where the subscripts

b and w refer to the best and the worst value respectively):

• The best spatial correlation (rb) is over 0.5 and satisfies

rb - rw [ rw/10.

• The lowest mean absolute error (MAEb) holds that
MAEw�MAEb

MAEw
[ MAEw=10 in the case of Tmean, and

Table 2 Skill scores (r, MAE, MBE and q) of the ensemble mean (EM) for each variable/statistic and each season

Var. Stat. What DJF MAM JJA SON

r MAE MBE r MAE MBE r MAE MBE r MAE MBE

T Mean EM 0.95 1.11 -0.98 0.95 1.10 -0.95 0.93 1.44 -1.14 0.96 1.35 -1.29

ES 0.01 1.62 2.23 0.00 1.24 1.64 0.02 0.96 1.23 0.00 1.59 1.84

MS NA NA 2.50 NA NA NA NA NA 3.25 NA NA NA

Sdev EM 0.32 0.12 0.05 0.37 0.25 -0.23 0.61 0.09 -0.03 0.64 0.10 -0.09

ES 0.37 0.14 0.12 0.24 0.13 0.16 0.30 0.05 0.26 0.15 0.28 0.17

MS NA NA 0.15 NA NA NA NA NA 0.36 NA NA NA

q EM 0.93 0.91 0.91 0.93

ES 0.04 0.13 0.20 0.10

MS NA NA NA NA

P Mean EM 0.81 18.8 -7.0 0.76 11.6 -5.6 0.78 15.5 13.0 0.74 15.8 -11.9

ES 0.04 1.6 8.8 0.07 2.8 9.3 0.15 12.5 15.6 0.18 5.9 4.6

MS NA NA 31.8 NA NA NA NA NA 31.8 NA NA NA

Sdev EM 0.81 9.5 -5.3 0.41 4.6 -2.3 0.45 4.9 0.3 0.39 8.7 -6.9

ES 0.06 2.5 7.8 0.15 0.7 2.6 0.28 1.3 1.3 0.13 2.5 2.7

MS NA NA 16.5 NA NA NA NA NA 2.4 NA NA NA

q EM 0.93 0.85 0.50 0.83

ES 0.13 0.15 0.43 0.10

MS NA NA NA NA

r, MAE and MBE are computed only for the mean and sdev statistics (for q it makes no sense). q is computed for the spatially averaged EM series.

ES denotes the ensemble spread computed as the difference between the highest and the lowest value of the corresponding skill score obtained

across the ensemble members. MS denotes the multi-model spread (computed as the ES from data provided in Jacob et al. (2007) for the IP when

available; NA non-available). Units for MAE and MBE are �C when referred to temperature and mm/month when referred to precipitation
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MAEw - MAEb [ 10 if MAEb \ 50 %, or MAEw -

MAEb [ 30 if MAEb [ 50 % (expressing MAE in

percentage with respect to the observed values at each

grid point), in the cases of Tsdev, Pmean and Psdev.

• The best temporal correlation (qb) is over 0.5 and

satisfies qb - qw [qw/10. Here q is computed for the

spatially averaged series.

Based on these subjective criteria, this procedure allows us

to identify improvements of at least 10 % in some of the skill

scores. These improvements are mainly related to the use of the

MRF PBL scheme and the GR CML scheme. The former

largely reduces biases in the Tmean patterns in every season

(MAE is reduced around 1 �C *50 %). The latter improves

the representation of Tsdev (r rises from 0.54 to 0.64), Pmean

(r increases from 0.68 to 0.82 and MAE is reduced to a half) and

Psdev (r increases from 0.27 to 0.51 and MAE is reduced by

10 %) in the summer season (see bold numbers in Table 3).

Regarding the MIC scheme, SI performs slightly better than

MP as regards Tmean. Moreover, none of these schemes per-

forms worse in any case (at least, not exceeding the above

thresholds). Thus, we have clearly identified three schemes that

provide higher confidence when simulating the climatology of

the IP as a whole from a multi-variable/statistical point of view.

It is worth mentioning that the combination of these three

schemes is, in addition, the most efficient computationally.

7 Underlying mechanisms

The determination of the particularities of the schemes pro-

voking the largest differences in the skill of the various simu-

lations is beyond the scope of this study. Nonetheless, in this

Section we try to physically explain the different responses. We

focus on the performance of the PBL schemes when simulating

Tmean, and on the performance of the CML schemes when

simulating Tsdev, Pmean and Psdev (since these cases showed

the largest signals in the previous assessment).

7.1 Comparison of the PBL schemes

The MRF PBL scheme always provides higher tempera-

tures than the Eta model, which substantially reduces MAE

and MBE over the entire domain and strongly drives the

Fig. 6 Best ensemble member in reproducing the observed clima-

tology. Each color represents one of the simulations composing the

ensemble (see Table 1 for identifying them). Based on this colors

code, these plots depict the ensemble member with the smallest error

in reproducing Tmean (first row) and Tsdev (second row), and with

the best performance in the analysis of temporal correlations (third
row). Dots mean that the ensemble mean outperforms all the

ensemble members
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mean ensemble spread patterns for Tmean. This feature

must be linked to the fact that the non-local closure

approach followed in the MRF scheme generates better

mixed PBLs than the local Eta scheme. Figure 11 depicts

the vertical profiles of the potential temperature in the

lower eight atmospheric half-sigma levels obtained from

the eight simulations, averaged over the whole IP. Note

that biases at the first level are not included in this Figure in

order to facilitate the comparison of the vertical gradients

between the various experiments. The experiments per-

formed with the MRF scheme show a sharper vertical

gradient (i.e. with higher slope) than the experiments per-

formed with the Eta scheme. Thus, the MRF scheme leads

to develop deeper boundary layers. This well-known

behavior (Wang and Seaman 1997; Ratnam and Kumar

2005) increases the potential temperature near the surface

by reducing differences between the upper (warmer) and

the lower (colder) levels.

Indeed, the use of the MRF PBL scheme enhances both

maximum and minimum temperatures in comparison to the

Eta PBL scheme (contours in Fig. 12, first and second

rows). However, this is not an improvement in both cases.

Meanwhile maximum temperature is systematically

underestimated and, therefore, the use of the MRF PBL

scheme improves the skill of the simulations reducing the

MBE up to 50 % in comparison with the results for the Eta

PBL scheme (Fig. 12a–d), minimum temperature is, on the

contrary, systematically overestimated. In this latter case,

the use of the Eta PBL scheme reduces MBE similarly up to

50 % in comparison with the results for the MRF PBL

scheme (Fig. 12e–h). Therefore, while MRF is better at

reproducing maximum temperatures, the local approach of

the Eta PBL scheme is likely better for simulating the

minima.

Nonetheless, it should be stressed that the above finding

is mainly due to systematic differences among the two

subensembles, i.e. one scheme is systematically warmer

than the other. Note that the contours in Fig. 12a–d roughly

resemble the contours in Fig. 12e–h. Actually, the analysis

of the mean daily temperature range (DTR) depicted in

Fig. 12i–l reveals no notable differences between both

subensemble means (just eventually up to 1 �C). DTR is

similarly underestimated throughout the year using either

the MRF or the Eta PBL scheme (MBE is about 4-5 �C,

negative, in all cases). This result suggests that both PBL

schemes should be considered equally valid if the purpose

is to evaluate deviations after removing the mean system-

atic warm or cold biases.

Fig. 7 As Fig. 6 for precipitation
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7.2 Comparison of the CML schemes

The GR CML scheme simulates, in the summer season,

less precipitation, lower precipitation variability and larger

temperature variability than the KF scheme (Fig. 13a, d ,g).

In all these cases, the differences between the performance

of both CML schemes strongly contribute to the ensemble

spread and render the GR scheme more suitable than the

KF scheme, as shown above. In this section we delve into

these differences.

Figure 13a–c confirms that the differences in mean

precipitation mainly arise from the differences in the

simulated convective precipitation. GR simulates lower

convective precipitation, which improves the skill of the

simulations with respect to KF since the model tends to

overpredict the summertime precipitation over the IP. This

finding is in agreement with Fernandez et al. (2007),

although other authors have reported a poor performance of

the GR scheme for other domains and situations (Wang and

Seaman 1997; Ratnam and Kumar 2005). The reasons

making the GR simulations drier than the KF simulations

could be (1) the fact that the KF scheme strongly tends to

handle precipitation at the subgrid scale for cases associ-

ated with raising motion (Ferretti et al. 2000), which are

common during summertime over the IP, and (2) the fact

that, once the KF scheme is triggered, it remains activated

for longer than the GR scheme (Gochis et al. 2002; Ratnam

and Kumar 2005). We explore both possibilities focusing

on the frequency and intensity of the precipitation events

simulated by both CML schemes. We define ’frequency’ as

the mean number of days with precipitation above 1 mm

and ’intensity’ as the mean precipitation amount in those

rainy days. Figure 14 depicts the observed values of these

diagnostics (upper panels), the errors of the GR-suben-

semble mean in reproducing them (shaded colors in bottom

panels) and the difference between the GR and the KF-

subensemble means (contours in bottom panels).

Figure 14a, b shows that the observed intensity of the

summertime rainy days grows towards the coast (up to

8 mm per rainy day on average), being softer in central

areas (2–4 mm per rainy day), while the pattern of the

observed frequency of the precipitation events displays a

meridional gradient with the smallest values in the south

(precipitation occurring 5–10 % of the summer days) and

Fig. 8 Most influential parametrized processes for the simulation of

Tmean (first row), Tsdev (second row) and the temporal evolution of

the seasonal series of T, i.e. q (third row). The color (green, blue or

orange) indicates which is the leading parametrized process (LP). The

intensity of the color represents the percentage of contribution to the

MES from either the PBLspread, the CMLspread or the MICspread (the

one being the LP). Contours depict the mean ensemble spread (MES),

in �C in the first and second rows
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the highest in the north (precipitation in the 20–30 % of the

days). Regarding the simulations (Fig. 14c, d), although the

intensity is overall underestimated, with the error pattern

(Fig. 14c) resembling the observed pattern (Fig. 14a), i.e

the errors grow towards the coast up to 3 mm (about 30 %

of the observed values), the frequency is overestimated, up

to 30 % in north-eastern mountain systems. These numbers

correspond to the GR-subensemble mean, but both inten-

sity underestimation and frequency overestimation persist

in the KF simulations (see the MBE values in Fig. 14c, d).

These errors indicate that the observations show less fre-

quent but more intense precipitation events than the sim-

ulations. This kind of errors is not unique in our

simulations, and may related to the nature of the threshold

criteria for triggering convection, originally developed for

use in coarser resolutions (Gianotti et al. 2012). Therefore,

the overestimation of the mean precipitation amount indi-

cated above should be due to the overestimation of the

frequency of the precipitation events (i.e. convective pre-

cipitation is initiated too frequently) since their intensity is

actually underestimated. Indeed, the worst performance of

KF is mainly due to the higher frequency of precipitation

events simulated, while slightly reduces the dry bias

because the higher precipitation simulated in the rainy

days.

Some valuable insights can be drawn from this analysis.

First, since the frequency of the rainy days is overestimated

but their intensity is underestimated, the strongest events

may be underestimated by the simulations. Second, the

main reason making the GR scheme more suitable is that

this scheme checks for its activation at every time step of

the simulation. This reduces the overestimation of the

frequency of the rainy days causing the reported overesti-

mation of mean precipitation. However, KF is better able

than GR to reproduce the intensity of the rainy events,

while it overestimates more their frequency. This latter

feature of the KF scheme is likely due to the fact that it

remains activated for longer than GR, as commented

before.

The GR scheme outperforms the KF scheme regarding

also Psdev by simulating smaller interannual variability of

the precipitation series. According to the general behavior

of the model described in previous sections (related lower

precipitation and lower interannual variability), the fact

that GR provides a lower precipitation amount would also

explain these differences in the precipitation variability.

Fig. 9 As Fig. 8 for precipitation. Units in mm/month instead of �C regarding the MES
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This relationship is stronger for convective precipitation,

since it is less dependent on the synoptic forcing than non-

convective precipitation. In fact, Fig. 13d–f show that the

largest differences between both subensemble means in

Psdev appear effectively regarding the convective precip-

itation. Furthermore, the lower precipitation amount

simulated by GR may be closely linked to the larger tem-

perature variability also simulated by this scheme. The

absence of precipitation could eventually imply totally dry

soils provoking uneven positive anomalies of temperature

due to the intensification of the positive soil moisture-

temperature feedback (Jerez et al. 2010, 2012). Indeed,

Fig. 10 Percentage of land points where each PBL, CML or MIC

parametrization scheme outperforms the other option considered:

a and b MRF versus Eta, c and d GR versus KF, and e and f SI versus

MP. The analysis is made for each variable/statistic and every season,

based on the subsensembles approach, i.e. by comparing each

subensemble mean with the observations. Within each season, each

box corresponds (from left to right) to the assessment of Tmean,

Tsdev, q (between temperature series), Pmean, Psdev and q (between

precipitation series). Left graphs (a, c and e) are obtained considering

all the land grid points. Right graphs (b, d and f) are obtained

considering only the land grid points where the signal-to-noise ratio

computed for the particular scheme-induced spreads is above 1 (0.1)

for mean (sdev) values and, in the case of q, where the differences

between both subensemble means are above 0.1, as exposed in the

text
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Fig. 13g–i shows larger values of the CMLspread for the

variability of maximum temperatures than for the vari-

ability of minima. Since soil moisture-temperature feed-

back is stronger at daytime (Jerez et al. 2012), this would

support the former explanation.

It should be stressed that these results can be dependent

of the spatial resolution considered. For instance, it has

been shown that changes in resolution produce different

responses in precipitation depending on the selected con-

vective parametrization scheme, being the triggering cri-

teria the main contributor to the obtained differences

(Giorgi and Marinucci 1996; Gallus 1999). In addition,

finer resolutions could lead to more frequent, local and

more intense precipitation events (Soares et al. 2012a).

Table 3 Skill scores (r, MAE and q) of the subensemble means given by fixing either the PBL scheme, the CML scheme or the MIC scheme to

one of the two options considered, for each variable/statistic and every season

Var. Stat. Fixed scheme DJF MAM JJA SON

r MAE r MAE r MAE r MAE

T Mean MRF 0.95 0.70 0.95 0.71 0.94 1.06 0.96 0.87

Eta 0.95 1.75 0.95 1.61 0.92 1.91 0.96 1.93

GR 0.95 1.16 0.95 1.13 0.93 1.42 0.96 1.43

KF 0.95 1.07 0.95 1.06 0.93 1.47 0.96 1.31

SI 0.95 1.06 0.95 1.02 0.94 1.39 0.96 1.32

MP 0.95 1.17 0.95 1.17 0.93 1.50 0.96 1.40

Sdev MRF 0.48 11.5 0.29 24.8 0.57 8.9 0.60 11.7

Eta 0.13 15.8 0.43 22.3 0.62 10.7 0.66 7.8

GR 0.29 12.4 0.36 23.7 0.65 8.9 0.64 10.3

KF 0.34 14.7 0.37 23.4 0.54 11.9 0.64 8.7

SI 0.33 12.0 0.41 22.8 0.61 8.8 0.65 9.1

MP 0.30 15.2 0.31 24.4 0.59 10.0 0.62 9.9

q MRF 0.93 0.91 0.88 0.94

Eta 0.94 0.90 0.90 0.91

GR 0.93 0.90 0.92 0.94

KF 0.93 0.92 0.87 0.92

SI 0.94 0.93 0.91 0.94

MP 0.92 0.88 0.86 0.92

P Mean MRF 0.82 25.7 0.77 19.6 0.76 88.0 0.79 21.9

Eta 0.79 27.0 0.73 20.6 0.78 119.8 0.67 25.0

GR 0.81 26.5 0.75 20.6 0.82 74.6 0.74 23.8

KF 0.81 26.0 0.76 19.2 0.68 133.3 0.73 22.8

SI 0.81 25.9 0.76 19.9 0.77 95.8 0.75 22.9

MP 0.81 26.4 0.76 19.8 0.78 110.6 0.73 23.3

Sdev MRF 0.82 25.6 0.44 20.6 0.45 45.2 0.44 26.6

Eta 0.78 27.6 0.37 23.2 0.43 46.1 0.33 32.3

GR 0.80 26.3 0.42 21.3 0.51 41.8 0.43 28.5

KF 0.81 26.9 0.39 22.2 0.27 55.2 0.34 30.3

SI 0.80 26.2 0.42 21.1 0.44 44.9 0.39 29.7

MP 0.81 26.8 0.39 22.2 0.46 45.5 0.39 28.7

q MRF 0.93 0.86 0.31 0.83

Eta 0.93 0.84 0.48 0.82

GR 0.93 0.88 0.55 0.83

KF 0.93 0.81 0.24 0.82

SI 0.92 0.85 0.42 0.84

MP 0.94 0.85 0.38 0.82

r and MAE are computed only for the mean and sdev statistics (for q it makes no sense). q is computed for the spatially averaged subensemble

mean series. In the cases of Tsdev, Pmean and Psdev, MAE is computed from the values of error expressed in percentage with respect to the

observations at each grid point. For Tmean it is in �C. Bold characters indicate that values fit the criteria described in the text
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Fig. 11 Vertical profiles of

potential temperature averaged

over the whole IP from each

experiment (see legend and

Table 1) and for every season.

For each experiment, the value

at the first vertical level has

been removed from the rest of

the values at the upper levels in

order to facilitate the

comparison between the slope

of the various curves. Black
lines correspond to the

experiments performed with the

MRF PBL scheme, and gray
lines correspond to experiments

performed with the Eta PBL

scheme. The r1/2-levels are

(from bottom to top) 0.995,

0.985, 0.97, 0.945, 0.91, 0.87,

0.825 and 0.775, with

approximate heights of 35, 110,

220, 400, 670, 980, 1350 and

1760 m above the land surface)

Fig. 12 Shaded colors represent the bias errors of the MRF-

subensemble mean in reproducing mean values of daily maximum

(TX; first row) and minimum (TN; second row) temperature, and the

daily temperature range (DTR; third row). Contours depict the

difference between the MRF-subensemble mean and the Eta-

subensemble mean. All units in �C. In each panel the MBE
corresponding to both subensemble means is provided (right bottom).

Each column represents one season: winter (DJF), spring (MAM),

summer (JJA) and autumn (SON)
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However, we still believe that our results are likely

non-dependent of the resolution from a qualitative point of

view (although we acknowledge that it would have to be

specifically checked), as these qualitative responses of

convective precipitation to the model resolution are to be

expected in all cases, i.e. regardless of the parametrization

scheme considered.

8 Conclusions and remarks

This work assesses a multi-physics ensemble of present-

climate simulations over the Iberian Peninsula. The

ensemble consists of eight members that result from

combining two schemes for the PBL, two for CML and two

for the MIC processes within the same host regional model,

MM5. The assessment is aimed at elucidating the role of

the physical parametrized processes when reproducing the

observed climatology in order to deepening the knowledge

about intramodel discrepancies related to the model phys-

ics, as done (more frequently) with intermodel differences

Fig. 13 Mean ensemble spread (contours) and the difference between

the GR-subensemble mean and the KF-subensemble mean (shaded
colors) in the summertime (JJA) patterns of Pmean, RNmean

(RN is non-convective precipitation), RCmean (RC is convective

precipitation), Psdev, RNsdev, RCsdev, Tsdev, TNsdev (TN is

averaged daily minimum temperature) and TXsdev (Tx is averaged

daily maXimum temperature). Units: mm/month for precipitation

and �C for temperature

Fig. 14 Upper panels observed values of a the intensity and b the

frequency of the rainy days in the summer (JJA) season (units in mm

and percentage of rainy days respectively). Bottom panels shaded
colors represent the bias errors of the GR-subensemble mean in

reproducing those diagnostics and contours depict the difference

between the GR-subensemble mean and the KF-subensemble mean.

The MBE corresponding to both subensemble means is provided

(right bottom)
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(e.g. Jacob et al. 2007). The advantage of our experimental

design is that the identical set-up of all the ensemble

members, except for the physical configuration of the

regional model, allows us to easily identify the leading

underlying mechanisms.

The analysis focuses on seasonal averages of tempera-

ture and precipitation (mean values and interannual vari-

ability). The main characteristics of the ensemble are

quantified through the ensemble mean and the ensemble

spread. Furthermore, in order to better isolate the impact of

each physical option (i.e. PBL, CML and MIC), we also

deal with subensemble means (these subensembles are

obtained by fixing one of the parametrization schemes at

stake) and the so-called schemes-induced spreads. The

E-OBS database is used for the validation purposes and

several skill scores are considered: spatial and temporal

correlation (r and q), mean absolute error (MAE) and mean

bias error (MBE).

The purpose of this study is not to favor one paramet-

rizations over others, but rather to characterize the

responses and systematic errors for climate mesoscale

applications of these parametrization schemes. This char-

acterization is performed over a domain (the Iberian Pen-

insula) different from those used by modelers to test their

developed schemes, and thus where their applicability is

not obvious. This information will be useful for the design

of future numerical prediction systems, for a further

understanding of the parametrized processes and, hence,

for future improvements of the parametrization schemes. It

must be stressed, however, that some errors may be related

to deficiencies in the internal model components or in the

driving boundary conditions used (Herrera et al. 2010).

Moreover, errors arising from the observational database

could have masked some interesting signals (Fernandez

et al. 2007). Thus, the reported behavior of the parame-

trization schemes must be considered within the host

mesoscale model and may be dependent on both the reli-

ability of the lateral boundary forcings and the confidence

of the observational data. Despite these limitations and

assumptions, much useful information can be drawn:

• The ensemble mean acceptably reproduces the clima-

tology of the Iberian Peninsula, as characterized by

mean values and interannual variability of temperature

and precipitation, and thus the mean model skill can be

considered satisfactory bearing in mind the following

weaknesses. Mean temperature (Tmean) is systemati-

cally underestimated (Fernandez et al. 2007), but its

spatial and interannual variations are well captured.

The patterns of temperature variability (Tsdev) are,

however, quite unrealistic, and Tsdev is strongly

underestimated in the spring season. The spatial

structure of the mean precipitation (Pmean) patterns

is again quite reliable, although the simulations tend to

overpredict the areas/seasons of light rainfall and to

underpredict the heavy amounts, as found by Wang and

Seaman (1997) over the United States and Rakesh et al.

(2007) over India. Given that mean precipitation and

precipitation variability (Psdev) are closely related, the

bias patterns of both magnitudes are quite similar and

precipitation variability is underestimated (overesti-

mated) in the places where the amount of precipitation

is underestimated (overestimated). The interannual

variability of precipitation is well captured in the

winter season, but this ability decreases dramatically in

summer.

• Large variations in the model skill are found among the

ensemble members. Spreads in Tmean are up to 3 �C,

and spread in Tsdev, Pmean and Psedv amount to 50 %

of the ensemble mean values (eventually even more).

Regarding the temporal correlation of the simulated

series with the observations, the spread may be up to

0.3. Some of these spreads are of similar magnitude as

those obtained in a multi-model ensemble (Jacob et al.

2007). This suggests that a large part of the intermodel

spread could be attributed to differences in the physical

setup of the various models.

• Although a proper choice of parametrization schemes

may considerably reduce the magnitude of biases since

there are areas showing both large bias and large

spread, the spatial distribution of the largest biases does

not change much when considering each member of the

ensemble. This indicates that these areas are particu-

larly complex. This complexity, on the one hand, would

promote a wider variety in the response to the various

schemes, and thus a larger spread. On the other hand,

such complexity would prevent that single measure-

ments are representative of surrounding areas. Thus,

since the model is not able to reproduce singularities,

large biases appear.

• No single experiment always outperforms the others (as

Fernandez et al. (2007) pointed out already). Nonethe-

less, some schemes have been found to perform better

than others. We first identified that the largest spreads

are related to changes of the PBL scheme and the CML

scheme, while the change of the MIC scheme seems

less relevant. The PBL mainly affects the mean

temperature patterns throughout the year, while the

CML mainly affects the patterns of mean precipitation

and of interannual variability of temperature and

precipitation in the summer season. Bearing in mind

the regional variations regarding the most appropriate

parametrization schemes, we have found in these cases

that the use of the MRF and GR schemes (for the PBL

and cumulus modeling, respectively) provides impor-

tant benefits when considering the entire Iberian
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Peninsula. The underlying responsible mechanisms

have been investigated, which further yields some

caveats. Although these findings do not provide an

universal framework for the parametrization schemes,

they could be a helpful reference for future decisions.

They are:

– MRF produces warmer temperatures than the Eta

PBL scheme, which reduces the cold bias over the

entire domain. Such improvement may be related to

the higher and better mixed PBLs simulated by the

MRF scheme (de Arellano et al. 2001; Berg and

Zhong 2005). Actually, MRF produces warmer

values than Eta for both maximum and minimum

temperature. However, although maximum temper-

ature is underestimated, minimum temperature is

overestimated by the model, and thus the Eta model

would outperform the MRF scheme for simulating

cold extremes. Nonetheless, the PBLspread disap-

pears regarding the daily temperature range, which

indicates that both schemes should be considered

equally valid if the purpose is to evaluate deviations

after removing the systematic cold or warm biases.

– GR is drier than the KF CML scheme in the

summer season (as reported by Ferretti et al.

(2000); Gochis et al. (2002); Liang et al. (2004);

Ratnam and Kumar (2005) in other situations),

which produces larger temperature variability and

smaller precipitation variability. Differences, espe-

cially in the simulated convective precipitation,

help to reduce the overprediction of the summer

precipitation and its interannual variability over the

entire domain, and to improve the representation of

the temperature variability due to the larger

variability of the maximum temperatures with

drier soils (Jerez et al. 2010, 2012). The key is

that, contrary to the KF scheme, the GR scheme

checks at every time step whether or not the

triggering conditions are fulfilled, and this reduces

the overestimation in the number of rainy days

detected in the simulations. However, GR is less

able than KF to adequately reproduce the intensity

of the precipitation events, which is systematically

underestimated.

This study further highlights the strong dependence of

the regional model’s skill on its physical configuration

when reproducing observed climatologies. When project-

ing future climate changes, such influence could be

amplified, displaced or even canceled by compensation.

How discrepancies in present period simulations could prop-

agate and affect future climate change projections is still

uncertain (Liang et al. 2008) and, given these results, the topic

is worthy of further investigation. A accompanying second

work is devoted to evaluate the climate change patterns

obtained from analogous ensembles of control and scenario

simulations, assessing how the physics-derived discrepancies

behave and affect them.

Finally, it is in the very nature of the models that while

the averaged climate is well represented, extreme condi-

tions are not (Soares et al. 2012b). We also found this

irrespective of the model physics configuration: as MRF

reduces the underestimation of maximum temperature but

enlarges the overestimation of minimum temperature, the

daily temperature range is underestimated regardless of

the PBL scheme; as GR reduces the overestimation of the

frequency of the precipitation events but enlarges the

underestimation of their intensity, the strong precipitation

events are poorly reproduced regardless of the CML

scheme. This raises a big question for future: if the

occurrence of extreme events increases (Beniston et al.

2007) modifying the averaged climate, will models be able

to catch that? To achieve that goal, improved parametri-

zation schemes, adapted to the increasingly used high

resolutions, would be desired.
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tute of Water (IEA). Pedro Jiménez-Guerrero acknowledges the

Ramón y Cajal Programme. Sonia Jerez thanks the Portuguese Sci-

ence Foundation (FCT) for her current financial support through the

project ENAC (PTDC/AAC-CLI/103567/2008) and Ricardo M. Trigo

for his personal scientific support.

References
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