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ABSTRACT�—Ensuring trust and confidence in virtual communities�’ transactions is a 
critical issue nowadays. But even more important can become the use of robust and 
accurate trust models allowing an entity to decide which other entity to interact with. This 
paper aims to study the robustness of TACS (Trust Ant Colony System), a previously 
proposed bio-inspired P2P trust model, when applying a genetic algorithm in order to 
find the range of values of its working parameters that provides the best TACS 
performance. The optimization of those parameters has been carried out using the CHC 
genetic algorithm. Experiments seems to demonstrate that TACS can achieve high 
performance ratios due to the enhancement provided by META-TACS, and to achieve 
them for a wide range of working parameters, hence showing a remarkable robustness. 
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0B1.  INTRODUCTION 
Different research works have been done so far in order to improve security in P2P networks 

by ensuring a minimum level of confidence between every two interacting nodes. However, it is 
not definitively solved since none of the studied models has become a de facto standard in this 
field. 

Moreover, there is a wide variety of trust and reputation models depending on their scope 
(P2P, Ad-hoc, Wireless Sensor Networks, multi-agent systems, etc.), their type (trust model, 
reputation one or even both), and the technique they use (fuzzy logic, Bayesian networks, etc). 

Nevertheless, they are mainly focused on the way the trust and/or reputation values are 
computed and they do not manage neither how the node to have a transaction with is finally 
selected, nor which is the path leading to that certain node, nor how robust the model is. 

In this paper we will first review a resilient trust model for P2P networks [24, 25] where some 
nodes offer some services or goods and other ones are requesting those services. The former will 
be always looking for the best self profit, while the latter will be demanding the best services with 
respect to some quality characteristics, such as the prize or delay, for instance. 
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The main feature of our model is the use of a bio-inspired Ant Colony System (ACS) 
algorithm [1] allowing to determine the route (sequence of nodes) leading to the most trustworthy 
server offering a particular service all over the network.  

Ant Colony Optimization (ACO) [1, 2, 22, 23] is widely accepted as one of the most 
promising soft-computing algorithms when solving some kinds of optimization problems such as 
the traveling salesman problem.  

In this type of optimization algorithm ants travel along the network searching the optimum 
path fulfilling certain conditions (for instance, the optimum path leading to a node offering certain 
service). While they are traveling they leave a trace of pheromone, called , which is used to 
guide other ants (the more pheromone trace a path has, the more probability it has to be chosen).  
Finally, the path with the strongest trace of pheromone will be selected as the optimum one.  

But the main objective of this work is to propose and study the behavior of META-TACS, an 
optimizer of the working parameters of TACS via evolutionary computation. In previous work 
[24,25] TACS was proposed as a bio-inspired P2P trust model including some preliminary results. 
In the present work, a CHC (Cross generational elitist selection, Heterogeneous recombination, 
Cataclysmic mutation) genetic algorithm [26] was employed to implement META-TACS. META-
TACS allows studying the performance and the robustness of TACS against a wide range of 
values for its working parameters. One of the results of the study was that TACS remains 
obtaining good outcomes almost regardless the combination of values of its working parameters, 
which suggests that it is both resilient and easily configurable. CHC was chosen because of its 
rather small population size (since evaluating a set of parameters, that is, an individual, is 
comparatively costly) while keeping a good balance between exploration and convergence. As we 
will see later, META-TACS provided us with a bounded range of possible values for each 
parameter of TACS. The long term objective was to provide TACS with mechanisms to self-adapt 
to the current network conditions, although the results show a remarkable resilience to diverse 
typical situations. 

The rest of the paper is organized as follows: section 2 presents a set of related works in this 
area. In section 3 our model TACS is described. Then, section 4 presents a genetic algorithm 
designed to optimize TACS parameters, called META-TACS, whose experiments and results are 
described and analyzed in section 5. Finally, section 6 exposes some conclusions and future work. 

1B2. RELATED WORK 
A number of models have arisen in the field of trust and reputation recently. That is the case, 

for instance, of [3-8], where several trust and reputation models are proposed for a multi-agent 
system [9] in which agents interact (competition, coordination, cooperation...) in order to get the 
greatest self profit. In [10-16, 31], however, authors develop trust and reputation models mainly 
for P2P networks, although some of them could be used in a multi-agent system or even in an ad-
hoc network. Ad-hoc and Wireless Sensor Network trust and reputation models are exposed, for 
example, in [17-19, 32]. 

Some of these models are based on fuzzy logic in order to represent trust and reputation 
values. Others rely on Bayesian networks and a posteriori probabilities. There are also models 
based on social networks. And some others just give analytic expressions to compute trust and 
reputation.  

Among all the studied and analyzed works, we have just found two models where the bio-
inspired ant colony optimization is used. They are [20, 21], but none of them face the problem as 
we do. AntRep [20], for instance, uses the ACS in order to distribute reputation information, 
while TDTM [21] requires the existence of a Public Key Infrastructure in the network. In our 
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opinion this can become a strong restriction since not all the P2P networks will be composed of 
devices with enough capabilities to support such cryptographic infrastructure. 

All the cited models just give a trust and/or reputation value for each entity in the network, 
but any of them tells how to reach that entity. That is, any of them provide the path to follow in 
order to go to that certain node. 

Many works have been done in order to formalize trust and categorize trust models [30] but, 
as far as we know, this is one of the first papers where a trust model optimization is presented. In 
this way, we decided to use a genetic algorithm (in particular, the CHC one, given its specific GA 
features) [26, 27] since it has been proved that evolutionary computation (EC) seems an intelligent 
option when dealing with optimization problems where there is not much knowledge available 
about the search space structure while, at the same time, EC is still able to obtain high quality 
solutions. 

2B3.  TACS OVERVIEW 
TACS (Trust Ant Colony System) [24, 25] is a Trust model for P2P networks based on the 

bio-inspired algorithm ACS (Ant Colony System [1,2]) where the pheromone traces, 1,0 , 
are identified with the confidence a client requesting a certain service has on finding a trustworthy 
server through a specific route. The heuristic component 1,0  (also involved in the decision 
of which path to choose) is identified with the similarity between the service requested by the 
client and the service actually offered by a certain server. And if a server does not offer the 
requested service then  is defined as the goodness of that server acting as a relay node. 

In summary, the steps that compose this model are the following, as it is shown in Figure 1: 
1. Client C executes TACS in order to find the �“optimum'�“ server S all over the network 

offering the desired service s 
2. TACS launches the ACS algorithm and ants modify the pheromone traces of the network 
3. TACS finishes, having selected the �“optimum�” path to server S' 
4. TACS informs the client C that the �“optimum�” server found is S' 
5. Client C requests the desired service s to the server S' 

 

Figure 1. TACS Model Steps. 
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6. Server S' provides service s' to the client C 
7. Client C evaluates his satisfaction with the received service s' 
8. If client C is not satisfied with the received service s', he punishes the server S' evaporating 

the pheromone of the path that leads from C to S'. Otherwise no punishment is carried out 
At the beginning of the process all the pheromone traces are initiated according to this 

formula: 

 IniPhIniPhrIniPh 0.10.12)0(  (1) 

where 1,0IniPh  is a parameter indicating the initial pheromone value desired and 1,0~r  

is a random number within the interval 1,0 . 
While an ant builds the path leading to the most trustworthy server, it modifies the 

pheromone traces along it. This pheromone local updating is carried out through the following 
expression: 

 )1()1()1()( 1 tztt cscscs  (2) 

where )(tcs  is the pheromone value of the edge cse  (linking node c and s) at time t, 1,0  

is a constant called phi and 1z  is defined as follows: 

 )1()1(1)1(11 ttz cscs  

What implies an increase of pheromone above the previous value, but never higher than a 
100%. Moreover, with the term ))1()1(1( tt cscs  we achieve that edges with lower 
values of pheromone can recover faster (increasing more its traces) and those who have higher 
values increase themselves slower. 

Moreover, when all the ants (which number depends on the size of the network) have built a 
path, and the best of these has been chosen, an additional pheromone global updating is done 
along that selected route as follows: 

 )1()1()1()( 2 tztt cscscs  (3) 

where 1,0  is a constant called rho, and 2z  is defined as: 

 
)()1()1(1 _2 GlobalBettercscs SQttz

 

where 
)( _ globalBetterSQ

 is the quality of the best path that all the ants have found in one single 
iteration of the algorithm. Therefore now those edges with a higher value of  and  are more 
rewarded than those with lower values. Thus, both expressions (2) and (3) have been designed in 
order to establish a good balance between exploration and convergence, when searching the most 
trustworthy server. 

The quality of the path built by ant k, 1,0)( kSQ , is computed as follows: 

 kPLF
k

k
k SLength

ASQ
)(

)(  (4) 
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where 1,0kA  is the ratio of ants that have selected the same path as the ant k, )( kSLength  is 
the length of the solution kS , k  is the average pheromone of that path and 1,0PLF  is a 
constant called Path Length Factor.  

We think this is a reasonable good way of measuring the quality of a path (and the 
experiments have demonstrated it) since it takes into account three main factors: the ratio of ants 
who have chosen the same path, the average pheromone of that path and the length of the route. 
Having that expression we give a higher quality value to those paths which have been chosen by a 
larger number of ants, which have a greater average pheromone value and which are shorter in 
length. 

When an ant k discovers a server offering the required service, it has to decide whether to 
stop and return the current path leading to that server, or keep on trying to find a better (more 

trustworthy) one. This decision could be expressed as the transition rule: if TraThk  and 
1,0~rk  then ant k stops and returns current solution, where k  is the average pheromone 

of the current path, 1,0TraTh  is a constant called Transition Threshold and 1,0~r  is a 

random number within the interval 1,0 . 
And when an ant is currently in a server who does not offer the desired service, it has to move 

one step forward, choosing among the current node's neighbors. Let ant k be at node r, then the 
probability of choosing neighbor s as the next node in the path is computed as: 

 

)(

),(

rJu
ruru

rsrs
k

k

srp  (5) 

where )(rJ k  is the set of reachable nodes from r not visited yet by ant k and ,  are two 
weights establishing a balance between pheromone traces and heuristic values, respectively. 
But specifically, the ACS adds a proportional probabilistic transition rule as follows: 

 
otherwise),(

 ifmaxarg
),( 0

)(

srp

qq
srp

k

ruru
rJuk k  (6) 

where 1,0~q  is a random number within the interval 1,0  and 0q  is the probability of 
choosing deterministically the most promising next node u. 

As we have seen, at step 7 of TACS client C evaluates his satisfaction, 1,0Sat , with the 
received service s'. To do so, he assesses the similarity between that service and the one initially 
requested: s. This assessment may be different for each client, since it depends on some weights 
(meaning client's preferences) that the own client can define by himself. It is modeled as follows: 

 ),,(),( deliveryqualityprize wwwfssSimSat  (7) 

Finally, the last step of the model consists of punishing a server in case he has provided a 
worse service than the one he initially offered. If PunThSat , where 1,0PunTh  is a 
constant called Punishment Threshold, then the punishment carried out is: 
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 cscscs dfSat 2)1(  (8) 

where 1,0csdf  is a distance factor for edge cse  that implies a stronger punishment for those 
edges closer to the malicious server and which is computed as follows: 

 1,,2,1         ,
)1(

Ld
dLL

ddf cs
cs

cs
cs  

being L the actual length of the whole path and csd  the distance of edge cse  from the client. 

Otherwise, if PunThSat , the stronger punishment for cse  is: 

 Sat
dfcs

cs
cs  (9) 

The number of ants and iterations depends on the number of nodes of the network according 
to the expressions antsN

NA NN  and iterN
NI NN , respectively, where 1,0, iterants NN . 

9B3.1 Advanced Features 
Some features that can be derived from the mathematical model of TACS are now presented. 

This model allows the anonymity of the entities participating in the network since it does not need 
to associate an entity with its actual identity. Every entity is just given a pseudo-identifier per 
session not associated with its real identity. However, newcomers do not have more opportunities 
than non malicious remaining entities in the network. Otherwise an entity could achieve enough 
reputation to interact with other ones, then keep cheating until its level of reputation did not allow 
him to interact again (at least for awhile), and then leave and re-enter the network as a newcomer 
and start again. This is achieved in TACS by evaporating pheromone traces only when an 
unsuccessful interaction has been carried out.  

Nonetheless, benevolent newcomers indeed have the ability to participate although there was 
a very trustworthy entity in the network, because those newcomers will receive gradually more 
ants depositing pheromone traces until they reach a certain level that allows them (in terms of 
probability) to be selected. Likewise, redemption of past malicious entities that has become 
benevolent is accepted. And an exploitation of a good built up reputation is avoided since the 
punishment for a high deception in a transaction is even higher (see equation (9)). 

When evaluating the satisfaction perceived by a certain transaction, a subjectivity assessment 
is allowed since each client may define his own weights in order to compute the similarity 
between the requested service and the one actually received (as shown in equation (7)). 

10B3.2 TACS Performance 
The overhead added in this kind of networks is most of the times a critical issue since the 

interacting devices in a P2P, Ad-hoc or even Wireless Sensor Network usually have great 
constraints about memory, processing and communication capacity. 

Therefore, we made some tests in order to measure the performance or throughput of our 
model. Our library [25] size is close to 31 Kbytes. Moreover, Figure 2 depicts the average time in 
milliseconds needed to perform one transaction (without taking into account transmission delays). 
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Figure 2. TACS Execution Time. 

This graphic indicates the overhead introduced by TACS. It needs less than 25 milliseconds 
to be executed over a 100 nodes network and up to 0.33 ms when the network is only composed 
by 10 nodes. It can be checked that the performance nearly follows a linear function.  

3B4.  META-TACS 
As we have seen, TACS includes several parameters involved in the model. And with the 

values shown in Table I we got good outcomes in comparison with other bio-inspired methods 
[24]. 

However, we thought that it would be interesting to have an optimization of these working 
parameters. Even more, it would be necessary to obtain knowledge about the behavior of TACS 
regarding the specific working parameters and trying to provide a more solid support for using a 
set of particular values, instead of only trying a few empirical values (as the ones shown in Table 
I, for instance). 

That is the reason why we applied a genetic algorithm in order to optimize TACS parameters 
and give a formal support to those values. Our pursued intention was to check the behaviour of 
TACS model against a relatively wide range of values for each parameter (having in mind that 
every optimized parameter can take values within the interval 1,0 ). 

Genetic algorithms have been proved to be a good option when optimizing continuous 
variables [26], as it is our case. Specifically, the CHC algorithm [27], that stands for Cross 
generational elitist selection, Heterogeneous recombination, Cataclysmic mutation, was chosen. 
The most important reason as to choose CHC in particular in order to implement META-TACS 
lies in that it works with a small population size. For the present problem small population size is 
a convenient feature because evaluating an individual requires the execution of an instance of 
TACS. Although TACS is a remarkably fast algorithm such execution is comparatively costly 
compared with the other components of the CHC genetic engine. The other features found in CHC 
were designed to counterweight the weakness that small populations present. Elitist selection 
allows a monotonic improvement of the solution. A specially designed heterogeneous (and 
uniform) recombination, termed HUX, provides better sampling coverage when few individuals 
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Table I. TACS Parameters. 

Parameter 
name Value Range Meaning 

 0.1 [0,1] Pheromone local updating and punish and reward parameter 

 0.1 [0,1] Pheromone global updating parameter 

 1.0 [0,1] Learning weight in the transition rule 

 1.0 [0,1] Heuristic weight in the transition rule 

antsN  0.35 [0,1] Exponent to determine the number of ants 

iterN  0.35 [0,1] Exponent to determine the number of iterations 

0q  0.98 [0,1] Probability of choosing deterministically the most promising 
next node 

IniPh  0.5 [0,1] Initial pheromone trace 

TraTh  0.5 [0,1] Transition threshold, to determine if an ant must stop when it 
finds a node offering the requested service or not 

PunTh  0.5 [0,1] Punishment threshold, to determine if an edge must be punished 
or not 

PLF  0.5 [0,1] Path length factor, to determine the importance of the length of a 
path when measuring its quality 

 
are available, aided by the incest prevention policy followed in CHC. With such aggressive 
crossover operator the typical mutation operator is not required. The cataclysmic mutation is 
performed when the expected premature convergence of small populations finally arrives. In all 
CHC is a well documented, good performance general purpose optimizer, with a small population 
size, and therefore seemed an adequate choice for META-TACS. Algorithm 1 shows its design. 

In such algorithm L represents the size of an individual, M the number of individuals in a 
population and 1,0r  a constant indicating the percentage of variation of the best individual 
when a re-initialization is carried out. 

The hamming distance between two individuals 1  and 2  is computed as follows: 

 
L

i
iihammingstanceHamming_di

1

2121 ),(),(  

 
otherwise1

||if0
),(

21
21 ii
iihamming  

where  is a similarity threshold between the components of two individuals. Thus, if two 
individuals are very similar, they are not crossed, preventing this way the incest. 
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Moreover, instead of using the HUX cross, we implemented the BLX-  cross. That is, given two 
individuals ),,,( 11

2
1
1

1
L  and ),,,( 22

2
2
1

2
L , BLX-  cross generates another two 

individuals ),,,( 21
k
L

kkk , where k
i  is randomly generated within the interval 

 II maxmin ,  

being },min{ 21
min ii , },max{ 21

max ii , 1,0  and minmaxI . The bigger  
is the greater is the diversity when searching the best individual. 
 

4/Ld  

initialize population )(tP  

evaluate individuals in )(tP  
while stop condition not satisfied do 

  1tt  

  Copy all members of )1(tP  to )(tC  at random 
  /* HUX cross and incest prevention */ 

  for each of the 2/M  pairs of members in )(tC  

    if dstancehamming_di ji )2/),((  
      swap half the differing bits at random 
    else 

      delete the pair of individuals from )(tC  

  evaluate individuals in )(tC  
  /* Elitist selection */ 

  form )(tP  from )1(tP  by replacing the worst members of )1(tP  

with the best members of )(tC  

  if )(tP  equals )1(tP  

    1dd  
  /* Re-initialization */ 

  if 0d  

    replace )(tP  with M copies of the best member of )1(tP  

    for all but one member of )(tP  

      flip Lr  bits at random 
      evaluate individual 

    Lrrd )1(  

Algorithm 1. CHC algorithm. 

In the re-initialization step, we did not use the method explained in algorithm 1 (i.e. flip 
Lr  bits at random), since our individuals representation is not a bit string, but real parameters, 

that is Ri  (in fact 1,0i ). We used, therefore, a normal distribution with mean 0 and 

standard deviation , ),0(N , in order to diverge and reinitialize the individuals of a 
population. Specifically, the divergence is carried out as follows: 
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 ),0(Nii  

The bigger 1,0  is, the greater the divergence of a member when re-initialization is 
done. We set  to 0.1, which means that almost all possible divergence is inside the ±0.3 range. 

Since we developed our customized genetic algorithm in order to optimize the parameters 
shown in Table I (except for alpha and beta), each individual is represented as a tuple: 

 ),,,,,,,,( 0 PLFPunThTraThNNIniPhq iterants  

Thus, evaluating a member means executing TACS with the parameters values specified by 
that certain member. And its fitness is the average satisfaction of the client with the received 
service minus half the standard deviation ( 2/SatSat ). 

Finally, the stop condition for our CHC algorithm was: 

 6
_ 100.1individualBestfitness  

That value was considered that provided an acceptable while close-to-perfect result. 

4B5.  META-TACS EXPERIMENTS AND RESULTS 
This section presents the whole set of experiments with their corresponding outcomes carried 

out in order to optimize TACS parameters through our customized CHC genetic algorithm. 
As we have seen before, CHC algorithm has its own setting parameters. The values used for 

those parameters in all the experiments done can be observed in Table II. 
 

Table II. META-TACS Parameters. 

Parameter 
name Value Range Meaning 

M 40 [0, ] Number of individuals in a population 

L 9 [0, ] Size of an individual 

r 0.35 [0,1] Percentage of variation of the best individual when a re-
initialization is carried out 

 0.01 [0,1] Similarity threshold between the components of two individuals 

 0.3 [0,1] Determines the diversity when crossing two individuals 

 0.1 [0,1] Divergence of individuals when a re-initialization is carried out 
 
Here we defined the three same scenarios that were designed to test TACS alone [24, 25], that 

is, static networks, dynamic networks and oscillating ones. In fact, each individual fitness 
assessment requires an execution of TACS over 5000 random networks with 100 interactions for 
each of them (except for the oscillating scenario, where 1000 transactions are done, as we will 
explain later) using the parameters values contained in that specific individual. 
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11B5.1 Static Networks 
Under these conditions, we launched one CHC genetic algorithm for each case of the first 

scenario. In other words, we launched a CHC algorithm for static networks with 10 to 20 nodes, 
one CHC algorithm for static networks with 20 to 30 nodes and so on (30 to 40 and 40 to 50). 

Table III and Figure 3 show the mean, , the standard deviation, , the minimum and the 
maximum values for each one of the optimized parameters obtained within the first scenario. 

The first appreciation that can be done is that in a static environment  can take a wide 
range of values, while 's values fall into a smaller interval. is involved in the pheromone local 
updating (formulae (2)) and in the punishment method (formulae (8) and (9)), so the bigger  is, 
the stronger the punishment is (and vice versa). However, the closer to 0.5  is, the greater is the 
pheromone local updating, and the closer to the extremes 0 or 1  is, the weaker is the 
pheromone local updating carried out. 

is only involved in the pheromone global updating, and a greater value of  implies a 
bigger updating (and vice versa). As it can be seen  is never greater than 0.5, its range of values 
is relatively small and on average, it is greater than . 

About 0q , if it was equal to 0, every ant would use the transition rule described in equation 

(5) (direct exploration), otherwise, if 10q , the transition rule always used would be the one 

shown in equation (6) (probabilistic transition). In a static scenario, 0q  takes higher values with a 
low standard deviation. 

 
Table III and Figure 3. META-TACS Outcomes for Static Networks. 

  Max Min 
phi 0.1784 0.1903 0.4545 0.0319 
rho 0.3045 0.0482 0.3576 0.2602 
q0 0.8332 0.0321 0.8788 0.8057 

IniPh 0.4929 0.1459 0.6514 0.3511 
Nants 0.3973 0.0689 0.4691 0.3032 
Niter 0.5404 0.1279 0.6301 0.3533 

TraTh 0.4972 0.1214 0.6218 0.3689 
PLF 0.5652 0.2226 0.8331 0.2961 

PunTh 0.6806 0.0781 0.7896 0.6088 
Fitness 0.9998 9.7 · 10-5 0.9999 0.9997 

 
The most interesting thing to say about the IniPh  parameter is that its mean is close to 0.5 

with a considerable standard deviation. This means that the best initial conditions for a client is 
neither to be very trustful, nor to be very untrustful, but a mean term with certain divergence. 

In order to help understanding the meaning of the values of antsN  and iterN  (and 

even PLF ), Figure 4 depicts the set of functions ax where }0.1,9.0,,2.0,1.0{a . As it can 

be observed, when the size of the network is less than 50 nodes, the difference between 1.0
NN  and 

5.0
NN  is minimal. The difference begins to be relevant when antsN  or iterN  is greater than 0.5 

(and even greater when the number of nodes increases). 
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Figure 4. antsN  and iterN  vs NN  

Therefore, if antsN  and iterN  remain close to or less than 0.5, the difference between one 
value or another is not significant (maybe one or two ants/iterations of difference, which has no 
real strong effect in the results). 

If 0TraTh  then the probability that an ant k stops when it discovers a server offering the 
requested service is determined only by the average pheromone of the current path built by ant k, 

k . That is, if 9.0k , for instance, ant k has a 90% of probability of stopping when 

discovering such a server. If 1TraTh , then k  has to be close to 1 (a very trustworthy path) 
in order to let the ant to stop; otherwise it will keep on trying whenever it finds a server offering 
the requested service, until it reaches one of these servers without a neighbor to move forward. 

PLF is used when assessing the quality of a path (see equation (4)). The bigger PLF  is the 
more influence the path length has on its quality. The average length of the solutions depends on 
the number of nodes, but it is not usually very high [29]. Thus, there is no much difference 
between the values of PLF accepted in a static scenario. And since its mean value is near to 0.5, 
equation (4) may be viewed as: 

 
k

k

k
k SLength

ASQ
)(

)(  (10) 

Finally, if 0PunTh , every edge of the path leading to the most trustworthy server would 
be punished according to formula (8); otherwise, if 1PunTh , the punishment applied to all 
those edges would be the one shown in formula (9). In this first scenario PunTh  takes higher 
values, thus meaning that a stronger punishment method is more suitable. 

12B5.2 Dynamic Networks 
The second tested scenario was similar to the first, but including dynamism. Note that P2P 

networks are strongly characterized by their high dynamism, where every node can enter or leave 
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the network at any moment, therefore the need of this type of scenario. In this dynamic scenario 
the topology of the network may change along the time. Table IV and Figure 5 show the outcomes 
of META-TACS for this scenario. 

In this scenario  parameter mean takes a very similar value than in the static scenario, but 
with a lower deviation, so it has a weaker pheromone local updating and punishment. , 
however, also has a similar mean but this time the deviation is greater than in the first scenario. 
This means that greater and lower pheromone global updates are allowed in the dynamic scenario. 
It is deduced that this exchange of deviation sizes implies that in a dynamic P2P network a better 
balance is achieved by contributing with less pheromone in the local updating but with a greater 
trace in the global one, while the punishment is also low. As it can be observed, and remain 
under 0.5 and  mean is still greater than 's one. 

As 0q  takes a lower value than in the first scenario, it seems that in a dynamic one is more 
suitable for ants to choose the next node to move forward using more often the expression (5). 
And this has sense since with equation (6) an ant always chooses the most promising node to 
move forward, and this might be good for a static environment. But in a dynamic scenario is better 
to sometimes use the probability defined in formula (5) to randomly select the next node of the 
path. Otherwise, following the most promising path could lead us to a dead end, since nodes can 
leave the network whenever they want. 

IniPh has nearly the same standard deviation than in the first scenario, but the mean is 
higher. This can be interpreted as that in a dynamic environment is better to initially be a bit more 
confident. 

 
Table IV and Figure 5. META-TACS Outcomes for Dynamic Networks. 

  Max Min 
phi 0.1411 0.1096 0.3138 0.0000 
rho 0.3116 0.1397 0.5642 0.1950 
q0 0.6619 0.0924 0.8156 0.5707 

IniPh 0.5655 0.1471 0.7344 0.4132 
Nants 0.4661 0.0748 0.5498 0.3435 
Niter 0.5208 0.1377 0.6839 0.3567 

TraTh 0.5425 0.1264 0.7329 0.4165 
PLF 0.4845 0.1395 0.6272 0.2608 

PunTh 0.5501 0.1933 0.8613 0.3351 
Fitness 0.9996 3.5 · 10-4 0.9999 0.9991 

 

iterN  remains greater than antsN  in this second scenario, and the values of both parameters, 
as we explained before with Figure 4, are quite similar to those obtained for the first scenario. 

The standard deviation of TraTh  is also very similar in this environment than in the first one 
but, once again, here the mean is a bit greater than in the static scenario. This situation implies that 
ants do not stop when they find a server offering the requested service as often as they would do 
in a static network. In a dynamic network nobody guarantees that a server will stay in the network 
for a long time, so it is better that ants explore the network as much as they can. 

PLF  has here a range of values with lower bounds than in the first scenario, but its mean is 
close to 0.5 too, so the rewriting of formula (4) can be also applied here. 
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And the behavior of the PunTh  parameter is interesting. Here it has a lower mean, closer to 
0.5, and a greater interval of values, which means that in a dynamic network the punishment 
scheme can vary from a quite hard and strict one until a soft and relaxed one. Or it can also be 
seen as that a good balance between strong and weak punishment is more suitable for dynamic 
networks. 

13B5.3 Oscillating Networks 
Finally, the third and last scenario consisted of a set of static networks where after every a 

certain number of transactions (50 in our case) the goodness of the currently selected most 
trustworthy server swapped, so it turned into a malicious one. In a P2P network any peer can 
suddenly change its goodness in order to cheat and try to get a greater self-profit. Thus, this kind 
of scenario aims to study this other type of dynamism, but this time focused on the behaviour of 
the nodes instead of the variability of the topology of the network In this oscillating scenario, in 
order to evaluate the fitness of each individual we executed TACS model over 5000 random 
networks with 1000 transactions per network with sizes of 10 to 20 nodes, 20 to 30, and so on. 
Outcomes of the genetic algorithm are shown in Table V and Figure 6. 

A very significant issue derived from the experiments is that  parameter is now very close 
to . In fact it is a bit lower. But it can be because  takes here the highest value and  its 
smallest one among the three tested scenarios. Remember that this meant that the pheromone local 
updating and the punishment are both greater, and the pheromone global updating is weaker. 

Parameter 0q  has here a greater value than in the dynamic scenario, but lesser than in the 
static one, so in an oscillating network it is also better for an ant to choose the best path to follow 
by using equation (6) (probabilistic transition rule) rather than equation (5) (direct exploration). 

 
Table V and Figure 6. META-TACS Outcomes for Oscillating Networks. 

  Max Min 
phi 0.2460 0.1451 0.4417 0.1092 
rho 0.2294 0.0947 0.3531 0.1429 
q0 0.7496 0.0964 0.8888 0.6793 

IniPh 0.5558 0.1939 0.8307 0.3987 
Nants 0.2926 0.0605 0.3617 0.3435 
Niter 0.3812 0.2198 0.6148 0.0985 

TraTh 0.3243 0.2031 0.5497 0.0637 
PLF 0.4543 0.1468 0.6546 0.3023 

PunTh 0.5181 0.1528 0.6771 0.3175 
Fitness 0.9995 7.3 · 10-4 0.9999 0.9983 

 
The highest standard deviation for IniPh  is reached here, but its range of values is quite 

similar to those obtained in previous scenarios, that is, the most profitable initial conditions 
consist of  not being too confident, neither too unconfident. 

antsN  takes here its lowest values for both the mean and the standard deviation, while iterN  
takes the lowest mean, but the highest standard deviation. This implies that, on the one hand a 
balance between these two parameters is necessary, and on the other hand, iterN  is in average 

term higher than antsN . 
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TraTh also has its lowest mean and highest standard deviation in the oscillating scenario, 
which means that the probability of an ant of stopping when it discovers a server offering the 
desired service is mainly determined by the average pheromone of the path currently built. 

The lowest mean of PLF  parameter is obtained in this scenario, but its range of values is 
very similar to the previous ones, and the rewriting of formula (4) done in formula (10) is also 
valid here. 

Again, another lowest mean is reached here. And it is the PunTh  parameter. But its values 
interval is quite similar than the one achieved in the dynamic scenario, so it has the same impact it 
had there. 

In summary, this scenario has the most extreme values among the three tested environments 
for many parameters. And the reason for this is that an oscillating scenario is the most changing 
and aggressive for our model (in fact the �“worst�” fitness values are also achieved here). 

14B5.4 Global Outcomes 
Finally, Table VI and Figure 7 summarize the global outcomes (average of the three tested 

scenarios) for META-TACS model. These outcomes can give us an interesting perspective of the 
performance of our model when there is no information about the behaviour of the network nodes 
or the stability of the topography of the network where it is going to be deployed. 

As it can be seen, the standard deviation of every parameter goes from 0.1 to 0.16, 
approximately, which are high values since all the optimized parameters take values within the 
interval 1,0 . That is, all of them have a standard deviation between the 10% and the 16%, 
approximately. 

 
Table VI and Figure 7.  Global META-TACS Outcomes. 

  Max Min 
phi 0.1817 0.1409 0.4545 0.0000 
rho 0.2861 0.1073 0.3531 0.1429 
q0 0.7359 0.1057 0.8888 0.5707 

IniPh 0.5420 0.1516 0.8307 0.3510 
Nants 0.3969 0.0982 0.5498 0.2162 
Niter 0.4865 0.1645 0.6840 0.0985 

TraTh 0.4672 0.1680 0.7329 0.0637 
PLF 0.4989 0.1611 0.8330 0.2608 

PunTh 0.5782 0.1608 0.8613 0.3175 
Fitness 0.9996 4.4 · 10-4 0.9999 0.9983 

 
We did not expect with these experiments to obtain a very accurate value for each one of the 

TACS parameters, but to demonstrate the robustness of the model against a certain range of input 
values for those parameters. As we can see, standard deviations take most of the times high 
values, which means a wider interval where to take values from for a certain parameter, obtaining 
however good outcomes (the worst one is a 99.83%, as it can be seen in Table V). 

Some general relations between TACS parameters can be derived from the experiments 
carried out with the CHC genetic algorithm. These relations are described in Table VII. 

These relations are just rough general approximations. In future work some rules relating 
several parameters could be extracted through a data mining process, for instance. 
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Table VII. TACS Parameters Relations. 

 

antsiter NN  

5.00q  

5.0IniPh  
5.0PLF  

 

5B6.  CONCLUSIONS AND FUTURE WORK 
This paper has studied the robustness of TACS (Trust Ant Colony System), a novel trust 

model for P2P networks using the bio-inspired algorithm of Ant Colony System. It has described 
its main characteristics and features and shown its performance. 

A genetic algorithm based on the CHC algorithm has been applied in order to optimize the 
working parameters of TACS model and obtaining better knowledge about the behaviour of 
TACS with regards to them. The performance optimizations of this genetic algorithm have 
demonstrated the robustness of TACS model against a wide range of working parameter values. 
That is, TACS seems to work reasonably well regardless the values given for its parameters 
(within a certain interval). 

Besides, this work opens some future ways of research. For instance, some rules relating 
TACS parameters could be obtained through a data mining process as to better adapt to the 
particular scenario found when applied in real networks. Although TACS has been shown as a 
robust system within wide parameter ranges it is always a recommendable safeguard to set the 
parameters in the best parameter setting areas depending on the type of network at hand. 
Therefore a self-adapting system based on meta-knowledge rules or metaheuristics may prove a 
useful addition to META-TACS in the future. 

We have focused our model on P2P networks; nevertheless, other environments such as 
wireless sensor networks, ad-hoc, or even V2V (Vehicular-to-Vehicular) networks are also firm 
candidates for applying our model on them. 

We are also planning to implement and test our model over a simulation environment such as 
OMNeT++ [28] and even participate in workbenches competitions such as ART Testbed [29]. 

Finally we are thinking of introducing ontologies, as well as fuzzy sets, in our model in order 
to provide it with some semantics. For instance, concepts as the similarity between two services 
could be better modelled in this way, in our opinion. 
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